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Abstract

In this chapter, adaptive gain robust control strategies for uncertain dynamical sys-
tems are presented. Firstly, synthesis of centralized adaptive gain robust controllers
for a class of uncertain linear systems is shown. The design problem of the centralized
controller is reduced to the constrained convex optimization problem, and allowable
perturbation regions of unknown parameters are discussed. Next, the result for the
centralized robust controller is extended to uncertain large-scale interconnected sys-
tems, that is, an LMI-based design approach for decentralized adaptive gain robust
controllers is suggested.
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1. Introduction

It is well known that control systems can be found in abundance in all sectors of industry such

as robotics, power systems, transportation systems space technologies, and many others, and

thus control theory has been well studied. In order to design control systems, designers have to

derive mathematical models for dynamical systems, and there are mainly two types of repre-

sentations for mathematical models, that is, transfer functions and state equations. In other

words, control theory is divided into “classical control” and “modern control” (e.g., see [12]).

Classical control means an analytical theory based on transfer function representations and

frequency responses, and for classical control theory, we can find a large number of useful and

typical results such as Routh-Hurwitz stability criterion [20] based on characteristic equations

in the nineteenth century, Nyquist criterion [28] in the 1930s, and so on. Moreover, by using
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classical control ideas, some design methods of controllers such as proportional, derivative,

and integral (PID) controllers and phase lead-lag compensators have also been presented

[21]. In classical control, controlled systems are mainly linear and time-invariant and have a

single input and a single output only. Furthermore, it is well known that design approaches

based on classical control theory need experiences and trial and error. On the other hand, in

the 1960s, state variables and state equations (i.e., state-space representations) have been

introduced by Kalman as system representations, and he has proposed an optimal regulator

theory [14–16] and an optimal filtering one [17]. Namely, controlled systems are represented

by state equations, and controller design problems are reduced to optimization problems

based on the concept of state variables. Such controller design approach based on the state-

space representation has been established as “modern control theory.” Modern control is a

theory of time domain, and whereas the transfer function and the frequency response are of

limited applicability to nonlinear systems, state equations and state variables are equally

appropriate to linear multi-input and multi-output systems or nonlinear one. Therefore,

many existing results based on the state-space representation for controller design problems

have been suggested (e.g., [7, 43]).

Now, as mentioned above, in order to design control systems, the derivation of a mathematical

model for controlled system based on state-space representation is needed. If the mathematical

model describes the controlled system with sufficient accuracy, a satisfactory control perfor-

mance is achievable by using various controller design methods. However, there inevitably

exists some gaps between the controlled system and its mathematical model, and the gaps are

referred to as “uncertainties.” The uncertainties in the mathematical model may cause deteri-

oration of control performance or instability of the control system. From this viewpoint, robust

control for dynamical systems with uncertainties has been well studied, and a large number of

existing results for robust stability analysis and robust stabilization have been obtained [34, 36,

47, 48]. One can see that quadratic stabilization based on Lyapunov stability criterion and H
∞

control is a typical robust controller (e.g., [1, 6]). Furthermore, some researchers investigated

quadratic stabilizing control with an achievable performance level in Ref. to such as a qua-

dratic cost function [23, 28, 35, 37], robust H2 control [18, 39], and robust H∞-type disturbance

attenuation [46]. However, these approaches result in worst-case design, and, therefore, these

controllers with a fixed feedback gain which is designed by considering the worst-case varia-

tions of uncertainties/unknown parameters become cautious when the perturbation region of

uncertainties has been estimated larger than the proper region. In contrast with the conven-

tional robust control with fixed gains, several design methods of some robust controllers with

time-varying adjustable parameters have also been proposed (e.g., [3, 24, 36]). In the work of

Maki and Hagino [25], by introducing time-varying adjustable parameters, adaptation mech-

anisms for improving transient behavior have been suggested. Moreover, robust controllers

with adaptive compensation inputs have also been shown [29–31]. In particular, for linear

systems with matched uncertainties, Oya and Hagino [29] have introduced an adaptive com-

pensation input which is determined so as to reduce the effect of unknown parameters.

Furthermore, a design method of a variable gain robust controller based on LQ optimal control

for a class of uncertain linear system has also been shown [32]. These robust controllers have

fixed gains and variable ones tuned by updating laws and are more flexible and adaptive
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compared with the conventional robust controllers with fixed gains only, and one can easily

see that these robust controllers with adjustable parameters differ from gain-scheduling con-

trol techniques [22, 41, 42]. Additionally, these robust controllers with time-varying adjustable

parameters may also be referred to as “variable gain robust controller” or “adaptive gain

robust controller.”

In recent years, a great number of control systems are brought about by present technol-

ogies and environmental and societal processes which are highly complex and large in

dimension, and such systems are referred to as “large-scale complex systems” or “large-

scale interconnected systems.” Namely, large-scale and complex systems are progressing

due to the rapid development of industry, and large-scale interconnected systems can be

seen in diverse fields such as economic systems, electrical systems, and so on. For such

large-scale interconnected systems, it is difficult to apply centralized control strategies

because of calculation amount, physical communication constraints, and so on. Namely, a

notable characteristic of the most large-scale interconnected systems is that centrality fails

to hold due to either the lack of centralized computing capability of or centralized infor-

mation. Moreover, large-scale interconnected systems are controlled by more than one

controller or decision-maker involving decentralized computation. In the decentralized

control strategy, large-scale interconnected systems are divided into several subsystems,

and various types of decentralized control problems have been widely studied [13, 38, 44].

The major problem of large-scale interconnected systems is how to deal with the interac-

tions among subsystems. A large number of results in decentralized control systems can

be seen in the work of Šijjak [38]. Moreover, a framework for decentralized fault-tolerant

control has also been studied [44]. Additionally, decentralized robust control strategies

for uncertain large-scale interconnected systems have also attracted the attention of many

researchers (e.g., [3–5, 11]). Moreover, in the work of Mao and Lin [24], for large-scale

interconnected systems with unmodeled interaction, the aggregative derivation is tracked

by using a model following the technique with online improvement, and a sufficient

condition for which the overall system when controlled by the completely decentralized

control is asymptotically stable has been established. Furthermore, decentralized guar-

anteed cost controllers for uncertain large-scale interconnected systems have also been

suggested [26, 27].

In this chapter, for a class of uncertain linear systems, we show LMI-based design strategies

for adaptive gain robust controllers for a class of uncertain dynamical systems. The adaptive

gain robust controllers consist of fixed gains and adaptive gains which are tuned by time-

varying adjustable parameters. The proposed adaptive gain robust controller can achieve

asymptotical stability but also improving transient behavior of the resulting closed-loop

system. Moreover, by adjusting design parameters, the excessive control input is avoided

[32]. In this chapter, firstly, a design method of the centralized adaptive gain robust stabiliz-

ing controllers for a class of uncertain linear systems has been shown, and the maximum

allowable perturbation region of uncertainties is discussed. Namely, the proposed adaptive

gain robust controllers can achieve robustness for the derived perturbation regions for

unknown parameters. Additionally, the result for the centralized adaptive gain robust stabi-

lizing controllers is extended to the design problem of decentralized robust control systems.
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The contents of this chapter are as follows, where the item numbers in the list accord with the

section numbers:

2. Synthesis of centralized adaptive gain robust controllers.

3. Synthesis of decentralized adaptive gain robust controllers.

4. Conclusions and future works.

The basic symbols are listed below.

Other than the above, we use the following notation and terms: For a matrix A, the transpose of

matrix A and the inverse of one are denoted by A
T and A

�1, respectively. The notations He Af g

and diag A1;⋯;ANð Þ representAþA
T and a block diagonal matrix composed of matricesAi for

i ¼ 1,⋯,N . The n-dimensional identity matrix and n�m-dimensional zero matrix are described

by In and 0n�m, and for real symmetric matricesA and B,A > B resp: A ≥B
� �

means thatA� B

is a positive (resp. nonnegative) definite matrix. For a vector α∈R
n, αj jj j denotes standard

Euclidian norm, and for a matrix A, Aj jj j represents its induced norm. The real part of a complex

number s (i.e., s∈C) is denoted by Re sf g, and the symbols “¼
Δ
” and “⋆” mean equality by

definition and symmetric blocks in matrix inequalities, respectively.

Furthermore, the following useful lemmas are used in this chapter.

Lemma 1.1. For arbitrary vectors λ and ξ and the matrices G and H which have appropriate

dimensions, the following relation holds:

2λTGΔ tð ÞHξ ≤ 2 GT
λ

�

�

�

� Hξk k,

where Δ tð Þ∈R
p�q is a time-varying unknown matrix satisfying Δ tð Þk k ≤ 1.

Proof. The above relation can be easily obtained by Schwartz’s inequality (see [9]).

Lemma 1.2. (Schur complement) For a given constant real symmetric matrix Ξ, the following argu-

ments are equivalent:

(i) Ξ ¼
Ξ11 Ξ12

Ξ
T
12 Ξ22

� �

> 0.

(ii) Ξ11 > 0 and Ξ22 � Ξ
T
12Ξ

�1
11 Ξ12 > 0.

R The set of the real number

R
n The set of n-dimensional vectors

R
n�m The set of n�m-dimensional matrices

C The set of complex numbers
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(iii) Ξ22 > 0 and Ξ11 � Ξ12Ξ
�1
22 Ξ

T
12 > 0.

Proof. See Boyd et al. [2].

2. Synthesis of centralized adaptive gain robust controllers

A centralized adaptive gain robust state feedback control scheme for a class of uncertain linear

systems is proposed in this section. The adaptive gain robust controller under consideration is

composed of a state feedback with a fixed gain matrix and a time-varying adjustable parame-

ter. In this section, we show an LMI-based design method of the adaptive gain robust state

feedback controller, and the allowable perturbation region of unknown parameters is

discussed.

2.1. Problem statement

Consider the uncertain linear system described by the following state-space representation:

d

dt
x tð Þ ¼ Aþ Δ tð Þð Þx tð Þ þ Bu tð Þ, (1)

where x tð Þ∈Rn and u tð Þ∈Rm are the vectors of the state (assumed to be available for feedback)

and the control input, respectively. In Eq. (1) the constant matrices A and B mean the nominal

values of the system, and A;Bð Þ is stabilizable pair. Moreover, the matrix Δ tð Þ∈Rn�n represents

unknown time-varying parameters which satisfy Δ
T tð ÞΔ tð Þ ≤ δ⋆In , and the elements of

Δ tð Þ∈Rn�n are Lebesgue measurable [1, 34]. Namely, the unknown time-varying matrix

Δ tð Þ∈Rn�n is bounded, and the parameter δ
⋆ denotes the upper bound of the perturbation

region for the unknown parameter Δ tð Þ∈Rn�n. Additionally, we suppose that the nominal

system which can be obtained by ignoring the unknown parameter Δ tð Þ in Eq. (1) is given by

d

dt
x tð Þ ¼ Ax tð Þ þ Bu tð Þ: (2)

In Eq. (2), x tð Þ∈Rn and u tð Þ∈Rm are the vectors of the state and the control input for the

nominal system, respectively.

First of all, we design the state feedback control for the nominal system of Eq. (2) so as to

generate the desirable transient behavior in time response for the uncertain linear system of

Eq. (1). Namely, the nominal control input is given as

u tð Þ ¼ Kx tð Þ, (3)

and thus the following nominal closed-loop system is obtained:

d

dt
x tð Þ ¼ AKx tð Þ, (4)
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where AK is a matrix given by AK¼
Δ
Aþ BK. Note that the standard LQ control theory for the

nominal system of Eq. (2) for designing the fixed feedback gain K∈R
m�n is adopted in the

existing result [32]. In this section, for the nominal system of Eq. (2), we derive a state feedback

controller with pole placement constraints [8]. Note that for simplicity the sector constraints

are introduced only in this chapter, and of course, one can adopt some other design constraints

or another controller design approach for designing the fixed gain matrix K∈R
m�n. Therefore,

we consider the matrix inequality condition:

AK þ αInð ÞTP þ P AK þ αInð Þ þQ < 0, (5)

where P ∈R
n�n and Q∈R

n�n are a symmetric positive definite matrix and a symmetric semi-

positive definite matrix, respectively, and the matrix Q∈R
n�n is selected by designers. If the

symmetric positive definite matrix P ∈R
n�n satisfying the matrix inequality of Eq. (5) exists,

then poles for the nominal closed-loop system of Eq. (4) are located into the subspace

Sα ¼ sjRe sf g ≤ � αf g in the complex plane. Namely, the nominal closed-loop system of Eq. (4)

is asymptotically stable, and the quadratic function V x; tð Þ¼
Δ
xT tð ÞPx tð Þ becomes a Lyapunov

function for the nominal closed-loop system of Eq. (4), because the time derivative of the

quadratic function V x; tð Þ can be expressed as

d

dt
V x; tð Þ < �xT tð Þ Qþ 2αPð Þx tð Þ

< 0, ∀ x tð Þ 6¼ 0:

(6)

Now, we introduce complementary matrices Y ∈R
n�n and W ∈R

m�m which satisfy the rela-

tions Y¼
Δ
P�1, K ¼ �WBTP, and W ¼ WT

> 0, respectively. Then, some algebraic manipula-

tions gives

YA
T þ AY � BWTBT � BWBT þ 2αY þ YQY < 0: (7)

Additionally, applying Lemma 1.2 (Schur complement) to Eq. (7), one can easily see that the

matrix inequality condition of Eq. (7) is equivalent to

YA
T þ AY � BWTBT � BWBT þ 2αY Y

⋆ �Q
�1

 !

< 0: (8)

Thus, the control gain matrix K∈R
m�n is determined as K ¼ �WBTP ¼ �WBTY�1.

Now, for the uncertain linear system of Eq. (1), we define the following control input [37]:

u tð Þ¼
Δ

1þ θ x; tð Þð ÞKx tð Þ, (9)

where θ x; tð Þ: Rn � R! R is an adjustable time-varying parameter [32] which plays the

important role for correcting the effect of uncertainties, that is, the control input u tð Þ∈Rm
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consists of a fixed gain matrix K∈R
m�n and θ x; tð Þ∈R. Note that, the robust control input of

the form of Eq. (9) is called “adaptive gain robust control” in this chapter. Thus, from Eqs. (1)

and (9), the uncertain closed-loop system can be written as

d

dt
x tð Þ ¼ AKx tð Þ þ Δ tð Þx tð Þ þ θ x; tð ÞBKx tð Þ: (10)

From the above, the control objective in this section is to design the adaptive gain robust

control which achieves satisfactory transient behavior. Namely, the control problem is to

derive the adjustable time-varying parameter θ x; tð Þ∈R such that the closed-loop system of

Eq. (10) can achieve the desired transient response. In addition, we evaluate the allowable

perturbation region of the unknown parameter Δ tð Þ∈Rn�n.

2.2. Synthesis of centralized adaptive gain robust state feedback controllers

In this subsection, we deal with design problems for the adjustable time-varying parameter

θ x; tð Þ∈R so that the satisfactory transient response for the uncertain linear system of Eq. (1)

can be achieved. For the proposed adaptive gain robust control, the following theorem gives

an LMI-based design synthesis.

Theorem 1: Consider the uncertain linear system of Eq. (1) and the adaptive gain robust control of

Eq. (9) with the adjustable time-varying parameter θ x; tð Þ∈R.

For a given design parameter ϑ > 0 and the known upper bound δ⋆ for the unknown parameter

Δ tð Þ∈Rn�n, if the scalar parameter γ > 0 exists satisfying

AT
KP þ PAK þ γP2 In

⋆ � γ

δ⋆
In

0

B

@

1

C

A
< 0, (11)

the adjustable time-varying parameter θ x; tð Þ∈R is determined as

θ x; tð Þ ¼

ffiffiffiffiffi

δ⋆
p

Px tð Þk k x tð Þk k
W

1=2BT
Px tð Þ

�

�

�

�

2
if xT tð ÞPBWBT

Px tð Þ ≥ϑxT tð Þx tð Þ,

ffiffiffiffiffi

δ⋆
p

Px tð Þk k x tð Þk k
ϑxT tð Þx tð Þ if xT tð ÞPBWBT

Px tð Þ < ϑxT tð Þx tð Þ:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(12)

Then, the uncertain closed-loop system of Eq. (10) is asymptotically stable.

Proof. In order to prove Theorem 1, by using symmetric positive definite matrix P ∈R
n�n

which satisfies the standard Riccati equation of Eq. (4), we introduce the quadratic function

V x; tð Þ¼Δ xT tð ÞPx tð Þ, (13)
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as a Lyapunov function candidate. Let x tð Þ be the solution of the uncertain closed-loop system

of Eq. (10) for t ≥ t0, and then the time derivative of the quadratic function V x; tð Þ along the

trajectory of the uncertain closed-loop system of Eq. (10) can be written as

d

dt
V x; tð Þ ¼ xT tð Þ A

T
KP þ PAK

� �

x tð Þ

þ2xT tð ÞPΔ tð Þx tð Þ þ 2θ x; tð ÞxT tð ÞPBKx tð Þ:
(14)

Firstly, the case of xT tð ÞPBWBT
Px tð Þ ≥ϑxT tð Þx tð Þ is considered. In this case, one can see from

the relation Δ tð Þk k ≤
ffiffiffiffiffi

δ⋆
p

, Eq. (14), and Lemma 1.1 that the following inequality holds:

d

dt
V x; tð Þ ≤ xT tð Þ A

T
KP þ PAK

� �

x tð Þ þ 2
ffiffiffiffiffi

δ⋆
p

Px tð Þk k x tð Þk k

þ2θ x; tð ÞxT tð ÞPBKx tð Þ:
(15)

Moreover, since the relation K ¼ �WBT
P holds, the inequality of Eq. (15) can be rewritten as

d

dt
V x; tð Þ ≤ xT tð Þ A

T
KP þ PAK

� �

x tð Þ þ 2
ffiffiffiffiffi

δ⋆
p

Px tð Þk k x tð Þk k

�2θ x; tð ÞxT tð ÞPBWBT
Px tð Þ:

(16)

Substituting the adjustable time-varying parameter θ x; tð Þ of Eq. (12) into Eq. (16) gives

d

dt
V x; tð Þ ≤ xT tð Þ A

T
KP þ PAK

� �

x tð Þ þ 2
ffiffiffiffiffi

δ⋆
p

Px tð Þk k x tð Þk k

�2xT tð ÞP
ffiffiffiffiffi

δ⋆
p

Px tð Þk k x tð Þk k
W

1=2BT
Px tð Þ

�

�

�

�

2

 !

BWBT
Px tð Þ

≤ xT tð Þ A
T
KP þ PAK

� �

x tð Þ:

(17)

If the solution of the LMI of Eq. (11) exists, then the inequality

A
T
KP þ PAK < 0 (18)

is satisfied. Thus, one can see that the following relation holds:

d

dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (19)

Next, we consider the case of xT tð ÞPBWBT
Px tð Þ < ϑxT tð Þx tð Þ. By using the well-known

inequality for any vectors α and β with appropriate dimensions and a positive scalar ζ

2αTβ ≤ ζαTαþ 1

ζ
βTβ, (20)
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we see from Eq. (14) that some algebraic manipulations give

d

dt
V x; tð Þ ≤ xT tð Þ A

T
KP þ PAK

� �

x tð Þ þ γxT tð ÞP2x tð Þ þ
1

γ
xT tð ÞΔT tð ÞΔ tð Þx tð Þ

þ 2θ x; tð ÞxT tð ÞPBKx tð Þ

≤ xT tð Þ A
T
KP þ PAK þ γP2 þ

δ⋆

γ
In

� �

x tð Þ þ 2θ x; tð ÞxT tð ÞPBKx tð Þ

(21)

where γ is a positive constant.

Let us consider the last term of the right-hand side of Eq. (21). We see from Eq. (12) and the

relation K ¼ �WBT
P that the last term of the right-hand side of Eq. (21) is nonpositive. Thus, if

the scalar parameter γ exists satisfying

A
T
KP þ PAK þ γP2 þ

δ⋆

γ
In < 0, (22)

then the following relation for the quadratic function V x; tð Þ holds:

d

dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (23)

Furthermore, applying Lemma 1.2 (Schur complement) to Eq. (22), we find that the matrix

inequality condition of Eq. (22) can be transformed into the LMI of Eq. (11). Namely, the

quadratic function V x; tð Þ of Eq. (13) becomes a Lyapunov function of the uncertain closed-

loop system of Eq. (10) with the adjustable time-varying parameter of Eq. (12), that is,

asymptotical stability of the uncertain closed-loop system of Eq. (10) is ensured. It follows that

the result of this theorem is true.

From the above, we show an LMI-based design strategy for the proposed adaptive gain robust

control. Namely, the design problem of the proposed adaptive gain robust controller can be

reduced to the feasibility of the LMI of Eq. (11). Note that the LMI of Eq. (11) defines a convex

solution set of γ, and therefore one can easily see that various efficient convex optimization

algorithms can be used to test whether the LMI is solvable and to generate particular solution.

Furthermore, the LMI of Eq. (11) can also be exploited to design the proposed adaptive gain

robust controller with some additional requirements. Thus, in this paper, we consider the

allowable region of the unknown parameter Δ tð Þ∈Rn�n and introduce the additional con-

straints γ ¼ δ⋆ and

γ�
1

ε
> 0, (24)

where ε is a positive constant. From the relation of Eq. (24), we find that the minimization of

the parameter ε means the maximization of the upper bound δ⋆. Then, by using Lemma 2

(Schur complement), we find that the LMI of Eq. (11) is equivalent to

A
T
KP þ PAK þ γP2 þ In < 0, (25)
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and the constraint of Eq. (24) can be transformed into

γ 1:0

⋆ ε

� �

> 0: (26)

From the above, we consider the following constrained optimization problem:

Minimize
γ>0, ε

ε½ � subject to 25ð Þ and 26ð Þ: (27)

If the optimal solution of the constrained optimization problem of Eq. (27) exists, in which are

denoted by γ⋆ and ε⋆, the proposed adaptive gain robust controller can be done, and the

allowable upper bound of the unknown parameter Δ tð Þ∈Rn�n is given by

δ⋆ ¼ γ⋆
: (28)

Consequently, the following theorem for the proposed adaptive gain robust control with

guaranteed allowable region of unknown parameter Δ tð Þ∈Rn�n is developed.

Theorem 2: Consider the uncertain linear system of Eq. (1) and the adaptive gain robust control of

Eq. (8) with the adjustable time-varying parameter θ x; tð Þ∈R.

If the optimal solution γ⋆ of the constrained optimization problem of Eq. (27) exists, then the adjustable

time-varying parameter θ x; tð Þ∈R is designed as Eq. (12), and asymptotical stability of the uncertain

closed-loop system of Eq. (10) is ensured. Moreover, the upper bound δ⋆ for the unknown parameter

Δ tð Þ∈Rn�n is given by Eq. (28).

Remark 1: In this section, the uncertain linear dynamical system of Eq. (1) is considered, and the

centralized adaptive gain robust controller has been proposed. Although the uncertain linear system of

Eq. (1) has uncertainties in the state matrix only, the proposed adaptive gain robust controller can also

be applied to the case that the uncertainties are included in both the system matrix and the input one.

Namely, by introducing additional actuator dynamics and constituting an augmented system,

unknown parameters in the input matrix are embedded in the system matrix of the augmented system

[45]. As a result, the proposed controller design procedure can be applied to such case.

Remark 2: In Theorem 1, the design problem of the proposed adaptive gain robust controller can be

reduced to the feasibility of the LMI of Eq. (11). Namely, in order to design the proposed robust control

system, designers have to solve the LMI of Eq. (11). If the LMI of Eq. (11) is feasible for ∃δ⋆ > 0, then one

can easily see that the LMI of Eq. (11) is always satisfied for the positive scalar ∀δ� < δ⋆. Moreover, if a

positive scalar γ exists satisfying the LMI of Eq. (11) for ∃δþ > δ⋆, then the proposed adaptive gain robust

controller can also be designed, and note that the adaptive gain robust controller for δ⋆ > 0 coincides

exactly with the one for δþ > δ⋆ > 0. Furthermore, one can see from Theorem 2 that the resultant

adaptive gain robust controller derived by solving the constrained convex optimization problem of

Eq. (27) is same, because the solution of LMI of Eq. (8) or one of the constrained convex optimization

problem of Eq. (27) cannot be reflected the resultant controller. Note that in the general controller design

strategies for the conventional fixed gain robust control, the solution of the some constraints can be applied

to the resultant robust controller. This is a fascinating fact for the proposed controller design strategy.
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Remark 3: The proposed adaptive gain robust controller with the adjustable time-varying para-

meter has some advantages as follows: the proposed controller design approach is very simple, and by

selecting the design parameter, the proposed adaptive gain robust control system can achieve good

transient performance which is close to the nominal one or avoid the excessive control input (see [32]).

Besides, the structure of the proposed control system is also simple compared with the existing results

for robust controllers with adjustable parameters (e.g., [29, 30]). However, the online adjustment

strategy for the design parameter ϑ has not been established, and this problem is one of our future

research subjects.

Remark 4: In this section, firstly the nominal control input is designed by adopting pole placement

constraints, and the fixed gain K∈R
m�n can be derived by using the solution of the LMI of Eq. (8).

Note that the quadratic function V x; tð Þ is a Lyapunov function for both the uncertain linear system of

Eq. (1) and the nominal system of Eq. (2), that is, the Lyapunov function for the uncertain linear

system of Eq. (1) and one for the nominal system of Eq. (2) have same level set. Therefore, by selecting

the design parameter ϑ > 0, the proposed adaptive gain robust control system can achieve good

transient performance which is close to the nominal one or avoid the excessive control input.

On the other hand, if the design problem for a state feedback control u tð Þ ¼ Ksx tð Þ is considered, the

quadratic function V x; tð Þ is replaced as Vs x; tð Þ ¼ xT tð ÞPsx tð Þ where Ps ∈R
n�n is a Lyapunov matrix.

Moreover, Ps ∈R
n�n becomes a variable for resultant LMI conditions, and the standard techniques for

the quadratic stabilization can also be used.

2.3. Illustrative examples

In order to demonstrate the efficiency of the proposed control strategy, we have run a simple

example.

Consider the following linear system with unknown parameter Δ tð Þ∈R2�2:

d

dt
x tð Þ ¼

1:0 4:0

0:0 �1:0

� �

x tð Þ þ Δ tð Þx tð Þ þ
0:0

1:0

� �

u tð Þ: (29)

Firstly, we design the nominal control input u tð Þ ¼ Kx tð Þ. By selecting the design parameters α

and Q in Eq. (5) such as α ¼ 3:0 and Q ¼ 1:0� I2 and solving the LMI of Eq. (8), we obtain the

following solution:

Y ¼
1:0855 �1:5356

⋆ 4:5318

 !

,

W ¼ 2:1708� 101:

(30)

Thus, the following fixed gain matrix can be computed:

K ¼ �1:3017� 101 �9:2008
� �

: (31)
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Next, we solve the constrained optimization problem of Eq. (27), then the solutions

γ ¼ 3:1612,

ε ¼ 3:1633� 10�1
,

(32)

can be derived, and therefore the allowable upper bound of unknown parameter is given as

δ⋆ ¼ 3:1612: (33)

In this example, we consider the following two cases for the unknown parameter Δ tð Þ∈R2�2:

• Case 1) Δ tð Þ ¼ δ⋆ �
0:0 0:0

�7:2289 6:8530

 !

� 10�1 .

• Case 2) Δ tð Þ ¼ δ⋆ �
sin 5:0� π� tð Þ � cos 5:0� π� tð Þ

⋆ � sin 5:0� π� tð Þ

� �

.

Note that the unknown parameter of Case 1 satisfies the matching condition [45]. In addition,

for the design parameter ϑ, the numerical simulation for two cases such as ϑ ¼ 1:0� 102 and

ϑ ¼ 5:0� 10�1 is run. Moreover, the initial values of the uncertain system of Eq. (29) and the

nominal system are selected as x 0ð Þ ¼ x 0ð Þ ¼ ð1:0�2:0ÞT . The results of the simulation of this

example are shown in Figures 1–4 and Table 1. In these figures, “Case 1)” and “Case 2)”

represent the time histories of the state variables x1 tð Þ and x2 tð Þ and the control input u tð Þ and

Lyapunov function V x:tð Þ for the proposed adaptive gain robust control, and “nominal”means

the desired time response and the desired control input and Lyapunov function V x; tð Þ for the

nominal system. In Table 1, J e means
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Figure 1. Time histories of the states for ϑ ¼ 1:0� 102. (a) The time histories of x1(t), (b) The time histories of x2(t).
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J e ¼
Δ

ð
∞

0

eT tð Þe tð Þdt, (34)

where e tð Þ is an error vector between the time response and the desired one generated by the

nominal system, that is, e tð Þ¼
Δ
x tð Þ � x tð Þ. Namely, J e of Eq. (34) is a performance index so as to

evaluate the transient performance.

From Figures 1–4 the proposed adaptive gain robust state feedback controller stabilizes the

uncertain linear system of Eq. (29) in spite of uncertainties. Furthermore, we also find that

the proposed adaptive gain robust controller achieves the good transient performance close

to the nominal system.
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Figure 2. Time histories of the control inputs and the Lyapunov function for ϑ ¼ 1:0� 102. (a) The time histories of u(t)

and u tð Þ, (b) The time histories of V(x, t) and V x; tð Þ.
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For Case 1 in this example, one can see from Table 1 that the adaptive gain robust controller

for ϑ ¼ 5:0� 10�1 is more desirable comparing with one for ϑ ¼ 1:0� 102, that is, the error

between the time response and the desired one generated by the nominal system (“nominal” in

figures) is small. But for the result of Case 2), we find that the robust controller with the

parameter ϑ ¼ 1:0� 102 achieves more desirable performance. Additionally, one can see from

Figures 2(a) and 4(a) that by selecting the design parameter ϑ the proposed adaptive gain

robust controller can adjust the magnitude of the control input. In this example, the magnitude

of the control input for ϑ ¼ 1:0� 102 is suppressed comparing with one for ϑ ¼ 5:0� 10�1.

However, the online adjustment way of the design parameter ϑ for the purpose of improving

transient behavior and avoiding excessive control input cannot to developed, and thus it is an

important problem of our research subjects.

Therefore, the effectiveness of the proposed adaptive gain robust controller is shown.

2.4. Summary

In this section, an LMI-based design scheme of the centralized adaptive gain robust state

feedback controller for a class of uncertain linear systems has been proposed, and by simple

numerical simulations, the effectiveness of the proposed robust control strategy has been

ϑ ¼ 1:0� 102 ϑ ¼ 5:0� 10�1

Case 1) 4:2584� 10�2 1.0160� 10�2

Case 2) 9:7403� 10�2 1.0038� 10�1

Table 1. The performance index Ie.
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Figure 4. Time histories of the control inputs and the Lyapunov function for ϑ ¼ 5:0� 10�1. (a) The time histories of

u(t) and u tð Þ, (b) The time histories of V(x, t) and V x; tð Þ.
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presented. Since the proposed adaptive gain robust controller can easily be obtained by

solving the constrained convex optimization problem, the proposed design approach is

simple. Moreover, by selecting the design parameter, the proposed adaptive gain robust

controller can achieve good transient performance and/or avoid excessive control input.

Note that there are trade-offs between achieving good transient performance and avoiding

excessive control input.

The future research subject is the extension of proposed robust control scheme to such a broad

class of systems as linear systems with state delays, uncertain systems with some constraints,

and so on. Additionally, we will discuss the online adjustment for the design parameter ϑ and

the design problem for output feedback control systems.

3. Synthesis of decentralized adaptive gain robust controllers

In this section, on the basis of the result derived in Section 2, an LMI-based design method of

decentralized adaptive gain robust state feedback controllers for a class of uncertain large-scale

interconnected systems is suggested. The design problem of the decentralized adaptive gain

robust controller under consideration can also be reduced to the feasibility of LMIs, and the

allowable perturbation region of uncertainties is also discussed.

3.1. Problem statement

Consider the uncertain large-scale interconnected system composed ofN subsystems described as

d

dt
xi tð Þ ¼ Aii tð Þxi tð Þ þ

X

N

j ¼ 1

j 6¼ i

Aij tð Þxj tð Þ þ Biui tð Þ, (35)

where xi tð Þ∈R
ni and ui tð Þ∈R

mi (i ¼ 1,⋯,N ) are the vectors of the state and the control input

for the ith subsystem, respectively, and x tð Þ ¼ xT1 tð Þ;⋯; xT
N

tð Þ
� �T

is the state of the overall

system. The matrices Aii tð Þ∈R
ni�ni and Aij tð Þ∈R

ni�nj in Eq. (35) are given by

Aii tð Þ ¼ Aii þ Δii tð Þ,

Aij tð Þ ¼ Aij þ Δij tð Þ:
(36)

In Eqs. (35) and (36), the matrices Aii ∈R
ni�ni , Aij ∈R

ni�nj , and Bi ∈R
ni�mi denote the nominal

values of the system, and matrices Δii tð Þ∈R
ni�ni and Δij tð Þ∈R

ni�nj show unknown parameters

which satisfy Δ
T
ii tð ÞΔii tð Þ ≤ r

⋆

ii Ini and Δ
T
ij tð ÞΔij tð Þ ≤ r

⋆

ij Inj , respectively. Note that the elements of

these unknown parameters are Lebesgue measurable [1, 34]. For Eq. (35), the nominal

subsystem, ignoring the unknown parameters, is given by
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d

dt
xi tð Þ ¼ Aiixi tð Þ þ

X

N

j ¼ 1

j 6¼ i

Aijxj tð Þ þ Biui tð Þ, (37)

where xi tð Þ∈R
ni and ui tð Þ∈R

mi are the vectors of the state and the control input for the ith

nominal subsystem, respectively. Furthermore, the control input for the nominal subsystem of

Eq. (37) is determined as

ui tð Þ ¼ �Kixi tð Þ, (38)

where Ki ∈R
mi�ni is a fixed gain matrix. From Eqs. (37) and (38), the following nominal closed-

loop subsystem is obtained:

d

dt
xi tð Þ ¼ AKi

xi tð Þ þ
X

N

j ¼ 1

j 6¼ i

Aijxj tð Þ, (39)

where AKi
¼
Δ
Aii � BiKi.

Now, by using symmetric positive definite matrices P i ∈R
ni�ni , we consider the quadratic

function

V x; tð Þ¼
Δ
X

N

i¼1

V i xi; tð Þ, (40)

V i xi; tð Þ¼
Δ
xTi tð ÞP ixi tð Þ, (41)

as a Lyapunov function candidate. For the quadratic function V i xi; tð Þ of Eq. (41), its time

derivative along the trajectory of the nominal closed-loop subsystem of Eq. (39) is given by

d

dt
V i xi; tð Þ ¼ xTi tð Þ AT

Ki
P i þ P iAKi

� 	

xi tð Þ þ
X

N

j ¼ 1

j 6¼ i

2xTi tð ÞP iAijxj tð Þ: (42)

For the second term on the right side of Eq. (42), by using the well-known relation of Eq. (20),

we can obtain the following relation:

d

dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� 	

xi tð Þ þ
X

N

j ¼ 1

j 6¼ i

μijx
T
i tð ÞP iAijA

T
ijPxi tð Þ þ

X

N

j ¼ 1

j 6¼ i

1

μij

xTj tð Þxj tð Þ: (43)

From Eqs. (40) and (43), we have
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d

dt
V x; tð Þ ≤

X

N

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

� 	

xi tð Þ þ
X

N

i¼1

X

N

j ¼ 1

j 6¼ i

μix
T
i tð ÞP iAijA

T
ijP ixi tð Þ

þ
X

N

i¼1

X

N

j ¼ 1

j 6¼ i

1

μij

xTj tð Þxj tð Þ:

(44)

The inequality of Eq. (44) can also be rewritten as

d

dt
V x; tð Þ ≤

X

N

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

þ
X

N

j ¼ 1

j 6¼ i

μiP iAijA
T
ijP i þ

X

N

j ¼ 1

j 6¼ i

1

μji

In

0

B

B

@

1

C

C

A

xi tð Þ: (45)

Therefore, if the matrix inequality

AT
Ki
P i þ P iAKi

þ
X

N

j ¼ 1

j 6¼ i

μiP iAijA
T
ijP i þ

X

N

j ¼ 1

j 6¼ i

1

μji

In < 0 (46)

holds, then the following relation for the time derivative of V x; tð Þ is satisfied:

d

dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (47)

Now, as with Section 2, we derive a decentralized controller with pole placement constraints

for the nominal subsystem of Eq. (37). Namely, from Eq. (46), the matrix inequality

AKi
þ αiIn

� �T
P i þ P i AKi

þ αiIn
� �

þ
X

N

j ¼ 1

j 6¼ i

μiP iAijA
T
ijP i þ

X

N

j ¼ 1

j 6¼ i

1

μji

In þQi < 0, (48)

is considered. In Eq. (48), αi ∈R is a positive scalar and is selected by designers.

We introduce symmetric positive definite matrices Y i¼
Δ
P�1

i and W i ∈R
mi�mi and define the

fixed gain Ki as Ki¼
Δ
W iB

T
i P i. Then for the matrix inequality of Eq. (48), by pre- and post-

multiplying both sides of the matrix inequality of Eq. (48) by Y i, it can be obtained that

AiiY i � BiW iB
T
i þ Y iA

T
ii � BiW

T
i B

T
i þ 2αiY i þ

X

N

j ¼ 1

j 6¼ i

μijAijA
T
ij þ

X

N

j ¼ 1

j 6¼ i

1

μji

Y iY i þ Y iQiY i < 0: (49)

Thus, by applying Lemma 1.2 (Schur complement) to Eq. (49), we find that the matrix inequal-

ity of Eq. (49) is equivalent to the following LMI:
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Λi Y i;W i;μij

� 	

Θi Y ið Þ

⋆ �Γi μij

� 	

0

B
@

1

C
A < 0: (50)

In Eq. (50), matrices Λi Y i;W i;μij

� 	

∈R
ni�ni , Θi Y ið Þ∈Rni�N ni , and Γi μij

� 	

∈R
N ni�N ni are given

by

Λi Y i;W i;μij

� 	

¼
Δ
AiiY i � BiW iB

T
i þ Y iA

T
ii � BiW

T
i B

T
i þ 2αiY i þ

XN

j ¼ 1

j 6¼ i

μijAijA
T
ij ,

Θi Y ið Þ¼
Δ

Y i Y i … Y i

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
N

0

@

1

A,

Γi μij

� 	

¼
Δ

diag Q�1
i ;μ1iIn;μ2iIn;⋯;μi�1iIn;μiþ1iIn;⋯;μN iIn

� �
: (51)

Therefore, if matrices Y i ∈R
ni�ni and W i ∈R

mi�mi and positive scalars μij exist, the nominal

closed-loop subsystem is asymptotically stable, and the fixed gain matrix Ki is determined as

Ki ¼ W iB
T
i Y

�1
i .

Now, by using the fixed gain matrix Ki ∈R
mi�ni which is designed for the nominal subsystem,

we define the control input

ui tð Þ¼
Δ
� 1þ θi tð Þð ÞKixi tð Þ, (52)

where θi tð Þ∈R
1 is an adjustable time-varying parameter. From Eqs. (35) and (52), the uncer-

tain closed-loop subsystem can be obtained as

d

dt
xi tð Þ ¼ AKi

xi tð Þ þ Δii tð Þxi tð Þ þ
XN

i¼1

Aij þ Δij tð Þ
� �

xj tð Þ � θi tð ÞBiKixi tð Þ: (53)

From the above discussion, the designed objective in this section is to determine the decentralized

robust control of Eq. (52) such that the resultant overall system achieves robust stability. That is to

design the adjustable time-varying parameter θi tð Þ∈R
1 such that asymptotical stability of the

overall system composed ofN subsystems of Eq. (53) is guaranteed.

3.2. Decentralized variable gain controllers

The following theorem shows sufficient conditions for the existence of the proposed decent-

ralized adaptive gain robust control system.

Theorem 3: Consider the uncertain large-scale interconnected system of Eq. (35) and the control input

of Eq. (52).

For a given positive constant ϑi, if positive constants ξii, σij, and εij exist which satisfy the LMIs
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Πi ξii; εij; σij
� �

Ξi

⋆ �Ωi ξii; εij; σij
� �

 !

< 0, (54)

the time-varying adjustable parameters θi tð Þ∈R are determined as

θi tð Þ¼
Δ

ffiffiffiffiffiffi
r
⋆
ii

p
∥P ixi tð Þ∥∥xi tð Þ∥

xTi tð ÞP iBiW iB
T
i P ixi tð Þ

if xTi tð ÞP iBiW iB
T
i P ixi tð Þ ≥ϑix

T
i tð Þxi tð Þ,

ffiffiffiffiffiffi
r
⋆
ii

p
∥P ixi tð Þ∥∥xi tð Þ∥

ϑixTi tð Þxi tð Þ
if xTi tð ÞP iBiW iB

T
i P ixi tð Þ < ϑix

T
i tð Þxi tð Þ,

8

>>>><

>>>>:

(55)

where matrices Πi ξi; εij; σij
� �

∈Rni�ni , Ξi ∈R
ni� 2N�1ð Þni , and Ωi ξii; εij; σij

� �
∈R 2N�1ð Þni� 2N�1ð Þni are

given by

Πi ξii; εij; σij
� �

¼
Δ

AT
Ki
P i þ P iAKi

� 	

þ ξiiP iP i þ
XN

j ¼ 1

j 6¼ i

εijP iAijA
T
ijP i þ

XN

j ¼ 1

j 6¼ i

σijP iP i,

Ξi¼
Δ

In In ⋯ In
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

2N�1
0

@

1

A,

Ωi ξii; εij; σij
� �

¼
Δ

diag ξiir
⋆
ii In; ε1iIn; ε2iIn;⋯; εi�1iIn; εiþ1iIn;⋯; εN iIn; σ1ir

⋆
1iIn; σ2ir

⋆
2iIn;

�

⋯; σi�1ir
⋆
i�1iIn; σiþ1ir

⋆
iþ1iIn;⋯; σN ir

⋆
N iIn

�
: (56)

Then, the overall close-loop system composed of N closed-loop subsystems is asymptotically stable.

Proof. In order to prove Theorem 3, the following Lyapunov function candidate is introduced

by using symmetric positive definite matrices P i ∈R
ni�ni which satisfy the LMIs of (50):

V x; tð Þ¼
Δ
XN

i¼1

V i xi; tð Þ, (57)

where V i xi; tð Þ is a quadratic function given by

V i xi; tð Þ¼
Δ

xTi tð ÞP ixi tð Þ: (58)

We can obtain the following relation for the time derivative of the quadratic function V i xi; tð Þ of

Eq. (58):

d

dt
V i xi; tð Þ ¼ xTi tð Þ AT

Ki
P i þ P iAKi

� 	

xi tð Þ þ 2xi tð ÞP iΔii tð Þxi tð Þ

þ 2xTi tð ÞP i

XN

j ¼ 1

j 6¼ i

Aij þ Δij tð Þ
� �

xj tð Þ � 2θi tð Þx
T
i tð ÞP iBiKixi tð Þ:

(59)
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Firstly, we consider the case of xTi tð ÞP iBiW iB
T
i P ixi tð Þ ≥ϑix

T
i tð Þxi tð Þ. In this case, one can see from

the relations ΔT
ii tð ÞΔii tð Þ ≤ r

⋆
ii Ini and Δ

T
ij tð ÞΔij tð Þ ≤ r

⋆
ij Inj , the well-known inequality of Eq. (20), and

Lemma 1.1 that the following relation for the quadratic function V i xi; tð Þ of Eq. (58) can be

obtained:

d

dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� 	

xi tð Þ þ 2
ffiffiffiffiffiffi

r
⋆
ii

q

P ixi tð Þk k xi tð Þk k

þ
X

N

j ¼ 1

j 6¼ i

εijx
T
i tð ÞP iAijA

T
ijP ixi tð Þ þ

X

N

j ¼ 1

j 6¼ i

1

εij
xTj tð Þxj tð Þ þ

X

N

j ¼ 1

j 6¼ i

σijx
T
i tð ÞP iP ixi tð Þ

þ
X

N

j ¼ 1

j 6¼ i

r
⋆
ij

σij
xTj tð Þxj tð Þ � 2θi tð Þx

T
i tð ÞP iBiKixi tð Þ:

(60)

Substituting the adjustable time-varying parameter θi tð Þ of Eq. (55) into Eq. (60) gives

d

dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� 	

xi tð Þ þ 2
ffiffiffiffiffiffi

r
⋆
ii

q

P ixi tð Þk k xi tð Þk k

þ
X

N

j ¼ 1

j 6¼ i

εijx
T
i tð ÞP iAijA

T
ijP ixi tð Þ þ

X

N

j ¼ 1

j 6¼ i

1

εij
xTj tð Þxj tð Þ þ

X

N

j ¼ 1

j 6¼ i

σijx
T
i tð ÞP iP ixi tð Þ

þ
X

N

j ¼ 1

j 6¼ i

r
⋆
ij

σij
xTj tð Þxj tð Þ � 2

ffiffiffiffiffiffi

r
⋆
ii

p

∥P ixi tð Þ∥∥xi tð Þ∥

xTi tð ÞP iBiW iB
T
i P ixi tð Þ

 !

xTi tð ÞP iBiKixi tð Þ

¼ xTi tð Þ AT
Ki
P i þ P iAKi

� 	

xi tð Þ þ
X

N

j ¼ 1

j 6¼ i

εijx
T
i tð ÞP iAijA

T
ijP ixi tð Þ þ

X

N

j ¼ 1

j 6¼ i

1

εij
xTj tð Þxj tð Þ

þ
X

N

j ¼ 1

j 6¼ i

σijx
T
i tð ÞP iP ixi tð Þ þ

X

N

j ¼ 1

j 6¼ i

r
⋆
ij

σij
xTj tð Þxj tð Þ,

(61)

and, thus, we have the following inequality for the function V x; tð Þ of Eq. (57):

d

dt
V x; tð Þ ≤

X

N

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

� 	

xi tð Þ þ
X

N

i¼1

X

N

j ¼ 1

j 6¼ i

εijxi tð ÞP iAijA
T
ijP ixi tð Þ

þ
X

N

i¼1

X

N

j ¼ 1

j 6¼ i

1

εij
xTj tð Þxj tð Þ þ

X

N

i¼1

X

N

j ¼ 1

j 6¼ i

σijx
T
i tð ÞP iP ixi tð Þ þ

X

N

i¼1

X

N

j ¼ 1

j 6¼ i

r
⋆
ij

σij
xTj tð Þxj tð Þ: (62)

Furthermore, the inequality of Eq. (62) can be rewritten as
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d

dt
V x; tð Þ ≤

X

N

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

þ
X

N

j ¼ 1

j 6¼ i

εijP iAijA
T
ijP i þ

X

N

j ¼ 1

j 6¼ i

1

εji
In þ

X

N

j ¼ 1

j 6¼ i

σijP iP i þ
X

N

j ¼ 1

j 6¼ i

r
⋆
ji

σji
In

1

C

C

C

A

xi tð Þ:

0

B

B

B

@

(63)

Therefore, if the matrix inequality

AT
Ki
P i þ P iAKi

þ
X

N

j ¼ 1

j 6¼ i

εijP iAijA
T
ijP i þ

X

N

j ¼ 1

j 6¼ i

1

εji
In þ

X

N

j ¼ 1

j 6¼ i

σijP iP i þ
X

N

j ¼ 1

j 6¼ i

r
⋆
ij

σji
In < 0 (64)

holds, then the following relation for the time derivative of V x; tð Þ is satisfied:

d

dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (65)

Next, we consider the case of xTi tð ÞP iBiW iB
T
i P ixi tð Þ < ϑix

T
i tð Þxi tð Þ. In this case, by using the

relations ΔT
ii tð ÞΔii tð Þ ≤ r

⋆
ii Ini and Δ

T
ij tð ÞΔij tð Þ ≤ r

⋆
ij Inj , and Eq. (20) and substituting the adjustable

time-varying parameter θi tð Þ of Eq. (55) into Eq. (59), we have

d

dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� 	

xi tð Þ þ ξiix
T
i tð ÞP iP ixi tð Þ þ

r
⋆
ii

ξii
xTi tð Þxi tð Þ

þ
X

N

j ¼ 1

j 6¼ i

εijxi tð ÞP iAijA
T
ijP ixi tð Þ þ

X

N

j ¼ 1

j 6¼ i

1

εij
xTj tð Þxj tð Þ þ

X

N

j ¼ 1

j 6¼ i

σijx
T
i tð ÞP iP ixi tð Þ

þ
X

N

j ¼ 1

j 6¼ i

r
⋆
ij

σij
xTj tð Þxj tð Þ � 2

ffiffiffiffiffiffi

r
⋆
ii

p

∥P ixi tð Þ∥∥xi tð Þ∥

ϑixTi tð Þxi tð Þ

 !

xTi tð ÞP iBiKixi tð Þ:

(66)

The last term on the right side of Eq. (66) is less than 0 because the matrix Ki ∈R
mi�ni is defined

as Ki ¼ W iB
T
i P i and θi tð Þ is a positive scalar function. Therefore, we find that the following

relation for the quadratic function V i xi; tð Þ is satisfied:

d

dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� 	

xi tð Þ þ ξiix
T
i tð ÞP iP ixi tð Þ þ

r
⋆
ii

ξii
xTi tð Þxi tð Þ

þ
X

N

j ¼ 1

j 6¼ i

εijxi tð ÞP iAijA
T
ijP ixi tð Þ þ

X

N

j ¼ 1

j 6¼ i

1

εij
xTj tð Þxj tð Þ þ

X

N

j ¼ 1

j 6¼ i

σijx
T
i tð ÞP iP ixi tð Þ

þ
X

N

j ¼ 1

j 6¼ i

r
⋆
ij

σij
xTj tð Þxj tð Þ:

(67)

Therefore, we see from Eqs. (57) and (67) that the following inequality:
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d

dt
V x; tð Þ ≤

X

N

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

� 	

xi tð Þ þ
X

N

i¼1

ξiix
T
i tð ÞP iP ixi tð Þ þ

X

N

i¼1

r
⋆

ii

ξii
xTi tð Þxi tð Þ

þ
X

N

i¼1

X

N

j ¼ 1

j 6¼ i

εijxi tð ÞPiAijA
T
ijPixi tð Þ þ

X

N

i¼1

X

N

j ¼ 1

j 6¼ i

1

εij
xTj tð Þxj tð Þ

þ
X

N

i¼1

X

N

j ¼ 1

j 6¼ i

σijx
T
i tð ÞP iP ixi tð Þ þ

X

N

i¼1

X

N

j ¼ 1

j 6¼ i

r
⋆

ij

σij
xTj tð Þxj tð Þ

(68)

can be derived. Moreover, one can easily see that the inequality of Eq. (68) can be rewritten as

d

dt
V x; tð Þ ≤

X

N

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

þ ξiiP iP i þ
r
⋆

ii

ξii
In þ

X

N

j ¼ 1

j 6¼ i

εijP iAijA
T
ijP i

0

B

B

B

@

þ
X

N

j ¼ 1

j 6¼ i

1

εji
In þ

X

N

j ¼ 1

j 6¼ i

σijP iP i þ
X

N

j ¼ 1

j 6¼ i

r
⋆

ji

σji
In

1

C

C

A

xi tð Þ: (69)

Therefore, if the matrix inequality

AT
Ki
P i þ P iAKi

þ ξiiP iP i þ
r
⋆

ii

ξii
In þ

X

N

j ¼ 1

j 6¼ i

εijP iAijA
T
ijP i þ

X

N

j ¼ 1

j 6¼ i

1

εji
In þ

X

N

j ¼ 1

j 6¼ i

σijP iP i

þ
X

N

j ¼ 1

j 6¼ i

r
⋆

ji

σji
In < 0

(70)

holds, then the relation of Eq. (65) for the time derivative of the function V x; tð Þ of Eq. (57) is

satisfied. Due to the 3rd and 4th terms on the left side of Eq. (70) which are positive definite, if the

inequality of Eq. (70) is satisfied, then the inequality of Eq. (64) is also constantly satisfied.

For the matrix inequality of Eq. (70), by applying Lemma 1.2 (Schur complement), one can find

that the matrix inequalities of Eq. (70) are equivalent to the LMIs of Eq. (54). Therefore, by

solving the LMIs of Eq. (54), the adjustable time-varying parameter is given by Eq. (55), and

proposed control input of Eq. (52) stabilizes the overall system of Eq. (35). Thus, the proof of

Theorem 3 is completed.

Next, as mentioned in Section 2, we discuss the allowable region of the unknown parameters

Δii tð Þ∈R
ni�ni and Δij tð Þ∈R

ni�nj . Thus, the following additional constraints are introduced:
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r
⋆

ii ¼ ξii,

r
⋆

ij ¼ σij:
(71)

From the relations of Eq. (71), one can find that the maximization of ξii and σij is equivalent to

the maximization of r⋆ii and r
⋆

ij . Then, the LMIs of Eq. (54) can be rewritten as

Πi0 ξii; εij; σij
� �

Ξi0

⋆ �Ωi0 εij
� �

 !

< 0, (72)

Πi0 ξii; εij; σij
� �

¼
Δ
AT

Ki
P i þ P iAKi

þ ξiiP iP i þN In þ
XN

j ¼ 1

j 6¼ i

εijP iAijA
T
ijP i þ

XN

j ¼ 1

j 6¼ i

σijP iP i,

Ξi0¼
Δ

In In ⋯ In
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

N�1
0

@

1

A,

Ωi0 εij
� �

¼Δ diag ε1iIn; ε2iIn;⋯; εi�1iIn; εiþ1iIn;⋯; εN iInð Þ:

(73)

Furthermore, we introduce a positive scalar λ and a complementary matrix Γ∈RN
2�N

2

defined as

Γ¼
Δ

diag ξ11; ξ22;⋯; ξNN ; σ12; σ13;⋯; σ1N ; σ21; σ23;⋯; σNN�1ð Þ, (74)

and consider the following additional condition:

Γ �
1

λ
I
N

2 > 0: (75)

Namely, we can replace the maximization problem of ξii and σij with the minimization prob-

lem of λ. From Eq. (75) and Lemma 1.2 (Schur complement), one can easily see that the

constraint of Eq. (75) can be transformed into

Γ I
N

2

⋆ λI
N

2

 !

> 0: (76)

Thus, in order to design the proposed decentralized adaptive gain robust controller, the

constrained convex optimization problem

Minimize
ξii>0, εij>0, σij>0

λ½ � subject to 72ð Þ and 76ð Þ (77)

should be solved.

As a result, the following theorem can be obtained:

Theorem 4: Consider the uncertain large-scale interconnected system of Eq. (35) and the control input

of Eq. (52).

If positive constants ξii, εij, σij, and λ exist which satisfy the constrained convex optimization problem

of Eq. (77), the adjustable time-varying parameter θi tð Þ is designed as Eq. (55). Then, the overall
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uncertain closed-loop system of Eq. (53) is asymptotically stable. Furthermore, by using the optimal

solution ξ⋆ii and σ⋆ij for Eq. (77), the upper bound of unknown parameters Δii tð Þ∈R
ni�ni and

Δij tð Þ∈R
ni�nj is given by

r
⋆

ii ¼ ξ⋆ii ,

r
⋆

ij ¼ σ⋆ij :
(78)

3.3. Illustrative examples

To demonstrate the efficiency of the proposed decentralized robust controller, an illustrative

example is provided. In this example, we consider the uncertain large-scale interconnected

system consisting of three two-dimensional subsystems, that is,N ¼ 3. The system parameters

are given as follows:

A11 ¼
�1:0 1:0

0:0 1:0

 !

, A22 ¼
0:0 1:0

�1:0 �1:0

 !

, A33 ¼
1:0 0:0

1:0 �3:0

 !

,

B1 ¼
0:0

1:0

 !

, B2 ¼
1:0

1:0

 !

, B3 ¼
1:0

0:0

 !

,

A12 ¼
0:5 0:0

0:0 1:0

 !

, A13 ¼
0:0 0:5

0:0 0:0

 !

, A21 ¼
0:0 0:0

0:0 0:5

 !

,

A23 ¼
0:0 0:5

1:0 0:0

 !

, A31 ¼
0:5 0:0

0:0 0:0

 !

, A32 ¼
0:0 0:5

0:0 0:5

 !

:

(79)

Firstly, by selecting the design parameters αi ∈R
1 and Qi ∈R

2�2 i ¼ 1; 2; 3ð Þ as

α1 ¼ α2 ¼ α3 ¼ 1:0 and Q1 ¼ Q2 ¼ Q3 ¼ 2:0� I2 and solving LMIs of Eq. (50), we have the

symmetric positive definite matrices Y i ∈R
2�2 and W i ∈R

1�1, and positive scalars μij can be

obtained:

Y1 ¼
1:8972 �2:1976

⋆ 8:1021

0

@

1

A� 10�1, W1 ¼ 3:9298,

Y2 ¼
3:4941 4:7825

⋆ 8:8702

0

@

1

A� 10�1, W2 ¼ 2:2200,

Y3 ¼
4:0414� 10�1 3:2732� 10�2

⋆ 3:2709� 10�1

0

@

1

A, W3 ¼ 3:2166,

μ12 ¼ 7:0526� 10�1, μ13 ¼ 4:5522� 10�1, μ21 ¼ 1:3986,

μ23 ¼ 3:2285� 10�1, μ31 ¼ 3:4477, μ32 ¼ 2:0763:

(80)
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Thus, the symmetric positive definite matrices P i ¼ Y�1
i and the fixed gain matrices

Ki ¼ W iB
T
i Y

�1
i can be calculated as

P1 ¼
7:6854 2:0845

⋆ 1:7996

 !

, K1 ¼ 8:1918 7:0723ð Þ,

P2 ¼
1:0923� 101 �5:8891

⋆ 4:3025

 !

, K2 ¼ 1:1174� 101 �3:5221
� �

,

P3 ¼
2:4946 �2:4964� 10�1

⋆ 3:0823

 !

, K3 ¼ 8:0240 �8:0297� 10�1
� �

:

(81)

Next, by solving the constrained convex optimization problem of Eq. (77), the following

solution can be obtained:

ξ11 ¼ 3:4167� 10�2, ξ22 ¼ 3:5524� 10�2, ξ33 ¼ 1:5590� 10�1,

ε12 ¼ 8:5122� 10�1, ε13 ¼ 5:9622� 10�1, ε21 ¼ 1:4174,

ε23 ¼ 3:1440� 10�1, ε31 ¼ 9:9709, ε32 ¼ 1:9446,

σ12 ¼ 3:4167� 10�2, σ13 ¼ 3:4167� 10�2, σ21 ¼ 3:5524� 10�2,

σ23 ¼ 3:5524� 10�2, σ31 ¼ 1:5590� 10�1, σ32 ¼ 1:5590� 10�1,

λ ¼ 1:0001:

(82)

Therefore, the allowable upper bound of unknown parameters is given as

r
⋆

11 ¼ 3:4167� 10�2, r
⋆

22 ¼ 3:5524� 10�2, r
⋆

33 ¼ 1:5590� 10�1,

r
⋆

12 ¼ 3:4167� 10�2, r
⋆

13 ¼ 3:4167� 10�2, r
⋆

21 ¼ 3:5524� 10�2,

r
⋆

23 ¼ 3:5524� 10�2, r
⋆

31 ¼ 1:5590� 10�1, r
⋆

32 ¼ 1:5590� 10�1
:

(83)

In this example, unknown parameters Δii tð Þ∈R
2�2 and Δij tð Þ∈R

2�2 are chosen as

Δii tð Þ ¼ r
⋆

ii �
sin 5:0� π� tð Þ � cos 2:0� π� tð Þ

⋆ cos 5:0� π� tð Þ

 !

,

Δij tð Þ ¼ r
⋆

ij �
� cos π� tð Þ sin 3:0� π� tð Þ

⋆ sin π� tð Þ

 !

:

(84)

Moreover, the design parameters ϑi i ¼ 1; 2; 3ð Þ, the initial value of the uncertain large-scale

system with system parameters of Eq. (79), and one of the nominal systems are selected as

ϑ1 ¼ ϑ2 ¼ ϑ3 ¼ 1:0� 10�1 and x 0ð Þ ¼ x 0ð Þ ¼ 1:5�1:0�1:0 5:0� 10�1 2:0�1:0
� �T

.

The result of this example is shown in Figures 5 and 6. In these figures, x
lð Þ
i tð Þ, ui tð Þ, x

lð Þ
i tð Þ, and

ui tð Þ denote the lth element (l ¼ 1, 2) of the state xi tð Þ and the control input ui tð Þ for ith

subsystem and one of the states xi tð Þ and the control input ui tð Þ for ith nominal subsystem.
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From these figures, the proposed decentralized adaptive gain robust controller stabilizes the

uncertain large-scale interconnected system with system parameters of Eq. (79). Furthermore,

one can see that each subsystem achieves good transient behavior close to nominal subsystems

by the proposed decentralized robust controller. Thus, the effectiveness of the proposed robust

control strategy is shown.

3.4. Summary

In this section, on the basis of the result of Section 2, we have suggested the decentralized

adaptive gain robust controller for the large-scale interconnected system with uncertainties.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3

S
ta
te

1)
x
(
1

(t)
2)

x
(
1

(t)

x
(1)
1

(t)

x
2)(
1

(t)
-1

-0.5

 0

Time t

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3

S
ta
te

1)
x
(
2

(t)
2)

x
(
2

(t)
1)

x
(
2

(t)
2)

x
(
2

(t)

Time t

(a) (b)

Figure 5. Time histories of xi(t) and xi tð Þ (i = 1, 2). (a) The time histories of x1(t) and x1 tð Þ, (b) Time histories of x2(t) and x2 tð Þ.
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Figure 6. Time histories of x3(t), x3 tð Þ, u(t) and u tð Þ. (a) Time histories of x3(t) and x3 tð Þ, (b) Time histories of u(t) and u tð Þ.
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Furthermore, the effectiveness of the proposed controller has been shown via an illustrative

example. The proposed adaptive gain robust controller can be easily designed by solving a

constrained convex optimization problem and adjust the magnitude of the control input for

each subsystem. Therefore, we find that the proposed decentralized robust controller design

method is very useful.

Future research subjects include analysis of conservatism for the proposed controller

design approach and extension of the proposed adaptive gain robust control strategies to

uncertain systems with time delay, decentralized output/observer-based control systems,

and so on.

4. Conclusions and future works

In this chapter, firstly the centralized adaptive gain robust controller for a class of uncertain

linear systems has been proposed, and through a simple numerical example, we have shown

the effectiveness/usefulness for the proposed adaptive gain robust control strategy. Next, for a

class of uncertain large-scale interconnected systems, we have presented an LMI-based design

method of decentralized adaptive gain robust controllers. In the proposed controller robust

synthesis, advantages are as follows: the proposed adaptive gain robust controller can achieve

satisfactory transient behavior and/or avoid the excessive control input, that is, the proposed

robust controller with adjustable time-varying parameters is more flexible and adaptive than

the conventional robust controller with a fixed gain which is derived by the worst-case design

for the unknown parameter variations. Moreover, in this chapter we have derived the allow-

able perturbation region of unknown parameters, and the proposed robust controller can be

obtained by solving constrained convex optimization problems. Although the solution of the

some matrix inequalities can be applied to the resultant robust controller in the general

controller design strategies for the conventional fixed gain robust control, the solutions of the

constrained convex optimization problem derived in this chapter cannot be reflected to the

resultant robust controller. Note that the proposed controller design strategy includes this

fascinating fact.

In Section 2 for a class of uncertain linear systems, we have dealt with a design problem of

centralized adaptive gain robust state feedback controllers. Although the standard LQ regu-

lator theory for the purpose of generating the desired response is adopted in the existing result

[32], the nominal control input is designed by using pole placement constraints. By using the

controller gain for the nominal system, the proposed robust control with adjustable time-

varying parameter has been designed by solving LMIs. Additionally, based on the derived

LMI-based conditions, the constrained convex optimization problem has been obtained for

the purpose of the maximization of the allowable perturbation region of uncertainties

included in the controlled system. Section 3 extends the result for the centralized adaptive

gain robust state feedback controller given in Section 2 to decentralized adaptive gain robust
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state feedback controllers for a class of uncertain large-scale interconnected systems. In this

section, an LMI-based controller synthesis of decentralized adaptive gain robust state feed-

back control has also been presented. Furthermore, in order to maximize the allowable region

of uncertainties, the design problem of the decentralized adaptive gain robust controller for

the uncertain large-scale interconnected system has been reduced to the constrained convex

optimization problem.

In the future research, an extension of the proposed adaptive gain robust state feedback

controller to output feedback control systems or observer-based control ones is considered.

Moreover, the problem for the extension to such a broad class of systems as uncertain time-

delay systems, uncertain discrete-time systems, and so on should be tackled. Furthermore, we

will examine the conservativeness of the proposed adaptive gain robust control strategy and

online adjustment way of the design parameter which plays important roles such as avoiding

the excessive control input.

On the other hand, it is well known that the design of control systems is often complicated by

the presence of physical constraints: temperatures, pressures, saturating actuators, within

safety margins, and so on. If such constraints are violated, serious consequences may ensue.

For example, physical components will suffer damage from violating some constraints, or

saturations for state/input constraints may cause a loss of closed-loop stability. In particular,

input saturation is a common feature of control systems, and the stabilization problems of

linear systems with control input saturation have been studied (e.g., [33, 40]). Additionally,

some researchers have investigated analysis of constrained systems and reference managing

for linear systems subject to input and state constraints (e.g., [10, 19]). Therefore, the future

research subjects include the constrained robust controller design reducing the effect of

unknown parameters.
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