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Abstract

The radon element is the heaviest and the only naturally occurring radioactive noble gas. 
As a member of uranium and thorium decay chains, it is formed instantaneously and 
belongs to the naturally occurring radioactive materials (NORM). The long-lived radon 
isotope, the 222Rn, is radiobiologically the most important one. It is present in subsoil 
and groundwater and permeates to the surface, where it may become health risk during 
the long-term inhalation. Proper testing of drinking water and building materials is also 
required to monitor radon concentrations below legal limits. Thus, the need of radon 
determination as well as the preparation of its isotopes arises for its use as a calibra-
tion source for the environmental and workplace monitoring in the NORM as well as 
other industries. Further, the radon isotopes currently appear in various research fields, 
including radionuclide progeny preparation and their use is experiencing renaissance. 
An overview of radon characteristics, its physical and chemical properties, as well as 
radon isotope preparation methods including the radionuclide generators and their use 
is given here. Radon isotope use for tracing, medical, geochemical and other purposes is 
also discussed.

Keywords: radon, thoron, actinon, generator, decay chain, radioactive deposits, Rn, noble 
gas

1. Historical introduction

Soon after the discovery of radium by Curie et al. [1], the radioactivity of thorium by Schmidt 

[2] and the discovery of actinium by Debierne [3], it was found that all of these radioactive 

elements activate their surroundings and emit formerly unknown radioactive gases. Curie 

and Curie discovered that objects exposed to radium samples got activated and the half-life

of the gained radioactivity was approximately 1 month [4], even though clear interpreta-

tion of this discovery remained unknown. Similarly, radioactive gas evolution was observed 
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in samples of thorium and uranium [5–9]. Rutherford and Dorn interpreted the emanated 

activity from thorium and radium compounds as new chemical substances. Rutherford 

and Owens reported that the gas released from thorium had the half-life of about 1 min. 

Radioactive gas release from actinium samples was reported by Debierne soon after [10]. All 

the three gases (originating from radium, thorium and actinium) were found as chemically 

inert and were classified as noble gases [11]. Further studies on emanation gases lead to better 
understanding of their physical and chemical properties as well as their nature, for example, 

their condensation at low temperatures [12]. Many experiments were performed in order 

to determine the atomic mass of the emanation. In 1910, among others, Ramsay and Gray 

collected radium emanation gas to measure its density and determined the value of atomic 

mass to be around the value of 220 [13]. Later on, the formerly known and so-called radium, 

thorium and actinium emanations were named as radon, thoron and actinon, respectively 

[14]. The radon nuclides were originally important subjects of basic science [15]. After the 

determination and precise measurements of all their physical and chemical properties, vari-

ous applications of radon appeared such as its use in medicine, geology, tracing applications, 

radionuclide production and research.

2. Radon nuclides and their characteristics

Radon (the element) is the heaviest known noble gas. Radon has only radioactive nuclides. 

In total, some 40 isotopes of radon are known up today. Three most common and naturally 

abundant isotopes of radon are 222Rn, 220Rn and 219Rn, originating from the decay series of 238U, 
232Th and 235U, respectively. Their decay chains are shown in Figures 1–3, and the nuclear data 

are summarized in Table 1. Nuclear data were taken from Refs. [16, 17].

Some selected physical and chemical properties of radon element are summarized in Table 2. 

Data were taken from Ref. [18]. Radon belongs to the noble gas group that predicts its 

parameters.

As it could be clearly seen from Figures 1–3, the daughter nuclides of radon generate radioac-

tive progeny of Po, At, Pb, Bi, Hg and Tl. The decay of Radon in air (gas phase) results in the 

spread of radioactive aerosols and their deposits mainly in case of 222Rn may become hazard-

ous (long-lived deposits). Radiotoxicity of radon is thus an important factor, since it may be 

released from natural sources (e.g., building materials, subsoil, drinking water and mine air) 

and inhaled.

Following the natural decay series (238U, 232Th and 235U), the nuclides of 222Rn, 220Rn and 219Rn 

are instantaneously formed progeny in the environment and their mother nuclei samples. 

These isotopes may be, however, produced in various nuclear reactions, for example, the 
219Rn was co-produced in the experiment of chemical characterization of the element coper-

nicium (283112) in the nuclear fusion of 48Ca with 242Pu, where the 219Rn served as a calibration 

nuclide in the thermochromatographic separations of the element 112 in the COLD detector 

[19]. Other exotic isotopes of radon may be produced in various nuclear reactions. For exam-

ple, the lightest-known neutron deficient isotopes of radon, 193Rn and 194Rn, were produced 

in the complete fusion reaction of 52Cr pulsed ion beam with a 144Sm target [20]. The 209Rn and 
210Rn isotopes were determined in the decay chains of 213Ra and 214Ra, respectively, prepared 

Radon8



Figure 1. 238U decay chain.

Figure 2. 235U decay chain.
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Historical name Radon Thoron Actinon

Nuclide 222Rn 220Rn 219Rn

Half-life 3.8253 d 55.6 s 3.96 s

Generator nuclide 226Ra (238U)

1600 y

232Th (228Th)

1.405 × 1010 y

227Ac (235U/231Pa)

21.772 y

Main α radiations
E (MeV) (intensity (%))

5.4895 (99.92)

4.987 (0.078)

4.827 (~0.0005)

6.288 (99.886)

5.747 (0.114)

6.819 (79.4)

6.553 (12.9)

6.425 (7.5)

6.529 (0.12)

6.312 (0.054)

6.159 (0.0174)

Main γ radiations
E (keV) (intensity (%))

511 (0.076) 549.8 (0.114) 271.2 (10.8)

401.8 (6.37)

130.6 (0.119)

293.5 (0.073)

517.6 (0.0443)

221.5 (0.030)

Table 1. Main isotopes of radon.

Figure 3. 232Th decay chain.
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via 170Er(50Ti,3n)217Th → 213Ra and 170Er(48Ca,xn)218-xRa reactions [21]. The 211Rn was prepared as 

a decay product of the francium beams produced by the spallation of actinide targets (U and 

Th) [22]. The 211Rn was also prepared by the 209Bi(7Li,5n)211Rn reaction [23]. Heavier isotopes 

such as 224Rn, 223Rn and lighter isotope of 210Rn were prepared by the spallation of 232ThO
2
 

[24, 25]. The neutron-rich isotopes of 227Rn and 228Rn were also prepared by the spallation of 

natural 232Th target with 600 MeV proton beam [26]. The heaviest experimentally detected 

isotopes of radon, the 223–229Rn, have been determined for the first time, using the ISOLTRAP 

setup at CERN ISOLDE experiment [27].

Radon is chemically quite unreactive gas; however, some exotic compounds of radon, for 

example, the fluorine compounds of radon [28] or RnH+, RnOH+, RnOH
2

+ molecular ions 

generated in a plasma ion source [29] were reported; other compounds like RnCO [30], 

HRnCCH [31] and other radon molecules [32] were predicted. Radon adsorption on charcoal 

is known for a long time and allows its purification from hydrogen, oxygen and nitrogen 
[33]. Recently, the association of xenon and radon with tris-(triazole ethylamine) crypto-

phane was studied. High affinity of these noble gases was observed, and the association 
constants were determined to K

a 
= 42,000 ± 2000 M−1 and K

a
 = 49,000 ± 12,000 M−1 for xenon 

and radon, respectively, at 293 K [34].

Electron shell configuration [Xe] 4f14 5d10 6s2 6p6

Oxidation numbers 2, 3, 4

Ionization potential (eV) 1st 10.748

2nd 21.4

3rd 29.4

4th 44

Pauling electronegativity 2.0

Atomic radius (nm) 218

Molar enthalpy of fusion at (kJ mol−1) 12.26

Molar enthalpy of vaporization (kJ mol−1) 74.30

Surface energy (mJ m−2) 29

Melting point (°C) −71

Boiling point (°C) −61.8

Solubility of radon at standard pressure in water (cm3/100 g H
2
O) 0°C 51.0

50°C 13.0

Density (g cm−3) 0°C (g) 0.00973

−61.8°C (l) 4.4

Dynamic viscosity coefficient (mPa s) 0.0213

Thermal conductivity coefficient at 27°C (W m−1 K−1) 0.00364

Table 2. Selected physical and chemical properties of radon.
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3. Radon generators

Thanks to the noble gas characteristics of the radon element, its separation from the decay 

chain or target materials becomes trivial. Radon generators may be then divided into two 

main groups based on the medium that is used for its final form—gas and liquid apparatuses. 
Main issue in radon generators is the emanation efficiency, radon physical form and its radio-

nuclidic purity. The radon emanation power or the efficiency coefficient depends directly 
on the radon source properties. Crystalline and bulky materials exhibit quite low emanation 

power—typically few per cent of the mother nuclide activity. On the other hand, the emanation 
efficiency of properly selected and prepared amorphous and porous materials approaches the 
values of nearly 100%. The simplest generators include simply the mother nuclides enclosed 

in an evacuated or normal pressure apparatus, allowing the liberation of radon that is to be 

collected in a gas or liquid phase. Typically, the insoluble salts of mother nuclides trapped in 

a porous ceramics (or other inert material) or a sandwich of mother nuclide covered by thin 

separating layer (e.g., foil) were used for the construction of various types of emanators.

Many radium-based inhalation apparatuses as well as drinking or bath water “activators” 

(Figure 4) with the emanation power in the order of 5000–10,000 Mache units in 24 h appeared 

on marker without any regulation (1 Mache unit = 3.64 Eman = 3.64 × 10−10 Ci/L = 13.4545 Bq/L).

Further, more advanced systems were developed in order to increase the efficiency and 
purity of the radon gas. For example, the oxygen and ozone may be chemically removed by 

passing the radon gas through the heated copper wire; the hydrogen by the heated copper 

Figure 4. Left—the “ERKO” instrument for the preparation of radium water produced by the Berliner Radium 
Aktiengesellschaft in 1930s. Right—the same instrument in detail showing a carousel holding one radium capsule with 
holes to allow free radon emanation (air/water).
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oxide; CO
2
 by its capture on potassium hydroxide and finally the water on phosphorus pent-

oxide. Radon of specific activity of 18.5 GBq/mm3 could be prepared in such way (approx 

one-third of theoretical volume activity value of pure 222Rn) [35]. Various materials with 

high emanation power were developed and tested for the construction of radon generators, 

for example, inorganic porous gels based on heavy and alkali-earth metal hydroxides with 

hydrated silicic acid were developed [36, 37]. Also the barium stearate powder was reported 

with the emanating power of >99% for thin layers in air at atmospheric or reduced pressures 

for actinon [38].

Another important aspect is the source activity metrological standardization. This is neces-

sary firstly for the precise determination of radon contents in various materials and secondly 
to test the material permeability or retention ability for radon and to verify that these materi-

als meet legal regulations. Various methods for the preparation of calibrated emanation stan-

dards were published. Standards containing the solution of 226Ra(NO
3
)

2
 absorbed into CaCO

3
 

were prepared, and the emanation coefficient of 222Rn for these standards varied from 0.23 

to 0.25 [39]. Accurate and long-term stable sources of defined activity of 222Rn in gas phase 

were developed for laboratory and field applications (Figure 5) [40]. Radon is released from 

thin layer of a plastic foil with emanation power coefficient approaching 1. The source is con-

structed as a stainless steel cylinder supplied with the two ball valves on the ends and the two 

aerosol filters connected on the output aperture of the valves.

Several systems for the preparation of radon in water standard sources were reported. 

Standard based on an earlier and previously described prototype consisting of polyethylene-

encapsulated 226Ra solution source in a small-volume accumulation chamber was used to gen-

erate and accurately dispense radium-free 222Rn solutions of known concentration [41]. More 

recent radon in water standard was developed to get the radon solutions of 300–2000 Bq/L 

[42] The generator consisted of about 6 L cylindrical vessel with a solid phase 222Rn source 

with 99.9% air emanation power and an external circuit for solution homogenization. Another 

radon generator and delivery system was used with 2.9 GBq of radium salt for cell cultures 

exposure studies [43].

Interesting technique for the radon source preparation that is suitable for use in a low-back-

ground liquid scintillation detectors was reported [44]. Radon was concentrated from air to 

prepare liquid scintillation counting (LSC) sources spiked with activities of 106 Bq/m3. CO
2
 

and water vapour were removed, and the radon was collected in a cooled charcoal trap. The 

Figure 5. Drawing of radon flow-through generator (air/air).
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accumulated radon was desorbed and transferred into a 1,2,4-trimethylbenzene-based scintil-

lator. The sources have been used for the calibration.

Simple laboratory demonstration apparatus for thoron (220Rn) preparation could be con-

structed, using aged sample of thorium nitrate solution [45]. The solution is enclosed in a bub-

bler flask connected to a small compressor from where the flowing air displaces the thoron 
through the valves. Lucas-type scintillation counter [46], ionization chamber or a cloud cham-

ber could be directly connected to the emanation flask through the drying column. Thoron 
half-life could be easily determined by counting the gas activity enclosed in the detector over 

few minutes or alternatively the alpha-particle tracks could be visualized in a cloud chamber 

(Figure 6) for educational and demonstration purposes.

4. Radon counting

Measurement of emanation ionization-induced discharge of an electroscope was the first 
method to determine its activity. Later on, ionization, scintillation and many other types 

of detectors were developed for radon counting. Various passive detectors as well as flow-
through detectors were developed. Also the direct radon detection techniques, radon progeny 

detection and even electronic nuclear track detectors were developed.

The direct and precise radon activity determination (typically volume activity in air or water) 

is, due to radon physical and chemical properties, problematic since the inert gas may escape 

the sample and the volume activity depends on many factors (e.g., the weather and build-

ing ventilation). Thus, particular precautions need to be applied for sample treatment. For 

example, the well water must be stored in tight bottles in a cold place and measured within 
few days from the sample collection.

Figure 6. Tracks of alpha particles from thoron (220Rn) decay visible in an isopropanol-filled continuous cloud chamber.
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Short-term radon monitoring in air could be easily performed by the measurement of defined 
amount of air enclosed in a Lucas cell-type detectors, based on ZnS(Ag) scintillation material 

[46]. Various geometries were developed, and even 1 L cell volume detectors are available with 

minimal significant volume activities in the range of 2 and 3 mBq/L for airborne radon and 222Rn 

in water, respectively [47]. Measurement of 222Rn was also performed by its absorption in a plas-

tic scintillators and alpha/beta pulse shape discrimination [48]. These techniques may be used in 

radon risk determination on a building sites. Soil air is taken from the ground by drilling several 

exploratory wells up to the depth of 1 m, and air samples are collected with air-tight syringe, 

transferred to a Lucas cell and counted. Further, the radon gas permeability through the soil 

and fundaments is also evaluated to determine overall risk [49]. Even though certified methods 
were applied more detailed analysis is needed in some cases to provide accurate results [50]. For 

some systems and low-background radon counting, the decayed air or low radon gas is needed 

to reach low detection limits. Such apparatus for low radon nitrogen was reported [51].

Another type of detectors for longer determination periods (e.g., 2 weeks) are the electret 

dosimeters [52]. Integral measurement gives an average value of radon volume activity in the 

air and is less influenced by temporary short-term changes in the monitored place situation.

Long-term determinations are performed with radon nuclear track detectors [53]. These are 

placed in a monitored area and left for the period of even several years to collect the tracks. 

These are further etched and detected under microscope and evaluated using CCD camera 

and PC software [54]. The comparison of various types of alpha-track detectors was evaluated 

some time ago [55].

For laboratory measurements, semiconductor detectors for alpha and gamma spectroscopy 

may be used with an advantage of radon, thoron and their progenies discrimination; however, 

the need of enclosed apparatus is crucial in direct measurements and usually allows only the 

determination of the progeny. Interesting and a very simple emanation method for determin-

ing radium was described, where the radon was adsorbed on a silica gel at the temperature of 

liquid nitrogen and then transferred at 0°C to a toluene-based liquid scintillator [56].

Other techniques for simultaneous measurement of radon and thoron were studied, for example, 

using the Timepix electronic nuclear track detector [57]. Electronic radon/thoron detection sys-

tem was developed, employing the passivated ion-implanted planar silicon (PIPS) detector [58].

A method that allows to distinguish surface radon sources from the deep sources was reported 

recently [59]. The method for the determination of the relative depth of a radon source is based 

on the field alpha-spectroscopy of radon (222Rn) and actinon (219Rn) progenies in soil gas. The 

limitations of the determination were obvious, firstly the 40 s time-period (half-life of actinon) 
and secondly the geological-structural situation of the studied locality where the high value 

of the activity ratio of 211Bi and 214Po corresponded to a situation where the short-lived isotope 
219Rn was present in the sample in larger amounts than that corresponding to the natural ratio.

Personal monitoring of radiation workers, mainly in uranium industry and other mines in 

uranium-rich regions, includes a combination of several types of detectors in order to prop-

erly estimate the acquired cumulative dose and to discriminate the inhaled radiation bur-

den. Thus they typically contain a thermoluminescent detector for external gamma radiation 
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dose measurement, active flow-through filter unit for the measurement of long-lived progeny 
aerosols and a nuclear track detector typically equipped with energy-absorbing foils for the 

radon and thoron alpha decay discrimination [60].

5. Applications and use of radon

The radon element applications include various research, industrial and other fields like its use 
in spa-based therapies and the exploitation of its natural occurrence in anomalous quantities.

From the early times, radon emanation and the emanation method were applied in the studies 

of material structure, for example, to determine specific surface, material porosity and their 
crystalline/amorphous structure [61]. Recently, novel method and an installation for rapid 

determination of the radon diffusion coefficients in various materials were described recently 
[62]. Such measurement is important for the development and characterization of radon barri-

ers. Emanation method was also used for the estimation of reactivity of ferric oxides prepared 

from different sources [63].

To study the radon isotope permeation through the barriers as well as to perform dosimetric 

studies and other experiments under radon exposure, radon chambers are constructed. A review 

of different radon chambers with volumes from 0.01 up to 78 m3 appeared, describing several 

setups [64]. Fully automated radon chamber was also developed, including the controlled atmo-

sphere (humidity, pressure and radon activity) [65]. The chamber of 1.46 m3 was made of stainless 

steel and allowed 222Rn, 220Rn or both to be injected from the bottom pipelines into the chamber in 
a 100% flow-through mode, 100% recirculate mode or flow-through/recirculate mode.

Another application of radon includes the labelling of surface layers using the active deposits 

of radon. That is possible, thanks to the nuclear recoil effect and their electrostatic deposition. 
This method allows to prepare, for example, surface-labelled solid samples and to perform 

their wear tests [66].

Since the radon gas permeates the underground through the rock cracks and enters into 

springs and soil air, it may be useful for uranium and other ores prospecting by the emanation 

detection of radiometric anomalies [67]. Interesting fact of exterrestrial radon occurrence was 

reported on the lunar surface [68]. Very important geophysical application of radon detection 

is the measurement of radon release anomalies preceding the earthquakes [69].

Another isotope of radon, the thoron, was used in the separation of 212Pb from 228Th, allowing the 

construction of a radionuclide generator [70] and its use for the labelling of radioimmunoconju-

gates for targeted alpha-particle therapy [71]. The production of 212Pb is nowadays performed under 

good manufacturing practice (GMP), and clinical trials of several tracers are ongoing e.g. [72].

The use of radon (222Rn) in medicine and spas radically decreased as soon as the determinis-

tic effects of ionizing radiation on humans were better understood. On the other hand, under 
proper regulation, low-activity radon therapy is even nowadays beneficial for the patients suffer-

ing from painful inflammatory rheumatic diseases, diseases of musculoskeletal system, diseases 
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of the peripheral nervous system, diabetes and others. In Jáchymov, Czech Republic, the world-
famous radium spa is operating four water springs with maximal radon content of 5–20 kBq/L 
[73]. Despite of insufficient number of clinical trials [74] and some controversies in the radon 
therapies [75, 76], the long-term experience demonstrably confirms the benefits for the patients 
and justifies its use, further confirmed by many independent scientific studies [77–80]. The spa 
medical praxis was verified by decades and is supported also by other epidemiologic studies 
on the hormesis theory that supports the beneficial effects of low-dose radon exposure [81–83].
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