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Abstract

In this chapter, both blue and green high-power tunable diode laser systems based on 
GaN broad-area diode laser (BAL) in Littrow external cavity are demonstrated. For blue 
diode laser system, for high-power application, an output power around 530 mW over 
a 1.4 nm tunable range is obtained; for wide tunable range application, an output power 
around 80 mW over a 6.0 nm tunable range is obtained. For the green diode laser system, 
for high-power application, an output power around 480 mW with a tunable range of 
2.1 nm is achieved; for wide tunable range application, an output power of 50 mW with 
a tunable range of 9.2 nm is achieved. The tuning range and output power optimization 
of an external-cavity diode laser system is investigated based on the experimental results 
obtained in the blue and green external-cavity GaN diode laser systems. The obtained 
results can be used as a guide for selecting gratings for external-cavity diode lasers for 
different requirements. The temporal dynamics of the green diode laser system is studied 
experimentally, and pulse package oscillation is observed, for the first time to our knowl-
edge, in a BAL with an external-cavity grating feedback.
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1. Introduction

Since the first demonstration of a room temperature continuous wave (CW) GaN violet diode 
laser by Nakamura et al. [1], great progress has been achieved on the GaN-based diode lasers 
in the violet to green spectral range. Nowadays, high-power GaN diode lasers with CW out-
put power of a few watts are commercially available in the blue to green spectral range [2]. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The spectral bandwidth of the high-power devices is around 1.0 nm, and the devices are 
not tunable. Although single longitudinal mode GaN diode laser around 405 nm has been 
achieved with the laterally coupled distributed feedback (DFB) technique [3]; this technique 
is under development and not available for commercial devices, especially not available for 
high-power GaN diode lasers.

Tunable, high-power, narrow spectral bandwidth light sources based on semiconductor lasers 
from the violet to green spectral range are attractive for many applications, such as high-res-

olution spectroscopy, holographic data storage, laser cooling, laser holographic display, bio-

photonics and as pump sources for nonlinear frequency conversion and for titanium-sapphire 
lasers [4–10]. The broad emission bandwidth limits the usage of the high-power GaN diode 
lasers in some of these applications. There are two main techniques to achieve high-power, 
narrow-bandwidth blue and green laser emission based on semiconductor devices. The first 
one is based on nonlinear frequency conversion, including second harmonic generation and 
sum frequency generation of GaAs lasers emitting from 800 to 1100 nm [11, 12]. The second 
approach is external-cavity feedback technique used to improve the spectral quality of the 
high-power GaN diode lasers and make the lasers tunable [13, 14]. The laser systems devel-
oped based on the first method are relatively complex, and the laser systems are not tunable, 
or the tunable range is narrow. Thus, the second approach is applied in this chapter to achieve 
narrow bandwidth, tunable blue and green diode laser systems.

In this chapter, we first demonstrate two tunable, narrow bandwidth high-power GaN diode 
laser systems; one system is emitting around 455 nm in the blue spectral region, the other is 
emitting around 515 nm in the green spectral region. Secondly, the tuning range and output 
power optimization of an external-cavity diode laser (ECDL) system is investigated based on 

the experimental results. Finally, the dynamics of the green external-cavity diode laser system 
is studied.

2. Experimental setup

The experimental setup for the Littrow external-cavity feedback system is schematically 
shown in Figure 1. The high-power GaN diode lasers (2 W for blue or 1 W for green devices) 
used in our experiment are broad-area diode lasers. The laser beam is TE-polarized for both 
devices. The laser beam emitted from the front facet is collimated by an aspherical lens of 
4.0 mm focal length with a numerical aperture of 0.6. The collimated beam is incident on a 
bulk diffraction grating mounted in Littrow configuration and oriented with the lines in the 
grating parallel to the slow axis of the diode laser.

The first-order diffracted beam from the grating is the feedback beam, thus the external cavity 
is formed between the diode laser and the grating. A beam splitter is inserted in the external 
cavity and reflects part of the beam as a diagnostic beam in which the spectral bandwidth and 
tunability of the laser system are measured. The zeroth-order diffracted beam of the grating 
is the output beam of the ECDL system, and a power meter is used to record the power of the 
output beam. The ECDL system is tuned by rotating the grating along the groove direction.
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3. Experimental results

3.1. Blue GaN external-cavity diode laser system

In this subsection, the results of blue ECDL system are presented [15]. Two bulk diffraction gratings 
are used in the blue ECDL system, one is a holographic diffraction grating with a groove density 
of 2400 lines/mm (Thorlabs, GH13-24 U), and the zeroth- and first-order diffraction efficiencies 
are 78.8 and 8.3%. The other is a ruled diffraction grating that is ruled with 1800 lines/mm and 
has a blaze wavelength of 500 nm (Thorlabs, GR13-1850), the zeroth- and first-order diffraction 
efficiencies are 29.6 and 53.5%, respectively. The length of the external cavity is around 110 mm.

In the freely running condition, the threshold current of the laser device is around 0.12 A, and 
the slope efficiency is around 1.62 W/A. With an injected current of 1.4 A, a 2 W output power 
is obtained. The diode laser is operating in multiple Fabry-Perot (FP) modes. The spectrum 
is centered around 456 nm with a spectral bandwidth around 1.2 nm. The longitudinal mode 
spacing of the FP modes is around 28.5 pm.

The blue ECDL system is characterized by measuring the spectrum at different wavelengths 
with these two different gratings. Figure 2 shows the spectra of the blue ECDL system with an 
output power around 85 mW for both gratings. For the ECDL system with the holographic dif-
fraction grating at an injected current of 0.2 A, Figure 2(a) shows seven normalized spectra from 
453.4 to 456.5 nm. The bandwidth of the spectrum (FWHM) is around 9 pm in the 3.1 nm tunable 
range; it is much less than the 28.5 pm mode space of the FP laser resonator; this means the laser 
is forced to operate in a single longitudinal FP mode by the external feedback. Figure 2(b) shows 

eight normalized spectra from 452.8 to 458.8 nm for the ECDL system with the ruled diffraction 
grating at an injected current of 0.3 A. The spectral bandwidth is less than 20 pm for wavelengths 
longer than 456 nm in the 6.0 nm tunable range; for shorter wavelengths, the spectral bandwidth 
is less than 42 pm, that is, two FP modes oscillate simultaneously. The amplified spontaneous 
emission (ASE) is more than 20 dB suppressed in the tunable ranges for both diffraction gratings.

Figure 1. Experimental setup of the ECDL system. BAL, broad-area diode laser; L, lens; BS1, BS2 and BS3, beam splitter; 
HWP, half-wave plate; G, bulk grating, PD1 and PD2, photodiode; DO, digital oscilloscope; OSA, optical spectrum 
analyzer; Am, amplifier; ESA, electrical spectrum analyzer; PM, power meter.
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Figure 3 shows the spectra of the blue ECDL system with an output power around 200 mW 
with both gratings. Figure 3(a) shows seven normalized spectra from 453.7 to 456.5 nm with 
the holographic grating, at an injected current of 0.3 A. The spectral bandwidth is around 
35 pm in the tunable range, that is, two FP modes oscillate simultaneously. Figure 3(b) shows 

the normalized spectra of the ECDL from 453.5 to 459.0 nm with the ruled grating, the injected 
current is 0.6 A. The bandwidth is less than 67 pm in the tunable range. The ASE suppression 
is more than 24 dB for the holographic grating feedback and more than 17 dB for the ruled 
grating feedback.

Figure 2. Optical spectra of the output beam from the blue ECDL system with (a) a holographic grating and (b) a ruled 
grating. The output power is around 85 mW.

Figure 3. Optical spectra of the output beam from the blue ECDL system with (a) a holographic grating and (b) a ruled 
grating. The output power is around 200 mW.
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Figure 4 shows the spectra of the blue ECDL system with an output power around 350 mW. The 
laser system is tunable from 454.1 to 456.5 nm for the holographic grating feedback. The band-

width is around 35 pm in the tunable range, and the ASE is more than 24 dB suppressed. The 
laser system is tunable from 455.3 to 459.4 nm for the ruled grating feedback; the ASE is more 
than 18 dB suppressed. The bandwidth (FWHM) is less than 70 pm in the tunable range, but 
side peaks appear in some spectra as shown in Figure 4(b).

With the ruled grating, a further increase of the current increases the spectral bandwidth to a 

few hundred picometers, and two peaks are present in the spectrum. With the holographic grat-
ing, the current can be increased to 0.6 A, where the diode laser is tuned from 455.0 to 456.4 nm 
with an output power of around 530 mW. The bandwidth is around 63 pm in the tunable range, 
and the ASE is more than 20 dB suppressed. Further increase of the current also increases the 
bandwidth to a few hundred picometers for the ECDL with the holographic grating.

The output power of the blue ECDL system at different wavelengths is shown in Figure 5 with 

these two different gratings. When the holographic grating is applied, the maximum output 
powers are 85, 198, 368 and 531 mW with injected current of 0.2, 0.3, 0.45 and 0.6 A, respectively. 
When the ruled grating is applied, the maximum output powers are 90, 222, and 340 mW with 
injected current of 0.3, 0.6 and 0.9 A, respectively. For both gratings, the output power is rela-

tively constant in the tunable range at each injected current. With the highest output power of 
the ECDL, that is, 531 mW for the holographic grating feedback and 340 mW for the ruled grat-
ing feedback, around 68 and 27% of the output power of the freely running laser are extracted 
in the ECDL system for the two gratings, respectively. Thus, the efficiency of the ECDL with the 
holographic grating is much higher than that of the ECDL with the ruled grating. The reason is 
the higher first-order diffraction efficiency of the ruled grating (53.5%) limits the output power.

The tunable range of the blue ECDL system with the ruled grating is much broader than that 
of the blue ECDL system with the holographic grating when the output power of the diode 

Figure 4. Optical spectra of the output beam from the ECDL system with (a) a holographic grating at an injected current 
of 0.45 A and (b) a ruled grating at an injected current of 0.9 A.
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laser system is comparable. The reason is that the first-order diffraction efficiency of the ruled 
grating is much higher compared with that of the holographic grating, that is, 53.5 versus 
8.3%. The higher the feedback strength from the grating, the more effective the suppression of 
the freely running lasing modes.

In summary, a high-power, tunable, narrow-bandwidth ECDL system based on a GaN diode 
laser around 455 nm is demonstrated. The laser system can be tuned over 1.4 nm with an 
output power around 530 mW when the holographic grating is applied; the laser system can 
be tuned over 6.0 nm with an output power of 80 mW when the ruled grating is applied. The 
results show the efficiency of the ECDL with holographic grating is higher, but the tunable 
range of the ECDL with ruled grating is broader.

3.2. Green GaN external-cavity diode laser system

In this subsection, the results of a green ECDL system are presented [16]. For the green ECDL 
system, only the holographic grating (Thorlabs, GH13-24 U) is applied. A half-wave plate is 
inserted in the external cavity to turn the polarization direction of the laser beam. Thus, the 
green laser system can be operated in both s-polarized mode (the laser beam is polarized 
along the lines of the grating) and p-polarized mode (the laser beam is polarized perpendicu-

lar to the lines of the grating). The zeroth- and first-order diffraction efficiencies of the grating 
are around 81 and 7% for the s-polarized beam, and around 48 and 29% for the p-polarized 
beam, respectively. The length of the external cavity of the laser system is around 140 mm, 
corresponding to a 0.95 pm external-cavity mode spacing.

The threshold current of the freely running green diode laser is around 0.25 A, and the slope 
efficiency is around 1.0 W/A. With an injected current of 1.4 A, 1.1 W output power is obtained. 
The laser diode is operating in multiple FP modes centered around 515 nm, with a spectral 
bandwidth of 1.3 nm. The mode spacing of the FP modes is around 39 pm.

Figure 5. Output power of the blue ECDL at different wavelengths and operating currents with the holographic grating 
(red signs) and the ruled grating (black signs).
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The tunability of the green ECDL system operated in both s- and p-polarized modes is charac-

terized by measuring the optical spectrum of the output beam at different wavelengths. The 
spectra of the ECDL for both operating modes with an operating current of 330 mA are shown 
in Figure 6. The output power of the green ECDL system for the s-polarized and p-polarized 
mode operation are around 70 and 50 mW, respectively. Figure 6(a) shows eight normalized 
spectra from 511.1 to 516.0 nm for s-polarized mode operation. The spectral bandwidths of 
these spectra are around 8 pm. Compared with the 39 pm mode spacing of the FP modes, 
the ECDL in the s-polarized mode operates in single FP mode. Figure 6(b) shows 10 spectra 

from 508.8 to 518 nm for p-polarized mode operation. The bandwidth is less than 9 pm in the 
tunable range. The ASE is more than 15 and 17 dB suppressed for s- and p-polarized mode 
operation, respectively.

Figure 7 shows the optical spectra of the green ECDL system for both operation modes with 
the output power around 290 mW. To achieve the 290 mW output power, 600 and 850 mA 
injected currents are needed for s- and p-polarized mode operation, respectively. Six normal-
ized spectra from 513.1 to 515.7 nm are shown in Figure 7(a) for s-polarized mode operation. 
Two peaks are observed in the spectra and the spectral bandwidth is less than 0.25 nm. Five 
spectra from 512.9 to 517.5 nm are shown in Figure 7(b) for p-polarized mode operation. The 
spectral bandwidth (FWHM) is less than 50 pm in the tunable range, however side modes 
appear in the spectra. The ASE is more than 15 dB suppressed in the tunable ranges for both s- 
and p-polarized mode operation. In the s-polarized mode, the injected current can be further 
increased to 850 mA, and the output power is increased to 480 mW. The ECDL system can be 
tuned from 514.1 to 516.2 nm, the emission bandwidth is less than 0.5 nm in the tunable range, 
and the ASE is more than 15 dB suppressed.

Figure 8 shows the output power of the ECDL system at different wavelengths and injected 
currents for both operating modes. In the s-polarized mode, the maximum output powers 

Figure 6. Optical spectra of green ECDL system operates in (a) s-polarized mode and (b) p-polarized mode. The injected 
current is 330 mA for both conditions.
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of the ECDL are 75, 173, 296 and 481 mW with injected current of 330, 450, 600 and 850 mA, 
respectively. In the p-polarized mode, the maximum output powers are 56, 161 and 293 mW 
with injected current of 330, 550 and 850 mA, respectively. The output power is relatively 
constant in the tunable range at each injected current for both operating modes.

With the highest injected current, that is, 850 mA, the maximum output powers for the s- and 

p-polarized mode operation are 481 and 293 mW. This means that 75 and 46% of the output 
power in freely running condition is extracted in the ECDL system for the s- and p-polarized 

Figure 7. Optical spectra of the green ECDL system operates in (a) s-polarized mode and (b) p-polarized mode. The 
output power is around 290 mW for both operation modes.

Figure 8. Output power of the ECDL at different wavelengths and operating currents, operated in s-polarized mode (red 
signs) and p-polarized mode (black signs).
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mode operation. However, Figure 8 shows the tunable range of the ECDL in p-polarized mode 
operation is much broader than that of the ECDL in the s-polarized mode operation. The main 
reason for this difference is the higher zeroth-order diffractive efficiency of the holographic 
grating for the s-polarized beam compared with that for the p-polarized beam, that is, 81 versus 
48%. The higher zeroth-order diffraction efficiency of the grating for s-polarized beam means a 
high output coupling efficiency, that is, high output power. However, the first-order diffractive 
efficiency for the p-polarized beam is much higher than that for the s-polarized beam, that is, 29 
versus 7%. The higher the feedback strength from the grating (the higher first-order diffraction 
efficiency), the more effective the suppression of the freely running lasing mode, thus the tun-

able range of the green ECDL system operated in the p-polarized mode is broader.

In summary, a high-power, tunable, narrow-bandwidth ECDL system based on a GaN device 
around 515 nm is demonstrated. The laser system can be tuned over 2.1 nm with an output 
power around 480 mW in the s-polarized mode operation; the laser system can be tuned over 
9.0 nm with an output power of 50 mW in the p-polarized mode operation. We can choose 
different operating modes for different priorities, that is, high-power or broad tuning range, 
using only one ECDL system.

3.3. Selection of diffraction grating for ECDL

Both the blue and green tunable ECDL systems show the efficiency (output power) of the 
ECDL system is higher when the zeroth-order diffraction efficiency of the grating used in the 
laser system is higher, such as the conditions for the holographic grating in the blue diode 

laser system and the s-polarized mode operation for the green diode laser system. However, 
the tunable range of the ECDL system with higher efficiency is narrower since a higher first-
order diffraction efficiency of the grating is needed to achieve a wider tunable range. Thus, 
there is a compromise between the output power and the tunable range of the ECDL system 
since the sum of the zeroth- and first-order diffraction efficiencies is around unity.

To understand this compromise between the efficiency (output power) and tunable range 
further, a theoretical analysis is given below based on rate equations of the diode laser. The 
rate equations describing the carrier density N and the photon density N

ph
 in the diode laser 

cavity are given as [15, 17]:
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where j is the inject current density, η
i
 is the internal efficiency, q is the elementary charge 

of an electron, d is the thickness of the active region, τ is the carrier lifetime, v
gr

 is the group 

velocity of the photons, g(N) is the material gain, Г is the confinement factor, τ
ph

 is the photon 

lifetime, α
m

 is the mirror loss, K is the feedback strength of the grating (the first-order diffrac-

tion efficiency in our case, here the other loss in the cavity is neglected.), t
0
 is the time delay of 
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the external cavity. In particular 1/τ
ph

 = v
gr

(α
i
 + α

m
), where α

i
 is the internal loss; and the gain 

g(N) = g
N
(N−N

tr
), g

N
 is the differential gain coefficient and N

tr
 is the transparency carrier density. 

When the diode laser system is steady-state operated, rearrange Eqs. (1) and (2), we obtain:
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Eq. (4) shows the effect of the feedback is to reduce the mirror loss from α
m

 to (1−K)α
m

.

The steady-state solution of Eqs. (3) and (4) can be obtained as:
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where N
th

(0) is the threshold carrier density without feedback, and j
th

(0) = qdN
th

(0)/η
i
τ is the 

threshold current density without feedback. Eq. (7) shows the threshold current density j
th

(K) 

is decreased with the feedback strength K. Eq. (6) shows the photon density increases with K.

In our experiment, when we rotate the grating further to operate the laser system outside 
of the tunable ranges, the freely running emission appears and dominates the laser output, 

this means the competition of the freely running lasing at the gain center λ
0
 and the lasing 

at wavelength λ (with a distance from the gain center) with feedback determines the tunable 
range of the external-cavity diode laser system. Figure 9 shows a schematic diagram of the 

gain and the threshold of the diode laser system; the grating feedback profile is also shown. 
The grating feedback decreases the threshold current density at λ from j

th
(λ, 0) to j

th
(λ, K). 

When j
th

(λ, K) is less than the freely running threshold current density at λ
0
, that is, j

th
(λ

0
, 0), 

the laser system lases at λ, and vice versa. Since the decrease of the threshold current density 
by the feedback is proportional to K, a higher value of K causes a wider tunable range of the 

external-cavity diode laser system.

The output power P of an external-cavity diode laser system can be expressed as:

  P ∝  N  
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The slope efficiency of the laser system decreases with the feedback strength K due to the last 

term in Eq. (8). Thus, the output power decreases with K, when the laser system is operated 

far above the threshold; although the threshold of the laser system also decreases with the 
feedback strength K.
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The theoretical analysis above mentioned is in agreement with our experimental results 
obtained from the blue and green ECDL systems; where the green laser system in p-polarized 
mode (high first-order diffraction efficiency) has a much wider tunable range but less output 
power compared with the laser system in s-polarized mode (low first-order diffraction effi-

ciency). The experimental results in Refs. [18, 19] also show that wider tunable ranges and low 

output powers of the ECDLs were achieved with gratings with higher first-order diffraction 
efficiencies. From both the theoretical and experimental results, we can conclude that the 
compromise between the output power and the tunable range of an ECDL is a general condi-
tion and irrelevant to the geometry of the external cavity.

Considering the results obtained from the blue ECDL system using two different diffraction 
gratings, the ECDL system with the holographic grating has a narrower spectral bandwidth 
and a larger suppression of ASE when the output power of the ECDL with the two gratings 
are comparable. We believe the reason is that the holographic grating has a larger groove 
density compared with ruled grating, that is, 2400 lines/mm for the holographic grating ver-

sus 1800 lines/mm for the ruled grating, meaning that the holographic grating has a higher 
spectral resolution.

Both the experimental results and the theoretical analysis here provide a general guide to 
the selection of gratings for ECDL systems. Two main parameters of a diffraction grating 
are considered when a grating is used to build an ECDL system: the groove density and the 
first-order diffraction efficiency. A grating with a larger groove density leads to a narrower 
spectral bandwidth and a higher suppression of ASE compared with a grating with a small 
groove density. If a higher output power of a laser system is prioritized, a grating with a 
lower first-order diffraction efficiency should be selected. If a wider tunable range of a laser 
system is the high priority, a grating with a higher first-order diffraction efficiency should 
be selected. Thus, there is a compromise between the output power and the tuning range of 
an ECDL system. This is the main consideration for selecting a diffraction grating to build 
an ECDL system.

Figure 9. Schematic diagram of the gain and threshold with and without grating feedback. The grating feedback profile 
is also shown.
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3.4. Dynamics of the green ECDL system

When external-cavity feedback is applied to a diode laser, complex temporal dynamics may 
take place [20, 21]. Thus, it is important for us to investigate the dynamics of the developed 
visible ECDL systems based on the GaN devices. In this subsection, we study the dynamic 
behaviors of the green ECDL system operated in p-polarized mode [22].

The complex dynamic behaviors have been studied intensively for both narrow-stripe diode 
lasers [23–26] and BALs [27–36] with external feedback. The dynamics of BALs have been 
investigated with short-cavity feedback [27–29], long-cavity feedback [30–32], tilt mirror 

feedback [33, 34] and lateral-mode-selected feedback [35, 36]. The feedback elements include 
ordinary mirrors [29–34], phase-conjugate mirrors [30] and spatially filtered mirrors [27, 28, 

35, 36]. Different dynamic behaviors, such as low-frequency fluctuations (LFFs) [30, 31], self-

pulsation [35], periodic oscillations [33, 36], pulse package oscillation (PPO) [28, 29, 36] and 

chaos [32], have been observed in the BALs with different external feedback. External grating 
feedback is widely used to achieve tunable high-power BAL systems [13–16]. However, the 
dynamics of such systems have only been studied in a very few cases [37].

As shown in Figure 1, the beam splitter, BS1, inserted in the external cavity reflects part of the 
beam to a silicon PIN photodiode, PD1, after a high-frequency amplifier; the amplified elec-

tronic signal is sent to an electrical spectrum analyzer to measure the intensity noise spectrum. 
The second beam splitter, BS2, reflects part of the output beam to the second photodiode, PD2, 
and a digital oscilloscope is used to measure the time series of the generated electronic sig-

nal. Since the green ECDL system is operated in p-polarized mode, the first-order diffraction 
efficiency is around 29%. Assuming a coupling efficiency of the feedback beam into the laser 
cavity is 50%, the feedback strength is around 14.5%, a moderate feedback strength for BALs 
[29, 35]. The physical length of the external cavity is around 33 cm.

The threshold current of the BAL is decreased from 250 to 205.5 mA by the external grating 
feedback. The wavelength is around 511.9 nm. We keep the feedback grating untouched dur-

ing the experiment, meaning both the length of the external cavity and the wavelength of the 
green ECDL system are unchanged.

We investigate the dynamic behaviors of the green ECDL system by increasing the injected 
current from just above the threshold to more than two times threshold. Figure 10(a) shows 

the time series of the output beam with an operating current of 206.9 mA; a low-frequency 
periodic oscillation with a period around 220 ns is observed. The inset of Figure 10(a) shows 

the details of the time series in short time scale, an oscillation with a period around 2.4 ns is 
observed, the period of this oscillation is equal to the external-cavity delay time. This high-
frequency oscillation is named as external-cavity oscillation with single-round-trip external-
cavity frequency νEC [28, 35]. Figure 10(b) shows the intensity noise spectrum of the output 

beam. Besides the peak at νEC, a peak round 4.5 MHz and its harmonics for the low-frequency 
oscillation (LFO) shown in Figure 10(a), νLFO, are observed. Additionally, some peaks around 
νEC with the frequency difference of νLFO are also visible. Figure 10 shows that the output of 

the green ECDL manifests a typical dynamic state named regular PPO, which mainly takes 
place in short cavity feedback condition [28, 29], where the external-cavity loop oscillation is 
modulated by a periodic LFO.

Laser Technology and its Applications14



Figure 11 shows the time series of the output beam of the green ECDL system with operating 
currents of 211 and 213 mA. We can observe the periodic LFO for both injected currents. The cor-

responding oscillation frequencies are around 20 and 29 MHz with 211 and 213 mA injected cur-

rents, respectively. For both injected currents, we can observe the pulse packages consisted of 
pulses occurring at the external-cavity delay interval, this means the regular PPO takes place for 
both injected currents. The oscillation frequency of the regular PPO, νLFO, observed in Figures 10 

and 11 show its increase with the current injected to the laser device. This phenomenon was also 
observed in an integrated semiconductor laser with short-cavity feedback [38]. The intensity 
noise spectra with these two injected currents are also measured; the results are similar to the 
results shown in Figure 10(b) and consistent with the time series shown in Figure 11.

The operating current is increased until to 420 mA, that is, more than twice the threshold of 
the ECDL system. The measured time series and intensity noise spectra at injected currents of 

Figure 10. (a) Time series and (b) intensity noise spectrum of the output beam from the green ECDL system with an 
operating current of 206.9 mA. The inset in (a) shows a close-up of the peak of one of the pulse packages.

Figure 11. Time series of the output beam from the green ECDL system with an injected current of (a) 211 mA and (b) 213 mA.
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230, 250, 340 and 420 mA are shown in Figure 12. The pulse packages first oscillate irregularly, 
as shown in Figure 12(a, e) with an injected current of 230 mA. The time series in Figure 12(a) 

shows the pulse packages consisting of the pulse train with the period of external-cavity delay 
time oscillate irregular. The intensity noise spectrum in Figure 12(e) shows the peak for LFO 
and peaks for external-cavity oscillation at multiples of νEC. However, the peaks at νEC ± νLFO 

originating from the mixing of external-cavity frequency νEC and LFO frequency νLFO, which 

is the indication of regular PPO are not observed. The broad peaks for νEC and νLFO mean 

that the intensity noise is increased strongly, and the dynamics of the laser system is more 

complex. When the operating current is increased to 250 mA, the time series in Figure 12(b) 

shows irregular PPO, and the high-frequency external-cavity oscillation is not as clear as in 
the condition of low injected current. The average duration of the pulse package is less than 
20 ns. The broad peaks for νEC and νLFO mean the dynamic behavior of the laser system is more 
complex. The pulse package is not clear with the operated current of 340 mA, and the pulses 

Figure 12. Time series and intensity noise spectra of the output beam from the green ECDL with the injected current of 
(a, e) 230 mA, (b, f) 250 mA, (c, g) 340 mA and (d, h) 420 mA.
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occurring at the external-cavity delay interval are almost invisible, as shown in Figure 12(c). 
Finally, the time series shows a chaotic behavior with an injected current of 420 mA. The cor-

responding intensity noise spectra for the injected currents of 340 and 420 mA are shown in 
Figure 12(g, h). The peak for LFO is not observed, and the broad intensity noise spectra from 
low to high frequency indicate typical chaotic dynamics of the output beam.

The external-cavity feedback is classified into two regimes: short- and long-cavity regimes. 
When the relaxation oscillation frequency of the solitary diode laser, νRO, is lower than νEC, the 

feedback is in short-cavity regime; otherwise, it is in long-cavity regime [26, 38, 39]. Regular 
PPO was first observed in 2001 by Heil et al. in short-cavity feedback narrow-strip diode 
laser systems [26]. With moderate feedback strength, the previous study shows that the PPO 
mainly takes place in the diode laser with short-cavity feedback, while LFF and chaos take 
place in the long-cavity regime [29, 38]. Recently, we observed regular PPO in a BAL with a 
lateral-mode-selected long-cavity feedback [36]. Here, regular PPO is observed in a BAL with 
grating external-cavity feedback. Different routes to chaos in different ECDL systems have 
been found [23, 40], here, we observe the transition from regular PPO to chaos in the green 
GaN BAL with grating external-cavity feedback.

Normally, an external-cavity length of a few centimeters is classified into short-cavity regime, 
thus in this point, the 33 cm external-cavity length in our case is in the long-cavity regime. The 
νRO of the solitary diode laser is proportional to the square root of the difference between the 
injected current and the solitary laser threshold current [38, 39]. This means the definition of 
νRO is valid only when the injected current is higher than the threshold current of the solitary 
laser, and the classification of short- and long-cavity regime is meaningful only on such condi-
tion. In our experiment, the PPO mainly takes place with the operating current lower than the 
threshold of the solitary laser. In this point, this is a new regime for the ECDL system.

In summary, the dynamics of the green high-power ECDL system with grating feedback 
operated in p-polarized mode is investigated. As the increase of the injected current, different 
dynamic behaviors from regular PPO, irregular PPO, to chaos are observed.

4. Conclusion

Both blue and green high-power, tunable, narrow-bandwidth ECDL systems based on GaN 
broad-area diode lasers and external grating feedback are demonstrated. For the blue ECDL, 
two gratings are applied. The holographic grating is for obtaining high power, a 530 mW 
output power with a tunable range of 1.4 nm is obtained with this grating; the ruled grating is 
for achieving broad tunable range, an output power of 80 mW with a tunable range of 6.0 nm 
is achieved with the ruled grating. For the green ECDL, the laser system can be operated in 
two modes, for p-polarized mode operation, an output power of 50 mW with a tunable range 
of 9.2 nm is obtained; for s-polarized mode operation, an output power of 480 mW with a 
tunable range of 2.1 nm is achieved.

The tuning range and the output power optimization of an external-cavity diode laser system 
with grating feedback is investigated based on the experimental results on the blue and green 
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ECDL systems and diode laser theory. The obtained results can be used as a guide to select 
grating for an ECDL system for different applications. The dynamic behavior of the green 
ECDL system operated in p-polarized mode is studied. As the increase of the injected current, 
different dynamic states, such as regular PPO, irregular PPO and chaos are observed.
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