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1. Introduction

The field of statistical genetics has been the area of a great deal of active research in
recent years; due in part to dramatic advances in sequencing technology which has led
to vast amounts of genomic data becoming available at lower and lower costs. The data
from these sequencing efforts is not only copious, but is also characterized by significant
levels of experimental noise. Processing data of this nature to draw statistically significant
inferences requires dealing with a number of challenges, both statistical and algorithmic.
In this chapter we will not discuss the very substantial statistical issues which arise in
extracting genome sequences, but rather will focus on computational and algorithmic issues
which arise in drawing biological inferences once the sequence is known. Event though
our discussion will be oriented more towards applications of graph theory, it is worth
keeping in mind that statistical considerations will still play a role due the intrinsically
probabilistic nature of Mendelian Genetics as well as finite sample sizes. We will first begin
by reviewing earlier well known work which will serve to illustrate the utility of graph
theoretical concepts in dealing with genomic data. The data at our disposal are assumed to
consist of observations of at a large number of locations (tens of thousands or possibly much
more) on multiple chromosomes for a collections of individuals, or plants or animals; for
now we assume that these individuals are related with known parent offpsring information.
We restrict our attention to species which have just two chromosomes, but much of what
we will discuss can be generalized to species with more than two chromosomes although
the computational implementation could be challenging. At any locus (precise location
on a specified chromosome) we assume that there are two or more possible alleles in the
population, the precise number is assumed to differ from locus to locus. The number of
possible observable genotypes at each locus will thus also vary from locus to locus. In a
population of related individuals with known parent offspring relations between individuals
(i.e. pedigree) it is possible to predict the probability for an offspring to receive a given
allele from a parent based on Mendelian Genetics. If we represent a given locus for a given
individual by a vertex, we can assign multiple possible states to each vertex depending on
how many genotypes are possible. Since genetic information flows from parents to offspring
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we can construct a directed graph where the arrows flow from parental vertices to offspring
vertices. The indegree of each vertex is maximally two, while the outdegree will depend on
how many offspring an individual has. We thus have a directed graph where each vertex
has multiple states (genotypes or alleles) associated with it. Since individuals cannot be
their own ancestors, the graph is acyclic as well as being directed. With each edge we can
associate a transmission probability which is determined by Mendelian Genetics; in addition
there is a Markov Field Property involved as conditional on parental genotypes offspring
genotypes are independent of all other ancestral genotypes and sib genotypes. We thus have
all the ingredients of a Bayesian Network. Many important problems relating to genetic
inference from data on pedigrees have been formulated in the language of Bayesian Networks
(Fishelson & Geiger, 2002); (Fishelson & Geiger, 2004); finding exact and approximate
solutions to these problems particulary on large data sets has led to the development of very
sophisticated algorithms which we will not discuss here. The key feature underlying the data
is that it consists of a potentially large but discrete number of observations. These observations
have a very complex correlational structure, some of the observations are heavily correlated
(eg. the genotypes of parents and offspring at the same locus) while others may be very loosely
correlated (eg. the genotypes of individuals and ancestors going back several generations).
The discrete nature of the data points permits us to assign a vertex in a graph to each data
point while the edge structure (which arises from the pedigree structure) is a reflection of the
association between data points; seen in this light the use of a graph theoretical formulation is
quite natural. In what follows, the data under consideration will have the same features,
suggesting the use of graphical models but our discussion will focus more on the use of
undirected graphical models.

In order to motivate the application of undirected graphical models, we consider two fixed
loci on the same chromosome in a population of individuals. It is frequently observed that
the joint distribution of alleles at loci which are in close physical proximity on the same
chromosome, is not uniform. More specifically, if there are two alleles at one locus A or
a and B or b at another locus, then the probability of finding allele B in some arbitrary
individual in a population may depend on the which allele (A or a) is present at the other
locus. In the language of probabilities P(A, B) �= P(A)P(B) for certain pairs of loci; this
is the phenomenon of linkage disequilibrium (LD) (Weir, 1996). The extent and statistical
significance of the non-randomness of the alleleic association can be quantified by analyzing
a (3 × 3) contingency table whose entries are genotype counts. If there are just two of the
three possible genotypes present, or if the population from which the unrelated individuals
are sampled is subject to certain other constraints, it becomes possible to estimate the linkage
disequilibrium between each pair of distinct markers using just a (2 × 2) contingency table,
alternatively the non-randomness in the asociation between the alleles depends one just one
function of the allele counts. What is actually computed is just the sample LD, the standard
errors on the LD will depend inversely on the size of the population. The magnitude of the
observed LD can vary quite dramatically depending on which loci are being compared, large
LD is very much more common among loci close together than loci on different chromosomes.
Furthermore, while LD tends to decrease as the distance between loci increases, the decrease
is often neither uniform nor monotonic. This discussion can be extended to multiple loci
by considering larger contingency tables, more sophisticated multivariate discrete probability
distributions and also multiple coefficients of association. Our data once again consists of
a large number of discretized observations with a possibly complex correlation structure
between the observations; suggesting the use of a graph theoretical formulation. If we
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represent each locus by a vertex, the LD structure can be captured graphically by introducing
an undirected edge between a pair of vertices whenever the LD between the vertices in the
pair is statistically significantly different from zero. It is assumed that there is a user defined
significance threshold. The edge is undirected because the statment of statistical association
between loci relates only to correlation, and does not carry any implications of causality. This
defines an undirected graph whose edge structure is indicative of the LD patterns between
the loci under consideration. Unlike in (Fishelson & Geiger, 2002); (Fishelson & Geiger, 2004);
we do not associate states with a vertex in a graph, all that information has been averaged
over all indviduals in determining the LD between markers. The use of graphical models
to elucidate the LD structure between loci is well established (Thomas & Camp, 2004) as is
the connection between graphical models and discrete multivariate probability distributions
(Lauritzen, 1996). To summarize, datasets in statistical genetics consist of a vast collection of
discretized observations with potentially very complex correlations between the observations;
graph theoretical methods can be adopted for describing and analyzing data of this nature. In
the rest of this chapter, we will discuss some applications of this nature, some open problems
and possible solutions.

2. Graphical methods in association mapping

2.1 Population stratification

Understanding the LD structure is of considerable interest not only from the viewpoint
of population genetics, but is vital for deducing the location of genes influencing traits in
populations by Genetic Association Mapping. The Case Control design is a popular design
for Genetic Association Mapping (Thomas, 2004). Here the data are assumed to consist of
a large number of genotypes at fixed loci observed on two distinct groups of individuals,
healthy controls and diseased cases, and we assume that the individuals are unrelated to
each other. We assume that the genotypes are observed at marker loci, i.e. locations on
the chromosome where there are no genes directly influencing the disease. Nonethless, if
genotypes are observed at a large number of sufficiently closely spaced markers , there may be
some markers physically close to the gene influencing the disease and which are potentially
in strong LD with the diesease gene leading to a statisticaly significant association between
certain genotypes and disease status. The goal of Case Control studies is to discover which
markers (if any) show statistically significant associations with disease status and then draw
conclusions about the physical location of a gene causing the disease with relation to these
markers. As the association is statistical in nature it is important to understand potential
causes of false positives in order to minimize Type I error. Two very important causes of Type
I error in Case Control studies are population stratification and multiple testing artifacts. As
we will see, undirected graphical models can be used to acquire new insights on both these
problems. We begin with an analysis of population stratification; population stratification
can be understood in terms of a difference in genetic content between cases and controls
over and above any differences at loci in high LD with the disease gene. For example, if all
the diseased cases are from one ethnic group, and all the healthy controls are from another
ethnic group, then there will be statistically significant associations between case/control
status and genotypes at loci which reflect differences in ethnicity i.e. population structure ,
in addition to loci which are possibly liked to the disease. This is an example of population
stratification, and will lead to false positive associations at loci reflecting the ethnic differences
between cases and controls but unrelated to the disease under study. In this very simple
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instance we just considered two ethnic groups, with all the cases drawn from one group
and all the controls from the other, in more typical instances, both the cases and controls
will themselves be mixtures of two or more ethnic groups. In these more realistic scenarios
population stratification will be a problem when the proportions of various distinct groups are
different in cases and controls and when genotypes are observed at loci where the frequencies
of the various genotypes are different in the various ethnic groups represented in the case
and control samples. The effects of population stratification can be ameliorated by carefully
matching ethnicities between cases and controls but this is not always possible or feasible. In
real life situations, it is safer to assume that population stratification exists, which then must
be taken into account before testing any markers for association with disease status. There
are two broad approaches to correcting for population stratification in genetic association
studies, non-parametric and parametric. The most popular parametric method for dealing
with population structure is using the program Structure (Pritchard, 2000) ;(Falush, 2003) in
which specific scenarios for population admixture are assumed. Structure attempts to assign
the individuals to specific clusters based on a specific model, the genotypes are the feature
vectors used to decide how to assign individuals to clusters. In addition to the genotype data
the number of populations present in the data must be supplied by the user, this is analogous
to specifying the number of clusters in k-means or other clustering methods. In the most
sophisticated scenario (the Linkage Model) the genotypes for any individual reflect a mixture
of different populations with different chromosomal segments possibly arising from different
populations. The number of populations however is not specified and must be supplied by
the user. The precise assignment of individuals to different populations frequently arises only
after a long MCMC simulation which uses genotypes for all individuals at all loci as input.
Any LD between the loci is corrected for in the process of assigning individuals to constituent
sub-populations. Since it is not uncommon to have genotypes at tens of thousands ( frequently
more) of loci implementing the methodology of Structure can be time consuming partly due
to the sheer size of the data set and partly due the overhead of correcting for LD between the
loci which is typically present when there are a large number of loci under consideration. The
presence of LD between the loci also suggests that even though the number of loci may be
large, the various loci do not necessarily contribute additional independent information on
population stratification. This suggests that with a judicious choice of mutually independent
loci, population stratification can be analyzed with a smaller and more manageable subset of
the data in less CPU time. We will next explain how exactly this can be done using graph
theoretical ideas and mention an application to real data.

An optimal set of loci for discerning population structure should be sufficiently large so
that loci characteristic of populations whose frequency in the sample is relatively small, are
nonetheless included, while ensuring a high degree of statistical independence between the
loci. The requirement of statistical independence between the loci can be made more precise
by ensuring that the loci are in low LD with one another. What we are then looking for is
the largest possible subset of loci such that the LD between any arbitrary pair of loci is low.
We will recast the problem in the language of graph theory using the correspondence between
vertices in a graph and loci on a chromosome we discussed earlier and show a correspondence
between a well known combinatorial optimization problem, that of finding the maximum
independent set on an undirected graph. As there is no known polynomial time solution for
this problem, a randomized heuristic algorithm will be described along with its performance
on a real data set.
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The input to the algorithm is N , a set of N markers, an N × N symmetric matrix M with
positive off diagonal values, and a positive constant c. The precise value of the diagonal matrix
elements of M are not relevant as long as they are smaller than c . If we denote the elements
of N by Nj (1 ≤ j ≤ N) then each row of M corresponds to a unique marker; with this
assignment Mij(i �= j) is simply the magnitude of the association between markers Ni and
Nj. All the different Mij can be easily computed given a rectangular data matrix of genotypes
in which individuals are indexed by rows and each column contains the genotypes for one
particular marker. As mentioned earlier we assign to each marker a vertex in an undirected
graph G. Thus G has a set of vertices V with N elements denoted by Vi ∈ V , where 1 ≤ i ≤ N.
Since each marker is assigned to a unique row of M , we can now uniquely associate to each
row of M a vertex Vi ∈ V , where 1 ≤ i ≤ N. Let the set of edges of G be denoted by E .
An undirected edge Eij exists between any two elements Vi and Vj of V if Mij > c. This
condition is adequate to define all the elements of E . There can clearly be no edges from any
vertex to itself due to the choice of the diagonal matrix elements of M. By a suitable choice
of c, any two unlinked vertices in G can be made to correspond to two unassociated markers
in N . The precise value of c needed to achieve this correspondence will depend on some
user specified threshold for defining significant association. Thus given a subset of vertices
{Vi, Vj, Vk, Vm} with no edges connecting any of the six possible pairs of vertices that can
be formed from this subset, we can find a corresponding subset of markers {Ni, Nj, Nk, Nm}
which are mutually unassociated. This argument can be extended to any Vs ⊂ V which gives
rise to a corresponding Ns ⊂ N of mutually unassociated markers. Furthermore, each unique
Ns ⊂ N corresponds to a unique Vs ⊂ V . However, any Vs corresponds to a clique on Gc, the
complement graph of G. If we want the largest possible Ns ⊂ N of mutually unassociated
markers we must find the maximum independent set of vertices in G.

We have thus transformed the problem of finding the largest possible set of mutually
unassociated markers to a well known problem in graph theory that of finding the maximum
independent subset of vertices in an undirected graph, (or equivalently the clique of largest
size on the complement graph) a problem for which there is no known efficient solution. Thus
we are forced to resort to heuristics which yield only approximate solutions, more precisely a
subset of vertices which may be smaller in size than the true maximum independent subset.
As a cross-check on any given solution it would be useful to have a different solution for
the sake of comparision. This motivates the use of a stochastic greedy heuristic which
can generate multiple solutions, rather than use of one of the many well known published
heuristic algorithms for this problem. The graph that we have is unweighted, although we
could have considered a weighted graph with the LD between markers playing the role
of weights. Although the precise LD information has been ignored in the construction of
the graph and in our heuristic algorithm, this does not matter. LD represents a statistical
correlation and all that matters for our purposes is whether the correlation is significant or not.
One complication we have ignored here is that the presence or absence of edges is determined
by comparing sample LD values with some threshold; in a more sophisticated scheme the
standard errors on the sample LD values could also be used to assign probabilities for the
presence of edges in the graph where the corresponding sample LD values are close to the
significance threshold.

We will next describe a stochastic greedy heuristic for finding the clique of maximum size on
an undirected graph, which due to the exact corespondence between maximum cliques and
maximum independent sets can readily be applied to our maximum independent set problem.
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• Description of Algorithm

As before we assume we have an undirected graph G in which V is the set of vertices and E is
the set of edges. G is not assumed related to any genetic marker map so the algorithm is at this
stage perfectly general. The algorithm also requires as input a positive parameter γ which is
a measure of how far the algorithm deviates from a deterministic greedy heuristic. The larger
the value of γ the closer the algorithm resembles a deterministic heuristic. We define Li the
set of neighbors of Vi and ni size of Li, and assume ni > 0 ∀Vi ∈ V . We define sets of vertices
CandSet, TempSet as well as ReturnSet which is the output from the program.

Informally, the algorithms starts by picking a seed vertex which has a relatively large
number of neighbors, relatively large being defined with respect to the number of neighbors
of all the vertices in the graph. This seed vertex Vs is inserted into ReturnSet. CandSet
is initialized by the set of neighbors Vs, while TempSet is initialized by the empty set.
An element Vn of CandSet is chosen on the basis of having a relatively large number of
neighbors and TempSet is the set of neighbors of Vn not already included in ReturnSet. Next
CandSet ← (CandSet ∩ TempSet), which has the effect of ensuring that all all surviving
elements of CandSet are elements of both Vs and Vn, i.e. all elements of CandSet are connected
to all elements of ReturnSet. Once this step is carried out, it is safe to pick another element
from CandSet and repeat the cycle untill CandSet is the null set. At this stage ReturnSet
cannot be further augmented and the algorithm halts. A more precise description of the
algorithm is given below.

• Initialization

1. Compute norm =
N
∑

i=1
n

γ

i .

2. Evaluate pi = (nγ

i /norm) ∀ i 1 ≤ i ≤ N.
3. Pick some j with probability pj.
4. Insert Vj in ReturnSet.
5. CandSet ← Lj.
6. TempSet ← ∅.

• Main Loop

while CandSet �= ∅ do

1. Evaluate n
γ

i ∀ Vi ∈ CandSet

2. Compute norm = ∑ n
γ

i
with the summation restricted to elements of CandSet

3. Compute pk = (nγ

k /norm) ∀Vk ∈ CandSet
4. Select Vn ∈ CandSet with probability pn.
5. Insert Vn in ReturnSet.
6. TempSet ← {Vm ∈ Ln : Vm /∈ ReturnSet where 1 ≤ m ≤ N}
7. CandSet ← (CandSet ∩ TempSet)
8. TempSet ← ∅

If CandSet ≡ ∅ return ReturnSet.
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It is also possible to define a deterministic greedy heuristic in which the vertices selected in
step 3 of the initialization and step 4 of the main loop are just those with the largest number
of neighbors. If the parameter γ is made larger and larger, then the output from the program
will increasingly resemble that from a deterministic greedy heuristic. It is worth pointing out
that our algorithm does not make use of the relative location of markers with respect to each
other along the chromosome, thus the methodology we outline is applicable whether the LD
decays rapidly or slowly as a function of the distance between markers on the chromosome.
The output from the algorithm returns a subset of markers which is not necessarily the largest
subset of independent markers, nontheless the number of markers returned could still be
large enough to get an accurate handle on population stratification. We now briefly discuss
the application of of this to real data, more details are available in (Hamblin, 2010).

In conjunction with the Barley Coordinated Agricultural Project (www.BarleyCAP.org), 1816
Barley lines (treated as individuals for our purposes) were genotyped at 1415 markers. Five
initial attempts to run Structure with 500,000 iterations and 100,000 burn in steps taking into
account the association between markers and allowing for admixture between populations
were unsuccessfull due to non-convergence of the MCMC iterations. At this stage, our
algorithm was used to identify a subset of markers with linkage disequilibrium r2 between
any two markers in the subset to be less than 0.25, a criteria used to decide when to consider
markers unlinked. A subset of 486 markers was identified and used as input for Structure
allowing for admixture between individuals but no association between markers. Eight runs
of Structure with 100,000 burn in and 200,000 analysis iterations all converged with consistent
likelihood estimates, illustrating the utility of selecting unassociated markers as opposed to
using the entire set and allowing for association between markers. It is worth pointing out
that constituent populations identified by Structure have differing linkage disequilibrium
structure at both short and large distances, with some SNPs in a few but not all of the
subpopulations in high LD even when 50cM apart. As mentioned earlier, our algorithm does
not use map distances in selecting markers, neither the presence of significant LD between
unlinked markers nor the very different patterns of LD in the subpopulations is an issue. This
feature gives rise to a complex edge structure on the graph, similar to the examples considered
in (Thomas & Camp, 2004).

We next turn our attention to the relevance of the maximum independent set problem to
non-parametric methods for analyzing population stratification. The most widely used
non-parametric approach for analyzing population stratification is Principal Components
Analysis, a number of popular implementations such as EIGENSTRAT (Price, 2006) and
EIGENSOFT (Patterson, 2006) are available. We will discuss the relevance of the apparoaches
just described to EIGENSOFT and then show how some of the statistical methodology in
EIGENSOFT might have applications to machine learning problems outside of statistical
genetics. The input data for EIGENSOFT is a rectangular data matrix where the rows
correspond to individuals and there is one column for each marker, the entries of the
data-matrix correspond to the genotypes suitably parametrized and standardized. The key
idea behind the implementation in (Patterson, 2006) is the realization that in the absence of
population stratification, the largest Singular Value of the data matrix is distributed according
to the Tracy Widom distribution (Tracy & Widom, 1994). However, even in the absence of
stratification, deviations from the Tracy Widom distribution are possible if there is LD between
the markers. One way to avoid false signals of population stratification is to choose a set of
markers which are mutually uncorrelated, preferrably as large an unrelated set of markers
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as possible. As we have seen in the discussion of model dependent population stratification,
choosing this set is tantamount to solving an instance of a maximum independent set on an
undirected graph defined by the LD matrix. In practical instances, alternative methods have
been used to find a set of unrelated markers, for example by exploiting special features of
the LD structure or by other approximations(Heerwarden, 2010). It is not clear that these
approaches will find the largest possible set of uncorrelated markers which is required for
putting the most stringent bounds on the extent of population stratification. Very few (if any)
attempts have been made to use the methodology previously described to identify as large a
subset of unrelated markers as possible, such an analysis could be fruitful. This concludes
our discussion on the application of graph theoretical methods for analyzing population
stratification. The key point of our discussion is the relevance of the problem of finding the
maximum independent set to understanding population stratification. This connection has
not been established before (to the best of our knowledge) and can be exploited to speed up
the the analysis of population stratification in real data sets. Before going on to discuss the
application of graph theoretical methods to multiple testing, it is worth mentioning how the
methodology developed in EIGENSOFT could possibly be used to address a long standing
problem in cluster analysis, i.e. how to identify the number of distinct groupings in a dataset.
As mentioned in our discussion of Structure the number of constituent populations to fit in
Structure is user defined, in (Patterson, 2006) the authors point out how this number might
be reliably estimated using the sample singular values of the data matrix and the details of
the Tracy Widom Distribution. What this amounts to is computing a non-parametric statistic
of the dataset which is then used to estimate the number of distinct groupings in the dataset.
Since the methodology is very general and model independent it could conceivably be applied
to a whole range of problems far removed from statistical genetics.

2.2 Multiple testing

Another major source of Type-I error in Genome Wide Association studies (GWAS) is false
positives arising from multiple testing, and as mentioned earlier these can arise even if
population stratification between cases and controls is fortuitously negligible or has been
controlled for in some manner. Before we discuss the relevance of graph theoretical methods
for understanding multiple testing artefacts, it is worth outlining the root of the problem and
some common remedies. A large number of markers (N) are tested one after another for
association with the trait or disease of interest. Under H0 none of the markers are associated
with the trait, and in addition the p-values for the test statistic are distributed like ∼ U(0, 1).
For a significance level α the expected number of significant tests under H0 will be ∼ Nα,
since N in modern GWAS can be O(106) this leads to a sizeable number of false positives
even if α is small. One way to ensure that there are no false positives with N independent
tests is by choosing α so that Nα ≪ 1 (the Bonferroni correction). However this leads to
such stringent significance thresholds that only markers with very strong effects are picked
up and many markers associated with the trait are ignored because their effects are not large
enough to survive the stringent significance threshold, i.e there are is a large Type II error rate.
Furthermore, if all the tests are not independent due to correlations between the markers the
correction is excessively conservative. This problem can be avoided by permutation testing
which leads to a non-parametric estimate of the number of significant test under H0 given
the correlation structure between the markers. While this approach certainly works it can
become computationally very intensive when there are hundreds of thousands of markers to
be tested. A less computationally intensive method to lower the number of Type II errors at
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the cost of allowing a certain number of false positives is by controlling the False Discovery
Rate (FDR)(Benjamini & Hochberg, 1995); variants on this idea have also been considered. It
has been suggested by (Nyholt, 2004) that the Bonferroni corrections be modified by replacing
N with N∗, the number of independent tests, where hopefully N∗ is very much smaller than
N. With this replacement, the significance threshold can be made less stringent lowering the
Type II error rate. We will next examine this sugestion in the language of graph theory, more
specifically we will consider the problem of finding a suitable subset of independent markers,
the size of this subset is the number of independent markers. One key observation is that
restricting ourselves to a subset of markers is most meaningfull if it is possible to choose that
subset of markers not only to be statistically independent also to be serve as surrogates for
all the markers under consideration. If the latter condition is fulfilled, then testing only the
markers in the independent subset can be regarded as testing each and every marker. If this
condition is not fulfilled, we run the risk of skipping association tests on some markers which
are part of the panel. It is worth pointing out that the idea that a limited subset of markers can
be used as surrogates for an entire panel is well established; this is the notion underlying the
use of tag SNPs in GWAS (Carlson, 2004). Identifying an optimal tag SNPs in a marker panel
given the LD matrix between the markers can be reformulated as a variety of different well
known graph theoretical problem, including the search for a dominating set of smallest size (Li
& Wang, 2011). In order not to underestimate the number of independent tests it is necessary
that the subset of markers be as large as possible; from our earlier discussion of population
stratification it is clear than once again we are dealing with finding a maximum independent
set on a undirected graph defined by the LD structure between the markers and a user defined
specification of statistical independence between markers. The condition that the markers we
select be proxies for all the markers in the panel can be fulfilled by requiring that each vertex
be connected by an edge to at least one of the markers in the maximum independent set. In
other words, the maximum independent set should be a dominating set for the graph. Since
any maximal independent set is a dominating set (Foulds, 1992) the maximum independent
set satisfies this condition. If the heuristic used to find the maximum independent set only
returns a maximal independent set, this attractive feature will be preserved. Thus estimating
the number of independent tests via maximum independent set heuristics seems to have
some advantages. One can also approach the problem of estimating N∗ in terms of the
the size of the smallest dominating set on the graph. If the smallest dominating set turns
out not to be an independent set, then the resulting estimate of N∗ would be smaller than
what we would obtain from analyzing independent sets, but not easy to estimate precisely,
given the dependence of the markers. This point is illustrated in Fig. 1. where{A, B, E, F}
is the maximum independent set, but all markers can be tested by considering just two (not
independent) markers C and D. In situations such as these, it is not clear what to value use
for N∗.

F

A

B

C
D

E

Fig. 1. Ambuguity in N∗
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In practise implementing the prescription of (Nyholt, 2004) has been shown to be problematic
in real and simulated datasets (Dudbridge & Koeleman, 2004);(Salyakina, 2005);(Coneely &
Boehnke, 2007), but there has been no general model independent analysis as to why these
difficulties arise. Our graph theoretical analysis sheds light on possible ambiguities in the
prescription of (Nyholt, 2004) which may be at part of the reason for its observed limitations.
Before concluding our discussion on the applications of the maximum independent set it
worth recalling that all that heuristics can deliver is a lower bound on the size of the maximum
complete set. What is missing is some means using the data to obtain an estimate of the upper
bound, such an estimate could potentially improve the performance and applicability of the
heuristics. One feature of the data which has not been exploited is that the N × N matrix of
correlation values is obtained from a data matrix with dimensionality Nind × N, where Nind

is the number of individuals and typically Nind < N. Thus both the data matrix and the
correlation matrix can be expected to have rank less than N. The redundancy in the rows of
the correlation matrix due to the reduced rank could possibly be exploited in order to obtain
an upper bound on the size of the maximum independent set. As has been shown in (Li
& Li, 2005) this redundancy can be used to obtain an alternative estimate for the number of
independent tests; combining the approach of (Li & Li, 2005) with the maximum independent
set heuristic we describe here could be a fruitfull line of future research.

3. Blocking Gibbs

In the remainder of this chapter we will focus on possible applications of graph theoretical
methodology to analysing pedigree data; more precisely we will consider individuals with
known parent offspring relations and genotypic information at a possibly large number of
loci. As was mentioned earlier, the pedigree structure and the genotypes can be combined
to form a Bayesian Network where the conditional probabilities along the edges are defined
by Mendelian Genetics. Since there are known genotypes there are vertices in the Bayesian
networks where evidence is available. From the standpoint of genetic linkage analysis one of
the most important quantities to be computed from a pedigree and associated genotypic data
is the Likelihood (Ott, 1999). Computing the Likelihood involves evaluating a very complex
series of nested sums and products of conditional probabilities over expressions such as the
one shown below:

· · · P(gG | gF, gE) P(gH | gF, gE) P(gE | gA, gB)P(gI | gC, gD)P(gC | gA, gB) P(gD | gA, gB) · · ·
(1)

gA, gB, etc. are discrete random variables representing either genotypes or alleles, and
the · · · indicate the presence of many more such conditional probabilities. The conditional
probabilities shown above are typical of the factors that would appear in the Joint Probability
Distribution defined by the Bayesian Network, however realistic pedigrees often contain far
more factors than can be written down. Computing the Likelihood involves summing over
all allowed values of all the random variables, (i.e. all consistent genotypes), and in realistic
situations where there are huge numbers of conditional probabilities, this is analytically
intractable. Numerical solutions are hypothetically possible due to the local structure of the
computations (Lauritzen & Spiegelhalter, 1988). The computational effort involved depends
critically on the order in which the summations are performed (Jordan, 2004) and determining
the lowest cost summation order is NP Hard (Arnborg, 1987). If no good heuristic algorithm
for determining the most efficient summation order can be found the multiple sum cannot
be performed exactly, and must be approximated by sampling the most significant terms.
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This provides the motivation for introducing Markov Chain Monte Carlo (MCMC) methods
which have been used extensively in linkage analysis (Thompson, 2005). The simplest form
of MCMC sampler to implement is the Gibbs sampler, which however can be very tricky
to implement on a large pedigree with many known genotypes. One of the key conceptual
difficulties in implementing the Gibbs Sampler can be illustrated on a very simple situation
involving just four individuals as shown in the following figure.

Fig. 2. Trouble with Gibbs

The two offspring have observed genotypes, and the laws of Mendelian Inheritance dictate
that the two parental genotypic combinations are either {{1, 2}, {1, 3}} or {{1, 3}, {1, 2}}
in obvious notation. In order for the sampler to be irreducible transitions between
configurations should be possible, and in keeping with textbook Gibbs sampling one parental
genotype would be updated at a time keeping the other fixed. Let us begin from the
configuration{{1, 2}, {1, 3}} with a view to reaching {{1, 3}, {1, 2}}. If we sample conditional
on any one parent and the known genotypes, there is no way in which we can update the
genotype of the other parent; i.e. the sampler gets stuck in the starting configuration. Thus
a single site update is problematic and it is easy to see that the root of the problem lies in
the stringent constraints arising from Mendelian Genetics which lead to strong correlations
between the variables to be updated. A possible solution within the framework of Gibbs
sampling is to update both parental genotypes simultaneously, i.e. use a blocking Gibbs
sampler where a block consists of multiple stochastic variables which are strongly correlated
and must be updated simultaneously. The idea of updating multiple strongly correlated
variables during a single MCMC update in order to improve convergence is well established
and outperforms standard Gibbs sampling in statistical genetics (Totir, 2003) and other
applications. (Swendsen & Wang, 1987); (Roberts & Sahu, 1997). Furthermore, this approach
has been applied in Bayesian Networks arising not only in Statistical Genetics (Jensen & Kong,
1999);(Thomas, 2000), but also in expert systems (Jensen, 1995). For our purposes the optimal
choice of blocks is not only crucial for ensuring the irreducibility of the sampler but also for
improving the mixing and convergence properties of the sampler. In the rest of this chapter
we will study the issue of block definition and relate this problem to a well known problem
in machine learning, that of partitioning data sets into semi-autonomous clusters. Before
doing so we will briefly mention another aspect of likelihood computations on large pedigrees
which has attracted recent attention, i.e. the relation to constraint satisfaction. The problem of
finding assignments of unknown genotypes consistent with known genotypes, the pedigree
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structure and the laws of Mendelian Inheritance can be viewed as finding the solution of
a constraint satisfaction problem, and is known to be computationally hard (Aceto, 2001).
There is however one additional complication which arises in dealing with pedigrees, each
solution can be assigned a posterior probability and what is required are the solutions with
higher posterior probabilities. What an irreducible ergodic MCMC sampler should do is not
only find solutions to a very complex contraint satisfaction problem, but also assign the correct
posterior probability to the various solutions. Seen in this light it is easy to see why the MCMC
sampling on pedigrees can be so challenging.

The key difficulty in constructing blocks is correctly grouping strongly correlated variables
together, followed by updating them simultaneously in a manner consistent with the known
genotypes. In simple instances like Fig. 2, grouping variables is easy, but in more complicated
cases such as the pedigree in Fig. 3 it can be highly non-trivial.

Fig. 3. Large pedigree

A moments reflection will suggest that the difficulty in partitioning the pedigree of Fig. 3
into blocks arises because of the large number of cycles in the graph. A more general analysis
of the difficulties has been undertaken in (Jensen & Sheehan, 1998), the presence of cycles is
indeed a problem and no general solution for dividing an arbitrary pedigree into blocks is
known. However, a few features of a well motivated Blocking Scheme can be identified

• The assignment of blocks should be such that all the variables are assigned to at least one
block. If this condition is not satisfied, some variables may not be updated leading to
biased MCMC estimates.

• All strongly correlated variables must be contained in the same block, if not the
irreducubility issues mentioned earlier will arise

• Within a given block variables should be more strongly correlated with each other than
with variables outside the block.

It is easy to understand the relevance of these criteria, the last two criteria are not only relevant
for pedigree analysis but are also similar to what might expected from an optimal partitioning
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of a data set into clusters. Note that we have not specified the number of partitions in advance;
if this scheme were to be implemented on an arbitrary dataset it would not only assign
all the elements of the dataset to clusters but could also return the number of partitions.
Thus any heuristic solution for finding optimal blocks could be very useful in a number of
machine learning applications. One important distinction between pedigree analysis and
other applications is the requirement that the sampler mix rapidly, this was the motivation
for the use of overlapping blocks. The relevance to data partitioning problems of a more
general nature is greatest when the clusters are expected to overlap. The other important
distinction is that many genotypes in pedigrees may be unknown, corresponding to vertices
with no information. Missing or ambiguous data are not as widely considered in other data
sets, so the analogy works better when there are not too many unknown genotypes.

One outline of a Blocking Gibbs scheme was made in (Abraham, 2007) where the problem of
Block Identification and consistent assignment of genotypes were addressed simultaneously.
The algorithmic insight exploited in (Abraham, 2007) was that the genotypes of any given
individual are strongly dependent by just a handfull of close relatives; in the language of the
pedigree graph the state of a vertex is influenced by just a handfull of neighbouring vertices.
This is because the edge structure in the graph reflects a combination of either relatedness
between individuals or physical distance between loci. The notion of neighbouring vertices
can be made more precise by defining distances between vertices in terms of a breadth
first search. Due to the underlying Markov Field Property, vertices which are far apart as
defined by the breadth first search are expected to be roughly independent. Once there is a
guideline for deciding which vertices can be expected to be independent of other vertices, it
becomes possible to partition the graph into overlapping blocks in which consistent genotype
assignments in a block can be made with little input from the evidence from other blocks. The
dataset used in (Abraham, 2007) is very complex and has many of the features discussed in
(Jensen & Sheehan, 1998) which are known to lead to difficulties, nonetheless it was possible
to generate a consistent set of genotypes using the scheme just outlined. Furthermore, it was
checked that the posterior probabilities of the genotypes found in this manner were consistent
with those that would have been obtained in the absence of any approximations. This suggests
that separation of vertices on the graph is a useful guideline for assessing the approximate
independence of the corresponding random variables. Criteria similar to these have been
successfully used to construct blocks and mcmc samplers in other complex examples, (Habier,
2009);(Habier, 2010) indicating that the basic idea may have a broad general applicability.

If we consider the problem in a more general light, what we have done is to use the
known correlations in a data set containing many discrete observations to identify subsets
of variables which have strong correlations with each other but weaker correlations with the
other variables. If this methodology were to be applied to cluster a general data set with a
a known matrix of correlation values it would be first necesary to define graph and identify
edges between the vertices (datapoints). Identifying edges could be acchieved through a user
defined threshold which could be defined independent of the data values as described in our
discussion of population stratification , or could be defined in terms of some suitable number
of sample standard deviations above the sample mean of all the correlation values. Once the
edges are specified in this manner, the procedure used in (Abraham, 2007) could be used to
define blocks which in a more general case would correspond to a cluster in the data set.
One advantage of this procedure is that it has been shown to work in the context of pedigree
graphs where inaccurate assignment of vertices to clusters will often be penalized by poor
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MCMC convergence or in extreme cases by a lack of irreducibility of the sampler. Adapting
the blocking methodologies in (Abraham, 2007);(Habier, 2009) and (Habier, 2010) to other
cluster identification in general ohmics data sets could prove to be fruitful.

We next consider a long standing issue which is relevant in both block assignment in
blocking gibbs and cluster assignment in general, i.e. the problem of determining the number
of independent subgroups in the data set making as few model dependent assuptions as
possible. As was mentioned in our discussion of non-parametric population stratification
, the authors of (Patterson, 2006) suggest that from the elements of a suitably constructed
correlation matrix a test statistic can be obtained which can be used to decide on the
appropriate number of populations to use as input for parametric population stratification
analysis. The treatment of this issue in (Patterson, 2006) is so general that it would appear
to be the basis for a model-free approach that could be used to estimate the number of
subgroups in an arbitrary ohmics data set given a matrix of correlation values. As applied
to blocking gibbs, the matrix of correlation values could be substituted by the distance matrix
used in (Abraham, 2007) or some more sophisticated variant thereof. In this regard it is worth
recalling that number zero eigenvalues of the Laplacian of an undirected graph is the number
of connected components, which supplies a lower bound on the number of clusters. Thus the
connection between the entries of a suitable correlation matrix and the number of clusters is
well established, by applying the results of (Patterson, 2006) it might be possible to extract
more detailed information on the number of clusters present in a dataset.

4. Conclusions

In this chapter we have discussed the relevance and applications of graph theoretical methods
to a number of problems in statistical genetics. In particular, some novel applications of
the maximum independent set on an undirected graph to population stratification were
presented. Some key issues in the construction of Blocking Gibbs Samplers on complex
pedigrees were discussed along with their relevance outside of statistical genetics.
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