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Abstract

Coral reefs provide substantial ecological and economic services to coastal communities 
in the tropics. Hence, there is a great concern about the permanence of these ecosystems 
and the consequent loss of the economic, ecological and social services coral reefs provide 
due to their susceptibility to natural and anthropogenic threats. Large-scale processes 
such as strong El Niño Southern Oscillation events, global warming and ocean acidifica-
tion represent significant challenges for coral reefs. Benthic cyanobacteria and seaweed 
have substantially increased in reef areas, facilitated by excessive nutrient input, reduc-
tion in herbivore populations and global warming. This review briefly describes the cur-
rently known aspects of coral, algae and cyanobacterial interactions, as well as the local 
and global environmental and ecological aspects that have caused the increase of algae 
and cyanobacteria in detriment to reef corals. Reef communities will keep changing in the 
light of large-scale events and anthropogenic influences. As short-term measures, ambi-
tious programs for grazer reintroduction could help curb population growth of algae and 
cyanobacteria. Medium- to long-term measures should be oriented at limiting nutrient 
input to water bodies.
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1. Introduction

Coral reefs constitute one of the most important, diverse and productive ecosystems in the 

planet. These ecosystems provide a great number of goods as well as economic and ecological 

services. Coral reefs protect coastal areas such as seagrasses and mangroves from  erosion [1–3]. 
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Coral reefs supply different food sources to coastal communities and also provide  habitat for 
fish, molluscs and crustaceans of commercial interest [4–6]. Coral reefs also harbor a large 

diversity of microorganisms, algae and invertebrates that have provided researchers, the 

pharmaceutical, nutraceutical and cosmeceutical industries with many interesting bioactive 

molecules [7, 8].

Currently, the oceans are suffering remarkable changes evidenced by the increase and inten-

sity of diseases, mass mortalities and blooms of several photosynthetic organisms. All these 
events have occurred in both disturbed and undisturbed areas around the globe (reviewed 

in [9]). Among some of the causes that have been linked to these events are global warm-

ing, increased UV radiation, overfishing, pollution and coastal eutrophication and oxygen 
depletion. However, some of all these factors may act in a synergistic manner rather than in 

isolation, considering that there are large spatial and temporal scales involved in all those 

processes [9–11].

Degradation of coral reefs has increased considerably world-wide, at least for which there are 

records of the phenomenon, since there is no consensus of what a pristine reef is [12]; there-

fore, it is very hard to assess the magnitude of changes and impacts compared to “base line” 

conditions [13]. Reef degradation has been linked to human activities and impacts; hence, 

there is a great concern about the permanence of these ecosystems and the consequent loss of 

the economic, ecological and social services coral reefs provide [14–16]. Moreover, large-scale 

processes such as the incidence of strong El Niño Southern Oscillation [ENSO] events, global 

warming and ocean acidification represent an enormous challenge for coral reefs to survive 
and remain as we know them today [17].

2. Cyanobacteria in reefs

Cyanobacteria are eubacteria with photosynthetic capabilities considered as “primitive 

microalgae” for a long time. These are ancient organisms dating back to 3.5 billion years 

as evidenced by their fossil record, particularly in stromatolites [18]. Recent molecular 

data have revealed that cyanobacteria are a polyphyletic group, and taxa, traditionally 

grouped by having similar morphologies, have different phylogenetic affiliations [19–22]. 

Cyanobacteria have a wide distribution in terrestrial and aquatic environments. Some taxa 

are involved in close symbiotic relationships with diatoms, sponges, corals, lichens and 

plants such as water ferns and cycads [23–26]. Many cyanobacteria are able to fix atmo-

spheric nitrogen, making a significant contribution of this element into environments where 
it is usually limiting [27–30].

Marine benthic cyanobacteria thrive in a wide variety of habitats including rocky coast-

lines, sandy beaches, mangroves, marshes and swamps. The distribution of cyanobacte-

rial mats is influenced by sediment type, tidal exposure and wave energy [31]. In coral 

reefs, given their abundance at certain times and locations, cyanobacteria may play a simi-

lar role to algae in terms of primary production and interactions with herbivores [32]. 
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Cyanobacteria have long been regarded as regular elements of tropical marine communi-

ties and for that reason included in floristic lists from a number of tropical regions world-

wide [33–35]. However, blooms of marine benthic cyanobacteria have become frequent in 

coastal areas receiving significant nutrient input from runoff and groundwater, as well as 
a result of large-scale climatic and hydrological changes [10, 11, 26, 36, 37]. Cyanobacterial 

blooms, toxin production and derived health risks are currently considered a public health 

hazard [38–43].

Blooms of marine benthic cyanobacteria grow on the substrate forming dark flimsy mats, 
usually red, purple, brown or black. There are several reports of marine benthic cya-

nobacteria blooms in several sites in the Pacific, in the island of Guam [44–46], in some 

Micronesian atolls and also in the Hawaiian Islands [50]. In the Atlantic, cyanobacterial 
blooms are a recurrent event strongly subject to seasonality in the state of Florida [51, 52]. 

In the Caribbean, there are reports from Puerto Rico [53], the Bahamas, Belize and the 
Virgin Islands [52], and the Colombian Caribbean [35, 54, 55]. Cyanobacterial blooms not 

only occur in coral reefs but also in seagrass meadows [56–58], mangroves [56, 57], estuar-

ies and coastal lagoons [59].

Blooms in Guam and Australia, due to their extension, persistence and toxicity, have caused 
mass mortalities of fishes, as well as significant economic losses and health problems in 
residents or visitors to coastal areas. Marine turtles and manatees are also impacted by 

these blooms due to toxin exposure [60, 61]. Additionally, benthic cyanobacteria are often 
the dominant organisms that colonize coral skeletons after bleaching events [62]. Although 
several species of cyanobacteria grow in microbial mats, these tend to be dominated by 

a single species, although the reasons by which a species dominates over the other(s) 

are not yet entirely clear [63]. Additionally, cyanobacteria and turf algae may prevent or 
inhibit the settlement of coral larvae [50, 64–67]. The increasing occurrence, frequency and 

intensity of benthic cyanobacterial blooms, is now considered a great threat to coral reefs 

around the world [51]. Benthic cyanobacteria most commonly linked to bloom formation 
are included in the orders Chroococcales and Oscillatoriales, with the most common gen-

era being Schizothrix, Hormothamnion, Oscillatoria and Lyngbya [68]. Lyngbya, in particular, 

is probably the most studied genus for which there is a great number of bloom reports and 

whose chemistry and chemical ecology are better documented [44, 45, 69–75]. However, 

recent studies have reassessed the phylogenetic affiliation of this genus finding that it is 
a rather diverse complex of species now reassigned into the genera Moorea, Okeania or 

Lyngbya, which may explain the vast chemical complexity of what used to be considered a 

single genus [19–22]. Although the taxonomy of the group has changed substantially, for 
the purpose of this review, I will refer to the names that were originally assigned in the 

papers where they were described.

Blooms of benthic cyanobacteria develop fast, covering vast areas in a period of few weeks. 
In those events, cyanobacteria grow on the substrate forming mats that can smother benthic 

organisms. As the bloom progresses, it can turn adjacent sediment and waters anoxic [49]. 

Cyanobacterial detachment from the sediment, either by flotation or wave action, may pro-

mote their dispersion [49, 68].
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3. Algae in reefs

Algae are very important members of reef communities where they provide food and refuge to 
many organisms. They are also the basis of the reef food web [76]. Due to their different phylo-

genetic affiliations, varying forms and functions, algae are classified into three large functional 
groups based on growth form and size, ecological characteristics, toughness, susceptibility to her-

bivores and photosynthetic abilities. Functional groups are used to characterize algal communi-

ties in coral reefs and to understand their distribution and responses to environmental factors [76].

Filamentous and small algae with fast growth rates are included in the turf algae category. 

Multispecies assemblages of turf algae can be very abundant in reefs despite their low bio-

mass. They are an attractive food source for several herbivores, preventing their overgrowth. 
Cyanobacteria are also included in this category [76]. The next category, fleshy macroalgae, 
is commonly known as seaweeds and includes the most well-known forms. Seaweed can be 

very abundant in reefs and have several adaptations to avoid herbivory [77–79]. A third cat-
egory, coralline or crustose algae, secretes calcium carbonate and is important in cementing 

the reef framework but also in attracting coral recruits [80, 81].

4. Factors favoring the growth of algae and cyanobacteria in reefs

Competition for light and space between benthic algae and corals affects coral resilience and is 
essential when assessing the degree of reef health [65, 76]. In healthy coral reefs, reduced nutri-

ent availability and high grazing pressure are the most important factors controlling the growth 

of algal turf and fleshy algae [82]. Phase shifts or phase changes are evident by a decrease in 

the cover and recruitment of corals compared to the colonization and substrate cover by turf 

algae, seaweed and cyanobacteria [14, 65, 83]. Phase shifts are common in many degraded 

reefs due to disparity in coral-algal interactions [15, 76, 86]. Under stressful conditions, favored 

by bleaching events, partial mortality or reduced grazing pressure, algae and cyanobacteria 

become competitively superior to corals, eventually overgrowing and killing them [15, 87].

Alleged causes linked to cyanobacterial blooms in fresh and brackish waters have been thor-

oughly studied (reviewed in [88]). However, blooms of marine benthic cyanobacteria are not 

understood that well. Normally, they occur in shallow waters, and environmental factors 

such as high temperatures, reduced wave action and the availability of phosphorus, nitrogen 

and iron have been linked to their formation [48, 49, 66, 89, 90]. Individual strains of cyano-

bacteria vary greatly in their bloom dynamics, which in some cases may be controlled by 

physical disturbances rather that nutrient availability or competition with macroalgae [91]. 

Several studies, however, have established correlations between bloom formation and mild 

wave action and increases in water temperature, phosphate levels and/or iron bioavailability. 

Bloom persistence, however, has been correlated to the low palatability of cyanobacteria to 
most generalist herbivores [45, 50, 70, 88, 92, 93].

Algal and cyanobacterial blooms may be difficult to explain because as multispecies consortia 
(at least in the case of cyanobacterial blooms) the dynamics in bloom formation may be a result 
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of species-specific adaptations or preferences (reviewed in [94]). Also, the resulting increased 
growth may be a result of nutrient loading and/or reduction or absence of grazing [94]. Hence, 

food web dynamics may be important to understand this phenomenon. However, it is a no-

brainer that the removal of large and small herbivores [12] has certainly favored the growth 

of cyanobacteria and algae, which have taken advantage of the increased nutrient availability 

and decreased grazing pressure.

5. Water temperature and cyanobacterial blooms

Sustained water temperatures over 28°C, alterations of flow and time of residence, decrease in 
water viscosity, large-scale mixing processes and small-scale turbulence are physical factors 

that correlate with cyanobacterial bloom formation [10, 88, 89, 95].

Thorough monitoring of Lyngbya majuscula blooms in the coasts of Puerto Rico from September 

1998 until February 2000 showed that during September 1998 and September 2000 to December 

2000, Lyngbya achieved the greatest cover coinciding with the highest temperatures recorded. 

While mean cover values ranged between 7 and 82% year-round, Lyngbya cover reached up 

a 100% during the warmest periods [53]. In Rosario Islands, Colombia, a similar pattern was 
observed in September 2010 and 2011, where the cover of cyanobacterial mats reached a 100%, 

concurring with sustained water temperatures above 30°C [93].

In Australia, benthic cyanobacterial blooms are recognized as an environmental health hazard  
[47, 49, 96]. Monitoring of L. majuscula mats in eastern Australia during 2005 showed that dur-

ing the cool winter months blooms did not develop, but between the months of October and 

November, when water temperature increased, there was a fast development of Lyngbya mats. 

Blooms began gradually at the end of October, when total bottom cover of L. majuscula did not 

surpass 10% in an area of 49 hectares. During November, the total bottom cover of L. majuscula 

reached values close to 40% in an approximate area of 329 hectares. At the same time, water 
temperature increased from 23.5°C in October to 30.8°C in December. By the end of December, 
the bloom covered almost a 100% of the total available substrate in an area of 529 hectares [89]. 

I calculated an approximate wet biomass of 5000 Tons when the bloom reached its peak. As 
temperature decreased, so did Lyngbya cover. Similar patterns were registered in the Colombian 
Caribbean. Mats of L. majuscula and L. sordida covered extensions close to a 100% of the available 

reef substrate in Rosario Islands in September 2010 when the water temperature surpassed 30°C 

[93]. Also, mats of Symploca hydnoides and Phormidium submembranaceum were very conspicuous 

in Old Providence Island during October 2009 and July 2010. Again, those blooms took place 
during the warmest months recorded in the San Andres Archipelago [above 28°C] [55, 93].

6. Nutrient input favors the growth of algae and cyanobacteria

Water quality degradation as a result of increased nutrient input promotes the develop-

ment and persistence of algal blooms and is one of the reasons that explains their expansion  
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worldwide [94]. Although assessing the influence of nutrients is far more complicated than 
correlating these with increased water temperatures, experts agree that nutrients play a sig-

nificant role in favoring blooms. Regular or pulsated nutrient delivery promotes bloom devel-
opment; the overall composition—not just concentration—of nutrient input impacts blooms 

and high-biomass blooms may be partly sustained by exogenous nutrient sources [94].

Several studies have shown that cyanobacterial blooms are stimulated by the increase in 

nutrient concentration in water bodies. Nutrient increase may be a result of sewage disposal, 

animal husbandry or agricultural activities [26, 41, 49, 56, 57, 88, 89, 95, 97]. Rains also stimu-

late bloom formation due to increased runoff and river flow providing extra amounts of nutri-
ents from terrestrial environments to coastal areas [49, 55, 98]. Groundwater and atmospheric 
deposition may also influence bloom formation and dynamics [94]. Nutrients that do have 

a stimulating growth effect on cyanobacteria are iron, phosphorus and nitrogen [26, 36, 49, 

57, 89, 90, 99]. In the Colombian Caribbean, I have detected an apparent synergistic effect of 
high temperatures, the onset of rainy seasons and nutrient increase with incidence of marine 

cyanobacteria blooms at various sites [55, 93].

Anthropogenic activities such as the use of fertilizers and the dumping of urban and indus-

trial waste waters provide significant amounts of nutrients into water bodies [26]. The input of 

key nutrients favor the growth of phototrophic organisms such as plants, algae and cyanobac-

teria, largely controlling aquatic primary production in marine environments where nitrogen 

is usually limiting. These blooms, with oxygen consumption during the hours of darkness, 

generate anoxia and consequent mortality of fish and other aquatic organisms [56].

7. The effect of cyanobacteria and algae on corals

There is significant evidence that reef degradation has increased on a global scale. Just in the 
Caribbean region, at least 20% of live coral coverage has been lost per decade [6]. This loss has 

been attributed to the increase in human population, dumping of waste water, soil erosion 
and subsequent sediment input by rivers, eutrophication, imbalance of food chains, prolifera-

tion of macroalgae [65, 100, 101], diseases and climate change [101, 102], as well as the removal 

or decimation of top predators and large herbivores [12].

Competition is a process that determines the structure, composition and diversity of benthic com-

munities in coral reefs [5, 103–107]. In coral reefs, competition between sessile organisms such as 

benthic algae and corals has become very significant for the resilience of corals due to the domi-
nance and vast cover of algae and cyanobacteria in affected coral reefs [65]. Reef deterioration has 

caused a significant replacement of live coral cover by cyanobacteria and macroalgae [59, 83, 108].

The strong competition for space between coral, algae and marine cyanobacteria can deter-

mine the structure, composition and abundance of these three groups in coral reefs [59, 109]. 

Overgrowth of algae or cyanobacteria on corals can cause deleterious effects on their health 
[50, 54, 55, 66, 110]. The vast occurrences of benthic algae and cyanobacteria in coral reefs are 

certainly an indication of the prevalent ecological conditions and may serve as indicators of 

coral reef health and local ecological imbalances [51, 111].
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Coral reefs have a great diversity of herbivores that can exert a strong pressure on commu-

nities of primary producers such as macroalgae and cyanobacteria [2, 15]. In tropical areas, 

the most important herbivores in terms of consumption and impact on macroalgae are fish 
and sea urchins [70, 72, 77]. These herbivores can consume between 60 and 100% of the algal 

biomass daily [112–114]. Herbivory and nutrient input are two more determinant factors that 

define the relationship between algae and corals in reefs [85, 115] and the success of algae in 

other coastal ecosystems [116].

However, the generalized decrease in the populations of reef herbivores is an indirect cause 

of the increase in algal coverage and consequent phase shifts [2, 15, 50, 83]. Overfishing in reef 
areas has decimated the populations of herbivorous fish causing imbalances in the popula-

tions of macroalgae and their consequent overgrowth on corals and other substrates [2, 83, 

84]. Occasionally, other herbivores such as sea urchins can sometimes increase in response 

to the decrease in herbivorous fishes and control algal populations. In the Caribbean basin, 
however, mass mortalities of sea urchins, particularly Diadema antillarum, triggered an exces-

sive increase of algae in Jamaica and other locations [83].

Benthic cyanobacteria are efficient colonizers in a wide array of substrates such as coral skel-
etons, live coral, sand and even macroalgae. Cyanobacteria increase the magnitude of the 

phase shifts [51]. Benthic cyanobacteria, as well as macroalgae, are favored by bottom-up 
(increase in nutrients in the water bodies) and top-down effects (such as the decline of herbi-
vores in reefs) [85]. Various studies have shown that the most important factor in controlling 

algae populations in coral reef areas is herbivory and the lack of it increases the consequences 

of phase changes more so than eutrophication, especially in the Caribbean [117].

Seaweed or macroalgae, compared to terrestrial plants, are mostly foliage, lacking dense struc-

tural material such as lignin, cellulose and hemicellulose, being more susceptible to herbivore 

consumption [118]. Benthic cyanobacterial mats strongly resemble macroalgae because they 
may exhibit large biomass and could become a potential food source for reef herbivores [44]. 

During blooms, cyanobacteria can surpass macroalgae in terms of available biomass [44, 72, 93].

Herbivory in reef areas generates a strong pressure on macroalgae and cyanobacteria. In 

“healthy” reefs, grazing rates may reach 100% of the produced biomass [77, 85, 112, 119]. 

Macroalgae and cyanobacteria, however, minimize grazing by means of spatial or temporal 

escapes, tolerating herbivory by compensating tissue loss with fast growth rates or invest-

ing in structural or chemical defenses [77–79, 113]. The production of feeding deterrent com-

pounds, in particular, is well documented in these groups and plays an important role against 

grazing, enabling the growth and persistence of algae and cyanobacteria in coral reef areas 

[78, 119]. Besides deterring herbivores, chemically defended cyanobacteria could be favored 
by selective fish and urching grazing over palatable macroalgae, removing potential competi-
tors and favoring their growth and expansion in reef areas [26].

Massive colonization of hard substrates by algae and benthic cyanobacteria can determine 

competitive networks, structure, composition and abundance of these three groups locally [51, 

109]. In events where the abundance of cyanobacteria or macroalgae greatly increases, there is 

also an increase in overgrowth interactions with corals. The overgrowth of cyanobacteria and 
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algae over corals may cause deleterious effects on their health [50, 66, 110]. In the Colombian 

Caribbean, the growth of benthic cyanobacterial mats over different species of scleractinian 
corals and soft corals eventually results in the death of the coral tissue that underlies those mats 

[54, 93] (Figure 1). In the Florida Keys, [50] determined that the brown seaweeds Dictyota and 

Lobophora, as well as several species of Lyngbya, not only inhibited the larval settlement of the 
hard coral Porites astreoides and the soft coral Briareum asbestinum, but also showed increased 

recruit mortality when the larvae came into direct contact with these organisms. Hence, sea-

weed and cyanobacteria may be considered competitively superior to corals not just by taking 

up space but also by inhibiting their recruitment.

Competition through allelopathic mechanisms by benthic marine cyanobacteria causes harm-

ful effects on corals and soft corals. This has been observed in the field and tested in laboratory 
experiments in various sites such as the Bahamas, Belize, Florida and Panama [52], Florida 

[120], Hawaii [121] and the Colombian Caribbean [54, 93]. Experiments have been performed 

over coral embryos and larvae [50, 66] or adult corals [110].

[66] compared the recruitment and survival of embryos of the hard corals Pocillopora damicor-

nis and Acropora surculosa, in the presence of the cyanobacterium L. majuscula. Coral embryos 

got tangled in the dense Lyngbya filaments and died. Cyanobacterial mats may trap coral 
embryos but also promote sediment deposition and accumulation surrounding benthic micro-

bial mats [122]. Under these mats, anoxic conditions may develop, which may favor nitrogen 

fixation but are potentially deadly to the very sensitive coral embryos [66]. Since recruitment is 

a key process in the maintenance and recovery of coral reef ecosystems [50, 123], any alteration 

in this process has negative implications and will affect the persistence and resilience of corals.

The fact that allelopathy is so hard to prove experimentally does not mean that it does not 

occur in reef environments. Cyanobacteria, in particular, while being in direct contact with 

corals, could release allelopathic compounds as a result of abrasion by water motion with con-

sequent cell rupture. Many studies have shown that toxin release from cyanobacteria is a result 

of cell lysis due to abrasion, stress and cell death [124–126]. Additionally, environmental fac-

tors such as temperature may elicit active toxin liberation in these microorganisms [124, 126].

Competitive interactions between the hard coral Porites lutea, a brown alga Dictyota dichotoma 

and the cyanobacterium Lyngbya bouillonii were evaluated in Sesoko Island, Japan. While coral 

growth is compromised by direct contact and abrasion by the alga, mats of the cyanobacte-

rium L. bouillonii are able to kill live coral tissue upon direct contact [110].

Interactions between cyanobacteria, a hard coral and a soft coral in Rosario Islands, Colombian 

Caribbean, were evaluated in situ in order to identify deleterious effects potentially related 
to allelopathic mechanisms. Cyanobacterial extracts were incorporated into Phytagel™ gels 

and these were placed in direct contact with the hard coral Porites porites and the soft coral 

B. asbestinum [127]. HPLC chromatographic profiles of zooxanthellae in coral tissues were 
evaluated after 24, 48 and 72 hours of exposure. Extracts from Lyngbya spp. showed a clear 

effect on the zooxanthellae chromatographic profiles evidenced by an increase in pheophy-

tin, a degradation product from chlorophyll. The effect was greater with longest exposure 
time. These results suggest that cyanobacteria may compete against corals due to their fast 

growth rates, defenses against herbivory and allelopathic mechanisms. Further evidence was 
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Figure 1. Benthic cyanobacteria from Colombian Caribbean reefs. (A) Mats of Moorea producens growing at the base of a 

Eunicea soft coral. The soft coral retracts its polyps due to abrasion and possibly to avoid contact with the mat. Rosario 

Islands, 2016. (B) Filamentous mats of Caldora sp. This cyanobacterium grows profusely over various kinds of seaweeds. 

Old Providence Island, 2008. (C) Unidentified red filamentous mats overgrowing hard corals and green algae. Old 
Providence Island, 2008. (D and E) Multispecies cyanobacterial mats overgrowing soft corals, causing polyp necrosis and 

tissue death. The remaining gorgonin skeletons continue to be colonized by other cyanobacteria and filamentous algae. 
Old Providence Island, 2016. (F) Puffs of filamentous cyanobacteria may overgrow live corals causing bleaching and/
or necrosis. In this case, they are growing over gorgonin skeletons. Old Providence Island, 2016. Photos A, D–F: Monica 
Puyana; B–C: Julian Prato.
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obtained while testing the potential allelopathic effects of two organic extracts from marine 
cyanobacteria over live corals. Organic extracts from two different microbial consortia, a 
consortium of S. hydnoides and P. submembranaceum and a consortium of Lyngbya cf. semi-

plena, L. majuscula, Oscillatoria nigroviridis and O. margaritifera, were tested at 0.002 ppm and 

0.011 ppm, both below their natural concentration. In order to do so, fragments of the hard 

coral Madracis mirabilis were placed in individual containers, and once acclimated, with their 

polyps fully expanded, cyanobacterial extracts were resuspended in ethanol and seawater 

and coral behavior was registered. Both extracts generated the retraction of coral polyps with 
variable speed and intensity. Ethanol controls, on the other hand, presented a rapid recovery 

and a minimum shrinkage of polyps. Fragments exposed to cyanobacterial extracts showed 

80 to 99% of polyp retraction, whereas solvent controls did not exceed 25% of polyp retrac-

tion. No extract proved to be lethal, and after 20 hours, corals extended their polyps display-

ing full recovery [93].

In another assay, the toxicity of four cyanobacterial extracts to embryos of Montastrea annu-

laris, obtained during the mass spawning event in Rosario Islands in September, 2011, was 

evaluated. In this assay, we assessed embryo mortality 6, 18 and 24 hours after acute expo-

sure to cyanobacterial extracts in concentrations of 1000, 500, 100 and 10 ppm. All tested 
extracts were toxic at concentrations of 500 and 1000 ppm, causing 100% embryo mortal-

ity within 6 hours. Controls with seawater and ethanol did not affect coral embryos. The 
extract that showed greater toxicity was obtained from a mixed Lyngbya assemblage, caus-

ing a 90% embryo mortality at the lowest concentration tested (10 ppm) after only 6 hours 

of exposure.

In summary, competition between corals, cyanobacteria and/or algae may take place either 

against coral embryos or larvae or during their adult stages. Some of the mechanisms include 

allelopathic inhibition on adult corals and embryos, negative effects of abrasion by direct 
physical contact, drastic decrease in oxygen levels near and under cyanobacterial mats, reduc-

tion of available space in reef substrates affecting larval recruitment and mortality of embryos 
entangled in cyanobacterial mats. All these effects strongly suggest that blooms of algae and 
benthic cyanobacteria pose a risk for the recruitment and development of reef builders and 

other reef organisms such as soft corals [50, 51, 66, 93, 110, 120, 121].

8. Climate change, ocean acidification and future of reefs

Resilience or the ability to withstand and recover from the negative phenomena affecting 
coral reefs is an essential role for their persistence. Recovery after each disturbance involves 

the re-establishment of coral coverage, the growth of surviving coral fragments, reproductive 

success and the subsequent settlement and survival of coral embryos and larvae [16, 123]. 

However, the recovery process in coral reefs is nowadays more difficult because the substrate 
in these ecosystems is frequently dominated by algae and cyanobacteria. These photosyn-

thetic organisms efficiently colonize available substrates following disturbances and become 
dominant in degraded reefs [15, 65, 83, 123], reducing the resilience of coral reefs overall 
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[2, 15]. Algal dominance can become a serious bottleneck for the re-establishment of corals, 
depending on the characteristics of the dominant algal assemblages in each place [65, 123].

Large-scale hydrological disturbances and environmental changes due to global warming 

and ocean acidification are recognized as growing threats to coral reefs worldwide [17, 123, 

128–130]. Global warming is also believed to facilitate the development, frequency and expan-

sion of cyanobacterial blooms [10, 11, 26, 37]. These large-scale disturbances may have a more 

direct effect on corals, either by reducing growth rates and calcification regimes under acidic 
seawater conditions or by the onset of bleaching events under warmer conditions [17, 123]. 

Unless there is a significant reduction in CO
2
 atmospheric levels, reefs with reduced popula-

tions of grazers and increased nutrient input are predicted from shift from predominantly 

coral-dominated to predominantly algal-dominated states [17, 130]. This pattern has been rec-

ognized for some time now, particularly in the Caribbean and the Eastern Pacific [131–135]. 

Management options such as restoring herbivore populations and limiting nutrient input to 

reef areas may only be effective under controlled CO
2
 input to seawater [17, 123, 130]. Sea 

urchins are important grazers of noxious algae [136]; therefore, restoration of grazers such 

as urchins is believed to alleviate the problem of excessive algal biomass in coral reefs. In 

Hawaii, juveniles of the local urchin Tripneustes gratilla are raised in hatcheries and reintro-

duced in reef areas in order to remove excessive biomass of invasive algal species and restore 

the natural ecosystem function [137]. However, control of cyanobacterial populations by graz-

ers seems very unlikely [26].

Approximately two-thirds of coral reefs in the Caribbean are threatened by human activities 
such as coastal development, wastewater and sediment input, pollution and overfishing [138]. 

The economic impact of coral bleaching, coral diseases and cyanobacterial blooms has not 

been quantified, but it is clear that these have caused significant changes in Caribbean reef 
communities [138]. Therefore, it is important to assess the impact of cyanobacterial blooms 

at local scales in order to understand their causes and consequences in order to address sig-

nificant monitoring and management measures. The relationships between nutrient input 
and bloom formation are obscured by changes in food webs, habitat alterations and climate 

change. Nutrient enrichment has several effects in food webs, predator-prey interactions and 
overall nutrient dynamics. However, experts agree that management of nutrient inputs to 

watershed may be the most important measure to prevent excessive growth of algae and cya-

nobacteria [26, 94]. The Australian government, for instance, has invested significant funds to 
reduce nitrogen inputs into Moreton Bay to prevent blooms of L. majuscula [90].

9. Conclusions

In order to answer the question whether corals will overcome competition with algae and 

cyanobacteria in environments, the evidence shows that reef communities have changed over 

time and will keep changing in the light of large-scale events and anthropogenic influences. 
Algae and cyanobacteria are thriving as the total bottom cover of reef corals is reduced. So 
even if corals survive, their communities will not be the same. We do need to gain a better 
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understanding of causes, at local and regional scales, that support bloom formation. Also, it 
is crucial to convince managers that only long-term studies and periodic surveys will help to 

understand and manage algae and cyanobacteria in reefs and other marine ecosystems. As 
short-term measures, ambitious programs for grazer reintroduction could help curb popula-

tion growth of algae and cyanobacteria. Medium- to long-term measures should be oriented 

at limiting nutrient input to water bodies.
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