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Abstract

In this paper, we study differential equations arising from the generating functions of the
3-variable Hermite polynomials. We give explicit identities for the 3-variable Hermite
polynomials. Finally, we investigate the zeros of the 3-variable Hermite polynomials by
using computer.
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1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers, Euler numbers,

Genocchi numbers, and tangent numbers see [1–15]. The special polynomials of two variables

provided new means of analysis for the solution of a wide class of differential equations often

encountered in physical problems. Most of the special function of mathematical physics and

their generalization have been suggested by physical problems.

In [1], the Hermite polynomials are given by the exponential generating function

X∞

n¼0

Hn xð Þ
t
n

n!
¼ e

2xt�t
2

:

We can also have the generating function by using Cauchy’s integral formula to write the

Hermite polynomials as
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Hn xð Þ ¼ �1ð Þnex
2 dn

dxn
e�x2 ¼

n!

2πi
∮ C

e2tx�t2

tnþ1
dt

with the contour encircling the origin. It follows that the Hermite polynomials also satisfy the

recurrence relation

Hnþ1 xð Þ ¼ 2xHn xð Þ � 2nHn�1 xð Þ:

Further, the two variables Hermite Kampé de Fériet polynomials Hn x; yð Þ defined by the

generating function (see [3])

X

∞

n¼0

Hn x; yð Þ
tn

n!
¼ extþyt2 (1)

are the solution of heat equation

∂

∂y
Hn x; yð Þ ¼

∂
2

∂x2
Hn x; yð Þ, Hn x; 0ð Þ ¼ xn:

We note that

Hn 2x;�1ð Þ ¼ Hn xð Þ:

The 3-variable Hermite polynomials Hn x; y; zð Þ are introduced [4].

Hn x; y; zð Þ ¼ n!

X

n
3½ �

k¼0

zkHn�3k x; yð Þ

k! n� 3kð Þ!
:

The differential equation and he generating function for Hn x; y; zð Þ are given by

3z
∂
3

∂x3
þ 2y

∂
2

∂x2
þ x

∂

∂x
� n

� �

Hn x; y; zð Þ ¼ 0

and

extþyt2þzt3 ¼
X

∞

n¼0

Hn x; y; zð Þ
tn

n!
, (2)

respectively.

By (2), we get

X

∞

n¼0

Hn x1 þ x2; y; zð Þ
tn

n!
¼ e x1þx2ð Þtþyt2þzt3

¼
X

∞

n¼0

xn2
tn

n!

X

∞

n¼0

Hn x1; y; zð Þ
tn

n!

¼
X

∞

n¼0

X

n

l¼0

n

l

 !

Hl x1; y; zð Þxn�l
2

 !

tn

n!
:

(3)
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By comparing the coefficients on both sides of (3), we have the following theorem.

Theorem 1. For any positive integer n, we have

Hn x1 þ x2; y; zð Þ ¼
X

n

l¼0

n

l

� �

Hl x1; y; zð Þxn�l
2 :

Applying Eq. (2), we obtain

X

∞

n¼0

Hn x; y; z1 þ z2ð Þ
tn

n!
¼ extþyt2þ z1þz2ð Þt3

¼
X

∞

k¼0

zn2
t3k

k!

X

∞

l¼0

Hl x; y; z1ð Þ
tl

l!

¼
X

∞

n¼0

X

n
3½ �

k¼0

Hn�3k x; y; z1ð Þzk2n!

k! n� 3kð Þ!
:

0

@

1

A

tn

n!
:

On equating the coefficients of the like power of t in the above, we obtain the following

theorem.

Theorem 2. For any positive integer n, we have

Hn x; y; z1 þ z2ð Þ ¼ n!

X

n
3½ �

k¼0

Hn�3k x; y; z1ð Þzk2
k! n� 3kð Þ!

:

Also, the 3-variable Hermite polynomials Hn x; y; zð Þ satisfy the following relations

∂

∂y
Hn x; y; zð Þ ¼

∂
2

∂x2
Hn x; y; zð Þ,

and

∂

∂z
Hn x; y; zð Þ ¼

∂
3

∂x3
Hn x; y; zð Þ:

The following elementary properties of the 3-variable Hermite polynomials Hn x; y; zð Þ are

readily derived form (2). We, therefore, choose to omit the details involved.

Theorem 3. For any positive integer n, we have

1 Hn 2x;�1; 0ð Þ ¼ Hn xð Þ:

2 Hn x; y1 þ y2; z
� �

¼ n!
P

n
2½ �

k¼0

Hn�2k x;y1 ;zð Þyk2
k! n�2kð Þ! :

3 Hn x; y; zð Þ ¼
P

n

l¼0

n

l

� �

Hl xð ÞHn�l �x; yþ 1; zð Þ:
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Theorem 4. For any positive integer n, we have

1 Hn x1 þ x2; y1 þ y2; z
� �

¼
P

n

l¼0

n

l

� �

Hl x1; y1; z
� �

Hn�l x2; y2
� �

:

2 Hn x1 þ x2; y1 þ y2; z1 þ z2
� �

¼
P

n

l¼0

n

l

� �

Hl x1; y1; z
� �

Hn�l x2; y2; z2
� �

:

The 3-variable Hermite polynomials can be determined explicitly. A few of them are

H0 x; y; zð Þ ¼ 1,

H1 x; y; zð Þ ¼ x,

H2 x; y; zð Þ ¼ x2 þ 2y,

H3 x; y; zð Þ ¼ x3 þ 6xyþ 6z,

H4 x; y; zð Þ ¼ x4 þ 12x2yþ 12y2 þ 24xz,

H5 x; y; zð Þ ¼ x5 þ 20x3yþ 60xy2 þ 60x2zþ 120yz,

H6 x; y; zð Þ ¼ x6 þ 30x4yþ 180x2y2 þ 120y3 þ 120x3zþ 720xyzþ 360z2,

H7 x; y; zð Þ ¼ x7 þ 42x5yþ 420x3y2 þ 840xy3 þ 210x4zþ 2520x2yzþ 2520y2zþ 2520xz2,

H8 x; y; zð Þ ¼ x8 þ 56x6yþ 840x4y2 þ 3360x2y3 þ 1680y4 þ 336x5zþ 6720x3yz

þ 20160xy2zþ 10080x2z2 þ 20160yz2:

H9 x; y; zð Þ ¼ x9 þ 72x7yþ 1512x5y2 þ 10080x3y3 þ 15120xy4 þ 504x6zþ 15120x4yz

þ 90720x2y2zþ 60480y3zþ 30240x3z2 þ 181440xyz2 þ 60480z3,

H10 x; y; zð Þ ¼ x10 þ 90x8yþ 2520x6y2 þ 25200x4y3 þ 75600x2y4 þ 30240y5 þ 720x7z

þ 30240x5yzþ 302400x3y2zþ 604800xy3zþ 75600x4z2

þ 907200x2yz2 þ 907200y2z2 þ 604800xz3:

Recently, many mathematicians have studied the differential equations arising from the gener-

ating functions of special polynomials (see [7, 8, 12, 16–19]). In this paper, we study differential

equations arising from the generating functions of the 3-variable Hermite polynomials. We give

explicit identities for the 3-variable Hermite polynomials. In addition, we investigate the zeros

of the 3-variable Hermite polynomials using numerical methods. Using computer, a realistic

study for the zeros of the 3-variable Hermite polynomials is very interesting. Finally, we observe

an interesting phenomenon of ‘scattering’ of the zeros of the 3-variable Hermite polynomials.

2. Differential equations associated with the 3-variable Hermite

polynomials

In this section, we study differential equations arising from the generating functions of the 3-

variable Hermite polynomials.

Let

F ¼ F t; x; y; zð Þ ¼ extþyt2þzt3 ¼
X

∞

n¼0

Hn x; y; zð Þ
tn

n!
, x, y, z, t∈ℂ: (4)
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Then, by (4), we have

F 1ð Þ ¼
∂

∂t
F t; x; y; zð Þ ¼

∂

∂t
extþyt2þzt3

� �

¼ extþyt2þzt3 xþ 2ytþ 3zt2
� �

¼ xþ 2ytþ 3zt2
� �

F t; x; y; zð Þ,

(5)

F 2ð Þ ¼
∂

∂t
F 1ð Þ t; x; y; zð Þ ¼ 2yþ 6ztð ÞF t; x; y; zð Þ þ xþ 2ytþ 3zt2

� �

F 1ð Þ t; x; y; zð Þ

¼ x2 þ 2y
� �

þ 6zþ 4xyð Þtþ 4y2 þ 6xz
� �

t2 þ 12yzð Þt3 þ 9z2
� �

t4
� �

F t; x; y; zð Þ:

(6)

Continuing this process, we can guess that

F Nð Þ ¼
∂

∂t

� �N

F t; x; y; zð Þ ¼
X

2N

i¼0

ai N; x; y; zð ÞtiF t; x; y; zð Þ, N ¼ 0; 1; 2;…ð Þ: (7)

Differentiating (7) with respect to t, we have

F Nþ1ð Þ ¼
∂F Nð Þ

∂t
¼

X

2N

i¼0

ai N; x; y; zð Þiti�1F t; x; y; zð Þ þ
X

2N

i¼0

ai N; x; y; zð ÞtiF 1ð Þ t; x; y; zð Þ

¼
X

2N

i¼0

ai N; x; y; zð Þiti�1F t; x; y; zð Þ þ
X

2N

i¼0

ai N; x; y; zð Þti xþ 2ytþ 3zt2
� �

F t; x; y; zð Þ

¼
X

2N

i¼0

iai N; x; y; zð Þti�1F t; x; y; zð Þ þ
X

2N

i¼0

xai N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X

2N

i¼0

2yai N; x; y; zð Þtiþ1F t; x; y; zð Þ þ
X

2N

i¼0

3zai N; x; y; zð Þtiþ2F t; x; y; zð Þ

¼
X

2N�1

i¼0

iþ 1ð Þaiþ1 N; x; y; zð ÞtiF t; x; y; zð Þ þ
X

2N

i¼0

xai N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X

2Nþ1

i¼1

2yai�1 N; x; y; zð ÞtiF t; x; y; zð Þ þ
X

2Nþ2

i¼2

3zai�2 N; x; y; zð ÞtiF t; x; y; zð Þ

Hence we have

F Nþ1ð Þ ¼
X

2N�1

i¼0

iþ 1ð Þaiþ1 N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X

2N

i¼0

xai N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X

2Nþ1

i¼1

2yai�1 N; x; y; zð ÞtiF t; x; y; zð Þ

þ
X

2Nþ2

i¼2

3zai�2 N; x; y; zð ÞtiF t; x; y; zð Þ:

(8)
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Now replacing N by N þ 1 in (7), we find

F Nþ1ð Þ ¼
X

2Nþ2

i¼0

ai N þ 1; x; y; zð ÞtiF t; x; y; zð Þ: (9)

Comparing the coefficients on both sides of (8) and (9), we obtain

a0 N þ 1; x; y; zð Þ ¼ a1 N; x; y; zð Þ þ xa0 N; x; y; zð Þ,

a1 N þ 1; x; y; zð Þ ¼ 2a2 N; x; y; zð Þ þ xa1 N; x; y; zð Þ þ 2ya0 N; x; y; zð Þ,

a2N N þ 1; x; y; zð Þ ¼ xa2N N; x; y; zð Þ þ 2ya2N�1 N; x; y; zð Þ þ 3za2N�2 N; x; y; zð Þ,

a2Nþ1 N þ 1; x; y; zð Þ ¼ 2ya2N N; x; y; zð Þ þ 3za2N�1 N; x; y; zð Þ,

a2Nþ2 N þ 1; x; y; zð Þ ¼ 3za2N N; x; y; zð Þ,

(10)

and

ai N þ 1; x; y; zð Þ ¼ iþ 1ð Þaiþ1 N; x; y; zð Þ þ xai N; x; y; zð Þ

þ 2yai�1 N; x; y; zð Þ þ 3zai�2 N; x; y; zð Þ, 2 ≤ i ≤ 2N � 1ð Þ:
(11)

In addition, by (7), we have

F t; x; y; zð Þ ¼ F 0ð Þ t; x; y; zð Þ ¼ a0 0; x; y; zð ÞF t; x; y; zð Þ, (12)

which gives

a0 0; x; y; zð Þ ¼ 1: (13)

It is not difficult to show that

xF t; x; yð Þ þ 2ytF t; x; y; zð Þ þ 3zt2F t; x; y; zð Þ

¼ F 1ð Þ t; x; y; zð Þ

¼
X

2

i¼0

ai 1; x; y; zð ÞF t; x; y; zð Þ

¼ a0 1; x; y; zð Þ þ a1ð1; x; y; zÞtþ a2ð1; x; y; zÞt2
� �

F t; x; y; zð Þ:

(14)

Thus, by (14), we also find

a0 1; x; y; zð Þ ¼ x, a1 1; x; y; zð Þ ¼ 2y, a2 1; x; y; zð Þ ¼ 3z: (15)

From (10), we note that

a0 N þ 1; x; y; zð Þ ¼ a1 N; x; y; zð Þ þ xa0 N; x; y; zð Þ,

a0 N; x; y; zð Þ ¼ a1 N � 1; x; y; zð Þ þ xa0 N � 1; x; y; zð Þ,…

a0 N þ 1; x; y; zð Þ ¼
X

N

i¼0

xia1 N � i; x; y; zð Þ þ xNþ1,

(16)

and

Differential Equations - Theory and Current Research86



a2Nþ2 N þ 1; x; y; zð Þ ¼ 3za2N N; x; y; zð Þ,

a2N N; x; y; zð Þ ¼ 3za2N�2 N � 1; x; y; zð Þ,…

a2Nþ2 N þ 1; x; y; zð Þ ¼ 3zð ÞNþ1
:

(17)

Note that, here the matrix ai j; x; yð Þ0 ≤ i ≤ 2Nþ2,0 ≤ j ≤Nþ1 is given by

1 x 2yþ x2 � ⋯ �

0 2y 4xyþ 6z � ⋯ �

0 3z 6xzþ 4y2 � ⋯ �

0 0 12yz � ⋯ �

0 0 3zð Þ2 � ⋯ �

0 0 0 � ⋯ �

0 0 0 3zð Þ3 ⋯ �

⋮ ⋮ ⋮ ⋮ ⋱ �

0 0 0 0 ⋯ 3zð ÞNþ1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Therefore, we obtain the following theorem.

Theorem 5. For N ¼ 0; 1; 2,…, the differential equation

F Nð Þ ¼
∂

∂t

� �N

F t; x; y; zð Þ ¼
X

N

i¼0

ai N; x; y; zð Þti

 !

F t; x; y; zð Þ

has a solution

F ¼ F t; x; y; zð Þ ¼ extþyt2þzt3 ,

where

a0 N þ 1; x; y; zð Þ ¼
X

N

i¼0

xia1 N � i; x; y; zð Þ þ xNþ1,

a1 N þ 1; x; y; zð Þ ¼ 2a2 N; x; y; zð Þ þ xa1 N; x; y; zð Þ þ 2ya0 N; x; y; zð Þ,

a2N N þ 1; x; y; zð Þ ¼ xa2N N; x; y; zð Þ þ 2ya2N�1 N; x; y; zð Þ þ 3za2N�2 N; x; y; zð Þ,

a2Nþ1 N þ 1; x; y; zð Þ ¼ 2ya2N N; x; y; zð Þ þ 3za2N�1 N; x; y; zð Þ,

a2Nþ2 N þ 1; x; y; zð Þ ¼ 3zð ÞNþ1,
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and

ai N þ 1; x; y; zð Þ ¼ iþ 1ð Þaiþ1 N; x; y; zð Þ þ xai N; x; y; zð Þ

þ 2yai�1 N; x; y; zð Þ þ 3zai�2 N; x; y; zð Þ, 2 ≤ i ≤ 2N � 1ð Þ:

From (4), we note that

F Nð Þ ¼
∂

∂t

� �N

F t; x; y; zð Þ ¼
X

∞

k¼0

HkþN x; y; zð Þ
tk

k!
: (18)

By (4) and (18), we get

e�nt ∂

∂t

� �N

F t; x; y; zð Þ ¼
X

∞

m¼0

�nð Þm
tm

m!

 !

X

∞

m¼0

HmþN x; y; zð Þ
tm

m!

 !

¼
X

∞

m¼0

X

m

k¼0

m

k

 !

�nð Þm�kHNþkðx; y; zÞ

 !

tm

m!
:

(19)

By the Leibniz rule and the inverse relation, we have

e�nt ∂

∂t

� �N

F t; x; y; zð Þ ¼
X

N

k¼0

N

k

 !

nN�k ∂

∂t

� �k

e�ntF t; x; y; zð Þ
� �

¼
X

∞

m¼0

X

N

k¼0

N

k

 !

nN�kHmþk x� n; y; zð Þ

 !

tm

m!
:

(20)

Hence, by (19) and (20), and comparing the coefficients of tm

m!
gives the following theorem.

Theorem 6. Let m, n,N be nonnegative integers. Then

X

m

k¼0

m

k

� �

�nð Þm�kHNþk x; y; zð Þ ¼
X

N

k¼0

N

k

� �

nN�kHmþk x� n; y; zð Þ: (21)

If we take m ¼ 0 in (21), then we have the following corollary.

Corollary 7. For N ¼ 0; 1; 2,…, we have

HN x; y; zð Þ ¼
X

N

k¼0

N

k

� �

nN�kHk x� n; y; zð Þ:

For N ¼ 0; 1; 2,…, the differential equation

F Nð Þ ¼
∂

∂t

� �N

F t; x; y; zð Þ ¼
X

N

i¼0

ai N; x; y; zð Þti

 !

F t; x; y; zð Þ

has a solution
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F ¼ F t; x; y; zð Þ ¼ extþyt2þzt3
:

Here is a plot of the surface for this solution. In Figure 1(left), we choose �2 ≤ z ≤ 2, �1 ≤ t ≤ 1,

x ¼ 2, and y ¼ �4. In Figure 1(right), we choose �5 ≤ x ≤ 5, � 1 ≤ t ≤ 1, y ¼ �3, and z ¼ �1.

3. Distribution of zeros of the 3-variable Hermite polynomials

This section aims to demonstrate the benefit of using numerical investigation to support

theoretical prediction and to discover new interesting pattern of the zeros of the 3-variable

Hermite polynomials Hn x; y; zð Þ. By using computer, the 3-variable Hermite polynomials

Hn x; y; zð Þ can be determined explicitly. We display the shapes of the 3-variable Hermite poly-

nomials Hn x; y; zð Þ and investigate the zeros of the 3-variable Hermite polynomials Hn x; y; zð Þ.

We investigate the beautiful zeros of the 3-variable Hermite polynomials Hn x; y; zð Þ by

using a computer. We plot the zeros of the Hn x; y; zð Þ for n ¼ 20, y ¼ 1, � 1, 1þ i, � 1� i,

z ¼ 3, � 3, 3þ i, � 3� i and x∈C (Figure 2). In Figure 2(top-left), we choose n ¼ 20, y ¼ 1,

and z ¼ 3. In Figure 2(top-right), we choose n ¼ 20, y ¼ �1, and z ¼ �3. In Figure 2(bottom-

left), we choose n ¼ 20, y ¼ 1þ i, and z ¼ 3þ i. In Figure 2(bottom-right), we choose n ¼ 20,

y ¼ �1� i, and z ¼ �3� i.

In Figure 3(top-left), we choose n ¼ 20, x ¼ 1, and y ¼ 1. In Figure 3(top-right), we choose

n ¼ 20, x ¼ �1, and y ¼ �1. In Figure 3(bottom-left), we choose n ¼ 20, x ¼ 1þ i, and

y ¼ 1þ i. In Figure 3(bottom-right), we choose n ¼ 20, x ¼ �1� i, and y ¼ �1� i.

Stacks of zeros of the 3-variable Hermite polynomialsHn x; y; zð Þ for 1 ≤n ≤ 20 from a 3-D structure

are presented (Figure 3). In Figure 4(top-left), we choose n ¼ 20, y ¼ 1, and z ¼ 3. In Figure 4

(top-right), we choose n ¼ 20, y ¼ �1, and z ¼ �3. In Figure 4(bottom-left), we choose n ¼ 20,

y ¼ 1þ i, and z ¼ 3þ i. In Figure 4(bottom-right), we choose n ¼ 20, y ¼ �1� i, and z ¼ �3� i.

Figure 1. The surface for the solution F t; x; y; zð Þ.
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Our numerical results for approximate solutions of real zeros of the 3-variable Hermite poly-

nomials Hn x; y; zð Þ are displayed (Tables 1–3).

The plot of real zeros of the 3-variable Hermite polynomials Hn x; y; zð Þ for 1 ≤n ≤ 20 structure

are presented (Figure 5).

In Figure 5(left), we choose y ¼ 1 and z ¼ 3. In Figure 5(right), we choose y ¼ �1 and z ¼ �3.

Stacks of zeros of Hn x;�2; 4ð Þ for 1 ≤ n ≤ 40, forming a 3D structure are presented (Figure 6). In

Figure 6(top-left), we plot stacks of zeros of Hn x;�2; 4ð Þ for 1 ≤ n ≤ 20. In Figure 6(top-right),

we draw x and y axes but no z axis in three dimensions. In Figure 6(bottom-left), we draw y

Figure 2. Zeros of Hn x; y; zð Þ.
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and z axes but no x axis in three dimensions. In Figure 6(bottom-right), we draw x and z axes

but no y axis in three dimensions.

It is expected that Hn x; y; zð Þ, x∈C, y, z∈R, has Im xð Þ ¼ 0 reflection symmetry analytic com-

plex functions (see Figures 2–7). We observe a remarkable regular structure of the complex

roots of the 3-variable Hermite polynomials Hn x; y; zð Þ for y, z∈R. We also hope to verify a

remarkable regular structure of the complex roots of the 3-variable Hermite polynomials

Hn x; y; zð Þ for y, z∈R (Tables 1 and 2). Next, we calculated an approximate solution satisfying

Hn x; y; zð Þ ¼ 0, x∈C. The results are given in Tables 3 and 4.

Figure 3. Zeros of Hn x; y; zð Þ.
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The plot of real zeros of the 3-variable Hermite polynomials Hn x; y; zð Þ for 1 ≤n ≤ 20 structure

are presented (Figure 7).

In Figure 7(left), we choose x ¼ 1 and y ¼ 2. In Figure 7(right), we choose x ¼ �1 and y ¼ �2.

Finally, we consider the more general problems. How many zeros does Hn x; y; zð Þ have?

We are not able to decide if Hn x; y; zð Þ ¼ 0 has n distinct solutions. We would also like to know

the number of complex zeros CHn x;y;zð Þ of Hn x; y; zð Þ, Im xð Þ 6¼ 0: Since n is the degree of the

polynomial Hn x; y; zð Þ, the number of real zeros RHn x;y;zð Þ lying on the real line Im xð Þ ¼ 0 is

then RHn x;y;zð Þ ¼ n� CHn x;y;zð Þ, where CHn x;y;zð Þ denotes complex zeros. See Tables 1 and 2 for

Figure 4. Stacks of zeros of Hn x; y; zð Þ, 1 ≤ n ≤ 20.
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Degree n Real zeros Complex zeros

1 1 0

2 0 2

3 1 2

4 2 2

5 1 4

6 2 4

7 3 4

8 2 6

9 3 6

10 4 6

11 3 8

12 4 8

13 3 10

14 4 10

Table 1. Numbers of real and complex zeros of Hn x; 1; 3ð Þ.

Degree n Real zeros Complex zeros

1 1 0

2 2 0

3 1 2

4 2 2

5 3 2

6 2 4

7 3 4

8 4 4

9 3 6

10 4 6

11 5 6

12 6 6

13 5 8

14 6 8

Table 2. Numbers of real and complex zeros of Hn x;�1;�3ð Þ.
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tabulated values of RHn x;y;zð Þ and CHn x;y;zð Þ. The author has no doubt that investigations along

these lines will lead to a new approach employing numerical method in the research field of

the 3-variable Hermite polynomials Hn x; y; zð Þ which appear in mathematics and physics. The

reader may refer to [2, 11, 13, 20] for the details.

Degree n x

1 0

2 —

3 � 1.8845

4 3.1286, �0.17159

5 �4.5385

6 �5.8490, �1.3476

7 �7.1098, �2.1887, �0.36350

8 �8.3241, �3.4645

9 �9.4984, � 4.6021, � 1.1118

10 �10.637, � 5.7212, � 1.5785, �0.61919

11 �11.745, � 6.8105, � 2.8680

12 �12.824, � 7.8743, � 3.8894, � 0.99513

Table 3. Approximate solutions of Hn x; 1; 3ð Þ ¼ 0, x∈R.

Figure 5. Real zeros of Hn x; y; zð Þ, 1 ≤ n ≤ 20.
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Figure 6. Stacks of zeros of Hn x;�2; 4ð Þ for 1 ≤ n ≤ 20.

degree n x

1 0

2 �1.4142, 1.4142

3 3.3681

4 0.16229, 5.0723

5 �1.3404, 1.4745, 6.6661

6 2.9754, 8.1678

7 0.31213, 4.3783, 9.5946
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