Effects of taper mismatch angle and head topography on modular hip taper contact mechanics Jonathan A. Gustafson, Robin Pourzal, Hannah J. Lundberg

Department of Orthopedic Surgery

D RUSH UNIVERSITY MEDICAL CENTER

Introduction

- Total hip arthroplasty (THA) modular junctions are increasingly implicated in adverse local tissue reactions and device failures that lead to revision surgeries¹
- Micro-motion between modular junction head and stem tapers (Fig 1A) is believed to result in fretting corrosion
- Roles of taper mismatch angle and manufactured microgrooves on head/stem taper mechanics are not clear

Results

Discussion

- Taper mismatch angle has a significant impact on modular junction contact mechanics (**Table 1**)
- Significant reduction in contact area with increasing mismatch—both positive and negative mismatches
- Reduced contact may influence long-term stability³
- Taper micro-grooves—particularly head taper—affect modular junction contact mechanics (Fig 3)

Figure 1: A) Modular total hip replacement; B) Taper mismatch angle leading to proximal (left) or distal (right) contact.

Objective

A

Employ a novel, micro-grooved finite element hip implant model to determine the effect of taper mismatch angle and head taper finish on modular junction mechanics

Methods

• **FE hip joint model:** 2D axisymmetric stem-head modular junction (Fig 2) in Abaqus Standard v6.17 Head taper micro-grooves lead to high contact pressures regardless of mismatch angle

- Plastic deformation only seen in head tapers with micro-grooves; supported by retrieved implants⁴
- Current modeling methods should consider the head and stem taper micro-grooves in future studies

Table 1. Modular junction contact characterization due to taper mismatch angle and head taper surface finish **Taper Mismatch Angle**

		No Mismatch	Large Mismatch
oer Finish	Flat	Greatest contact area	 Decreased contact
		 Lowest stress 	 Increasing stress
		 Broad contact region 	 Reduced engagement
		 No plastic deformation 	 Minimal plasticity
Tap		 Moderate contact 	 Lowest contact area
Head	Rough	 High contact stress 	 High contact stress
		 Maximal engagement 	 Minimal engagement
		 Greatest number of 	 High plastic deformation
		grooves under plasticity	• Low # groover deferming

- > Stem: Ti6Al4V (E=119GPa| E_{vield} =795MPa| v=0.30) Head: CoCrMo (E=210GPa $|\dot{E}_{vield}$ =827MPa $|v=0.30)^2$
- Taper mismatch angle: Mismatch modeled based on median stem and head taper angles³ (**Fig 1B**)
- \succ Mismatch: 0 (no mismatch); ±3' (0.05°); ±12' (0.2°)
- **Taper micro-grooves:** Micro-groove height and spacing measured from tapers³ and modeled as sinusoidal wave
- > Stem: height = 11μ m; spacing = 200μ m
- \succ Head: 1) "ideal" flat; 2) height = 2µm, spacing = 25µm

Head taper micro-grooves change modular junction contact mechanics

Figure 3. Von Mises stress after assembly of a micro-grooved head taper (Left) and "idealized" flat head taper (Right)

(%)

60

mic

Ste

Head taper micro-grooves increase number of

grooves under plasticity Low # grooves deforming

- Which combination of taper mismatch and surface finish improves long-term modular junction stability?
 - > Conflicting evidence whether "smoother" or "rougher" surfaces lead to improved implant life³⁻⁵
 - Micro-grooves provide more "forgiving" mechanism with increasing taper mismatch angles
- Future studies will conduct large-scale parametric analysis to identify most important parameters

Significance

A novel, micro-grooved finite element hip implant model identified unique contact mechanics at the modular junction due to taper mismatch angle and head taper surface finish. Realistic head taper surfaces are necessary to simulate damage patterns seen in-vivo.

Acknowledgements

Figure 2: Left: 2D, axisymmetric model under 4kN assembly load; Right: Micro-grooves of head and stem tapers undergoing contact

Simulation & outcome parameters: Ten simulations (5 mismatch angles x 2 head taper surface types)

 \succ Contact mechanics assessed via contact area, pressure, plastic deformation, and percentage of micro-grooves undergoing plasticity

Funding from NIH/NIAMS grants R03 AR066829 and R01 AR070181 is greatly appreciated

References

[1] Hussey and McGrory, J Arthroplasty, 2017

[2] Lundberg et al., ASTM STP 1591, 2016 p59-82

[3] Pourzal et al., CORR, 2016

[4] Arnholt et al., ASTM STP 159, 2016 p99-112 [5] Hall et al., J Biomed Mater Res B Appl Biomater, 2018