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Abstract

This work deals with sliding mode control of discrete-time systems where the outputs
are defined or chosen to be of relative degrees more than one. The analysis brings
forward important advancements in the direction of discrete-time sliding mode control,
such as improved robustness and performance of the system. It is proved that the
ultimate band about the sliding surface could be greatly reduced by the choice of higher
relative degree outputs, thus increasing the robustness of the system. Moreover, finite-
time stability in absence of uncertainties is proved for such a choice of higher relative
degree output. In presence of uncertainties, the system states become finite time ulti-
mately bounded in nature. The work presents in some detail the case with relative
degree two outputs, deducing switching and non-switching reaching laws for the same,
while for arbitrary relative degree outputs, it shows a general formalisation of a control
structure specific for a certain type of linear systems.

Keywords: discrete time, sliding mode control, finite-time stability, robust control,
ultimate band

1. Introduction

Sliding mode control is a robust control technique, which is able to make the system insensitive

towards a particular class of uncertainties in finite time. Such uncertainties, known as matched

uncertainties, are those that appear along the input channel of the system and can be nullified

by a simple switching control structure when the disturbance is bounded in nature. The switch

happens about a surface in the space of the state variables and is called a sliding or a switching

surface. The sliding variable s ¼ sðxÞ denotes how far the system states are from the sliding

surface S ¼ x : s xð Þ ¼ 0f g: The control brings the system monotonically towards the sliding
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surface, thus jsðtÞj reducing until it becomes zero at a finite time. This is called the reaching

phase. Once the system hits the surface, it stays there for all future times, thus making the

system dynamics independent of the matched uncertainties and dependent only on the sliding

surface parameters. Chosen appropriately, one can ensure that the system states become at

least asymptotically stable during this phase called sliding motion of the system [15].

However, in practice, this beautiful property of sliding mode control could not be realized

because of physical limitations of an actuator. Theoretically, the control needs to switch about

the sliding surface with infinite frequency in order to be insensitive towards bounded matched

uncertainties, but no real actuators can offer switching with infinite frequency. This causes

chattering, which are high frequency actuator action giving rise to unmodelled dynamics

excitation in the system as well as rapid degradation of the physical system. Moreover,

measurements by sensors and control computation in a digital computer take place in finite-

time intervals in modern times, thus ripping off the properties of continuous sliding mode

control which made it theoretically so appealing.

To remove this gap between theory and practice, researchers developed the theory of discrete-

time sliding mode control (DSMC) in [1–3, 16, 17, 19, 20, 22, 23]. Moreover, there are many

inherently discrete-time systems that appear in nature as well as in engineering. For such

discrete representation of a system, it was shown that the states of these systems can no longer

hit the sliding surface and stay there in presence of disturbances. The best that can be achieved

is ultimate boundedness of the system about the sliding surface in finite time. Hence, robust-

ness of the system gets defined by the width of this ultimate band for discrete-time systems. It

then becomes imperative that research takes place in the direction to reduce the width of the

ultimate band, ensuring better robustness of the system. The work in this chapter is motivated

by this objective and in the sequel it is shown how the choice of the relative degree of the

output (or the sliding variable) to be greater than one, positively influences the robustness as

well as the performance of the system as defined above. From this point and further in the

chapter, the terms ‘output’ and ‘sliding variable’ will be used interchangeably, as sliding

variable can be viewed as a constructed output of the system.

Traditionally, DSMC has been developed by taking outputs of relative degree one, i.e. there is

only unit delay between the output and the input of the system. This has given rise to proposals

of various reaching laws of the form s kþ 1ð Þ ¼ f ðs kð ÞÞ, where s kð Þ is the sliding variable at the

kth time step. These reaching laws make js kð Þj approach an ultimate band about the sliding

surface in finite time. One can readily calculate the control that does so from the reaching law,

since sðkþ 1Þ contains the control uðkÞ, when calculated from the system model. The most well-

known reaching laws are laid down in Refs. [2, 3, 17]. Of the above, the first two papers deal

with non-switching reaching laws, whereas the third one had proposed a switching reaching

law. Even to this day, reaching law propositions form an important area of work in discrete-time

sliding mode control, with different reaching laws favouring the design of control for a particu-

lar type of system. Some of these reaching laws are found in Refs. [5–11, 21, 24, 25].

The unity relative degree assumed in all the above works is also their major limitation. While it

is the normal case to consider, there is no real restriction on the choice of this relative degree. In

some system structures, the output can be naturally of relative degree more than one. In
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others, one can easily construct an output with higher relative degree and consider it to the

sliding variable to go about the analysis. In the recent studies [13, 14] which constitute the

content in this chapter, it is shown that when this apparent limitation is lifted, we get reduced

width of ultimate band, thus increasing robustness, as well as finite-time stability during

sliding in absence of uncertainties. The latter is an important achievement, as previously

finite-time stability during sliding for discrete-time systems had not been achieved. Only in

Ref. [18], such finite-time stability of states had been achieved during sliding, but with specific

design of surface parameters. With relative degree more than one, this finite-time stability of

the system states during sliding is always guaranteed for a wide range of choices of the surface

parameters.

The chapter is written as follows: in Section 2, an idea on the relative degree of outputs for

discrete-time systems is given, which is used in the theoretical developments in the remainder

of the chapter. In Section 3, a detailed work with reaching law propositions is done for relative

degree two outputs for general linear time-invariant (LTI) systems of order n. For arbitrary

relative degree outputs, a generalized control structure is proposed for a specific form of LTI

systems in Section 4, in which the relative degree r is equal to the order n of the system.

Improved robustness and finite-time stability are proved for all cases in both the sections.

Simulation examples are also shown in each section, which corroborate the theoretical devel-

opments. The chapter ends with discussing the main results and implications thereof.

2. Relative degree for discrete-time systems

The concept of relative degree is well understood for continuous-time systems. The definition

can be written as follows:

Definition 1: For a continuous-time system

_x ¼ f cðt, x, uÞ ð1Þ

the output yðtÞ is said to be of relative degree r if yr ¼ grðt, x, uÞ and yi ¼ gi t, xð Þ ∀ 0 ≤ i < r,

where uðtÞ is the control input and yp denotes the pth time derivative of y.

The above definition means that the control first appears physically in the rth derivative of the

output yðtÞ and not before that.

The concept of relative degree for discrete-time systems can be easily understood by making a

parallel of the above definition in the discrete-time domain. The derivative operator in contin-

uous time becomes the difference operator in discrete time. Each difference introduces a delay

between the output and the input of the system. With this in mind, one can propose the

definition of relative degree for discrete-time systems as follows:

Definition 2: For a discrete-time system

x kþ 1ð Þ ¼ f dðk, x kð Þ, u kð ÞÞ ð2Þ
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the output yðkÞ is said to be of relative degree r if y kþ rð Þ ¼ hrðk, x kð Þ, u kð ÞÞ and y kþ ið Þ ¼ hi k,ð

x kð ÞÞ ∀ 0 ≤ i < r, where uðkÞ is the control input and yðkþ pÞ denotes the p unit delays of y.

Physically, the above definition means that the control first appears in the rth delay of the

output yðkÞ and not before that. For a simple LTI system ðA, B, CÞ, this will mean that

CAi�1B ¼ 0 ∀ i ¼ 1 to ðr� 1Þ and CArB 6¼ 0.

3. Systems with relative degree two output

Let us consider a discrete-time LTI system in the regular form as

x1 kþ 1ð Þ ¼ A11x1 kð Þ þ A12x2 kð Þ

x2 kþ 1ð Þ ¼ A21x1 kð Þ þ A22x2 kð Þ þ B2u kð Þ þ B2f kð Þ
ð3Þ

where x1 kð Þ∈Rn�m and x2 kð Þ∈Rm are the n states and u kð Þ∈Rm is the control input. The

disturbance f kð Þ∈Rm is assumed to be bounded as jjf kð Þjj ≤ fm.

Obviously A11 ∈R
n�mð Þ�ðn�mÞ, A12 ∈R

n�mð Þ�m, A21 ∈R
m�ðn�mÞ,A22 ∈R

m�m and B2 ∈R
m�m.

Let us assume det B2ð Þ 6¼ 0. Written in the standard form x kþ 1ð Þ ¼ Ax kð Þ þ Bðu kð Þ þ f kð ÞÞ for

LTI systems, we shall have A ¼
A11 A12

A21 A22

� �

and B ¼
0
B2

� �

.

3.1. Asymptotic stability with relative degree one output

A relative degree one output for the discrete-time system as in Eq. (3) can be proposed as

s1 kð Þ ¼ CT
1 x kð Þ ¼ Cx1 kð Þ þ Imx2ðkÞ ð4Þ

where C∈R
m�ðn�mÞ and the suffix 1 denotes relative degree one. Then

CT
1B ¼ C Im½ �

0
B2

� �

¼ B2 ð5Þ

and we can calculate the control uðkÞ from

s1 kþ 1ð Þ ¼ CT
1Ax kð Þ þ CT

1Bu1 kð Þ þ CT
1Bf ðkÞ ð6Þ

using some relative degree one reaching law for sðkÞ, since B2 is non-singular.

Design of C is done considering closed-loop performance during sliding motion of the nominal

system, i.e. system with f kð Þ ¼ 0. When the system is sliding, output s1ðkÞ is zero, which makes

x2 kð Þ ¼ �Cx1ðkÞ. Hence, the closed loop during sliding becomes

x1 kþ 1ð Þ ¼ A11 � A12Cð Þx1ðkÞ ð7Þ
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which is traditionally made asymptotically stable by choosing λmaxðA11 � A12CÞ < 1. Since

x2ðkÞ is algebraically related to x1ðkÞ, it also settles down to zero asymptotically.

3.2. Finite-time stability with relative degree two output

For the system in Eq. (3), a relative degree two output can be

s2 kð Þ ¼ CT
2 x kð Þ ¼ Cx1ðkÞ ð8Þ

where C∈R
m�ðn�mÞ can be chosen same as in Eq. (4) or different, but satisfying the conditions

in Theorem 1 below. The suffix 2 is used to denote relative degree two.

Now CT
2B ¼ C 0½ �

0
B2

� �

¼ 0 clearly shows that

s2 kþ 1ð Þ ¼ CT
2AxðkÞ ð9Þ

as calculated from the system dynamics in Eq. (3) does not contain the control input uðkÞ. Then

we need to further assume CT
2B ¼ C 0½ �

A11 A12

A21 A22

� �

0
B2

� �

¼ CA12B2 to be non-singular so

that the output s2ðkÞ is of relative degree two. Then we obtain

s2 kþ 2ð Þ ¼ CT
2A

2x kð Þ þ CT
2ABðu2 kð Þ þ f kð ÞÞ ð10Þ

by adding one more delay to Eq. (9). The control input uðkÞ can now be obtained using Eq. (10).

Theorem 1. If KerðCÞ ¼ 0 and det CA12ð Þ 6¼ 0, then the output s2ðkÞ with relative degree two as

designed in Eq. (8) ensures finite-time stability of the states of the system in Eq. (3) during sliding, in

absence of the disturbance f ðkÞ.

Proof. During sliding, s2 kð Þ ¼ Cx1 kð Þ ¼ 0. If Ker Cð Þ ¼ 0, it follows that x1 kð Þ ¼ 0 during sliding.

Also, we have s2 kþ 1ð Þ ¼ CA11x1 kð Þ þ CA12x2 kð Þ ¼ 0 during sliding which implies

x2 kð Þ ¼ � CA12ð Þ�1CA11x1ðkÞ. As x1 kð Þ ¼ 0, it follows that x2 kð Þ ¼ 0 as well, since CA12 is

assumed to be non-singular. Hence, all the states become zero at the same instant as the output

hits zero. This happens in finite time for any appropriately designed reaching law, which can

bring the nominal system to the sliding surface in finite time. Thus, one can conclude that the

system states become finite-time stable with the choice of relative degree two output.

Note that, Ker Cð Þ ¼ 0 is only a sufficient condition and not a necessary one in order to achieve

finite-time stability of system states. The above theorem points out an important achievement

in the closed-loop reduced order dynamics compared to the choice of the relative degree one

output. Of course, if there is a disturbance, then the finite-time stability would be changed to

finite time-bounded stability, i.e. the system states will only enter an ultimate band in a finite

time and stay there.

Remark 1. In simulations, the parameter C is chosen the same for both relative degree one and two

outputs for comparison purposes. However, selection of the parameter C for relative degree two output

Discrete‐Time Sliding Mode Control with Outputs of Relative Degree More than One
http://dx.doi.org/10.5772/intechopen.68931

25



does not in any way require apriori design of the same parameter for a relative degree one output. The

property of finite-time stability is inherent to the relative degree two output systems provided C is

selected as per the conditions in Theorem 1, which are easy to satisfy.

3.3. Non-switching reaching law

In Ref. [3], a reaching law for discrete-time systems is introduced as

s kþ 1ð Þ ¼ sd kþ 1ð Þ þ d kð Þ

sd kð Þ ¼

k� � k

k�
s 0ð Þ for k < k�

0 for k ≥ k�

8

<

:

ð11Þ

and dðkÞ is an uncertainty derived from the system uncertainty f ðkÞ. It is evident that this

reaching law makes the sliding variable js kð Þj ≤ dm ∀ k ≥ k�, i.e. dm is the ultimate band for the

sliding variable sðkÞ, where the uncertainty dðkÞ is bounded as jd kð Þj ≤ dm.

3.3.1. Ultimate band for relative degree one output

It is evident that

s1 kþ 1ð Þ ¼ CT
1 x kþ 1ð Þ ¼ CT

1Ax kð Þ þ CT
1Bðu1 kð Þ þ f kð ÞÞ ð12Þ

which requires d kð Þ ¼ d1 kð Þ ¼ CT
1Bf ðkÞ in Eq. (11) so that the control

u1 kð Þ ¼ � CT
1B

� ��1
h

CT
1A

� �

x kð Þ � sd kþ 1ð Þ
i

ð13Þ

does not contain any uncertain terms. This makes the bound of d1 kð Þ for relative degree one

outputs as

d1m ¼ jjCT
1Bjj fm ¼ jjB2jj fm ð14Þ

which is the ultimate band δ1 as well.

3.3.2. Ultimate band for relative degree two output

It is already shown that s2ðkþ 1Þ does not contain the control input as well as the matched

disturbance, being a relative degree two output. Hence, we obtain

s2 kþ 2ð Þ ¼ CT
2 x kþ 2ð Þ ¼ CT

2A
2x kð Þ þ CT

2ABðu kð Þ þ f kð ÞÞ ð15Þ

containing the control input and this requires to extend the reaching law in Eq. (11) to find

s2ðkþ 2Þ. It is done by taking the nominal part of the reaching law (without dðkÞ) and adding

an unit delay to find s2ðkþ 2Þ. Then we include d2ðkÞ to take care of the matched disturbance.

This gives the extended reaching law for relative degree two outputs as
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s2 kþ 2ð Þ ¼ sd kþ 2ð Þ þ d2 kð Þ

sd kð Þ ¼
k� � k

k�
s 0ð Þ for k < k�

0 for k ≥ k^�

(

ð16Þ

With d2 kð Þ ¼ CT
2ABf ðkÞ in Eq. (16), the control input

u2 kð Þ ¼ � CT
2AB

� ��1
½ðCT

2A
2x kð Þ � sd kþ 2ð Þ� ð17Þ

does not contain any uncertain terms. The bound of d2ðkÞ in this case is

d2m ¼ jjCT
2ABjj fm ≤ jjCA12jjjjB2jj fm ¼ jjCA12jjd1m ð18Þ

which is the ultimate band δ2 as well.

Theorem 2. If in addition to the conditions in Theorem 1, C also satisfies λmax CA12ð Þ < 1, then the

ultimate band δ2 for the relative degree two output with reaching law in Eq. (16) is lesser than the

ultimate band δ1 for the relative degree one output with reaching law in Eq. (11), irrespective of whether

the parameter C is chosen same for both relative degree cases.

Proof. The property is straightforward to see from Eq. (18).

3.4. Switching reaching law

In Ref. [17], Gao et al. proposed a switching reaching law for discrete time SMC systems,

which has the form

s1 kþ 1ð Þ ¼ αs1 kð Þ � β1sign s1 kð Þð Þ þ d1ðkÞ ð19Þ

where α∈ ð0, 1Þ and β1 > d1m are real constants, d1ðkÞ is the uncertainty derived from the

system uncertainty f ðkÞ and bounded as jd1 kð Þj < d1m. At present there are two ways to analyse

Gao's reaching law, one provided in Ref. [4] and the other in Ref. [12]. In this work, the well-

known analysis established in Ref. [4] is followed.

3.4.1. Ultimate band for relative degree one output

It is already shown that

s1 kþ 1ð Þ ¼ CT
1 x kþ 1ð Þ ¼ CT

1Ax kð Þ þ CT
1Bðu1 kð Þ þ f kð ÞÞ ð20Þ

which requires d1 kð Þ ¼ CT
1Bf kð Þ in Eq. (19) so that the control input

u1 kð Þ ¼ � CT
1B

� ��1
½CT

1Ax kð Þ � αCT
1 x kð Þ þ β1sign CT

1 x kð Þ
� �

� ð21Þ

does not contain uncertain terms. This makes the bound of d1 kð Þ for relative degree one

outputs as
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d1m ¼ jjCT
1Bjj fm ¼ jjB2jj fm ð22Þ

which is the same as Eq. (14) in Section 3.3.1.

As per the analysis in Ref. [4] of the reaching law in Eq. (19), we need β1 >
ð1þαÞ
ð1�αÞ d1m for

crossing-recrossing s1 kð Þ ¼ 0 at each successive step after crossing it for the first time. The

ultimate band is then calculated as

δ1 ¼ β1 þ d1m >
2d1m
1� α

ð23Þ

3.4.2. Ultimate band for relative degree two output

It is already shown that s2ðkþ 1Þ does not contain the input. Hence, we calculate

s2 kþ 2ð Þ ¼ CT
2 x kþ 2ð Þ ¼ CT

2A
2x kð Þ þ CT

2ABðu2 kð Þ þ f kð ÞÞ ð24Þ

where the control input appears. This requires one to also extend the reaching law in Eq. (11) to

find s2ðkþ 2Þ. This is done by taking the nominal part of the reaching law (i.e. with d kð Þ ¼ 0 )

and adding another unit delay to find s2ðkþ 2Þ. Then we include d2ðkÞ to take care of the

matched disturbance. This gives the extended reaching law as

s2 kþ 2ð Þ ¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ � β2sign s2 kþ 1ð Þð Þ þ d2ðkÞ ð25Þ

With d2 kð Þ ¼ CT
2ABf ðkÞ in Eq. (25), the control

u2 kð Þ ¼ � CT
2AB

� ��1
h

CT
2A

2 � α2CT
2

� �

x kð Þ þ αβ2sign CT
2 x kð Þ

� �

þ β2sign CT
2Ax kð Þ

� �

i

ð26Þ

becomes devoid of any uncertain terms. The bound of d2ðkÞ in this case is

d2m ¼ jjCT
2ABjj fm ≤ jjCA12jjjjB2jj fm ¼ jjCA12jjd1m ð27Þ

which is same as Eq. (18) in Section 3.3.2. The task now is to determine the ultimate band δ2
and the conditions on β2 that needs to be satisfied. These are evaluated keeping in mind the

property of crossing-recrossing about s2 kð Þ ¼ 0 as imposed in the original work in Ref. [17] for

relative degree one output. For simplicity, we perform the analysis assuming s2 kð Þ∈R. For a

higher-dimensional output s2ðkÞ, the same analysis shall hold for each element of the vector.

Let us consider the sliding variable s2 kð Þ at two consecutive time instants. In other words, we

take into account the values of both s2ðkÞ and s2ðkþ 1Þ, where k is any non-negative integer.

Then, one can either have sign s2 kþ 1ð Þð Þ ¼ signðs2 kð ÞÞ or sign s2 kþ 1ð Þð Þ ¼ � signðs2 kð ÞÞ.

Lemma 1. If β2 >
d2m
1þα and sign s2 kþ 1ð Þð Þ ¼ signðs2 kð ÞÞ, then js2 kþ 2ð Þj is strictly smaller than

js2 kð Þj or crosses the hyperplane s2 kð Þ ¼ 0.

Proof. For sign s2 kþ 1ð Þð Þ ¼ sign s2 kð Þð Þ ¼ 1, from Eq. (25) we get
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s2 kþ 2ð Þ ≤α2s2 kð Þ � 1þ αð Þβ2 þ d2m < s2ðkÞ ð28Þ

since β2 >
d2m
1þα.

For sign s2 kþ 1ð Þð Þ ¼ sign s2 kð Þð Þ ¼ �1, from Eq. (25) we get

s2 kþ 2ð Þ ≥α2s2 kð Þ þ 1þ αð Þβ2 � d2m > s2ðkÞ ð29Þ

It is straightforward to conclude from the above two inequalities that js2 kþ 2ð Þj < js2 kð Þj or

sign s2 kþ 2ð Þð Þ ¼ �sign s2 kþ 1ð Þð Þ ¼ �signðs2 kð ÞÞ.

Lemma 1 can be geometrically interpreted as follows: if the states xðkÞ and xðkþ 1Þ are on the

same side of the sliding hyperplane, then either xðkþ 2Þ is at the same side of the hyperplane

and closer to it than xðkÞ or xðkþ 2Þ is on the other side of the hyperplane.

As k is an arbitrary non-negative integer, the above lemma demonstrates that there exists such

a finite k0 > 0 that ∀ i < k0, we have sign s2 ið Þ½ � ¼ sign½s2 0ð Þ� and sign s2 k0ð Þ½ � ¼ � sign½s2 0ð Þ�.

That is, there exists a finite time instant k0, at which the sliding variable s2ðkÞ changes its sign.

In other words, the system crosses the sliding surface in finite time.

Lemma 2. If β2 >
d2m
1�α and sign s2 kþ 1ð Þð Þ ¼ � signðs2 kð ÞÞ, then sign s2 kþ 2ð Þð Þ ¼ signðs2 kð ÞÞ.

Proof. With sign s2 kþ 1ð Þð Þ ¼ � signðs2 kð ÞÞ, from Eq. (25) we get

s2 kþ 2ð Þ ¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ � β2sign s2 kþ 1ð Þð Þ þ d2 kð Þ

¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ þ β2sign s2 kð Þð Þ þ d2 kð Þ

¼ α2s2 kð Þ þ 1� αð Þβ2sign s2 kð Þð Þ þ d2 kð Þ

ð30Þ

Since β2 >
d2m
1�α, then for any jd2 kð Þj < d2m, we get sign s2 kþ 2ð Þð Þ ¼ sign s2 kð Þð Þ:

As k is an arbitrary non-negative integer, the above lemma implies that β2 >
d2m
1�α is both a

necessary and sufficient condition for crossing-recrossing the sliding hyperplane s2 kð Þ ¼ 0 at

each successive step after crossing it for the first time. Furthermore, the condition on β2 in

Lemma 2 automatically guarantees that the condition on β2 in Lemma 1 holds. This concludes

that the former is a necessary and sufficient condition for generating the quasi-sliding mode in

the sense of Gao [17]. Indeed, when β2 >
d2m
1�α is satisfied, then the system crosses the sliding

hyperplane in a finite time and then recrosses it again in every consecutive step. However, the

sequence {js kð Þj} may not necessarily approach zero monotonically, but the sequence of every

alternate sample of {js kð Þj} does. Ultimately, the quasi-sliding mode is achieved when {js kð Þj}

starts crossing-recrossing about s kð Þ ¼ 0 at each time step.

With the help of these ideas, the ultimate band δ2 for the sliding variable s2ðkÞ can be found

out, which gives a measure of the robustness of the system concerned. The ultimate band must

be equal to the largest steady-state value of the sliding variable for the maximum disturbance

jd2 kð Þj ¼ d2m. This is obtained from Eq. (25) putting s2 kð Þ ¼ δ2, which also gives the value of

s2 kþ 2ð Þ ¼ δ2. Thus,
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δ2 ¼ α2δ2 � αβ2 þ β2 þ d2m ð31Þ

which gives

δ2 ¼
1� αð Þβ2 þ d2m

ð1� α2Þ
>

2d2m
ð1� α2Þ

ð32Þ

since β2 >
d2m

ð1�αÞ.

Theorem 3. If in addition to the conditions as in Theorem 1, C also satisfies σmax CA12ð Þ < 1þ α, then

the ultimate band δ2 for the relative degree two output with reaching law in Eq. (25) is lesser than the

ultimate band δ1 for the relative degree one output with reaching law in Eq. (19), irrespective of the

parameter C chosen same for both relative degree cases.

Proof. Let us consider ρ > 1. Then the inequalities in Eqs. (23) and (32) can be written as

equalities multiplying the RHS with this ρ. This gives us

δ1 ¼ ρ
2d1m

ð1� αÞ
δ2 ¼ ρ

2d2m
ð1� α2Þ

ð33Þ

Taking into account the fact that d2m ≤ jjCA12jjd1m, we get

δ2
δ1

¼
2d2m=2d1m
ð1þ αÞ

≤
jjCA12jj

ð1þ αÞ
ð34Þ

Hence, δ2 < δ1, if the condition λmax CA12ð Þ < 1þ α is satisfied.

Here, ρ is selected the same for both the ultimate bands δ1 and δ2. It can be considered as a

selection parameter for δ1 which is kept same for the selection of δ2 for fair comparison

between the two ultimate bands.

Remark 2. Compared to Theorem 2, the condition on C in Theorem 3 is more relaxed. Hence, with the

switching reaching law in Eq. (25), we can decrease the ultimate band for relative degree two output

with a less strict condition than required with the non-switching reaching law in Eq. (11).

3.5. Simulation example

Simulation examples are shown for a second-order discrete LTI system with outputs of both

relative degree one and two to compare performance.

We consider an inherently unstable dynamical system

x kþ 1ð Þ ¼
1 1:2
5 �1

� �

x kð Þ þ
0
1

� �

ðu kð Þ þ f kð ÞÞ ð35Þ
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where f ðkÞ is a disturbance assuming value þ0.1 for the first half of the simulation cycle and

�0.1 for the last half. The disturbance is chosen at these extremities to bring out the worst

behaviour of the system. The comparison between choices of relative degree one and two

outputs can be considered fair under such a scenario.

3.5.1. Non-switching reaching law

The reaching law of [3] with k� ¼ 5 is used for simulations. The surface parameter is selected as

C ¼ 0:5, which satisfies the conditions required in Theorem 2. The ultimate bands for the

relative degree one and two outputs are calculated to be δ1 ¼ 0:1 and δ2 ¼ 0:06, respectively.

Figure 1 shows the plots of the output sðkÞ along with a zoomed view to show the ultimate

bands. The plots of the state variables and control input are given in Figure 2. The plots

corresponding to relative degree one output are shown with a dotted line whereas those with

relative degree two output are shown with a smooth line. It can be easily seen from Figure 2

Figure 1. Sliding variable for non-switching reaching law.
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Figure 2. State variables and control input for non-switching reaching law.
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that both the state errors as well as the control effort are also reduced for relative degree two

output compared to relative degree one output.

3.5.2. Switching reaching law

The reaching law of Ref. [17] is used for simulations. The surface parameter is chosen as

C ¼ 0:9 which satisfies the conditions of Theorem 3 with α ¼ 0:4. For the purpose of simula-

tions, ρ ¼ 1:01 is selected which gives the ultimate bands as δ1 ¼ 0:3367 and δ2 ¼ 0:2597. For

these values of the ultimate bands, β1 ¼ 0:2367 and β2 ¼ 0:1836 are calculated. Figure 3 shows

the plots of the output sðkÞ along with a zoomed view to show the ultimate bands. The plots of

the state variables and control input are given in Figure 2. The plots corresponding to relative

degree one output are shown with a dotted line whereas those with relative degree two output

are shown with a smooth line. It can be easily seen from Figure 4 that both the state errors as

well as the control effort are also reduced for relative degree two output compared to relative

degree one output.

Figure 3. Sliding variable for switching reaching law.
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4. Systems with arbitrary relative degree outputs

In Section 3, the system order n was arbitrary but the relative degree of the output was fixed to

two. In this section, the relative degree is extended to arbitrary r > 1 where r∈Nþ. For the

Figure 4. State variables and control input for switching reaching law.
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purpose of the theoretical development presented in this chapter, r ¼ n is considered, i.e. the

relative degree of the output matches the system order. For such an assumption, the system

structure can generally take a canonical form, called the lower Hessenberg form, whenever r > 2.

Consider a chain of n unit delays with the system output defined as y kð Þ ¼ cx1ðkÞ, where x1ðkÞ

is the output of the last unit delay in the chain. Such a system structure is the popular

controller canonical form for LTI systems, which can be obtained from any LTI system model

by a simple linear transformation. However, with r ¼ n, a model ðAn, Bn, CnÞ of increased

complexity can be considered, which is the lower Hessenberg form. This can be described by

the system matrices An ¼ aij
� �

, i, j ¼ 1 to n, where aij ¼ 0 ∀ i ¼ 1 to n� 2ð Þ, j ¼ iþ 2ð Þ to n,

Bn ¼ 0n�1 b½ �T and Cn ¼ ½c 0n�1�. Below is the general structure of the system matrix An:

An ¼

a11 a12 0 0
a21 a22 a23 0

⋯
0 0
0 0

⋮ ⋱ ⋮
a n� 2ð Þ1 a n� 2ð Þ2 a n� 2ð Þ3 a n� 2ð Þ4
a n� 1ð Þ1

an1

a n� 1ð Þ2
an2

a n� 1ð Þ3
an3

a n� 1ð Þ4
an4

⋯

a n� 2ð Þðn�1Þ
0

aðn�1Þðn�1Þ a n� 1ð Þn
anðn�1Þ ann

2

6

6

6

6

6

4

3

7

7

7

7

7

5

Of course, yðkÞ, uðkÞ and f ðkÞ are all scalar functions and the structure ensures that y kð Þ is of

relative degree r ¼ n as per the definition given in Section 2.

4.1. Finite-time stability of all states

Let us consider the system

x kþ 1ð Þ ¼ Anx kð Þ þ Bn u kð Þ þ f kð Þð Þ y kþ 1ð Þ ¼ CnxðkÞ ð36Þ

with f kð Þ ¼ 0. Assuming this nominal system reaches sliding mode, the following proposition

can be made.

Theorem 4. If the output of the system in Eq. (36) is of relative degree r ¼ n, then

x1 kð Þ ¼ x2 kð Þ ¼… ¼ xn kð Þ ¼ 0 ∀ k ≥K, where K is the time step at which the output yðkÞ starts

sliding, i.e. y kð Þ ¼ 0 ∀ k ≥K.

Proof. During sliding, y kð Þ ¼ cx1 kð Þ ¼ 0 ∀ k ≥K implying x1 kð Þ ¼ 0 ∀ k ≥K since jcj∈ ð0,∞Þ.

Now, obviously y kþ 1ð Þ ¼ 0 ∀ k ≥K. This means

0 ¼ ca11x1 kð Þ þ ca12x2 kð Þ ∀ k ≥K ð37Þ

implying x2 kð Þ ¼ 0 ∀ k ≥K as x1 kð Þ ¼ 0 ∀ k ≥K and ja11j, ja12j∈ ð0,∞Þ as per the system structure.

Similarly, y kþ 2ð Þ ¼ y kþ 3ð Þ ¼… ¼ y kþ n� 1ð Þ ¼ 0 ∀ k ≥K and proceeding in the same line

of argument, it can be shown that x3 kð Þ ¼ x4 kð Þ ¼… ¼ xn kð Þ ¼ 0 ∀ k ≥K. This implies that

every state hits zero in finite time, which is the same as the time instant when the output hits

zero, and stays there for all future times.
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It is obvious that in the presence of uncertainty f ðkÞ, the states will not reach zero but remain

inside some ultimate band ∀ k ≥K.

4.2. Improved robustness of the system

With relative degree of the output equal to the order of the system, better robustness can be

obtained when compared to usual outputs of relative degree one, by satisfying certain suffi-

cient conditions. The robustness is measured by the width of the ultimate band of the output or

the sliding variable. For this, systems with outputs of relative degree two and three are first

discussed and then the result is generalized for arbitrary relative degree outputs.

For a relative degree one output of an n-order system in Eq. (36), CnBn ¼ b if the sliding surface

is linear, i.e. Cn ¼ ½c c2…1�. Hence, the control can always be computed from Utkin's reaching

law [6]

y kþ 1ð Þ ¼ d1ðkÞ ð38Þ

with jd1 kð Þj ≤ d1m ¼ CnBnfm ¼ bfm. This gives the control as

u kð Þ ¼ � CnBnð Þ�1CnAnxðkÞ ð39Þ

devoid of any uncertain terms, for any system dimension n.

4.2.1. Relative degree two outputs

With system order n ¼ 2, the LTI system becomes

x kþ 1ð Þ ¼
a11 a12
a21 a22

� �

x kð Þ þ
0
b

� �

ðu kð Þ þ f kð ÞÞ ð40Þ

The output

y kð Þ ¼ cx1 kð Þ ¼ C2xðkÞ ð41Þ

is clearly of relative degree two, since C2B2 ¼ 0 and C2A2B2 6¼ 0. Hence, one needs

y kþ 2ð Þ ¼ C2A
2
2x kð Þ þ C2A2B2ðu2 kð Þ þ f kð ÞÞ ð42Þ

to obtain the equivalent control from the extended Utkin's reaching law for relative degree two

outputs, which is easily obtained from Eq. (38) as

y kþ 2ð Þ ¼ d2ðkÞ ð43Þ

with jd2 kð Þj ≤ d2m ¼ C2A2B2fm ¼ ca12bfm. This makes the control

u2 kð Þ ¼ � C2A2B2ð Þ�1C2A
2
2xðkÞ ð44Þ

devoid of any uncertain terms.
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Obviously, the output yðkÞ will be bounded inside the ultimate band δ2 ¼ d2m ∀ k ≥ 2. For the

output with relative degree one, the ultimate band is simply δ1 ¼ d1m ¼ bfm. From the above, it

is straightforward to put down the below theorem.

Theorem 5. For the same LTI system in Eq. (40), the equivalent control will lead to a decrease in the

width of the ultimate band with an output of relative degree two compared to an output of relative degree

one if ca12 < 1.

4.2.2. Relative degree three systems

With system order n ¼ 3, the LTI system becomes

x kþ 1ð Þ ¼
a11 a12 0
a21 a22 a23
a31 a32 a33

2

4

3

5x kð Þ þ
0
0
b

2

4

3

5ðu kð Þ þ f kð ÞÞ ð45Þ

The output

y kð Þ ¼ cx1 kð Þ ¼ C3xðkÞ ð46Þ

is clearly of relative degree three, since C3B3 ¼ C3A3B3 ¼ 0 and C3A
2
3B3 6¼ 0. Hence, one needs

y kþ 3ð Þ ¼ C3A
3
3x kð Þ þ C3A

2
3B3ðu3 kð Þ þ f kð ÞÞ ð47Þ

to obtain the control from the extended Utkin's reaching law for relative degree three outputs.

This is easily obtained from Eq. (38) as

y kþ 3ð Þ ¼ d3ðkÞ ð48Þ

with jd3 kð Þj ≤ d3m ¼ C3A
2
3B3fm ¼ ca12a23bfm. This makes the control

u3 kð Þ ¼ � C3A
2
3B3

� ��1
C3A

3
3xðkÞ ð49Þ

devoid of any uncertain terms.

Obviously, the output yðkÞ will be bounded inside the ultimate band δ3 ¼ d3m ∀ k ≥ 3. For the

output with relative degree one, the ultimate band is simply δ1 ¼ d1m ¼ bfm. From the above, it

is straightforward to put down the below theorem.

Theorem 6. For the same LTI system in Eq. (40), the equivalent control will lead to a decrease in the

width of the ultimate band with an output of relative degree three compared to an output of relative

degree one if ca12a23 < 1.

4.2.3. Systems with outputs of arbitrary relative degree

With relative degree of the output equal to the order of the system for an arbitrary r ¼ n, the

system is as given in Eq. (36) and yðkþ rÞ needs to be calculated from the output equation
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y kð Þ ¼ cx1 kð Þ ¼ Crx kð Þ ð50Þ

In the same way as in previous subsections, the control devoid of any uncertainty can be

derived as

ur kð Þ ¼ � CrA
r�1
r Br

� ��1
CrA

r
rxðkÞ ð51Þ

from the extended Utkin's reaching law

y kþ rð Þ ¼ drðkÞ ð52Þ

where jdr kð Þj ≤ drm ¼ c
Yr

i¼2
a i� 1ð Þibfm.

Obviously, the output will be bounded inside an ultimate band δr ¼ drm ∀ k ≥ r. From the

above, it is straightforward to put down the following theorem.

Theorem 7. For the same LTI system in Eq. (36), the equivalent control will lead to a decrease in the

width of the ultimate band with an output of relative degree r ¼ n compared to an output of relative

degree one if c
Yr

i¼2
a i� 1ð Þi < 1.

Figure 5. Comparing robustness of outputs with relative degree one and relative degree three.
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Remark 3. In case of outputs with relative degree more than one, the scaling c can be dropped and

simply y kð Þ ¼ x1ðkÞ. Hence, the robustness entirely depends on the system parameters. It is thus

possible that for some systems for which the parameters do not satisfy the condition in Theorem 7, the

robustness worsens with choice of relative degree r ¼ n with Utkin's equivalent control law.

4.3. Simulation result

A third-order discrete-time LTI system is considered with output of relative degree three for

simulation. For comparison, the results for the output designed to be of relative degree one are

also shown. It can be readily observed that with design parameters kept same for both, the

system with relative degree three output shows better robustness in presence of disturbance

and also achieves finite-time stability of all states in the absence of disturbance.

Let the system be

x kþ 1ð Þ ¼
�1 1:5 0
�0:5 0:5 �0:8
�3 1 1

2

4

3

5x kð Þ þ
0
0
1

2

4

3

5ðu kð Þ þ f kð ÞÞ ð53Þ

where f ðkÞ is a random number bounded by�0:1. The initial states are assumed to be �1 3� 2½ �T .

Figure 6. State dynamics for relative degree one and relative degree three with disturbance.
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An output of relative degree one is designed as

y1 kð Þ ¼ 0:2� 0:625� 1½ �xðkÞ ð54Þ

which makes the poles of the reduced-order system in the sliding mode as 0.1 and �0.1, which

are sufficiently nice pole placement to obtain asymptotic stability of the states fast enough.

The output of relative degree three is designed as

y3 kð Þ ¼ 0:2 0 0½ �xðkÞ ð55Þ

by keeping the first entry of the output matrix same as in Eq. (54). The ultimate bands

calculated for the relative degree one and three outputs are δ1 ¼ 0:1 and δ3 ¼ 0:024, respec-

tively. The zoomed views of the outputs for the two cases are shown in Figure 5, with the

ultimate band superimposed on each plot.

Figures 6 and 7 show the states and the control input for the two cases when the system is

affected by the disturbance f ðkÞ. Not much visible difference can be found between the

Figure 7. Control input for relative degree one and relative degree three with disturbance.
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simulations of the states in Figure 6 because of the presence of disturbance. However, in

Figure 8, it is clear that the states of the system in absence of disturbance become finite-time

stable for relative degree three output, whereas for relative degree one output, only asymptotic

stability is achieved.

5. Conclusion

In this chapter, an important advancement in the direction of discrete-time sliding mode

control is presented. As opposed to the traditional consideration of outputs of relative degree

one, it is shown that with higher relative degree outputs, improved robustness and perfor-

mance of the system can be guaranteed under certain conditions. New reaching laws are

proposed for these higher relative degree outputs, which are extensions of existing reaching

laws proposed in Refs. [2, 3, 17] for relative degree one outputs. These reaching laws are

analysed to find out conditions for increased robustness of the system. Along with such

increased robustness attributed to a reduction in the ultimate band of the sliding variable or

Figure 8. State dynamics for relative degree one and relative degree three without disturbance.

Discrete‐Time Sliding Mode Control with Outputs of Relative Degree More than One
http://dx.doi.org/10.5772/intechopen.68931

41



output, the system states are also proved to be finite-time stable in absence of disturbance. In

presence of disturbance, they are finite time ultimately bounded. Moreover, this finite time

step is same as the time step at which the output hits the sliding surface.
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