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Abstract

Introduction

Yellow fever continues to be a problem in sub-Saharan Africa with repeated epidemics

occurring. The mosquito Aedes bromeliae is a major vector of yellow fever, but it cannot be

readily differentiated from its non-vector zoophilic sister species Ae. lilii using morphological

characters. Genetic differences have been reported between anthropophilic Ae. bromeliae

and zoophilic Ae. lilii and between forest and domestic populations. However, due to the

application of different molecular markers and non-overlapping populations employed in

previous studies, interpretation of species delimitation is unclear.

Methodology/Principle Findings

DNA sequences were generated from specimens of Ae. simpsoni s.l. from the Republic of

Benin, Tanzania and Uganda for two nuclear genes apolipophorin 2 (apoLp2) and cyto-

chrome p450 (CYPJ92), the ribosomal internal transcribed spacer region (ITS) and the mito-

chondrial cytochrome c oxidase (COI) barcoding region. Nuclear genes apoLp2 and

CYPJ92 were unable to differentiate between species Ae. bromeliae and Ae. lilii due to

ancestral lineage sorting, while ITS sequence data provided clear topological separation on

a phylogeny. The standard COI barcoding region was shown to be subject to species intro-

gression and unable to clearly distinguish the two taxa. Here we present a reliable direct

PCR-based method for differentiation of the vector species Ae. bromeliae from its
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isomorphic, sympatric and non-biomedically important sister taxon, Ae. lilii, based on the

ITS region. Using molecular species verification, we describe novel immature habitats for

Ae. lilii and report both sympatric and allopatric populations. Whereas only Ae. lilii is found

in the Republic of Benin and only Ae. bromeliae in Tanzania, both species are sympatric in

Uganda.

Conclusions/Significance

Our accurate identification method will allow informed distribution and detailed ecological

studies that will facilitate assessment of arboviral disease risk and development of future

targeted vector control.

Author Summary

In Africa, epidemic outbreaks of yellow fever continue despite the availability of an effec-

tive vaccine. Effective understanding of disease epidemiology and control requires the abil-

ity to reliably identify vectors of yellow fever. The mosquito Ae. bromeliae, a competent

vector of yellow fever virus, cannot be reliably morphologically differentiated from its sis-

ter species Ae. lilii, which does not bite humans and so does not transmit yellow fever.

DNA sequencing of four molecular markers allowed comparisons of how they perform at

distinguishing these species. We found that the mitochondrial cytochrome c oxidase

(COI) barcoding region and nuclear apolipophorin 2 (apoLp2) and cytochrome p450

(CYPJ92) were unable to reliably distinguish these species. Conversely, genetic variation at

the internal transcribed spacer region (ITS) was able to confirm the vector Ae. bromeliae

and non-vector Ae. lilii as distinct species. Based on ITS sequence differences, we devel-

oped a robust molecular method to identify the vector Ae. bromeliae from its sister species

Ae. lilii. Consequently, we find that these species use the same larval habitats including

banana, cocoyam and Dracena spp. in Uganda. Whereas only Ae. lilii appears to be present

in Benin and only Ae. bromeliae in Tanzania, we confirm that both species occur in

Uganda. Reliable species designation will promote more detailed studies of distribution,

ecology and vector status essential for disease risk assessment and mosquito control.

Introduction

Correctly identifying the vector species involved in mosquito-borne disease transmission is

fundamental to predicting disease outbreaks, ascertaining general risk to the human population

and targeting control efforts. Despite this necessity, the reliable identification of mosquitoes is

problematic in many cases, including the medically important Aedes simpsoni complex. This

complex comprises three known species including Ae. simpsoni, Ae. lilii and Ae. bromeliae.

Among these three species, Ae. bromeliae is an important vector of yellow fever virus (YFV)

and potentially other arboviruses [1]. Yellow fever has increased in incidence as a result of

urbanisation and changes to public health policy [2, 3]. The burden of yellow fever in Africa is

estimated to be 130,000 cases a year, 85,000 of which result in deaths, despite the availability of

a vaccine [4]. After mass immunisation campaigns at the beginning of the 20th Century, YFV

was successfully reduced in targeted countries. However, YFV outbreaks are causing renewed

attention. In West Africa, 13 out of 14 countries known to host YFV now report cases regularly
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and have experienced epidemics since 2000 [5, 6]. Further concern has arisen over identifica-

tion of a novel YFV genotype implicated in recent outbreaks including the first reported out-

break in Kenya, East Africa (1992–1993) [7]. Related genotypes have also been reported in

Sudan in 2003 and 2005 and more recently in northern Uganda in 2010 [8–10]. Although

much attention has been given to understanding yellow fever disease epidemiology [11], rela-

tively little is known about the mosquito vectors.

Ten species are currently known within the wider Simpsoni Group (Huang 2004). Within

this group, Theobald [12–14] originally described three species belonging to the Simpsoni

Complex (Ae. simpsoni, Ae. bromeliae and Ae. lilii). Despite these separate species designations,

many entomologists referred to all simpsoni-like mosquitoes within this complex as the nomi-

notypical species, Ae. simpsoni [15–21]. In Uganda, it was found that some populations of Ae.

simpsoni s.l. were anthropophilic and attracted to human bait, whereas others were not

attracted to man despite local abundance [20]. Furthermore, mosquitoes collected from zoo-

philic and anthropophilic populations showed different feeding preferences in the laboratory

with a preference for rodents or humans, respectively [20]. These findings led to a re-examina-

tion of mosquito morphology and subsequently Huang [22, 23] provided a full description of

the component members of the Simpsoni Complex, reviewed their ecology and drew attention

to the incorrect use of former nomenclature. Aedes simpsoni, which has only been reported

from South Africa and Swaziland, is not implicated in human disease transmission [22, 23].

The anthropophilic yellow fever vector Ae. bromeliae is widespread on the African continent

[23]. In contrast, Ae. lilii, only previously reported from Sudan, Ethiopia and Uganda, has

never been reported biting man and is thus not considered to be involved in disease transmis-

sion [22, 23]. Although we know these three species have different distributions, biting behav-

iour and vectorial abilities, these need to be fully characterised. Understanding ecology and

epidemiology requires that species can be distinguished from one another. However, contro-

versy over mosquito taxonomy means that the anthropophilic disease transmitting Ae. brome-

liae cannot be reliably distinguished from its zoophilic sister species Ae. lilii [24, 25].

Large scale detailed studies of the Simpsoni Complex by Huang [22, 23, 26], reported that

Ae. simpsoni s.s. can be distinguished from Ae. bromeliae and Ae. lilii in that it has simple claws

on the mid tarsi, as opposed to toothed mid-tarsal claws present in the latter two taxa. Aedes

simpsoni can also be easily distinguished from conspecifics by its distinct tarsomere scaling pat-

tern [22, 25]. However, Jupp & Kemp [24] reported variation in tarsal claw morphology of Ae.

simpsoni and Ae. bromeliae, and questioned the reliability of this diagnostic character. In this

study, we focus on the more widespread taxa of the complex, Ae. bromeliae and Ae. lilii. These

sister taxa can sometimes be reliably identified morphologically based on tarsomere banding

patterns, but only when this character is exhibited at the extremes of its range as banding pat-

terns overlap between the species [25]. Lutwama &Mukwaya [25] questioned the usefulness of

tarsomere banding patterns as a diagnostic character for Ae. bromeliae and Ae. lilii. They

observed variation in scale ornamentation on an almost continuous scale and found that prog-

eny from the same mother could be identified both as Ae. bromeliae or Ae. lilii based on this

morphological character.

The unreliability and practicality of using morphological based methods for routine field-

based identification in the Simpsoni Complex has led to attempts to delimit species boundaries

through molecular methods. In a study of the Simpsoni Complex, excluding the southerly dis-

tributed Ae. simpsoni, Mukwaya et al. [27] found that anthropophilic populations from Kenya

and Uganda form a distinct genetic clade separate from non-sympatric and non-anthropophi-

lic populations from Uganda and Nigeria based on the non-coding internal transcribed spacer

(ITS) region of ribosomal DNA. In that study, species were designated according to both blood

feeding preference (because Ae. lilii is zoophilic whereas Ae. bromeliae are human vectors) and
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on tarsomere banding patterns which were distinctive for some specimens [22, 23, 27].

Recently, Walter et al. [28] inferred the presence of Ae. bromeliae and Ae. lilii in sympatry in

Rabai, Kenya based upon genetic differences between domestic/peri-domestic and forest popu-

lations. However, how these putative species relate to those characterised by Mukwaya et al.

[27] remains unclear as they used different molecular markers; two nuclear genes, apolipo-

phorin 2 and cytochrome p450 (CYPJ92).

A 658 bp region of the cytochrome c oxidase (COI) gene has been widely adopted as a DNA

barcoding standard for species identification because it shows high utility in discriminating

between closely related taxa as well as resolving phylogeographic groups within species [29–

31]. However, sole use of mitochondrial DNA to delimit species has been questioned because

of the potential for pseudogene development and introgression, which may limit the ability of

mtDNA markers to resolve closely related species [32, 33]. Combined analysis of both mito-

chondrial and nuclear genes can improve phylogenetic resolution since these markers evolve at

different rates and so target different levels of the phylogenetic tree [34]. Another barcoding

candidate is the nuclear internal transcribed spacer (ITS) regions of the ribosomal gene cistron

that comprises the 18S, 5.8S, and 28S genes, an external spacer region and two internal spacer

regions ITS1 and ITS2 [35]. The ITS regions evolve at a rapid rate in the absence of functional

constraint [36, 37]. Because they are tandemly repeated in the genome, the ITS spacer regions

are also subject to concerted evolution whereby paralogues are homogenised by genetic

exchange [36, 37]. Consequently, paralogues remain genetically similar within species while

showing high levels of interspecific divergence [37]. Although not useful in all taxonomic

groups, ITS can differentiate between sister species in a large number of cases and has been

widely used to delimit closely related mosquitoes in Anopheles complexes [35, 38–42].

We seek to expand previous work on genetic differentiation of Ae. bromeliae and Ae. lilii in

the Simpsoni Complex by determining how the putative species identified by Mukwaya et al.

[27] and Walter et al. [28] relate to one another. We achieve this by sequencing the same mos-

quito samples at previously used molecular markers (apoLp2, CYPJ92 and ITS). In addition, we

were able to evaluate the utility of various molecular markers, including the ITS and COI

regions, in determining species bounds. We apply these findings to develop a molecular identi-

fication method based on variation in the ITS region to distinguish the disease vector Ae. bro-

meliae from its non-vector sister species Ae. lilii. Applying this method to mosquitoes from

Benin, Uganda and Tanzania enabled us to generate reliable findings of their ecology and

distribution.

Methods

Sample collection

Mosquitoes of the Simpsoni Complex were collected as larvae from natural breeding sites in

Tanzania (n = 36), Uganda (n = 50) and the Republic of Benin (n = 24) from locations detailed

in Fig 1 and S1 Table from 2009 to 2014. Immature habitats sampled included the leaf axils of

Musa spp. (banana), Colocasia spp. (cocoyam/taro), Dracaena spp. and in tree holes. To avoid

biasing the dataset with siblings, each discrete habitat was treated as a separate collection and

only one individual per collection was taken for genetic analyses. Where possible, immatures

were reared though to adults; otherwise, larvae destined for DNA analysis were stored in 95%

ethanol. Adults were desiccated with silica for optimal DNA preservation and either stored in

BEEM capsules or pinned. Larvae were preserved in ethanol for later extraction of DNA. All

adult mosquitoes were identified as belonging to the Simpsoni Complex using the morphologi-

cal identification key in Huang [26], and a subsample of these, and outgroup taxa including Ae.

aegypti and Ae. aegypti formosus, were morphologically verified by Dr. Yiau-Min Huang.
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Experimental procedures

DNA was extracted from whole larvae or a single leg of an adult mosquito using the modified

phenol-chloroform method in Surendran et al. [44]. Forty individuals of the Simpsoni

Complex were amplified and sequenced for a region of the mitochondrial COI gene with uni-

versal primers LCO1490 (5’GGTCAACAAATCATAAAGATATTGG’3) and HCO2198

(5’TAAACTTCAGGGTGACCAAAAAATCA’3) [45] using a protocol recommended by the

Consortium for the Barcode of Life (http://barcoding.si.edu/dnabarcoding.htm). Peridomestic

Aedes aegypti collected from an artificial container in Tanzania was also sequenced at COI as

an outgroup.

Internal transcribed spacer regions 1 and 2 were amplified from six individuals from

Uganda and three individuals from Tanzania that were selected to represent the genetic

Fig 1. Map of sampling points for Ae. bromeliae (red circles) and Ae. lilii (blue circles) used in the current study including samples fromMukwaya
et al. [27] and Le Goff et al. [43]. Also mapped are the previously described sampling points for Ae. bromeliae (red triangles), Ae. lilii (blue triangles) and Ae.
simpsoni s.s (green triangles) based on morphological identification, taken from Huang [23]. The map was created in QGIS (QGIS Development Team) made
with Natural Earth.

doi:10.1371/journal.pntd.0004250.g001
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diversity we observed at the COI gene. This was achieved with the 18SFHIN and CP16 primers

(5’-GTAAGCTTCCTTTGTACACACCGCCCGT-3’ and 5’-GCGGGTACCATGCTTAAATT

TAGGGGGTA-3’, respectively) [46], as used by Mukwaya et al. [27]. To generate PCR prod-

ucts, 1 unit of high fidelity MyFi DNA Polymerase (Bioline, UK), 2X MyFi Reaction Buffer,

0.8 μM forward and reverse primer and 1–10 ng of template DNA were used under the follow-

ing conditions at 30% ramp speed; 95°C for 3 min followed by 30 cycles of 95°C for 30 sec,

58°C for 45 sec and 72°C for 45 sec with no final extension.

Thirteen Individuals, including eight of the same individuals sequenced at the ITS region,

were also sequenced for regions of the nuclear genes apolipophorin 2 (apoLp2) and cytochrome

p450 (CYPJ92) first described by Brown et al. [47] and used by Walter et al. [28] in the Simp-

soni Complex. This included verified Aedes aegypti formosus collected from a tree hole in Tan-

zania, for use as an outgroup as was the case in Walter et al. [28]. Another marker, short-chain

dehydrogenase-reductase (SDR) also used by Walter et al. [28] in the Simpsoni Complex was

not used because it produced multiple nonspecific bands on amplification. PCR products were

generated as in Walter et al. [28]. PCR products were purified with the GenElute PCR clean up

kit (Sigma-Aldrich, UK) and Sanger sequenced in forward and reverse directions using the

amplification primers. Sequences were generated with BigDye Terminator v3.1 cycle sequenc-

ing kit (Applied BioSystems, UK) on an Applied BioSystems 3730 automated sequencer.

ITS products were cloned using the P-GEM cloning kit (Promega, UK) as per instructions.

Transformants were blue/white screened and colonies with inserts stored in TE buffer for PCR

amplification. Universal M13 primers (5’-TGTAAAACGACGGCCAGT-3’ and 5’-CAGGAA

ACAGCTATGAC-3’) [48] were used to amplify cloned ITS products in the following 13μl

reaction; 1.25 units of BIOTAQ DNA Polymerase (BioLine, UK), 1 X NH4 Reaction Buffer,

2mMMgCl2 solution, 0.8mM dNTP and 0.5 μM forward and reverse primer. Thermocycler

conditions were 95°C for 2 min followed by 95°C for 15 sec, 60°C for 30 sec and 72°C for 30 sec

for 35 cycles and a final extension of 72°C for 10 min. A minimum of two and a maximum of

four clones were forward sequenced for each individual.

Cloned ITS sequences were aligned with Mukwaya et al.’s [27] from several locations in

Africa (S1 Table) and Le Goff et al.’s [43] sequence data from two Ae. bromeliae originating

from the Indian Ocean island of Mayotte available from GenBank (KF135509-10) using the

program Geneious v5.4.7 [49]. Primers were designed based on this alignment to discriminate

between species. Several putative species-specific primers were trialled under a wide range of

PCR conditions. However, the only primers that worked effectively generated species-specific

PCR products that differed by ~30 b.p. Due to this small size difference we recommend that

the primer pairs specific for each species are run in separate PCR reactions. Non-specific band-

ing was a feature of all primers tested which we suspect may result from variable indel length

among ITS copies within an individual. Although PCR protocols were optimised to reduce

non-specific banding, some extra banding can be visible but does not obscure amplification/

non-amplification of the species-specific PCR product.

The developed primers are nested within the ITS1-2 region; therefore PCR products encom-

passing this region were first generated with the 18SFHIN and CP16 primers as described

above. These PCR products were purified with the GenElute PCR clean up kit (Sigma, UK) and

0.5 μl was used as template in a 25 μl reaction with 0.6 units of Go Taq Hot Start polymerase

(Promega, UK), 1 X NH4 reaction buffer, 1 mMMgCl2 solution, 0.8 mM dNTP and 0.5 μM

forward and reverse primer. Primers developed for amplification of 591 bp in Ae. bromeliae

only were BRO-F (5’-CCTGGCCAGTGGCCA-3’) and BRO-R (5’-GTGCACACCACTGA-3’).

Amplification was achieved with a touchdown PCR protocol; initialisation step of 95°C for 3

minutes followed by 95°C for 30 seconds, 82°C for 45 seconds and 72°C for 1 minute for 5

cycles, followed by 30 cycles of 95°C for 30 seconds, 64°C for 45 seconds and 72°C for 1 minute
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and then a final extension of 72°C for 7 minutes. Primers developed for amplification of a 620

bp region in Ae. lilii only were LIL-F (5’CTGATGCACTGGCCTCAAAG’3) and LIL-R

(5’TCAACCGCCGTGCGTG’3). The thermocycling conditions were 95°C for 3 minutes fol-

lowed by 95°C for 30 seconds, 78°C for 45 seconds, 72°C for 1 minute for 10 cycles followed by

95°C for 30 seconds, 70°C for 45 seconds, 72°C for 1 minute for 20 cycles and a final extension

step at 72°C for 7 minutes. Amplified products were run on a 1.2% agarose electrophoresis gel

to determine the presence or absence of DNA bands of the expected size. Positive and negative

species controls were used in all PCR reactions. Sequences are available on GenBank

(KT998333- KT998452).

Data analysis

Sequence alignment was achieved with Geneious v5.4.7 [49]. For the apoLp2 and CYPJ92 data-

sets, files were prepared using seqPHASE [50] and PHASE v2.1 was then used to infer haplo-

types [51]. The haplotypes of Ae. aegypti formosus outgroups were determined through

alignment with the relevant datasets for Ae. aegypti in Brown et al. [47] and using the program

PHASE. Sequences for two Ae. aegypti from Brown et al. [47] were used as outgroups in con-

junction with data generated during the present study. The COI dataset was aligned with two

COI sequences of Ae. bromeliae from the Indian Ocean island of Mayotte available from Gen-

Bank (KF135496-97) [43].

Neighbour joining (NJ) trees were constructed in MEGA 6 [52]as in Mukwaya et al.[27]

andWalter et al. [28] using the best available substitution model as chosen by JModelTest [53,

54]. The Tamura-Nei model with uniform rates among sites was used to construct NJ trees for

COI. The Kimura 2 parameter model (K80) with uniform rates among sites was used for ITS

sequences and K80 with 0.8 gamma-distributed sites was used to construct trees for apoLp2

and CYPJ92. For all genetic markers, missing data including indels were excluded from analy-

sis. Topological support was determined through 1000 bootstrap replications. The ITS

sequence tree was constructed without an outgroup because the high level of divergence

between the outgroup and the ingroups presents a challenge for sequence alignment. The two

ITS sequences of Ae. bromeliae from Mayotte [43] were not included in the NJ tree because

they did not overlap with the sequences generated here.

A hierarchical AMOVA was performed on the ITS sequence data generated in this study

together with Mukwaya et al.’s sequences [27] (n = 69) in Arlequin v3.5 [55]. A hierarchical

AMOVA was also performed on the apoLp2 (n = 13) and CYPJ92 (n = 13) sequences generated

in this study.

Results

Phylogenetic analysis

Four fixed point substitutions and eight indels of varying length were observed between species

in the first 300 bp of the ITS sequence alignment. The neighbour joining tree of ITS sequences

revealed two major clades with a bootstrap support of 98% (Fig 2). As reported previously, the

46 sequences from Mukwaya et al. [27] clustered into one or other of the two clades depending

on their inferred host feeding preference and which they accordingly designated as Ae. brome-

liae (anthropophilic) and Ae. lilii (non-anthropophilic). Sequences of all nine Simpsoni Com-

plex individuals from this study also belonged to one or other of these clades, and we therefore

identified them as Ae. bromeliae or Ae. lilii with reference to Mukwaya et al.’s [27] ITS-based

species designation.

Mosquitoes collected from Kanyawara, Bundibugyo (Bwamba region) and Najjembe in

Uganda represented both ITS clades. In comparison, individuals collected from Tanzania

Molecular Differentiation of Ae. bromeliae from Ae. lilii
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Fig 2. Neighbour joining tree of ITS sequence data with labels coloured according to species designation based on ITS as in Mukwaya et al. [27].
Red labels represent Ae. bromeliae while blue labels are Ae. lilii. Sequences fromMukwaya et al. [27] (+) are annotated. Bootstrap support values above
55% are shown.

doi:10.1371/journal.pntd.0004250.g002
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strictly aggregated into the ITS lineage of Ae. bromeliae. AMOVA revealed that almost all

sequence differences can be explained by variation between species (92.65%), while there is lit-

tle variation between populations within groups and within populations (0.25% and 7.19%,

respectively).

Sequencing of individuals at both ITS and nuclear genes apoLp2 and CYPJ92 allowed us to

compare the ITS-based species designation of Mukwaya et al. [27] with that of Walter et al.

[28]. Two well-supported lineages were observed in NJ trees for the nuclear genes apoLp2 and

CYPJ92 with 100% bootstrap support (Figs 3 and 4). Individuals confirmed as Ae. bromeliae or

Ae. lilii using the ITS region with reference to Mukwaya et al. [27], all fall into a single clade for

each of the nuclear genes, apoLp2 and CYPJ92. For both gene trees, the other lineage comprises

only the sequences from the forest species in Walter et al. [28] that they referred to as Ae. lilii.

A hierarchical AMOVA revealed that nuclear genes apoLp2 and CYPJ92 could not effectively

distinguish between Ae. bromeliae and Ae. lilii with only 0.86% and 18.94% of genetic variance

between species groups, respectively. Conversely, there was relatively high genetic variation

among populations within species groups (37.04%, 10.28%, respectively) and within popula-

tions (62.10%, 70.79%, respectively).

There are two phylogenetic clusters with high bootstrap support (90%, 90%) and two with

weak bootstrap support (56% and 43%) in the NJ tree for mitochondrial COI with individuals

tending to cluster according to geographic origin (Fig 5). The sequences fromMayotte cluster

with Ae. bromeliae from Tanzania. Individuals designated as Ae. bromeliae or Ae. lilii according

to ITS sequence variation tend to group according to species within the same clades, but there

are three exceptions. One individual from Uganda, exhibiting the ITS sequence of Ae. brome-

liae clusters within a grouping of Ae. lilii while two individuals from Uganda and Benin, identi-

fied as Ae. lilii, cluster within a grouping that is otherwise comprised of Ae. bromeliae. A

hierarchical AMOVA showed there is more genetic variation within (42.83%) and between

populations (55.18%) than between species (1.99%) at the COI gene.

Species identification and geographical distribution

Based on fixed differences between species in the ITS sequences, species specific primers were

designed to amplify PCR products in Ae. bromeliae or Ae. lilii. Primers designed to amplify in

Ae. bromeliae did not amplify a PCR product from Ae. lilii and vice versa (Fig 6). Application

of this method to 110 specimens of Ae. simpsoni s.l. positively identified all individuals as either

Ae. bromeliae or Ae. lilii, as detailed in Table 1. Both species use the same breeding habitats in

domestic and peridomestic habitats including the leaf axils ofMusa spp., Colocasia spp. and

Dracena spp. Despite focussed collection attempts, neither species was found utilising tree

holes for immature development. Both species occur in sympatry in Uganda, while only Ae.

lilii was collected from the Republic of Benin and Ae. bromeliae was the only species detected

in Tanzania (Fig 1).

Discussion

Here we used multiple markers to confirm there are two closely related species of the Simpsoni

Complex that occur both allopatrically and sympatrically across the sampled range in sub-

Saharan Africa. These species correspond to Ae. bromeliae and Ae. lilii of the Simpsoni Com-

plex as characterised by Mukwaya et al. [22, 27]. We infer that a third forest taxon originally

reported as Ae. lilii in Walter et al. [28] relates to another species, possibly a another member

of the Simpsoni Group. The development of a molecular species identification method for the

YFV vector Ae. bromeliae and non-vector Ae. lilii using variation at the ITS region allowed us

Molecular Differentiation of Ae. bromeliae from Ae. lilii
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Fig 3. Neighbour joining tree of apoLp2 sequence data with labels coloured according to ITS-based species designation.Red labels represent Ae.
bromeliaewhile blue labels are Ae. lilii. Sequences fromWalter et al. [28] (*) and Ae. aegypti outgroups (~) from Brown et al. [47] are annotated. Bootstrap
support values for branches above 55% are shown.

doi:10.1371/journal.pntd.0004250.g003
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Fig 4. Neighbour joining tree of CYPJ92 sequence data with labels coloured according to ITS-based species designation.Red labels represent Ae.
bromeliaewhile blue labels are Ae. lilii. Sequences fromWalter et al. [28] (*) and Ae. aegypti outgroups (~) from Brown et al. [47] are annotated. Bootstrap
support values for branches above 55% are shown.

doi:10.1371/journal.pntd.0004250.g004
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Fig 5. Neighbour joining tree of COI sequence data with labels coloured according to ITS-based species designation.Red labels represent Ae.
bromeliaewhile blue labels are Ae. lilii. Sequences from Le Goff et al. [43] (^) are annotated. Bootstrap support values for branches above 55% are shown.

doi:10.1371/journal.pntd.0004250.g005
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to make for the first time reliable inferences about mosquito ecology and distribution. Such

information is vital for a complete understanding of disease transmission by these species.

All the Ae. simpsoni s.l. mosquitoes tested fell into one or other of two genetically divergent

ITS lineages. Based on sequence similarity these correspond directly to the two lineages found

by Mukwaya et al. [27] and we follow their previous designation as Ae. bromeliae and Ae. lilii.

We consider their species designation to be reliable as it was based on both morphology and

feeding preference. Firstly, even though some individuals could not be identified due to overlap

in morphological characters, Mukwaya et al. [27] were able to identify some individual speci-

mens from the defining characters of leg tarsomere banding pattern and claw morphology

described by Huang [22, 23]. Secondly, Mukwaya et al. [27] identified species based upon host

Fig 6. Electrophoresis gel for primer sets (A) BRO-F and BRO-R and (B) LIL-F and LIL-R. PCR products were run with Hyperladder IV (HyIV) and a
negative control (NgC).

doi:10.1371/journal.pntd.0004250.g006

Table 1. The number of individuals (n = 110) identified from sampled locations using our PCRmediated identification method.

Country Village/town Ae. bromeliae Ae. lilli

Tanzania Mlimba 5 0

Udagaji village 19 0

Chita 1 0

Mahenge 10 0

Morningside 1 0

Total 36 0

Benin Pobe 0 14

Niaouili Village 0 10

Total 0 24

Uganda Kanyawara 1 14

Bundibugyo 14 6

Kapchorwa 0 4

Najjembe 5 6

Total 20 30

doi:10.1371/journal.pntd.0004250.t001
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feeding behaviour; human landing catches were used to distinguish anthropophilic Ae. brome-

liae from non-anthropophilic Ae. lilii which were collected as larvae where human biting mem-

bers of the Simpsoni Complex were absent. We confirm the existence of Ae. bromeliae and Ae.

lilii as two distinct species since, using ITS sequence variation, they remain genetically distinct

in sympatry at several locations in Uganda.

Our study enabled us to link the work of Mukwaya et al. [27] with that of Walter et al. [28].

Whereas Muwakya et al. [27] focused on feeding behaviour, Walter et al. [28] found divergence

between forest and peridomestic populations in coastal Kenya at three nuclear genes. Our phy-

logenetic analysis reveals that the genetic variation in the ITS region does not correspond to

the two distinct lineages found in Walter et al. [28]. Both Ae. bromeliae and Ae. lilii fall into a

single phylogenetic clade at nuclear genes apoLp2 (apolipophorin 2) and CYPJ92 (cytochrome

p450). This is consistent with these more slowly evolving nuclear genes being unable to resolve

recently diverged species due to incomplete lineage sorting [56]. The forest lineage from Kenya

detected by nuclear genes apoLp2 and CYPJ92 is clearly distinct and has no shared ancestral

polymorphism with either Ae. bromeliae or Ae. lilii indicating a more distant relationship.

Morphological identification of mosquito species is notoriously difficult and there are many

species within the wider Simpsoni Group which share morphological characteristics [26]. We

therefore suggest that the forest species reported by Walter et al. [28] represents a member of

the wider Simpsoni Group, rather than the Simpsoni Complex. Possible candidates for this spe-

cies that are morphologically similar and known from Kenya include Ae. gandaensis, Ae.

woodi, Ae. subargenteus and Ae. sampi [26].

The mitochondrial COI species barcode marker was also unable to distinguish these taxa

with most genetic variation occurring between geographic populations rather than between

species. Whilst this inability of COI to distinguish Ae. bromeliae and Ae. lilii could be due to

incomplete lineage sorting, the phylogeny suggests it is most likely due to mtDNA introgres-

sion; there are three cases in which Ae. bromeliae clusters with Ae. lilii or vice versa, two of

which occur in sympatry in Uganda. Mitochondrial introgression is fairly common between

closely related mosquito taxa [33]. Given this, and that Aedinemosquitoes may be particularly

prone to NUMT’s due to their large genome size [57] it would seem wise to not rely on mito-

chondrial markers to distinguish species in this genus without prior confirmation from an

additional marker. We found that the ITS region was the only marker able to reliably separate

species of the Simpsoni Complex and therefore used it to develop a PCR mediated species iden-

tification method. This method is widely applicable across the range of Ae. bromeliae and Ae.

lilii except in southern Africa. For use in this region, the method should be modified to accom-

modate the presence of Ae. simpsoni s.s. Our PCR mediated species diagnostic method removes

the difficulties imposed by morphological identification of field specimens and therefore pro-

vides a valuable asset to medical entomologists studying arbovirus transmission.

Our identification tool in conjunction with larval sampling from natural habitats has provided

further information on the ecology of the Simpsoni Complex. Contrary to the wide range of plant

species utilised by Ae. bromeliae as breeding habitats, the immatures of Ae. lilii have only been

reported to date from the axils of Sansevieria spp., suggesting a narrower range of immature habi-

tats [22, 23]. However, we found that Ae. lilii, like Ae. bromeliae, utilised the plant axils ofMusa

spp., Colocasia spp. and Dracena spp., suggesting that larval breeding sites are not as restricted as

previously reported [22, 23]. Walter et al. [28] hypothesised that selective pressure for use of

domestic larval habitats may have driven speciation in the Simpsoni Complex. This is not sup-

ported by our findings that showed no obvious differences in larval habitat between species,

although our characterisation of larval habitats was not exhaustive. As host choice appears to be

an ecological difference between these species, it is possible that divergent selection for anthro-

pophily, and the reliable blood source it provides, could have driven species divergence [28, 58].

Molecular Differentiation of Ae. bromeliae from Ae. lilii

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004250 December 7, 2015 14 / 19



We have shown here that Ae. bromeliae and Ae. lilii are common in Uganda where they

can be found in sympatry in peridomestic habitats. Ae. lilii was the only member of the Simp-

soni Complex collected from the Republic of Benin where it is described for the first time,

while only Ae. bromeliae was collected in Tanzania. In addition, Mukwaya et al.’s [27]

sequence data shows that mosquitoes from Nigeria are Ae. lilii whereas those from Kenya are

Ae. bromeliae. Molecular evidence therefore agrees with the earlier morphological data of

Huang [22, 23] that Ae. bromeliae is prevalent in East Africa (Tanzania, Kenya, Uganda,

Mayotte; Fig 1). This morphological data also indicates a wider distribution across sub-Saha-

ran Africa for Ae. bromeliae (Fig 1) [22, 23], but it would be wise to confirm this using molec-

ular identification. However, given that Ae. bromeliae tends to be readily collected when it is

present, the molecular data suggest that only Ae. lilii is present in West Africa (Fig 1). This

difference would be consistent with the early reports that West African populations are pre-

dominantly non-anthropophilic [59]. Based on our preliminary distribution data, Ae. brome-

liaemay be an important vector of yellow fever in East Africa where YFV has been isolated

from the Simpsoni Complex previously and implemented in disease epidemics including the

Ethiopian outbreak of 1960–61 [59–61]. In comparison, other mosquito vectors including

Ae. aegypti, Ae. luteocephalus, Ae. furcifer and Ae. taylorimay be more important for YFV

disease transmission in West Africa where yellow fever has been isolated from these vectors

and implicated in outbreaks [59, 62–65].

Emerging/re-emerging arboviruses such as Chikungunya and Zika are causing great con-

cern since they are increasingly responsible for catastrophic epidemics worldwide [66–72].

Members of the Simpsoni Group transmit a range of arboviruses including yellow fever,

Babanki and Ngari viruses [1]. A limited number of arboviral studies have focused on disease

transmission in this species group, progress of which is hampered by incomplete taxonomic

understanding. There is therefore a great need to resolve the molecular systematics of the wider

Simpsoni Group that should in turn be used to develop methods of species identification. In

addition to studies of arboviral risk, assessment of mosquito species ranges is required in order

to relate these to differences in the distribution of arboviruses and/or arboviral genotypes such

as that observed for yellow fever [59]. Improved identification methods would also facilitate

studies on feeding behaviour and genetic introgression which are important for understanding

the risks of zoonotic disease emergence. For example, the introgression we observed between

Ae. lilii and Ae. bromeliae could increase the propensity of Ae. lilii to feed on humans, resulting

in the increased transfer of zoonotic disease into humans. A precedent for this can be seen in

Culex pipiens in North America where mixing of the molestus and pipiens genetic forms (pre-

dominantly human and bird feeding, respectively) increases transmission of West Nile virus to

humans. A wide range of inferences on ecology and epidemiology can now be made with our

molecular identification tool that should be used to assess disease risk and provide basic infor-

mation for vector population control.
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