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1. Introduction 

Water is one of the most important substances for both plant and animal survival. Plants 
require water for photosynthesis, nutrient uptake and transportation as well as cooling 
(Farooq et al., 2009). Plants are sessile organisms and in contrast to most animals they are 
unable to move when the environment becomes unfavorable. Accordingly, plants have to be 
able to respond and adapt to the local environmental changes. Since water is essential for 
plant survival, the ability to tolerate water stress is crucial.  
To be able to grow plants need to take up water from the soil and CO2 from the atmosphere 
and use it in photosynthesis. This is done by CO2 uptake through the stomatal pore, where 
water is simultaneously transpired. Water transpiration drives the water uptake by the roots 
and transport through the xylem. When the stomata are open CO2 is taken up while water is 
transpired. When the stomata are closed little CO2 is taken up and the transpiration is 
lowered. By opening and closing the stomata plants can regulate the amount of water lost, 
by sacrificing CO2 uptake, when the environmental conditions are unfavorable.  
Water stress can be defined as reduced water availability; either by water scarcity (drought) 
or osmotic stress (high salt concentrations) or water logging; too much water. Water stress 
may reduce photosynthesis, respiration and ion uptake, change the metabolic and growth 
patterns in the plant and in severe cases result in plant death (Jaleel et al., 2009a). In nature 
water stress is common either for long or short periods of time, depending on the local 
climate. Most plants therefore have some adaptation or response to enhance the growth and 
survival rate during water stress and subsequent recovery. 
In agriculture and horticulture drought stress is one of the major problems, causing major 
crop losses every year as well as loss of aesthetic value in ornamentals. In agriculture crop 
loss is due to reduced numbers of tillers, spikes and grains per plant and reduced grain 
weight (Farooq et al., 2009). With the global human population rapidly increasing, 
simultaneously as water scarcity increases, the loss of crop will be even more serious than 
before. The discovery and development of stress tolerant crops to avoid yield loss during 
water stress is therefore very important. In the greenhouse industry, energy saving for 
economic profit is important to be able, but it also affects the plants. To reduce the amount 
of energy needed for CO2 and heating in the greenhouses, energy-efficient semi-closed 
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greenhouses can be used. In these greenhouses the ventilation is reduced to a minimum, 
which consequently results in increased relative air humidity inside. This increase in air 
humidity affects the plants in different ways and might result in plants that are less tolerant 
to water stress (Torre and Fjeld, 2001). 
In this review different plant responses to water stress will be discussed, with most attention 

to drought and the role for abscisic acid (ABA) as a plant stress hormone. In addition, 

consequences of plant development under high relative air humidity, which reduces the 

plants ability to respond to water stress, will be discussed. 

2. Plant responses to water stress 

Plants growing in deserts or high salinity habitats are all exposed to more or less constant 
water stress. To survive such conditions plants have developed growth strategies such as 
increased water use efficiency with C4- or CAM metabolism (Keeley and Rundel, 2003), 
succulent growth and extensive root systems (Henry et al., 2011). These strategies are good 
in a dry environment, but in more “favourable” conditions at least some of these plants 
may, due to lower growth rates, more easily be outcompeted by other less drought tolerant 
plants. Other adaptations to plant life in dry environments are thick cuticula and wax layers, 
depressed stomata and high density of trichomes. Thick cuticula and wax layers reduce 
extra-stomatal transpiration, and depressed stomata and trichomes create a thicker 
boundary layer outside the stomata, where the humidity gradient is more gradual, thereby 
reducing the stomatal transpiration.  
Plants living in saline environments (e.g. beaches, salt marches) commonly keep a low 
osmotic potential in their cells, which facilitates water uptake. They usually also have the 
ability to exclude or excrete salt from their cells to avoid to too high salt concentrations. A 
variety of perennials commonly avoid water stress during the winter by entering dormancy 
and often shedding leaves (deciduous woody species) before the onset of the harsh 
conditions when water is unavailable due to frost. However, plants keeping the leaves on 
through the winter commonly face water stress in the spring when air temperatures are high 
while the soil is still frozen. 
Even if they do not live in particularly dry places, most plants will occasionally encounter 
water stress for shorter or longer periods of time. Most of these plants do not have many of 
the adaptations of desert plants and must respond to the water stress in other ways. When 
these plants are exposed to water stress, such as drought or saline conditions, to survive 
they must be able to retain as much water as possible. If the plants are not able to cope with 
the water stress, they will not be able to survive. The sensitivity and response time to 
drought differs between different species and slow growing species have been found to be 
more sensitive (Aasamaa and Sober, 2011). Repeated drought encounters increases the 
sensitivity to environmental changes that induce stomatal closure, while the sensitivity to 
changes that induce stomatal opening is decreased (Aasamaa and Sober, 2011).  In response 
to water stress plants have developed several different mechanisms that increase the 
desiccation tolerance and water retention. These responses can be divided into short term 
and long term responses (Figure 1). 

2.1 Long term responses 

During prolonged water stress plants must be able to survive with low water content and 

maintain a minimum amount of water, through water uptake and retention. To cope with 
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prolonged drought stress plants respond with energy demanding processes that alter the 

growth pattern, chemical content of the plants and the up or down regulation of genes.  

2.1.1 Biochemical changes 

When the water availability is reduced, plants change the biochemistry to be able to retain 
as much water as possible and take up whatever water they can. During water stress plants 
produce and accumulate compatible solutes such as sugars, polyols and amino acid to lower 
the osmotic potential in the cells to facilitate water absorption and retention (Xiong and Zhu, 
2002). Some of the compatible solutes also contribute to maintaining the conformation of 
macromolecules by preventing misfolding or denaturation (Xiong and Zhu, 2002). Plants 
also produce higher levels of the plant stress hormone ABA during water stress and this 
affects their growth pattern and stress tolerance (details under growth changes and stomatal 
functioning). 
 

 

Fig. 1. Plant responses to water stress. 

A group of proteins called late embryogenesis abundant like (LEA) proteins are also 
produced during water stress. These LEA-like proteins are highly hydrophilic, glycine-rich 
and highly soluble and have been found to be regulated by ABA (Xiong and Zhu, 2002). The 
LEA-like proteins are thought to act as chaperones, protecting enzymatic activities (Reyes et 
al., 2005) and preventing misfolding and denaturation of important proteins (Xiong and 
Zhu, 2002).  Some of the LEA-like proteins have similar features as ribosomal proteins and 
are thought to interact with RNA (Garay-Arroyo et al., 2000). 
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Decreased transpiration and decreased CO2 and nutrient uptake during water stress result 
in changes in metabolic pathways such as photosynthesis and respiration, as well as changes 
in ion uptake, transport and extrusion (Xiong and Zhu, 2002). Some of these changes can 
lead to oxidative damage. Reactive oxygen species, such as H2O2, O2-, OH and OH2, are by-
products in electron transport chains and have unpaired electrons that can attract electrons 
from other components. Reactive oxygen species can therefore cause damage to a variety of 
compounds such as DNA, RNA, proteins, lipids and chlorophyll and thus damage 
membranes and change cell metabolism and eventually lead to senescence. Many 
antioxidant systems, both enzymatic and non-enzymatic, are up-regulated in response to the 
increased reactive oxygen species levels during water stress. These antioxidants scavenge 
the reactive oxygen species and reduce the oxidative damage. The enzymatic antioxidants, 
such as superoxide dismutase, peroxidase, ascorbate peroxidase, catalase, polyphenol 
oxidase and gluthathione reductase can detoxify reactive oxygen species (Prochazkova et al., 
2001; Jaleel et al., 2009b). The non-enzymatic anti oxidants, including vitamins (A, C and E), 
glutathione, carotenoids and phenolic compounds, can scavenge reactive oxygen species by 
donating an electron or a hydrogen atom (Prochazkova et al., 2001; Jaleel et al., 2009b). 

2.1.2 Growth changes 

During water stress the water content of the plant decreases, which causes the cells to lose 
turgor pressure and shrink. The loss of turgor pressure in the cells inhibits turgor dependent 
activities such as cell expansion, which affects the growth of the whole plant. Some studies 
show that ABA can function as a signal to reduce leaf growth rate, both when ABA is 
applied exogenously or generated by water stress (Wilkinson and Davies, 2010). Reduced 
cell growth during water stress has e.g. been found to decrease the stem length in 
Arabidopsis thaliana  soybean (Glycine max), potato (Solanum tuberosum), ocra (Abelmoschus 
esculentus) and parsley (Petroselinum crispum) (Heuer and Nadler, 1995; Specht et al., 2001; 
Park et al., 2007; Petropoulos et al., 2008; Sankar et al., 2008). Similarly reduced cell 
enlargement reduces the leaf expansion in Populus (Ren et al., 2007). By reducing the leaf 
expansion the leaves become smaller and therefore transpire less. In some cases water stress 
can even lead to leaf abscission. This has e.g. been seen in Populus and paper birch (Betula 
papyrifera) (Giovannelli et al., 2007; Gu et al., 2007). The reduction of cell volume also 
concentrates the solutes in the cells and compresses the plasma membranes causing them to 
increases in thickness.  
To increase water uptake and maintain a minimum osmotic pressure during drought many 
plants increase their root growth, either deeper or laterally. By increasing the root growth 
the area for water uptake becomes larger and water further away and deeper in the soil may 
be reached. This growth response has been found in e.g. maize, madagaskar periwinkle 
(Catharanthus roseus)  and date palm (Phoenix dactylifera) (Djibril et al., 2005; Jaleel et al., 2008; 
Trachsel et al., 2010). 

2.2 Short term response 

When plants suddenly encounter drought it is important to respond as quickly as 
possible. A faster drought response means that less water is lost and the survival rate of 
the plants is increased. The most important quick response is stomatal closure. Stomata 
consist of two guard cells surrounding the stomatal pore. When the stomata are open 
water is transpired and CO2 enter the leaf through the stomatal pore. During water stress 
the stomatal pore can be closed to reduce water loss. By closing the stomatal pore the 
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water use efficiency is increased (Farooq et al., 2009), reducing the amount of water lost 
per CO2 molecule assimilated. Several mechanisms work together to close the stomata, 
such as hydro passive closure and chemical signals from the plant stress hormone ABA. 
Increased levels of ABA also causes increased hydraulic conductivity in the roots and xylem, 
enabling the plants to transport more water and thereby recover more rapidly after water 
stress (Kudoyarova et al., 2011). 

3. Stomatal functioning 

Development of stomata if often considered one of the most important developments in 
plant evolution (Brodribb and McAdam, 2011). By being environmentally controlled 
gateways into the plants controlling CO2 uptake and transpiration they are central 
determinants of photosynthesis, cooling and nutrient uptake (Farooq et al., 2009). To be able 
to balance CO2 uptake and water transpiration through stomatal movement is therefore an 
important response to changes in the environmental conditions. Low transpiration due to 
stomata closure means less cooling of the leaves and less uptake and transportation of 
nutrients.  

3.1 Stomatal signaling and movement 

Stomatal closure occur when the two guard cells surrounding the stomatal opening lose 
turgor pressure and close the opening (Outlaw, 2003). There are many signals that induce 
stomatal closure, among these the best known signal is probably ABA. In the signaling 
pathway towards stomatal closure there are several secondary messengers, such as Ca2+, 
H2O2 and NO (Atkinson et al., 1990; Zhang et al., 2001; Neill et al., 2002; Garcia-Mata and 
Lamattina, 2009) that contribute to the stomatal closure. Passive loss of turgor pressure also 
results in stomatal closure. 
Since stomatal closure has negative effects on CO2 uptake, photosynthesis, transpirational 
cooling as well as water and nutrient uptake it is important to close the stomata only when 
the benefit of water retention outweighs the negative effects. To be able to close the stomata 
during unfavourable conditions there are several mechanisms and signalling pathways 
leading to stomatal closure. These pathways can be divided into hydro passive and active 
stomatal closure (Figure 2). 

3.1.1 Hydro passive stomatal closure 

Hydro passive stomatal closure occurs when the water evaporation from the guard cells is 
too low to be balanced by water movement into these cells. The water content in the cells is 
then rapidly reduced to the extent where the osmotic pressure is reduced and the cells lose 
turgor pressure and shrink (Luan, 2002). When this happens the guard cells are unable to 
maintain the shape and the stomatal pore is covered.  
Some studies have shown that passive stomatal closure is important in ferns and Lycopods, 
but not in Angiosperms and Gymnosperms (Franks and Farquhar, 2007; Brodribb and 
McAdam, 2011). This is because in Angiosperms and Gymnosperms the guard cells closely 
interact with their subsidiary cells. When the guard cells lose turgor pressure the subsidiary 
cells also lose turgor pressure and the force from the subsidiary cells pulls the guard cells 
apart, opening the stomata. This hydro passive opening is called the “wrong-way” response 
(Franks and Farquhar, 2007). In contrast the guard cells of ferns and Lycopods do not 
interact closely with their subsidiary cells. 
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The loss of turgor pressure in the subsidiary cells in these plants does therefore not result in 

the guard cells being pulled apart. The simultaneous loss of turgor in the guard cells will in 

these plants be enough to close the stomata. 

 

Fig. 2. Hydro passive and active stomatal closure pathways. 

3.1.2 Active stomatal closure 

ABA as well as elevated levels of CO2 activates signalling pathways leading to stomatal 
closure (Kim et al., 2010). ABA is produced in the roots and leaves during water stress and is 
transported to the guard cells. ABA is transported into the guard cells by ATP-binding 
cassette (ABC) transporters that are located in the plasma membrane (Kang et al., 2010). 
When the ABC transporters are knocked out the ABA uptake is lower, stomata remain more 
open during drought and the stress tolerance is decreased (Kang et al., 2010). The ABA 
signals are first recognised by several receptors. PYR/PYL/RCAR (PYRABACTIN 
RESISTANCE/ PYRABACTIN RESISTANCE –LIKE/REGULATORY COMPONENT OF 
ABA RESPONCE) proteins have been shown to function as ABA receptors (Klingler et al., 
2010). Another protein GCR2 (G protein coupled receptor) has also been shown to be a ABA 
receptor (Liu et al., 2007).  
The size of the stomatal opening is regulated by the turgor pressure and cell volume of the 
guard cells (Schroeder et al., 2001; Kim et al., 2010). Regulation of stomatal opening is linked 
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to transport of ions and water through channel proteins across the plasma and vacuole 
membrane (Kim et al., 2010). ABA induces the production of reactive oxygen species (e.g. 
H2O2), which in turn acts as a trigger for NO production, inhibition of membrane proton 
pumps and Ca2+ influx across both the plasma and vacuole membranes. H+-ATPases that 
are hyperpolarizing the plasma membranes must be inhibited to induce ABA mediated 
stomatal closure (Merlot et al., 2007). The increased Ca2+ levels activate slow and rapid type 
anion channels, generating an anion efflux from the cells. The anion efflux depolarizes the 
membrane, which in turn causes K+ efflux through K+out channels across both the vacuole 
and the plasma membrane. Simultaneously Ca2+ also inhibits K+in channels (Wasilewska et 
al., 2008).  Malate is also converted to starch reducing the osmotic potential and turgor 
pressure further (Kim et al., 2010). The plasma membrane is thus depolarised, the turgor 
pressure and cell volume reduced and the stomata close (Kim et al., 2010). 

4. ABA biosynthesis and metabolism 

Increased content of ABA during water stress has been found in all photosynthetic 

organisms. The biosynthesis of ABA have previously been thought to occur only in the 

roots, but more recent studies show that ABA is also synthesized in mesophyll cells, 

vascular tissue and stomata. As stated above increased levels of ABA in leaves induces 

and regulates stomatal closure, while the increased levels of ABA in roots increase the 

hydraulic conductivity increasing the water uptake and transportation (Parent et al., 

2009). The amount of ABA in the tissue is regulated in several metabolic steps, both in the 

biosynthesis and inactivation steps.  

ABA is synthesized from phytoene (Figure 3), a carotenoid produced from pyruvate and 

glyceraldehydes-3-phosphate (Cutler and Krochko, 1999; Liotenberg et al., 1999). In the 

plastids phytoene is converted to ζ-carotene by phytoene desaturase and then to β-carotene, 

lycopene and zeaxanthin. Zeaxanthin is converted first to antheraxinthin and then to 

violaxanthin by zeaxanthin epoxidase (ZEP). Violaxanthin is then converted to xanthoxin by 

9-cis-epoxycarotenoid dioxygenase (NCED). Xanthoxin is then converted further in the 

cytosol. The main pathway from xanthoxin to ABA is through abscisic aldehyde. Xanthoxin 

is then converted to abscisic aldehyde by an enzyme related to a short-chain 

dehydrogenase/reductase SDR). Abscisic aldehyde is further oxidized to ABA by abscisic 

aldehyde oxidase (AAO) (Seo and Koshiba, 2002). It has been found that genes regulating at 

least the last steps in the ABA biosynthesis (NCED and AAO) are the most important and 

are strongly up regulated during water stress, showing the important role of ABA as a rapid 

stress response (Qin and Zeevaart, 1999; Seo et al., 2000).  

ABA is further regulated by several inactivation pathways (figure 3) (Cutler and Krochko, 

1999). There are two main such pathways. The first is inactivation by oxidation. ABA is then 

oxidized to 8’-hydroxy ABA and subsequently to phaseic acid (PA) and 4’dihydrophaseic 

acid (DPA). The conversion of ABA to 8’-hydroxy ABA is catalysed by the enzyme (+)-ABA 

8’-hydroxylase (Kushiro et al., 2004) and the enzyme phaseic reductase catalyzes the 

conversion of PA to DPA (Cutler and Krochko, 1999). (+)-ABA 8’-hydroxylase is highly 

regulated by environmental factors, such as air humidity  (Okamoto et al., 2009). The other 

inactivation pathway is by conjugation to ABA glucose ester, which is hypothesised to be a 

storage form of ABA (Cutler and Krochko, 1999). This conjugation is catalyzed by ABA 

glucosyltransferase (Lee et al., 2006). Several experiments provide evidence that ABA 
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glucose ester can be cleaved enzymatically by β-D-glucosidase (Dietz et al., 2000; Lee et al., 

2006). The liberated ABA can then induce metabolic and changes and stomatal closure. 

 

 

Fig. 3. Biosyntehesis of ABA from pyruvate and glyceraldehydes-3-phosphate and ABA 
metabolism by oxidation to PA and DPA and conjugation to ABA glucose ester. 

5. Stomatal development under high relative air humidity 

Plants grown under high relative air humidity have malfunctioning stomata that are unable 
to close in response to darkness, ABA and desiccation (Fordham et al., 2001). This results in 
high stomatal conductance and frequent leaf drying. Also, plants grown in vitro under high 
relative air humidity have low ABA levels, but when moved to an ex vitro environment with 
lower relative air humidity the ABA levels increase (Hronkova et al., 2003). Furthermore, 
Wrightia tomentosa plants grown under high relative air humidity in vitro, had 29.4 % 
malformed stomata (Joshi et al., 2006). These stomata were described as large, spherical 
and wide open, lacking the ability to close. In comparison stomata of in vivo developed 
plants were smaller, elliptical and depressed. Other studies have shown similar results, 
where in vitro propagation has resulted in stomata that are unable to close in response to 
environmental and biochemical stimuli (Brainerd and Fuchigami, 1982; Santamaria et al., 
1993; Sciutti and Morini, 1995). 
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The efficiency of stomatal openings for CO2 uptake and water transpiration is not only 
determined by the size of the opening, but also by the number of stomata (Metwally et al., 
1971). More stomata can take up more CO2 and transpire more. In research done in different 
humidities it has also been found that the number of stomata per leaf increased with 
development in higher soil humidities, but when calculated as number of stomata per area 
the number decreased in higher humidities (Metwally et al., 1970; Metwally et al., 1971). The 
stomatal index, the number of stomata relative to the number of epidermal cells, was also 
found to increase with soil moisture (Schürmann, 1959). Similar experiments have been 
preformed with air humidity, increased air humidity results in increased stomatal density 
(Sciutti and Morini, 1995). The stomatal density has been found to increase in plants with 
decreased ABA concentrations, which also have increased transpiration (Lake and 
Woodward, 2008). In Vicia faba drought and salinity stress has been found to increase the 
stomatal density and stomatal index, facilitating water uptake under water stressed 
conditions (Gan et al., 2010). 
In the greenhouse industry the stomatal functioning and transpiration influences the post 
harvest quality of the plants. The value of ornamental plants is dependent on the aesthetic 
condition. Loss of aesthetic value can be due to water stress, where high transpiration rates 
shorten the shelf life. When ornamental plants are grown in large scale industries it is 
important to produce stress tolerant plants that have long shelf lives. In greenhouses there is 
an artificial environment, where the day length, temperature, relative air humidity (RH) and 
watering regimes are controlled to be able to produce as many plants as possible with as 
little cost as possible, without reducing the quality of the plants. This has resulted in energy-
efficient greenhouses, which conserve energy (CO2 and temperature) by rarely opening the 
ventilation. This consequently increases the relative humidity inside the greenhouses. 
Furthermore, much of the plant breeding is done in greenhouses, particularly when it comes 
to ornamentals. 
Roses developed under high relative humidity (>85%) have 6-8 days shorter shelf life and 
greater water loss than plants grown under lower humidities (Mortensen and Fjeld, 1998; 
Torre and Fjeld, 2001). When roses are cultivated in high relative humidity environments in 
greenhouses they develop large, malfunctioning stomata, similar as the malfunctioning 
stomata produced under in vitro conditions (Torre and Fjeld, 2001; Torre et al., 2003). When 
these plants are moved to a dryer environment the stomata are unable to close, which 
results in high water loss and less stress tolerant plants that quickly lose their ornamental 
value (Torre and Fjeld, 2001).  
The shorter shelf life of plants developed under high humidity is a major problem in the 
greenhouse industry. One of the important challenges is therefore to find new 
environmental regimes that save energy, but still produce high quality and stress tolerant 
plants. When plants grown in high relative humidity are treated with a 6 hour low humidity 
period in the middle of every day, the stomata remain functional (Mortensen et al., 2007; 
Pettersen et al., 2007). Similarly using 18 hour light period instead of 24 hours also result in 
more water retention and longer shelf life in roses (Mortensen et al., 2007). 
Plants grown under constant high relative humidity contain less ABA than plants grown 
under lower relative humidities and some of the stomata of these plants are larger and 
malfunctioning (Nejad and van Meeteren, 2005, 2007). One of the main hypotheses 
explaining the malfunctioning stomata in high humidity is development with low ABA 
concentrations (Nejad and van Meeteren, 2007; Okamoto et al., 2009). If the plants 
developed under high relative humidities are treated with ABA during development, the 
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stomata respond as if they were developed under lower relative humidities (Nejad and van 
Meeteren, 2007). In plants moved from high humidity to lower humidities regained stomatal 
functioning in leaves that were still actively expanding, but not in fully developed leaves 
(Nejad and van Meeteren, 2008). Similarly if leaves developed under high relative humidity 
were given ABA application, the stomatal functioning was restored in young expanding 
leaves, but not in fully developed leaves (Nejad and van Meeteren, 2008).These experiments 
implicate that ABA is involved in the development of functioning and malfunctioning 
stomata, although there is also contradicting results. In Arabidopsis thaliana it has been 
shown that ABA-deficient and ABA-insensitive mutants responded similarly as wild type 
plants to changes in humidity (Assmann et al., 2000). Plants developed under low ABA 
conditions also have higher stomatal density (Lake and Woodward, 2008), indicating that 
ABA is important in both the development of stomata size and density. 
ABA application in lower concentrations, applied to plants can reduce transpiration rate and 
increase the shelf life of Salvia splendens and a number of other ornamentals, by inducing 
stomatal closure (Pompodakis et al., 2004; Waterland et al., 2010a; Waterland et al., 2010b; 
Kim and van Iersel, 2011). On the other hand, application of high ABA concentration caused 
early leaf abscission in Salvia (Kim and van Iersel, 2011). Also, ABA application decreased 
the shelf life of miniature potted roses (Muller et al., 1999), possibly due to high 
concentrations. 

6. Conclusion 

The ability of plants to be able to regulate the size of the stomatal opening is a very 
important mechanism to control water loss and survive. This ability is especially important 
during water stress, when loss of water can have serious consequences for the plants. Water 
stress can cause reduced growth and in severe cases plant death. To minimize the negative 
effects of water stress the plants respond by changing their growth pattern, producing stress 
proteins and chaperones, up-regulation of anti-oxidants, accumulation of compatible 
solutes, increasing the amount of transporters involved in water and ion uptake and 
transport and by closing the stomata. If the plants are unable to quickly respond to water 
stress, by closing the stomata and thereby conserve as much water as possible, the 
consequences are more severe and plants wilt and die more quickly. This is a major problem 
in plant propagation of ornamentals. Plants developed under high relative air humidity 
develop malfunctioning stomata, which are unable to close in response to water stress. 
When these plants are later placed in dryer conditions they quickly lose their ornamental 
value and wilt. Treatments with ABA or periods of high temperature or low relative air 
humidity during development can offset this malfunctioning and produce functioning 
stomata, even in high humidity. 
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