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Abstract

In the past few years, improvement in computational approaches provided faster 
and less expensive outcomes on the identification, development, and optimization 
of monoclonal antibodies (mAbs). In silico methods, such as homology modeling, 
to predict antibody structures, identification of epitope-paratope interactions, and 
molecular docking are useful to generate 3D structures of the antibody–antigen 
complexes. It helps identify the key residues involved in the antigen–antibody 
complex and enable modifications to enhance the antibody binding affinity. Recent 
advances in computational tools for redesigning antibodies are significant resources 
to improve antibody biophysical properties, such as binding affinity, solubility, sta-
bility, decreasing the timeframe and costs during antibody engineering. The immu-
nobiological market grows continuously with new molecules, both natural and new 
molecular formats, such as bispecific antibodies, Fc-antibody fusion proteins, and 
mAb fragments, requiring novel methods for designing, screening, and analyzing. 
Algorithms and software set the in silico techniques on the innovation frontier.

Keywords: antibody structure modeling, VH-VL, computational analyses, epitope 
prediction, paratope prediction, molecular docking

1. Introduction

The development of new therapeutic antibodies is a multiple task challenge. 
The approval of OKT3 (1986), the first therapeutic mAb, opened the perspective of 
using this class of product in many other antibody-based therapies. Only the con-
cept of “Magic Bullets,” however, was not enough to provide for safety and efficacy, 
resulting in many preclinical or clinical trial failures. Soon became evident the need 
for the humanization of antibodies that mitigated their immunogenicity with the 
counterpart of decreasing their affinity in many cases. An alternative to circumvent 
this issue relied on back mutations. However, how to suggest such mutations?

Methodologies have emerged to optimize newly discovered antibodies, either 
in their affinity to the target or other properties, including in silico methods. The 
computational capacity has grown exponentially over the past few decades, providing 
an equally exponential advance in computational drug optimization techniques. The 
increased public’s databases associated with bigdata works transformed the internet in 
the most profitable “laboratory” with free reagents (i.e., data), low-risk experiments 
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(i.e., in silico assays), and time safe results. Considering all these aspects together are a 
simple way to understand the webtools’ strengths.

In this chapter, we present different aspects of in silico methodologies for 
prospecting and characterizing mAbs. For didactic reasons, we could start from 
modeling molecules by homology (Section 2), followed by the prediction of 
epitopes and paratopes, affinity maturation, and molecular docking in Section 3, 
and finally, the improvement of biophysical and biological properties in Section 
4. We aim to present free tools currently available, highlighting their features and 
applications, allowing the readers to find the most appropriate way to solve their 
problems. Albeit many tools and their applicability are shown, we call attention to 
their sequence of use and refinement that is inherent to the particular questions to 
be answered. We remind you that all the tools presented here were available online 
and free of charge to the academy until the closing of this edition.

2. Antibody structure modeling

The ability of the antibodies to recognize a diverse set of antigens is acquired by 
V(D)J recombination and affinity maturation. These two mechanisms contribute to 
a large number of possible unique sequences of the antibodies, around 1011–15 [1–3].

Protein structures are strongly related to specificity and function, and their 
knowledge is crucial to analyze the antibody. Although many crystal structures are 
available in the Protein DataBank [4], this number is small (around 6700) com-
pared to the number of possible sequences. Computational modeling is a feasible 
method for predicting antibodies’ structures and allows us to evaluate antibodies’ 
properties and to understand antibody–antigen interaction.

The first step in the antibody modeling is its alignment with the germline 
sequence and the V(D)J classification. The International Immunogenetics 
Information System (IMGT) [5] is the central database of germline antibody 
sequences. Some webtools, such as IgBlast [6] and IMGT/V QUEST [7], use this 
database to align and classify the annotated sequence (Table 1). Since differences in 
the variable domains are responsible for the structural and functional antibodies’ 
diversity, most of the structure prediction methods are based on the Fv modeling 
(Table 1). Framework regions are sequences with highly conserved structures, 
making it easier to generate their models from template structures. CDRs from 
the light chain (CDRs L1–3), CDRs 1 and 2 from the heavy chain (CDRs H1–2) are 
relatively conserved, regarding their structures, being possible to predict their 
structures based on their amino acid sequence. There is a set of canonical structures 
that allows us to predict the conformation of each loop. Recent studies have clas-
sified non-CDR H3 loops by their type and length and identified 72 clusters [62]. 
CDR H3 loop is usually longer (5–26 amino acids) than the others and presents a 
highly diverse structure. The CDR H3 loop also influences the VL-VH orientation 
and, consequently, the antibody–antigen interaction [63, 64]. For these reasons, the 
major challenge in antibody modeling is to achieve accuracy in CDR3 loop structure 
prediction. Usually, the primary sequence of CDR H3 is not enough for the predic-
tion of the loop conformation.

Some information, as the position of the key residues, seems to be necessary. 
CDR H3 can be divided into two regions, the torso and the head [65]. The head 
usually presents a standard hairpin structure [65]. The torso, which is the region 
closer to the framework, can be predicted comparing with similar antibodies in 
which crystal structures are available on databases. Some software as Rosetta 
[66] has a platform to predict antibody structure, which first models each CDR 
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Antibody structural 

modeling

Link Ref.

IgBLAST https://www.ncbi.nlm.nih.gov/igblast/ [6]

IMGT V-Quest http://www.imgt.org/IMGTindex/V-QUEST.php [7]

SPHINX http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/sphinx [9]

AbodyBuilder http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/Modelling.php [10]

LYRA http://www.cbs.dtu.dk/services/LYRA/index.php [11]

Kotai Antibody 

Builder

https://sysimm.org/rep_builder/ [12]

Rosetta Suite http://rosie.rosettacommons.org/ [13]

PEARS http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/PEARS.php [14]

SCWRL http://dunbrack.fccc.edu/scwrl4/ [15]

BetaSCPWeb http://voronoi.hanyang.ac.kr/betascpweb/ [16]

FREAD http://opig.stats.ox.ac.uk/webapps/fread/php/ [17]

PLOP http://www.jacobsonlab.org/plop_manual/plop_overview.htm [18]

SCALOP http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/SCALOP.php [19]

Paratope prediction Link Ref.

Paratome http://ofranservices.biu.ac.il/site/services/paratome/ [20]

Antibody i-Patch http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/ABipatch.php [21]

proABC-2 https://bianca.science.uu.nl/proabc2/ [22]

Parapred https://github.com/eliberis/parapred [23]

Epitope prediction Link Ref.

EpiPred http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/EpiPred.php [24]

PEASE http://ofranservices.biu.ac.il/site/services/epitope/index.html [25]

IEDB (database) https://www.iedb.org/ [26]

Linear B-cells 

epitope

http://tools.iedb.org/bcell/ [27, 28]

DiscoTope http://tools.iedb.org/discotope/ [29, 30]

Ellipro http://tools.iedb.org/ellipro/ [31]

Epitome (database) http://www.rostlab.org/services/epitome [32]

Epitope 

Conservancy 

Analysis

http://tools.iedb.org/conservancy/ [33]

Epitope Cluster 

Analys

http://tools.iedb.org/cluster/ [34]

Antibody–antigen 

docking

Link Ref.

ClusPro https://cluspro.bu.edu/login.php [35]

ZDOCK http://zdock.umassmed.edu/ [36]

PatchDock https://bioinfo3d.cs.tau.ac.il/PatchDock/ [37]

AutoDock http://autodock.scripps.edu/ [38]

AutoDockFR https://ccsb.scripps.edu/adfr/ [39]

FLIPDock http://flipdock.scripps.edu/ [40]

https://www.ncbi.nlm.nih.gov/igblast/
http://www.imgt.org/IMGTindex/V-QUEST.php
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/sphinx
http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/Modelling.php
http://www.cbs.dtu.dk/services/LYRA/index.php
https://sysimm.org/rep_builder/
http://rosie.rosettacommons.org/
http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/PEARS.php
http://dunbrack.fccc.edu/scwrl4/
http://voronoi.hanyang.ac.kr/betascpweb/
http://opig.stats.ox.ac.uk/webapps/fread/php/
http://www.jacobsonlab.org/plop_manual/plop_overview.htm
http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/SCALOP.php
http://ofranservices.biu.ac.il/site/services/paratome/
http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/ABipatch.php
https://bianca.science.uu.nl/proabc2/
https://github.com/eliberis/parapred
http://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/EpiPred.php
http://ofranservices.biu.ac.il/site/services/epitope/index.html
https://www.iedb.org/
http://tools.iedb.org/bcell/
http://tools.iedb.org/discotope/
http://tools.iedb.org/ellipro/
http://www.rostlab.org/services/epitome
http://tools.iedb.org/conservancy/
http://tools.iedb.org/cluster/
https://cluspro.bu.edu/login.php
http://zdock.umassmed.edu/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
http://autodock.scripps.edu/
https://ccsb.scripps.edu/adfr/
http://flipdock.scripps.edu/
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and framework based on very similar antibodies and then generates the CDR H3 
conformations by assembling small peptides fragments. Software as SPHINX [9], 
uses ab initio modeling algorithm to predict CDR H3 conformation. Some software 
that performs the antibody structure modeling, and also the CDR H3 modeling, are 
listed in Table 1.

Antibody modeling is an essential step for most of the procedures discussed 
below, and the researcher must proceed according to the necessary refinement.

3.  Antibody-antigen complex: methods of paratope and epitope 
prediction; molecular docking

In the past few years, improvement in computational approaches provided faster 
and less expensive outcomes on the identification, development, and optimiza-
tion of monoclonal antibodies (mAbs). One of the leading goals of the rational 

Antibody structural 

modeling

Link Ref.

Swarmdock https://bmm.crick.ac.uk/~svc-bmm-swarmdock/ [41]

SnugDock http://rosie.graylab.jhu.edu/snug_dock [42]

HADDOCK https://wenmr.science.uu.nl/haddock2.4/ [43]

FRODOCK http://frodock.chaconlab.org/ [44]

Biophysical 

properties of mAbs

Link Ref.

DeepDDG http://protein.org.cn/ddg.html [45]

ScooP http://babylone.ulb.ac.be/SCooP/ [46]

Mupro1.0 http://sysbio.rnet.missouri.edu/multicom_toolbox/index.html [47, 48]

Ease MM https://sparks-lab.org/server/ease-mm/ [49]

Strum https://zhanglab.ccmb.med.umich.edu/STRUM/ [50]

MCSM http://biosig.unimelb.edu.au/mcsm/stability [51]

SDM http://marid.bioc.cam.ac.uk/sdm2/ [52]

TAP http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/tap [53]

AgreeRATE-Disc https://www.iitm.ac.in/bioinfo/aggrerate-disc/ [54]

ISMBLab-PPI http://ismblab.genomics.sinica.edu.tw/predict.php?pred=PPI [55]

Prediction of 

glycosylation spots

Link Ref.

NetNGlyc 1.0 https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0 [56]

N-GlyDE http://bioapp.iis.sinica.edu.tw/N-GlyDE/ [57]

GlycoMod https://web.expasy.org/glycomod/ [58]

GlyConnect https://glyconnect.expasy.org/home —

GlycoSiteAlign https://glycoproteome.expasy.org/glycositealign/ [59]

NetCGlyc http://www.cbs.dtu.dk/services/NetCGlyc/ [60]

NetOGlyc http://www.cbs.dtu.dk/services/NetOGlyc/ [61]

Table 1. 
Free onlinetools and databases. Adapted from Norman et al., 2019 [8].

https://bmm.crick.ac.uk/~svc-bmm-swarmdock/
http://rosie.graylab.jhu.edu/snug_dock
https://wenmr.science.uu.nl/haddock2.4/
http://frodock.chaconlab.org/
http://protein.org.cn/ddg.html
http://babylone.ulb.ac.be/SCooP/
http://sysbio.rnet.missouri.edu/multicom_toolbox/index.html
https://sparks-lab.org/server/ease-mm/
https://zhanglab.ccmb.med.umich.edu/STRUM/
http://biosig.unimelb.edu.au/mcsm/stability
http://marid.bioc.cam.ac.uk/sdm2/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/tap
https://www.iitm.ac.in/bioinfo/aggrerate-disc/
http://ismblab.genomics.sinica.edu.tw/predict.php?pred=PPI
https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0
http://bioapp.iis.sinica.edu.tw/N-GlyDE/
https://web.expasy.org/glycomod/
https://glyconnect.expasy.org/home
https://glycoproteome.expasy.org/glycositealign/
http://www.cbs.dtu.dk/services/NetCGlyc/
http://www.cbs.dtu.dk/services/NetOGlyc/
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development of antibodies is the identification of epitope-paratope interactions. 
3D structures of the antibody–antigen complex using X-ray crystallography are the 
gold standard to reach the binding site information; however, these experimental 
methods can be money and time-consuming, and scarce to obtain. Thus, computa-
tional methods mean a rapid alternative across antibody discovery.

In silico methods, such as homology modeling, molecular docking, and interface 
prediction can be used to generate 3D models of the antibody–antigen complexes 
and to predict critical residues involved in antigen binding. Once the antibody–
antigen contact residues are known, it can be computationally mutated to screen 
for residues that could increase antibody specificity and affinity against the target, 
if desired. Computational techniques to perform such a process fall into those 
that predict the paratope, the epitope, or the entire antibody–antigen complex 
(Figure 1).

3.1 Paratope prediction

Paratope represents the antibody amino acid residues in direct contact with the 
antigen. Since antigen-binding typically involves residues in the CDRs, about 80% 
of the amino acids constituting the paratope are in the CDRs [67]. However, only a 
third of the CDR residues participate in antigen binding [68]. Besides the residues 
in the CDRs, some framework regions are also involved in antigen-binding [67], 
relevant to identify the paratope residues precisely.

Several computational methods exist to predict paratopes (Table 1). The online 
tool Paratome [20] indicates the antigen-binding regions given the amino acid 
sequence or 3D structure. It identifies structural elements consensus, which is 
commonly involved in antigen binding between antibodies by aligning a set of all 

Figure 1. 
Schematic representation of the computational approaches flows used in the antibody design and 
characterization. Methods to in silico antibody analyses can be summarized into annotating the sequence, 
modeling the framework, modeling the CDR loops, and optimizing the VH-VL orientation, followed by 
predicting the paratope, the epitope, and the antibody–antigen contact residues. Mostly, the antibody 
design is performed, aiming the identification of hot spots residues suitable for mutagenesis to improve the 
antibody binding affinity to the target and antibody biophysical properties, such as stability, solubility. From 
the annotated sequence, it is possible to carry out the aggregation and solubility analyses and predict the 
glycosylation sites. These analyses can serve as verification steps throughout the process of antibody design and 
characterization.
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known antigen–antibody complexes on PDB. Paratome can also identify positions 
in the framework region that might contribute to antigen recognition [20, 67]. 
However, this tool does not provide information on the specific residues directly 
involved in the binding, relevant to antibody engineering experiments, such as in 
silico affinity maturation [69].

Statistical approaches such as Antibody i-Patch [21] utilizes structural informa-
tion of both the antibody and antigen to generate its paratope prediction. This 
software assigns a score to each residue indicating how likely they are to be in con-
tact with a given antigen. The higher score implies that the residue is more likely to 
form part of the paratope, information useful in guiding mutations in the artificial 
affinity maturation process. The tool considers the structure of both antibody and 
antigen. It should return more bespoke results, generating more accurate antigen-
binding residue predictions.

Recently, machine learning approaches overcame Paratome and Antibody 
i-Patch. The PRediction Of AntiBody Contacts (proABC) [69] is a random forest  
algorithm, based on a machine-learning method, which uses the antibody 
sequences (eliminating the need for a 3D structure), the hypervariable loop canon-
ical forms and lengths [70], and the germline family [71] as features to predict 
which residues of an antibody are involved in recognizing its cognate antigen. The 
prediction includes the nature of their contacts, distinguishing between hydrogen 
bonds, hydrophobic, and other non-bonded interactions. The proABC-2 [22] is 
an update of the original random-forest antibody paratope predictor, which uses 
the same set of features, but based on a deep learning framework, thus  generating 
improved predictions and, as a consequence, increasing the success rate and 
 quality of the docked models.

The Parapred [23] was the first algorithm based on modern deep learning for 
paratope prediction. This method only requires the amino acid sequence of a CDR 
and four adjacent residues as its input, without a full sequence, homology model, 
crystal structure, or antigen information. Its predictions improve the speed and 
accuracy of a rigid docking algorithm. The AG-Fast-Parapred [72] is an outperform 
of Parapred, which for the first time, provides antigen information in an in-depth 
paratope predictor.

Computational predictors of paratopes can provide valuable information to 
guide the modeling of antibody–antigen complexes. They will enable the accurate 
identification of residues that are the most important in determining the anti-
body’s activity, leaving other residue positions as potential mutation sites, open to 
exploring other molecular characteristics by engineering.

3.2 Epitope prediction

The epitope is the antigen region in contact with the antibody in an antibody–
antigen complex. Accurate identification of an epitope is a substantial step in 
characterizing the function of an antibody, helps predict possible cross-reactivity, 
and understand antibody mechanisms of action. The gold standard to determine 
the antibody epitope and the paratope is the 3D structure of the antibody–antigen 
complex by X-ray crystallography. Adding to these methods, peptide array, peptide 
ELISAs, phage display, expressed fragments, partial proteolysis, mass spectrom-
etry, and mutagenesis analyses are also experimental methods applied to identify 
antibody epitopes. However, those assays can be expensive, time-consuming, and 
their outcome is uncertain [73].

Computational methods serve as an alternative to identify antibody epitopes 
(Table 1) [74]. Methods for computational B-cell epitope prediction can be cat-
egorized into the sequence and structure-based methods; the former focus on 
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identifying contiguous stretches of primary amino acid sequence to predict linear 
epitopes. In contrast, the latter takes into account their 3D structure to predict con-
formational epitopes. The first in silico B-cell epitope prediction methods focused 
on amino acid properties within a sequence, such as hydrophobicity, hydrophilicity, 
or antigenicity [75–79]. They aim to identify propensities and patterns of a set of 
residues on the antigen capable of binding to an antibody [29]. However, in many 
epitope prediction methods, it lacks information on the cognate antibody result-
ing in limited practical use since the epitopes predicted are generical. Therefore, 
antibody-specific epitope prediction methods later replaced these approaches.

The first antibody-specific epitope prediction method was suggested in 2007 by 
Rapberger et al. [80]. Some approaches, such as ASEP [81], BEPAR [82], ABEpar [83], 
and PEASE [25], are antibody-specific epitope prediction methods that do not require 
antibody structure. The PEASE (Predicting Antibody-Specific Epitopes) method 
is based on a machine-learning model and utilizes the sequence of the antibody, in 
the absence of structural information. It evaluates a pair score for all combinations 
of residues from the antibody CDR and residues from the surface-exposed region 
of antigen. The predictions are provided both at the residue level and as patches on 
the antigen structure using antibody–antigen contact preferences and other proper-
ties computed from the antibody sequence and antigen structure or sequence. The 
EpiPred [24] is an antibody-specific epitope prediction method that identifies the 
epitope region on the antigen combining conformational matching of the antibody–
antigen structures and a specific antibody–antigen score. Patches on the antigen 
structure are ranked according to how likely they are to be the epitope. This method 
aims to generate epitope predictions specific for a given antibody to facilitate docking.

The most recent approaches, such as MabTope [84] and the method suggested 
by Jespersen et al. [85], are docking-based prediction methods of the epitope. 
The MabTope methodology integrates both a docking-based prediction method 
and experiment steps. MabTope involves three phases; in the first, docking the 
antibody on its target to generate possible conformations of the antigen–antibody 
complex (docking poses); secondly, ranking these docking poses with the design 
of the peptides predicted to be part of the epitope; and last, experimental valida-
tion procedures based on these peptides. The method suggested by Jespersen et al. 
combines geometric and physicochemical features correlated in paratope-epitope 
interactions with statistical and machine learning algorithms. This method can 
identify the cognate antigen target for a given antibody, besides the antibody target 
for a given antigen.

Several B-cell epitope databases were developed over the last decades, compiling 
validated information of the experimentally annotated B-cell epitopes. The Immune 
Epitope Database (IEDB) [26] is a multifaceted database that includes epitope 
sequence and structure, source antigen, the organism from which the epitope is 
derived, and details of the experiments describing recognition of the epitope. IEDB 
provides tools to predict linear B-cell epitopes based on sequence characteristics 
of the antigen [27, 28], and also to predict B-cell epitopes from protein structure, 
using methods based on solvent-accessible surfaces, such as DiscoTope [29, 30] 
and ElliPro [31]. The database Epitome [32] compiles a collection of antibody–anti-
gen complex structures, describes the residues (on antigen and antibody CDRs) 
involved in the interactions, and provides information concerning specific struc-
tural characteristics of the binding regions.

The epitope information from the B-cell epitope databases can evaluate existing 
epitope prediction methods and develop new and better algorithms for prediction. 
The identification or prediction of epitopes might be useful as an information for 
more sophisticated computational antibody design methods, such as antibody–
antigen docking.
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3.3 Antibody–antigen docking

The paratope and epitope prediction methods can offer useful information 
on antibody–antigen recognition by identifying a subset of residues involved in 
antigen–antibody interface formation. However, they do not provide information 
about the specific pairwise relations between the residues on the antibody and 
the antigen. This issue can be dealt with antibody–antigen docking, a specialized 
application of the broader field of molecular docking [86].

Molecular docking tools (Table 1) allow predicting the best binding interface of 
two interacting proteins. Different docking algorithms have been developed over 
the years to predict the 3D structure of biological complexes, and they typically 
involve two steps: sampling and scoring. In the sampling step, the conformational 
space surveys for thousands of possible complex conformations (‘decoys’); in the 
scoring, the decoys are ranked using scoring functions, which sort the decoys to 
identify or predict the models that are closer to the native conformation (lowest 
energy structure). The sampling strategy applied during the simulation is used 
to classify the docking methods. The global docking algorithms do not consider 
any previous information about the binding interfaces and perform an exhaustive 
search of the interaction space. The local or integrative docking approaches, on the 
other hand, use the available experimental data or predicted information about the 
binding interface to drive the sampling during the docking [87].

There are three types of docking: rigid-body docking, partial flexible docking, 
and flexible docking [88, 89]. Most protein–protein docking algorithms perform 
rigid-body docking, which means that both binding partners are kept inflexible, as 
rigid molecules, hindering the exploration of conformational degrees of freedom 
during the binding. These methods are based on the fast Fourier transform search 
algorithm [90] and usually are applied when the structures are complementary 
[89]. Examples of used rigid-body docking software are ClusPro [35], ZDOCK [36], 
and PatchDock [37]. ClusPro is an antibody specific docking, unlike ZDOCK and 
PatchDock. In partial flexible docking, the antibody remains rigid, while the anti-
gen is flexible [89]. One of the docking tools that applied this concept is AutoDock 
[38]. AutoDockFR [39] also allows partial flexibility of the antibody. However, 
removing the conformational limitations can improve the binding site identifica-
tion, since, in most situations, protein flexibility is a crucial factor to be considered 
[91]. Therefore, flexible docking involves both interacting molecules as flexible 
structures. FLIPDock [40], Swarmdock [41], SnugDock [42], and HADDOCK 
[92–94] are examples of these approaches. SnugDock and HADDOCK allow some 
flexibility alongside chains and the backbone during a refinement stage. Snugdock 
is the first antibody specific docking to apply flexibility to the target antibody 
resulting in flexible binding interfaces, which can compensate for the errors caused 
by homology modeling [42].

The docking approaches depend on the 3D structures of the components. For 
antibodies, modeling methods can generate reasonably accurate structures [10, 95, 
96]. Since these methods cannot compete with the reliability of crystallography-
derived structures, the performances of docking methods are continuously evaluated 
by the Critical Assessment of Predicted Interactions (CAPRI) experiment [97, 98].

Although there are many successful cases in predicting the protein–protein 
complexes, docking of antibody–antigen complexes is still challenging [99–101] 
due to the inherent properties of their interfaces [102, 103]. As the improvement 
of predicting antibody–antigen interaction methods, we expect that the results of 
paratope prediction, epitope prediction, and antibody–antigen docking methods 
would offer a valuable, fast and economical alternative to obtain reliable informa-
tion about which to base rational antibody design decisions (Figure 1).
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3.4 In silico affinity maturation

Recent advances in computational prediction of the 3D structure of an anti-
body–antigen complex stimulated the development of in silico methods for rede-
signing antibodies to improve their biophysical properties, such as binding affinity. 
These computational methods can screen a large number of variants in a virtual 
library, in a short timeframe and a cost-effective manner, and select the one most 
optimized, based on a better understanding of antibody–antigen interactions and 
structural analysis through different algorithms.

The availability of crystal structures of antibody–antigen complexes is an 
essential factor in achieving computational antibody affinity maturation. However, 
when the crystal structures of the complexes are not available, as seen above, many 
modeling software can predict the 3D structure of the antibody–antigen complex 
[104]. When we use molecular docking for this purpose, it is possible to identify 
residues involved in intermolecular interactions and select candidate residues that 
can be mutated to improve antibody affinity [99, 102–105].

The prediction of binding affinities usually utilizes energy functions, such as 
physics-based force fields or knowledge-based statistical potentials derived from the 
structural database, to estimate changes in the free energy of an antibody–antigen 
complex with a focus on getting the global minimum energy conformation [106]. Some 
algorithms and methods identify the lowest energy function of two-body interactions 
through changes made in the amino acid sequence or the rotameric state of an amino 
acid [107, 108]. Computational tools, such as molecular dynamics, simulate the dynamic 
behavior of antibody structures, and provide alternative candidates that can be evalu-
ated by further experimental assessments [89, 109]. Also, some tools can identify 
hotspot residues on protein interfaces, for which mutation to alanine strongly attenuates 
binding, and calculate the values for the change in the binding energy of the protein 
complex upon mutation [110–112]. These platforms are useful to study the effect of a 
particular amino acid on the binding affinity of an antibody–antigen complex.

Computational affinity maturation usually focuses on residues in the CDRs. 
However, as we learned in previous sections of this chapter, some residues in the 
framework can also play a role in the binding affinity and maintain the canonical 
conformations of antibodies. Although some mutations in noninteracting regions 
resulted in improved binding affinity [113, 114], the strategies to modify the CDR 
to increase antibody affinity are highlighted. Some examples of in silico affinity 
maturation of antibodies performed comprehensive computational CDR mutagen-
esis targeting all residues in CDRs or CDR H3 [115–118]. There are also examples of 
monitoring all interactions between the 3D structure of an antibody and its cognate 
target to determine the most relevant CDR residues in the binding by considering 
their stabilizing energies, inter and intra molecules distance, bonds formation or 
breakage, and overall complex stability [119].

These techniques still present deviations from the experimental data; however, 
they demonstrate that in some scenarios, computational approaches alone can 
be used for affinity maturation, decreasing the timeframe and costs of antibody 
engineering.

4.  Analyses of mAbs’ properties (solubility, stability, aggregation, 
chemical degradation, glycosylation)

In vitro antibody affinity maturation frequently results in a destabilizing process, 
needing compensatory modifications for preserving the thermodynamic stability of 
mAbs [120]. Emerging in silico tools are significant resources to promote the balance 
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between affinity and stability during antibody engineering (Table 1). Before 
proceeding to available resources to deal with the destabilizing process, we should 
mention two types of stability in antibodies: physical and chemical. The physical 
stability of a protein is related to conformational changes and also to its colloidal 
stability. Concerning the conformational changes, we relate the free energy (ΔG) 
of the protein in its unfolded and folded-state, and the folded-state should present 
less energy than the unfolded state (Gfolded-state < Gunfolded-state) [121]. One of the in 
silico methods used to investigate folded and unfolded-state energies was mentioned 
earlier, e.g., molecular dynamics.

Among the numerous in silico tools for predicting conformational stability, 
DeepDDG [45] proved to be quite efficient compared to eight other methods 
(Table 1). DeepDGG is a machine learning method trained from 5444 experi-
mental data. This tool allows the calculation of the energy difference between the 
mutated protein and its native state. This calculation allows us to observe whether 
the proposed mutations, for example, for an improvement in affinity, cause struc-
ture destabilization. Experimentally, the conformational change of a protein it is 
accessed indirectly through its melting temperature (Tm), and it can be measured 
by different experimental techniques, such as scanning calorimetry (DSC), dif-
ferential scanning fluorometry (DSF), and circular dichroism (CD). The changes 
between folded and unfolded-state can be reversible, unlike the process known as 
aggregation, related to colloidal stability.

Although aggregation is different from solubility, the solubility of a molecule is 
usually calculated for aggregation prediction. In computational chemistry, aggrega-
tion and solubility are commonly treated as the same parameter. The aggregation 
tendency of some mAbs that could impair their efficacy might be prevented through 
aggregation-prone regions (APRs) analyses. APR assays rely on the hydrophobicity 
scales and residues’ charge annotations. Among several predictors of solubility and 
APRs for proteins, it is possible to highlight two endeavors successfully applied to 
antibodies: Wang et al. [122] combined tools to predict APRs in commercial mAbs. 
They found similar aggregation-prone motifs among commercial and non-commer-
cial antibodies, without correlation with 3D structures.

In 2011, Agrawal et al. [123] compared several aggregation prediction tools 
demonstrating their usefulness in drug discovery and development, especially 
when screening a large number of molecules by fast and low cost in silico assays. 
Recently, Raybould et al. [53] launched Therapeutic Antibody Profiler (TAP), 
a web application that compares candidates’ sequences with natural antibody 
sequences, as natural antibodies are assumed to display favorable biophysical 
properties. TAP, notably, depends on the previous data of clinical-stage antibody 
therapeutics (CST). So, the robustness of this method is directly affected by the 
input improvement of the CST database. One modern and elegant approach drove 
the development of AggreRATE-Disc [54], a machine learning-based tool that can 
predict, within the sequences, mutations that can promote or mitigate aggregation. 
Although in silico tools can highlight sequences with aggregation issues, they do not 
substitute experimental assays; however, they can be managed, reducing the totality 
of necessary tests. These tools and databases help the screening steps across the 
development/discovery of new therapeutic drugs.

Regarding the chemical stability of antibodies, it is possible to mention the 
degradation by chemical modification of amino acids, such as asparagine (Asn) 
deamidation, aspartate (Asp) isomerization, methionine (Met) oxidation, and 
lysine (Lys) glycation [124, 125]. The IgGs are commonly N-glycosylated at Asp297 
residue in each Fc-CH2 domain [126]. These Fc N-glycan are associated with correct 
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folding, stability, aggregation, immunogenicity, and serum half-life of the mAbs. 
The conformational changes at the CH2 antibody portion by multiple hydrophobic 
and polar non-covalent interactions harnesses the Fc binding to preferences of 
binding to C1q and FcɣRs [126]. There are no specific mAb glycosylation’s webt-
ools. Still, some web platforms (Table 1) designed to predict glycosylation sites on 
human protein sequences could also be useful for mAbs. The IgGs have a conserva-
tive N-glycan site; consequently, it needs attention in the engineering process that 
could accidentally create or remove a glycosylation site and interfering in the mAb 
chemical stability. In other instances, the glycosylation site is intentionally removed.

To evaluate any possible glycosylation spots, the NetNGlyc 1.0 [56] predicts 
N-glycosylation sites in human proteins using a trained neural network to distin-
guish between the acceptor and non-acceptor residue sequences. The N-GlyDE is 
a two-stage N-glycan prediction tool trained by the human proteome datasets. An 
algorithm generates a score between N-glycosylation proteins and non-N-linked 
glycoproteins in the first step. In the second stage, the prediction uses a support vec-
tor machine to evaluate if each asparagine-Xaa-serine/threonine (being Xaa differ-
ent to proline) sequence can be glycosylated [57]. Further, the GlycoSiteAlign [59] 
is a tool that aligns amino acid sequences regarding its glycosylation site using the 
GlyConnect databank. This tool can be useful to compare a high number of mAbs 
sequences derived from different clones or expression conditions.

In a linear amino acid sequence of an antibody, it is possible to find numerous 
regions prone to modification. However, one must note that many of these regions 
may be buried due to the molecule conformation. Therefore, a conformational 
study is essential to highlight the residues liable to the chemical change. Chemical 
stability is generally based on statistical analysis derived from experiments or 
databases available in the literature, although some computational methods are 
being used [124, 127–133]. Statistics-based methods depend on data from previ-
ous experiments and provide valuable information about the behavior of proteins, 
being excellent guides during the development of new antibodies.

Currently, there are tools to predict the most varied protein characteristics. 
Many of them are free for academic purposes (Table 1). A difficulty still faced 
during the development of an antibody lies in the complexity of details and how 
one parameter influences another. For example, modifications to improve binding 
affinity may interfere with the stability of the molecule or even generate/remove 
a glycosylation spot. In the same way, a structural change for stability can impair 
binding affinity. There has been an immeasurable evolution of in silico methods, 
allowing analyzes to be carried out more quickly and at a lower cost than traditional 
experimental methods.

5. Highlights

Advances in bioinformatics allow us to outline different strategies in the 
discovery of new therapeutic antibodies. There has been significant progress in 
online tools in recent years, and probably the refinement of the techniques will be 
increased, bringing more accurate and reliable results.

Online platforms can present a long wait and execution times. The use of those 
platforms requires a good internet connection, and also a robust computer for 
analysis and treatment of the generated data.

Bioinformatics is a notably promising field, and indeed, has a prominent place 
on the innovation frontier.
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