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Abstract

The classical counting processes (Poisson and negative binomial) are the most
traditional discrete counting processes (DCPs); however, these are based on a set of
rigid assumptions. We consider a non-homogeneous counting process (which we
name non-homogeneous Hofmann process – NHP) that can generate the classical
counting processes (CCPs) as special cases, and also allows modeling counting
processes for event history data, which usually exhibit under- or over-dispersion. We
present some results of this process that will allow us to use it in other areas and
establish both the probability mass function (pmf) and the cumulative distribution
function (cdf) using transition intensities. This counting process (CP) will allow other
researchers to work on modelling the CP, where data dispersion exists in an efficient
and more flexible way.

Keywords: mixed Poisson Process, Hofmann process, variance-to-mean ratio,
transition intensity

1. Introduction

In ref. [1], Hofmann introduced a new class of infinitely divisible mixed Poisson
process (MPP), this broader class of CP allows obtaining other CCP by simply modi-
fying or choosing its parameters, as well as Poisson, negative binomial, Poisson-Pascal
among other distributions (see [2]). The family of distributions defined by Hofmann
has been used in many types of applications of modelling and simulation studies that
include topics such as accident models [3].

In this chapter, we analysed the event of number process N tð Þ, t≥0f g and used a
broader CP, which is based on the Hofmann process. The appeal of this CP is that,
analogous to the family of frequency distributions, it allows to generate several known
CP. Through an NHP, we can generate the following as special cases: the Poisson
counting process (PCP), the negative binomial counting process (NBCP) and the
Poisson-Pascal process among other CCPs, and this allows us to obtain models for CP
with under- or over-dispersion. The NHP was introduced by Hofmann [1] and has
been used by other researchers [3–5]. Some properties of the NHP found by Walhin

1



[2] are presented in this chapter, and we used the transition intensities to describe
additional properties of the NHP.

The objective of this chapter is to present a unified view of related results on the
NHP. The chapter is organised as follows: in Section 2, we present the NHP; in Section
3, we present some statistical properties, such as pmf and probability generating
function (pgf), and formulas for the mean and variance are derived; in Section 4, we
present various approaches for the NHP using CCP; in Section 5, we present other
properties for NHP; finally, conclusions are presented.

2. Basic concepts of the NHP

Let us take N tð Þ as the number of events that occurs in the time interval 0, tð � with
t>0 and N 0ð Þ ¼ 0. The probability of n events occurring in this time interval is
denoted by

Pn tð Þ ¼ P N tð Þ ¼ n½ �, n ¼ 0, 1, 2, … (1)

According to Dubourdieu [6], an MPP N tð Þ : t≥0f g is a PCP with rate Λ, where
the non-negative random variable Λ is called a structure variable. The MPP has been
studied by several authors [7–9].

When Λ is a continuous random variable with probability density function (pdf),
f λð Þ, we can find probability by

 P N tð Þ ¼ njΛ½ �½ �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼

ð∞

0

P N tð Þ ¼ njΛ ¼ λ½ � f λð Þdλ

P N tð Þ ¼ n½ � ¼

ð∞

0

e�λt λtð Þn

n!
f λð Þdλ:

(2)

For n ¼ 0 and t>0 we have

P0 tð Þ ¼

ð∞

0

e�λt f λð Þdλ, (3)

The higher order derivatives of the last expression with respect to t are

P
nð Þ
0 tð Þ ¼

dn

dtn
P0 tð Þ ¼ �1ð Þn

ð∞

0

λne�λt f λð Þdλ: (4)

By substituting (4) into (2) we get

Pn tð Þ ¼
tn

n!
�1ð ÞnP

nð Þ
0 tð Þ

h i

, n≥ 1 (5)

The expressions (3) and (5) characterize an MPP with a continuous structure
variable Λ. According to Hofmann [1], for the construction of examples, a special
structure function is generally assumed, and from this the pmf is calculated by (3),
(5). In most cases, this leads to formally complicated expressions. In ref. [1], Hofmann
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presents a CP called Hofmann process as an option to model the event number process
given by (2) and whose general expression for (3) is as follows:

P0 tð Þ ¼ exp �θ tð Þf g θ tð Þ ¼

ðt

0
λ τ; að Þdτ (6)

where P0 tð Þ is a completely monotonic function1. And λ τ; að Þ is a function of
three parameters: a≥0, q>0 and κ≥0, which is a function infinitely divisible and
given by

λ τ; að Þ ¼
q

1þ κ τð Þa
∀τ>0: (7)

Although λ τ; að Þ depends on three parameters, we use this notation given that the
parameter a provides various CCPs. We denote the NHP by H a, q, κð Þ, if the pmf of
N tð Þ satisfies the expressions (5) and (6).

Using the expression (7), we get by integrating that

θ tð Þ ¼
ln 1þ κtð Þq=κ
h i

if a ¼ 1

q

κ 1� að Þ
1þ κtð Þ1�a � 1

h i

if a 6¼ 1

8

><

>:

(8)

By substituting (8) into (6)

P0 tð Þ ¼
1þ κtð Þ�

q
κ if a ¼ 1

exp �
q

κ � 1� að Þ
1þ κtð Þ1�a � 1

h i� �

if a 6¼ 1

8

><

>:

(9)

Remark 1.1: If in the expression (9) for a ¼ 1 we take the limit as κ ! 0, we have:

lim
κ!0

1þ κtð Þ�
q
κ ¼ e�qt, (10)

and the last expression agrees with the adequate P0 tð Þ of a PCP with rate qt.

3. Basic properties of the NHP

Theorem 1.2: Let N tð Þ be an NHP then

i. The pgf of the process is given by

GN z; tð Þ ¼

1þ κ 1� zð Þtð Þ�q=κ if a ¼ 1

exp �
q

κ 1� að Þ
1þ κ 1� zð Þtð Þ1�a � 1

h i� �

if a 6¼ 1

8

><

>:

(11)

1

We say that a function g tð Þwith t∈ℝ
þ is completely monotonic if it has derivatives g nð Þ tð Þ for all n∈ℕ and

its derivatives have alternating signs, i.e., if �1ð Þng nð Þ tð Þ≥0, t>0:
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Note that GN z; tð Þ ¼ P0 1� zð Þtð Þ with 0≤ z< 1.

ii. The pmf of N tð Þ, for t fixed, satisfies the following recursive formula:

Pnþ1 tð Þ ¼
tλ t; að Þ

nþ 1

Xn

i¼0

aþ i� 1

i

� �
κt

1þ κt

� �i

Pn�i tð Þ (12)

where P0 tð Þ ¼ GN 0; tð Þ is given by (9) and

P
nþ1ð Þ
0 tð Þ ¼ λ t; að Þ

Xn

j¼0

n

j

� �

�1ð Þjþ1 Γ aþ jð Þ

Γ að Þ

κ

1þ κt

� �j

P
n�jð Þ
0 tð Þ

iii. If a ¼ 1 the Pn tð Þ satisfies the recurrence relation

Pnþ1 tð Þ

Pn tð Þ
¼

�t

nþ 1
P

nþ1ð Þ
0 tð Þ

P
nð Þ
0 tð Þ

¼
qþ κn

1þ κt

t

nþ 1
: (13)

iv. The process N tð Þ has a mean and variance given by

 N tð Þ½ � ¼ qt and Var N tð Þ½ � ¼ 1þ aκtð Þ N tð Þ½ � (14)

Proof:
See details in [2] or [10].
Note that from (14) we have that if q 6¼ 0 then:

lim
t!∞

 N tð Þ½ �

t
¼ q: (15)

It is possible from (14) to calculate the measure based on the variance-to-mean
ratio (VMR) introduced by [11]:

ID tð Þ ¼
Var N tð Þ½ �

 N tð Þ½ �
¼ 1þ aκt: (16)

As ID tð Þ> 1, then using the criterion of the VMR, we have that the NHP is an over-
dispersed CP and hence is an option for modelling over-dispersion in count data.

Using the expression (11), in Table 1, we present the functions for qt and κt that
allow to obtain some CP. We consider the CCPs studied in [10], which are special
cases of NHP when a ¼ 1 since this reduces to the Panjer counting process (see [12]).
In addition, we consider other processes, such as the Neyman Type A process intro-
duced by [13], the Poisson Pascal process introduced by [14] and the Pólya-Aeppli
process introduced by [15].

3.1 NHP is infinitely divisible

The following relationships are identical to those of [16] which characterize infi-
nitely divisible pmf:
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Theorem 1.3: The pmf Pn tð Þf g with P0 tð Þ>0 is infinitely divisible if and only if
satisfies that

nþ 1ð ÞPnþ1 tð Þ ¼
Xn

i¼0

ri tð ÞPn�i tð Þ for t fixed:

where the quantities rn tð Þ with n∈ℤ
þ are nonnegative.

Proof: See details in [16].
Corollary 1.3.1: The pmf Pn tð Þf g of the NHP is infinitely divisible.
Proof:
By multiplying (12) by nþ 1ð Þ we get

nþ 1ð ÞPnþ1 tð Þ ¼
Xn

i¼0

tλ t; að Þ
aþ i� 1

i

� �
κt

1þ κt

� �i

Pn�i tð Þ:

We denote

ri t; að Þ ¼ qt
aþ i� 1

i

� �
κtð Þi

1þ κtð Þaþi
i ¼ 0, 1, … , n: (17)

Note that ri t; að Þ≥0, which allows to conclude that Pn tð Þ is infinitely divisible.
The following relationship is given by [17]: all log-convex distributions are infi-

nitely divisible but not all log-concave distributions are infinitely divisible.
Theorem 1.4: Let N tð Þ be an infinitely divisible ℤþ-valued random variable with

pmf Pn tð Þ. Then

 N tð Þ½ � ¼
X∞

i¼0

ri t; að Þ (18)

Counting process P0 1� zð Þt½ � Functions

qt κt

Classical
(a = 1)

Poisson exp � 1� zð Þγtf g, κ ! 0 γt 0

Negative binomial (or Pólya) δ
δþ 1�zð Þt

h iγ

, δ>0
γ

δ
t t

δ

Geometric δ
δþ 1�zð Þt

t
δ

t
δ

Other
(a > 1)

Neyman Type A exp γ exp z� 1ð Þδtf g � 1½ �f g, a ! ∞ γδt δt
a�1

Poisson-Pascal exp γ 1þ 1� zð Þδtð Þ� a�1ð Þ � 1
h in o

a� 1ð Þγδt δt

Pólya-Aeppli
exp � 1�zð Þγt

1� 1� 1þδtð Þ�1½ �z

� �

, a ¼ 2
1þ δtð Þγt δt

Source: own elaboration

Table 1.

Functions qt and κt for some CCPs.
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Proof:
We know that the expectation of N tð Þ it is given by

 N tð Þ½ � ¼
X∞

n¼1

nPn tð Þ ¼
X∞

m¼0

mþ 1ð ÞPmþ1 tð Þ

¼
X∞

m¼0

Xm

i¼0

ri t; að ÞPm�i tð Þ

Now, by interchanging the order of summation, we get

 N tð Þ½ � ¼
X∞

i¼0

X∞

m¼i

ri t; að ÞPm�i tð Þ ¼
X∞

i¼0

ri t; að Þ
X∞

m¼i

Pm�i tð Þ

¼
j¼m�i

X∞

i¼0

ri t; að Þ
X∞

j¼0

Pj tð Þ ¼
X∞

i¼0

ri t; að Þ:

which completes the proof.

4. NHP in terms of CCPs

In this section, we present various approaches for the NHP using CCP.

4.1 NHP as a non-homogeneous pure birth process

We use logarithmic differentiation to find the derivative of (5) and we get

Pn0 tð Þ

Pn tð Þ
¼

n

t
þ
P

nþ1ð Þ
0 tð Þ

P
nð Þ
0 tð Þ

Then

Pn0 tð Þ ¼
n

t
Pn tð Þ þ

P
nþ1ð Þ
0 tð Þ

P
nð Þ
0 tð Þ

Pn tð Þ (19)

From (5), we obtain

n

t
Pn tð Þ ¼ �

�1ð Þn�1

n� 1ð Þ!
tn�1P

nð Þ
0 tð Þ ¼

�1ð Þn�1

n� 1ð Þ!
tn�1P

nð Þ
0 tð Þ �

P
n�1ð Þ
0 tð Þ

P
n�1ð Þ
0 tð Þ

 !

¼ �
P

nð Þ
0 tð Þ

P
n�1ð Þ
0 tð Þ

Pn�1 tð Þ

By substituting in (19), we have

Pn0 tð Þ ¼ �
P

nð Þ
0 tð Þ

P
n�1ð Þ
0 tð Þ

 !

Pn�1 tð Þ � �
P

nþ1ð Þ
0 tð Þ

P
nð Þ
0 tð Þ

 !

Pn tð Þ: (20)
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We denote

λn t; að Þ ¼ �
P

nþ1ð Þ
0 tð Þ

P
nð Þ
0 tð Þ

¼ �
d

dt
ln �1ð ÞnP

nð Þ
0 tð Þ

h i

: (21)

In ref. [18], Lundberg shows that this corresponds to the transition intensities.
Then from (20) and (21), we can derive the following system of Kolmogorov differ-
ential equations that must be satisfied by the NHP:

P0
0 tð Þ ¼ �λ0 t; að ÞP0 tð Þ

P0
n tð Þ ¼ λn�1 t; að ÞPn�1 tð Þ � λn t; að ÞPn tð Þ for n≥ 1:

(22)

By notation, we denote λ0 t; að Þ ¼ θ0 tð Þ ¼ q
1þκtð Þa

: With initial conditions

P0 0ð Þ ¼ 1 and Pn 0ð Þ ¼ 0 ∀n≥ 1 (23)

Using the method given in ref. [18], we find that the solution of (22) is given by

Pn tð Þ ¼

ðt

0
λn�1 τ; að ÞPn�1 τð Þ exp �

ðt

τ

λn�1 ν; að Þdν

� �

dτ for n≥ 1:

From the system of equations given in (22), we have that the NHP is a non-
homogeneous pure birth process (NHPBP), which agrees with the definition given by
Seal in ref. [19]. So, if N tð Þ satisfies (6), then N tð Þ is an NHPBP with transition
intensities given by (21).

4.2 NHP as MPP

The list of equivalences provided by Lundberg in ref. [18] is satisfied by the NHP
defined in (6), which is presented in the following theorem:

Theorem 1.5: Let N tð Þ be an NHP with marginal pmf, given by (5) and transition
intensities, given by (21). Then:

i. λn t; að Þ satisfy λnþ1 t; að Þ ¼ λn t; að Þ �
λ0n t; að Þ
λn t; að Þ for n ¼ 0, 1, …

ii. Pn tð Þ and λn t; að Þ satisfy the relation

Pn tð Þ

Pn�1 tð Þ
¼

t

n
λn�1 t; að Þ for n ¼ 1, 2, … (24)

Proof:

i. By finding the derivative of function (21) with respect to t, we obtain

λ0n t; að Þ ¼ �
P

nþ2ð Þ
0 tð ÞP

nð Þ
0 tð Þ � P

nþ1ð Þ
0 tð ÞP

nþ1ð Þ
0 tð Þ

P
nð Þ
0 tð Þ

� �2

2

6
4

3

7
5

¼ �
P

nþ2ð Þ
0 tð Þ

P
nþ1ð Þ
0 tð Þ

P
nþ1ð Þ
0 tð Þ

P
nð Þ
0 tð Þ

þ �
P

nþ1ð Þ
0 tð Þ

P
nð Þ
0 tð Þ

 !2

¼ �λnþ1 t; að Þλn t; að Þ þ λn t; að Þ½ �2
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By dividing by λn t; að Þ, we have

λ0n t; að Þ

λn t; að Þ
¼ λn t; að Þ � λnþ1 t; að Þ (25)

ii. By substituting (21) into (13), we get:

Pn tð Þ

Pn�1 tð Þ
¼

�1ð Þn

n!
tnP

nð Þ
0 tð Þ

�1ð Þn�1

n�1ð Þ! t
n�1P

n�1ð Þ
0 tð Þ

¼ �
t

n

P
nð Þ
0 tð Þ

P
n�1ð Þ
0 tð Þ

¼
t

n
λn�1 t; að Þ,

which completes the proof. □
In ref. [7], it is proved that the above three statements are equivalent.
Corollary 1.5.1: Let N tð Þ be an NHP with transition intensities given by (21), then

Pn tð Þ

P0 tð Þ
¼
Yn

j¼1

tλj�1 t; að Þ

j
(26)

Proof:
Note that

Pn tð Þ

P0 tð Þ
¼
Yn

j¼1

Pj tð Þ

Pj�1 tð Þ
:

Substituting (24) in the above expression completes the proof.
Corollary 1.5.2: Let N tð Þ be an NHP with transition intensities given by (21), then

Yn�1

j¼0

λj t; að Þ ¼ �1ð Þn
P

nð Þ
0 tð Þ

P0 tð Þ
n≥ 1: (27)

Proof:
From (21), we get

Yn�1

j¼0

λj t; að Þ ¼
Yn�1

j¼0

�
P

jþ1ð Þ
0 tð Þ

P
jð Þ
0 tð Þ

 !

¼ �1ð Þn
P

nð Þ
0 tð Þ

P0 tð Þ
:

This finishes the proof of Corollary.
The following additional properties set in ref. [9] are also satisfied by NHP:
Proposition 1.6: Let N tð Þ; t≥0f g be an NHP and Λ the continuous structure

variable of the MPP. Then:

1. The transition intensities are such that

 ΛjN tð Þ ¼ n½ � ¼ λn t; að Þ: (28)

and

Var ΛjN tð Þ ¼ n½ � ¼ �λ0n t; að Þ: (29)

2. The mean of N tð Þ is given by

 N tð Þ½ � ¼ t Λ½ �: (30)
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3. The mean of Λ is given by

 Λ½ � ¼ �P0
0 0ð Þ: (31)

Proof:
1. From (2), taking the expected value of Λ, conditioning on N tð Þ, we get

 ΛjN tð Þ ¼ n½ � ¼

ð∞

0

λe�λt λtð Þn f λð Þ

n!P N tð Þ ¼ n½ �
dλ ¼

nþ 1
t

Pnþ1 tð Þ

Pn tð Þ
: (32)

By substituting (24) into (32), we have

 ΛjN tð Þ ¼ n½ � ¼ λn t; að Þ:

Analogously, we can show that

 Λ
2jN tð Þ ¼ n

	 

¼

ð∞

0

λ2e�λt λtð Þn f λð Þ

n!P N tð Þ ¼ n½ �
dλ ¼

nþ 2ð Þ nþ 1ð Þ

t2
Pnþ2 tð Þ

Pn tð Þ
: (33)

By substituting (24) into (33), we have

 Λ
2jN tð Þ ¼ n

	 

¼ λnþ1 t; að Þλn t; að Þ:

Then the conditional variance of Λ, given that N tð Þ ¼ n, is

Var ΛjN tð Þ ¼ n½ � ¼ λnþ1 t; að Þλn t; að Þ � λ2n t; að Þ,

and substituting Eq. (25) into the above yields the result.

2. We use the law of total expectation to find the expected value

 Λ½ � ¼   Λðj jN tð Þ ¼ nÞ½ � ¼
X∞

n¼0

 Λj jN tð Þ ¼ nð ÞP N tð Þ ¼ n½ �

¼
X∞

n¼0

λn t; að ÞPn tð Þ

By substituting (24) into the above expression, we get

 Λ½ � ¼
X∞

n¼0

nþ 1
t

Pnþ1 tð Þ ¼
X∞

j¼0

rj t; að Þ

t
¼

1
t
 N tð Þ½ �:

And the proof is completed.

3. The pgf of N tð Þ is defined as

GN z; tð Þ
|fflfflfflffl{zfflfflfflffl}

¼
X∞

n¼0

znPn tð Þ ¼
X∞

n¼0

zn
ð∞

0

λtð Þn

n!
e�λtf λð Þdλ

P0 1� zð Þt½ � ¼

ð∞

0

X∞

n¼0

zλtð Þn

n!

" #

e�λtf λð Þdλ ¼

ð∞

0

eλ z�1ð Þtf λð Þdλ

¼ MΛ z� 1ð Þt½ �:

(34)
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We make z ¼ 0 in the above expression and we have

P0 tð Þ ¼ MΛ �tð Þ

Now, if we differentiate both sides with respect to t, we obtain

P0
0 tð Þ ¼ �M0

Λ
�tð Þ

We complete the proof by substituting t ¼ 0 in the above expression. □
According to Walhin and Paris in ref. [20], the intensity of the stochastic process

N tð Þ in the period t, tþ 1½ � is

 N tþ 1ð Þ �N tð ÞjN tð Þ ¼ n½ � ¼  ΛjN tð Þ ¼ n½ �:

The moment generating function of the process will uniquely determine the dis-
tribution of the process, on comparing expression (34) with P0 1� zð Þt½ � given for a ¼
1 and as shown in Table 1, we find the particular cases: the PCP if Λ � δγ λð Þ (i.e. has a
degenerate cdf at λ ¼ γ), the NBCP if Λ � Γ γ, δð Þ and the Geometric Counting Process
if Λ � exp δð Þ.

5. Additional properties

In this Section, we will introduce several other properties of the NHP.

5.1 Other expressions for Pn tð Þ in terms of λn t; að Þ

Theorem 1.7: Let N tð Þ be an NHP with transition intensities given by (21), then

Pn tð Þ ¼ Qn tð Þ � Qnþ1 tð Þ for n≥ 1,

where Q0 tð Þ is Heaviside’s step function and

Qnþ1 tð Þ ¼

ðt

0
λn v; að ÞPn vð Þdv: (35)

Proof:
We write the expression (22) as

d Pn τð Þ½ �

dτ
¼ λn�1 τ; að ÞPn�1 τð Þ � λn τ; að ÞPn τð Þ for n≥ 1:

By integration of the above expression with respect to τ between 0 and t, we get

ðt

0
d Pn τð Þ½ � ¼

ðt

0
λn�1 τ; að ÞPn�1 τð Þdτ �

ðt

0
λn τ; að ÞPn τð Þdτ

Pn τð Þ t
0 ¼ Qn tð Þ � Qnþ1 tð Þ for n≥ 1:
�
�

(36)

Since Pn 0ð Þ ¼ 0, ∀n≥ 1, so the proof is completed.
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Corollary 1.7.1: Let N tð Þ be an NHP with transition intensities given by (21), then

P N tð Þ> n½ � ¼ Qnþ1 tð Þ for n≥0 (37)

Proof: The proof consists of a direct calculation

P N tð Þ> n½ � ¼ 1� P N tð Þ≤ n½ �

¼ 1�
Xn

j¼0

Pj tð Þ ¼ 1� P0 tð Þ �
Xn

j¼1

Pj tð Þ

Using the previous result:

P N tð Þ> n½ � ¼ 1� P0 tð Þ �
Xn

j¼1

Q j tð Þ � Q jþ1 tð Þ
h i

¼ 1� P0 tð Þ � Q1 tð Þ �Qnþ1 tð Þ
	 


(38)

Note that

Q1 tð Þ ¼

ðt

0
λ0 v; að ÞP0 vð Þdv ¼ �

ðt

0
P0
0 vð Þdv ¼ �P0 vð Þjt0 ¼ 1� P0 tð Þ

Replacing Q1 tð Þ in (38) the proof is completed.
The expression (37) allows to calculate the cdf of an NHP.
Corollary 1.7.2: The function Qnþ1 tð Þ satisfies the following condition:

lim
t!∞

Qnþ1 tð Þ ¼ 1 for n≥0: (39)

Proof:
From (37), we get

lim
t!∞

Qnþ1 tð Þ ¼ lim
t!∞

1�
Xn

j¼0

Pj tð Þ

" #

:

As we have for n≥ 1 : Pn ∞ð Þ ¼ 0, and using the above relationship

lim
t!∞

Qnþ1 tð Þ ¼ 1� lim
t!∞

P0 tð Þ:

For example, from expression (9) when a ¼ 1, we have:

P0 tð Þ ¼ 1þ κtð Þ�
q
κ for

q

κ
>0 (40)

and we take the limit as t ! ∞, we get:

lim
t!∞

Qnþ1 tð Þ ¼ 1� lim
t!∞

1þ κtð Þ�
q
κ ¼ 1: □

Proposition 1.8: Let N tð Þ be an NHP with transition intensities given by (21),
then
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exp �

ðtþh

t

λn v; að Þdv

8

<

:

9

=

;
¼

P
nð Þ
0 tþ hð Þ

P
nð Þ
0 tð Þ

for h≥0: (41)

Proof:
By substituting (28) into (40), we have

exp �

ðtþh

t

λn v; að Þdv

8

<

:

9

=

;
¼ exp

ðtþh

t

P
nþ1ð Þ
0 vð Þ

P
nð Þ
0 vð Þ

dv

8

<

:

9

=

;

¼ exp
ðtþh

t

d ln P
nð Þ
0 vð Þ

� �h i

8

<

:

9

=

;

¼ exp : ln P
nð Þ
0 vð Þ

h i
tþh
t

�
�
�
�
�

)

¼
P

nð Þ
0 tþ hð Þ

P
nð Þ
0 tð Þ

:

(

Corollary 1.8.1: Let N tð Þ be an NHP. If the probability that no event occurs in a
small interval of length h is denoted by P0 t, tþ hð Þ, that is P0 t, tþ hð Þ ¼
P N tþ hð Þ �N tð Þ ¼ 0ð Þ, then

P0 tþ hð Þ ¼ P0 tð Þ � P0 t, tþ hð Þ for t, h≥0: (42)

Proof:
According to Lundberg in [18]:

P N tþ hð Þ ¼ 0jN tð Þ ¼ 0ð Þ ¼ exp �

ðtþh

t

λ0 uð Þdu

8

<

:

9

=

;
(43)

where λ0 tð Þ denotes the intensity function associated with the time-dependent (or
nonstationary) PCP. If we make n ¼ 0 in (40), then we obtain

P0 t, tþ hð Þ ¼ exp �

ðtþh

t

λ0 v; að Þdv

8

<

:

9

=

;
¼

P0 tþ hð Þ

P0 tð Þ
(44)

Thus,

P0 tþ hð Þ ¼ P0 tð Þ � P0 t, tþ hð Þ for t, h≥0:

The expression obtained in (41) may be interpreted as if no event occurred, then
the NHP has independent increments.

Lemma 1.9: Let N tð Þ be an NHP with transition intensities given by (21). Then this
CP satisfies

Xm

j¼0

λ0j t; að Þ

λj t; að Þ
¼ λ0 t; að Þ � λmþ1 t; að Þ for all m≥0: (45)
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Proof:
From (25), we have

λ0j t; að Þ

λj t; að Þ
¼ λj t; að Þ � λjþ1 t; að Þ for all j≥0: (46)

Thus, (44) turns out the mth partial sum of a telescoping series and from here

Xm

j¼0

λ0j t; að Þ

λj t; að Þ
¼ λ0 t; að Þ � λmþ1 t; að Þ for all m≥0:

Now, using the above lemma, we will prove the following proposition:
Proposition 1.10: Let N tð Þ be an NHP with marginal pmf given by (5), then Pn tð Þ

satisfies that

i. Process with time-dependent increments

lim
h!0

Pn,nþ1 t, tþ hð Þ

h
¼ λn t; að Þ

ii. The probability that no event occurs in t, tþ hð � is

P0 t, tþ hð Þ ¼ 1� hλ0 t; að Þ þ o hð Þ (47)

iii. The probability that one event occurs in t, tþ hð � is

P1 t, tþ hð Þ ¼ hλ0 t; að Þ � o hð Þ (48)

iv. Faddy’s conjecture2: If the transition intensities be an increasing sequence
with n, i.e,

λ0 t; að Þ< λ1 t; að Þ< … < λn t; að Þ, for any fixed t (49)

then Var N tð Þ½ �> N tð Þ½ �, this last inequality is reversed for a decreasing
sequence.

Proof:
i. As theNHP is anMPP then, according to Lundberg in [18], for 0≤ u< v, i≤ j,
N tð Þ satisfies:

P N vð Þ ¼ j j N uð Þ ¼ ið Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pi,j u, vð Þ

¼
j

i

� �
u

v

� �i
1�

u

v

� �j�i Pj vð Þ

Pi uð Þ
(50)

Replacing the expression Pn tð Þ given in (12), when κ 6¼ 0, we obtain in (49)
that the transition probabilities for the NHP are:

2

See [21].
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Pi,j u, vð Þ ¼
j

i

 !

u

v

� �i
1�

u

v

� �j�i Pj vð Þ

Pi uð Þ

¼
j

i

 !

u

v

� �i v� u

v

� �j�i

�1ð ÞjvjP
jð Þ
0 vð Þ

j!

�1ð ÞiuiP
ið Þ
0 uð Þ

i!

2

6
6
6
4

3

7
7
7
5

¼
u� vð Þj�i

j� ið Þ!

P
jð Þ
0 vð Þ

P
ið Þ
0 uð Þ

¼
Yj�i

m¼1

v� u

m
λmþi�1 u; að Þ

h i

exp �

ðv

u

λj w; að Þdw

8

<

:

9

=

;
:

(51)

We complete the proof of the theorem by the following steps: Rewrite the product in
(50) by replacing all instances of i ¼ n, j ¼ nþ 1, u ¼ t and v ¼ tþ h, and we make the
limit as h approaches zero. Then the transition intensities given by (21) represent the
instantaneous transitions probabilities of the NHP.

ii. Certainly, the function given by (9) is continuous for t≥0 and also analytic,

due to P
nð Þ
0 tð Þ, exists for all n≥ 1. Then it is possible to express P0 tþ hð Þ

through a Taylor series as follows:

P0 tþ hð Þ ¼
X∞

m¼0

hm

m!
P

mð Þ
0 tð Þ: (52)

By substituting the expression for themth derivative of P0 tð Þ obtained given by (27) in
(51), we have:

P0 tþ hð Þ ¼ P0 tð Þ þ
X∞

m¼1

hm

m!
�1ð Þm

Ym�1

j¼0

λj t; að Þ

 !

P0 tð Þ

" #

: (53)

Notice that P0 tþ hð Þ satisfies (41), then (52) is similar to:4

P0 tð Þ � P0 t, tþ hð Þ ¼ P0 tð Þ 1þ
X∞

m¼1

�1ð Þm
hm

m!

Ym�1

j¼0

λj t; að Þ

 !" #

(54)

Let n ¼ m� 1 then:

P0 t, tþ hð Þ ¼ 1þ
X∞

n¼0

�1ð Þnþ1 hnþ1

nþ 1ð Þ!

Yn

j¼0

λj t; að Þ

 !

¼ 1� h
X∞

n¼0

�hð Þn

nþ 1ð Þ!

Yn

j¼0

λj t; að Þ

 ! (55)

From the expansion of the first terms of (54), we get:

P0 t, tþ hð Þ ¼ 1� hλ0 t; að Þ þ o hð Þ (56)
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where

o hð Þ ¼
X∞

n¼1

�hð Þnþ1

nþ 1ð Þ!

Yn

j¼0

λj t; að Þ:

The last function satisfies that lim
h!0

o hð Þ=h ¼ 0 ([21, 22]).

iii. From (55) and the fact P0 t, tþ hð Þ ¼ P N tþ hð Þ �N tð Þ ¼ 0ð Þ, we obtain

P N tþ hð Þ �N tð Þ>0ð Þ ¼ 1� P0 t, tþ hð Þ: (57)

Given that the NHP N tð Þ is an NHPBP and assuming that we have in a small time
interval, then there will be only two cases: there is a birth or not in that period. Thus,

P N tþ hð Þ �N tð Þ>0ð Þ ¼ P N tþ hð Þ �N tð Þ ¼ 1ð Þ ¼ P1 t, tþ hð Þ:

Then, from (56), we obtain:

P1 t, tþ hð Þ ¼ hλ0 t; að Þ � o hð Þ, (58)

provided that h is infinitesimal.

iv. According to Steutel et al. in ref. [16], a non-degenerate distribution Pn tð Þf g is

log-convex if and only if Pn tð Þ>0 for all n≥0 and Pnþ1 tð Þ
Pn tð Þ

n o

is a nondecreasing

sequence. By assumption

Pn tð Þ

Pn�1 tð Þ
<

Pnþ1 tð Þ

Pn tð Þ
for some n≥ 1 (59)

By substituting (5) into (58)

tn

n!
�1ð ÞnP

nð Þ
0 tð Þ

h i

tn�1

n� 1ð Þ!
�1ð Þn�1P

n�1ð Þ
0 tð Þ

h i <

tnþ1

nþ 1ð Þ!
�1ð Þnþ1P

nþ1ð Þ
0 tð Þ

h i

tn

n!
�1ð ÞnP

nð Þ
0 tð Þ

h i

1
n

�
P

nð Þ
0 tð Þ

P
n�1ð Þ
0 tð Þ

 !

<
1

nþ 1
�
P

nþ1ð Þ
0 tð Þ

P
nð Þ
0 tð Þ

 !

1
n
λn�1 t; að Þ <

1
nþ 1

λn t; að Þ

,

we know 1< nþ1
n for all n. Hence, we have the following:

λn�1 t; að Þ<
nþ 1
n

λn�1 t; að Þ< λn t; að Þ: (60)

Thus, we obtain that (48) is satisfied and, therefore, the conjecture holds.
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The expression (48) allows to identify under- or over-dispersion of a CP, then we
can classify the process according to the fixed criteria given in (16).

Corollary 1.10.1: If a 6¼ 0 and N tð Þ is an NHP, then it does not have independent
increments.

Proof:
From theorem 1.5, we know that an NHP is an MPP. According to McFadden in

ref. [9], if N tð Þ, t≥0f g is a CP with independent increments, then its transition
intensities satisfy that λ0 t; að Þ ¼ λ1 t; að Þ, but by expression (48), we get

λ0 t; að Þ ¼
q

1þ κtð Þa
6¼

aκ

1þ κt
þ

q

1þ κtð Þa
¼ λ1 t; að Þ if a 6¼ 0 (61)

And therefore, N tð Þ is a CP that does not have independent increments.
This was to be expected since that MPP has stationary increments but does not

meet the condition of independent increments (see [23]).

6. Conclusions

In this chapter, we studied the NHP presenting some of its properties indicating
that it is a good option for modelling CP regardless of the fact that it presents under-
or over-dispersion.

Using transition intensities, we found some properties of the NHP and provided
explicit analytic expressions for its pmf and cdf.
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