Exploring sex differences in associations of protein intake with change in muscle mass and physical functioning in older adults

geest ${ }^{1}$, Laura A. Schaap ${ }^{1}$, Martijn W. Heymans ${ }^{2}$, Linda M. Hengeveld ${ }^{1}$, Denise K. Houston ${ }^{3}$, Naumann ${ }^{4,5}$, Eleanor M. Simonsick ${ }^{6}$, Marjolein Visser ${ }^{1}$, Hanneke A.H. Wijnhoven ${ }^{1}$

Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health research institute, Amsterdam, the Netherlands; ${ }^{2}$ Department of Epidemiology and Biostatistics, Amsterdam Public Health research institute, VU University Medical Center, Amsterdam, the Netherlands;
${ }^{3}$ Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; ${ }^{4}$ Nutrition and Health, HAN University of Applied Science, Nijmegen, the Netherlands; ${ }^{5}$ European Federation of the Associations of Dietitians (EFAD), The Hague, the Netherlands; Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA

INTRODUCTION

A lower dietary protein intake has been associated with muscle mass loss, a decline in physical performance and more mobility limitations over time in old age. Current guidelines for protein intake advise $\geq 0.8 \mathrm{~g} / \mathrm{kg}$ body weight/d, while experts propose a higher intake for older adults (1.0-1.2 g/kg body weight/d), irrespective of sex. It is unknown whether optimal protein intake differs by sex.
Therefore, we investigated the shape of the associations of protein intake with change in appendicular lean mass (aLM), change in gait speed and mobility limitations incidence over 3 and 6 years in community-dwelling older adults, separately for men and women.

METHODS

Study population

- Health, Aging and Body Composition study (Health ABC Study), United States
- Community-dwelling men ($n=1163$) and women ($n=1237$), aged 70-81 years

Determinant

Dietary protein intake: 108-item food frequency questionnaire (1998/1999)

- grams per kg adjusted BW per day (g/kg aBW/d), using healthy instead of actual BW*

Outcomes

- Appendicular lean mass (aLM) (dual-energy X-ray absorptiometry) at baseline, $3 y$ and $6 y$
- Usual gait speed (20-m walkway) at baseline, $3 y$ and $6 y$
- Mobility limitations (2 consecutive reports of having difficulty walking $1 / 4$ mile or climbing 10 steps): incidence over $6 y$

Statistical analyses

- Stratified by sex
- aLM + gait speed: multiple linear regression
- Mobility limitations: Cox proportional hazards regression
- Linear and restricted cubic spline functions
- Model fit tested by likelihood ratio test
- Adjustment for socio-demographics, lifestyle factors, height, chronic conditions, and baseline outcome.

RESULTS

Table 1 - Characteristics, according to sex		
	Men	Women
Protein intake $(\mathrm{g} / \mathrm{d})$	71.3 ± 26.6	60.7 ± 22.3
Protein intake $(\mathrm{g} / \mathrm{kg}$ aBW/d)	0.94 ± 0.36	0.95 ± 0.36
aLM (kg)	23.7 ± 3.5	16.5 ± 3.1
6y-change in aLM (kg)	-1.2 ± 1.5	-0.71 ± 1.1
Gaid speed $(\mathrm{m} / \mathrm{s})$	1.2 ± 0.20	1.1 ± 0.21
6y-change in gaid speed (m/s)	-0.15 ± 0.17	-0.13 ± 0.17
Incidence of mobility limitations in 6y (\%)	38.5	43.0

Table 2 - Prospective associations between protein intake
(g / kg aBW/d) and three outcomes, according to sex

	Men		Women	
	$3 y$	$6 y$	$3 y$	$6 y$
Appendicular lean mass	$\mathrm{B}=207$	$\mathrm{~B}=-32$	$\mathrm{~B}=394$	$\mathrm{~B}=318$
	$\mathrm{P}=0.27$	$\mathrm{P}=0.91$	$\mathrm{P}=0.006$	$\mathrm{P}=0.097$
Gait speed	$\mathrm{B}=-0.04$	$\mathrm{~B}=-0.015$	$\mathrm{~B}=0.017$	$\mathrm{~B}=0.026$
	$\mathrm{P}=0.082$	$\mathrm{P}=0.61$	$\mathrm{P}=0.46$	$\mathrm{P}=0.43$
Mobility limitations	NA	$\mathrm{HR}=0.55$ $\mathrm{P}=0.019$	NA	$\mathrm{HR}=0.56$

B: coefficient of regression analyses with protein intake in $1 \mathrm{~g} / \mathrm{kg}$ aBW/d.
HR, hazard ratio; NA, not analysed; NS, not significant (red); borderline significant association ($P<0.10$) (orange); significant association ($\mathrm{P}<0.05$) (green).
Adjusted for baseline outcome, age, race, site, education, height, smoking, alcohol, walking, oral steroids, no. chronic diseases, hospitalizations, depressive symptoms, kidney function, energy intake and diet quality.

- For all outcomes, spline functions did not significantly improve the models, so linear models were used (Table 2).
- Significant associations were found for change in aLM in women and for incidence of mobility limitations in men and women (Table 2, Figure 1).

CONCLUSIONS

In our sample of older men and women, some sex-specific associations for protein intake were found:

- Linear association between higher protein intake and less loss of muscle mass in women
- No clear associations for gait speed decline in men and women
- Linear association between higher protein intake and a lower risk of mobility limitations in men and women

Future studies on sex differences in protein requirements are needed. A validation study in the Longitudinal Aging Study Amsterdam (LASA) will be performed.

Figure 1. Plots of the linear associations. A. aLM, 3 years, women. B. Incidence of mobility limitations over 6 years, men.
C. Incidence of mobility limitations over 6 years, women.

