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Abstract. The tendency to overestimate immediate utility is a common
cognitive bias. As a result people behave inconsistently over time and fail
to reach long-term goals. Behavioral economics tries to help affected indi-
viduals by implementing external incentives. However, designing robust
incentives is often difficult due to imperfect knowledge of the parameter
β ∈ (0, 1] quantifying a person’s present bias. Using the graphical model
of Kleinberg and Oren [8], we approach this problem from an algorithmic
perspective. Based on the assumption that the only information about
β is its membership in some set B ⊂ (0, 1], we distinguish between two
models of uncertainty: one in which β is fixed and one in which it varies
over time. As our main result we show that the conceptual loss of effi-
ciency incurred by incentives in the form of penalty fees is at most 2
in the former and 1 + max B/ min B in the latter model. We also give
asymptotically matching lower bounds and approximation algorithms.
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1 Introduction

Many goals in life such as losing weight, passing an exam or paying off a loan
require long-term planning. But while some people stick to their plans, others
lack self-control; they eat unhealthy food, delay their studies and take out new
loans. In behavioral economics the tendency to change a plan for no apparent
reason is known as time-inconsistent behavior. The questions are, what causes
these inconsistencies and why do they affect some more than others? A common
explanation is that people make present biased decisions, i.e., they assign dispro-
portionately greater value to the present than to the future. In this simplifying
model a person’s behavior is the mere result of her present bias and the setting in
which she is placed. However, the interplay between these two factors is intricate
and sometimes counter-intuitive as the following example demonstrates:

Consider two runners Alice and Bob who have two weeks to prepare for an
important race. Each week they must choose between two types of workout.
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Type A always incurs an effort of 1, whereas type B incurs an effort of 3 in the
first and 9 in the second week. Since A offers less preparation than B, Alice and
Bob’s effort in the final race is 13 if they consistently choose A and 1 if they
consistently choose B. Furthermore, A and B are incompatible in the sense that
switching between the two will result in an effort of 16 in the final race. Figure 1
models this setting as a directed acyclic graph G with terminal nodes s and t.
The intermediate nodes vX and vXY represent a person’s state after completing
the workouts X,Y ∈ {A,B}. To move forward with the training, Alice and Bob
must perform the tasks associated with the edges of G, i.e., complete workouts
and run the race. Looking at G it becomes clear that two consecutive workouts
of type B are the most efficient routine in the long run. However, this is not
necessarily the routine a present biased person will choose.

For instance, assume that Alice and Bob discount future costs by a factor of
a = 1/2−ε and b = 1/2+ε respectively. We call a and b their present bias. At the
beginning of the first week Alice and Bob compare different workout routines.
From Alice’s perspective two workouts of type A are strictly more preferable to
two workouts of type B as she anticipates an effort of 1 + a(1 + 13) = 8 − 14ε
for the former and 3 + a(9 + 1) = 8 − 10ε for the latter. A similar calculation
for Bob shows that he prefers two workouts of type B. Considering that neither
Alice nor Bob finds a mix of A and B particularly interesting at this point, we
conclude that Alice chooses A in the first week and Bob B. However, come next
week, Bob expects an effort of 1 + b16 = 8 + 16ε for A and 9 + b = 19/2 + ε
for B. Assuming ε is small enough, A suddenly becomes Bob’s preferred option
and he switches routines. Alice on the other hand has no reason to change her
mind and sticks to A. As a result she pays much less than Bob during practice
and in the final race. This is remarkable considering that her present bias is only
marginally different from Bob’s. Moreover, it seems surprising that only Bob
behaves inconsistently, although he is less biased than Alice.

1.1 Related Work

Traditional economics and game theory are based on the assumption that peo-
ple maximize their utility in a rational way. But despite their prevalence, these
assumptions disregard psychological aspects of human decision making observed
in empirical and experimental research [5]. For instance, time-inconsistent behav-
ior such as procrastination seems paradox in the light of traditional economics.
Nevertheless, it can be explained readily by a tendency to overestimate immedi-
ate utility in long-term planning, see e.g. [13]. By studying such cognitive biases,
behavioral economics tries to obtain more realistic economic models.

A significant amount of research in this field has been devoted to temporal

discounting in general and quasi-hyperbolic discounting in particular, see [6] for
a survey. The quasi-hyperbolic discounting model proposed by Laibson [11] is
characterized by two parameters: the present bias β ∈ (0, 1] and the exponential

discount rate δ ∈ (0, 1]. People who plan according to this model have an accurate
perception of the present, but scale down any costs and rewards realized t ≥ 1
time units in the future by a factor of βδt. To keep our work clearly delineated
in scope, we adopt Akerlof’s model of quasi-hyperbolic discounting [1] and make
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Fig. 1. Task graph of the running scenario

the following two assumptions: First, we focus on the present bias β and set the
exponential discount rate to δ = 1. Secondly, we assume people to be naive in
the sense that they are unaware of their present bias and only optimize their
current perceived utility when making a decision. Note that Alice and Bob from
the previous example behave like agents in Akerlof’s model for a present bias of
β = 1/2 − ε and β = 1/2 + ε respectively.

Until recently the economic literature lacked a unifying and expressive frame-
work for analyzing time-inconsistent behavior in complex social and economic
settings. Kleinberg and Oren closed this gap by modeling the behavior of naively
present biased individuals as a planning problem in task graphs like the one
depicted in Fig. 1 [8]. We introduce this framework formally in Sect. 2. As a
result of Kleinberg and Oren’s work, an active line of research at the intersec-
tion of computer science and behavioral economics has emerged. For instance,
the graphical model has been used to systematically analyze different types of
quasi-hyperbolic discounting agents such as sophisticated agents who are fully
or partially aware of their present bias [9] and agents whose present bias varies
randomly over time [7]. Furthermore, the graphical model was used to shed light
on the interplay between temporal biases and other types of cognitive biases [10].

The graphical model is of particular interest to us as it provides a natural
framework for a design problem frequently encountered in behavioral economics.
Given a certain social or economic setting, the problem is to improve a time-
inconsistent person’s performance via various sorts of incentives, such as mone-
tary rewards, deadlines or penalty fees, see e.g. [12]. Using the graphical model,
Kleinberg and Oren demonstrate how a strategic choice reduction can incen-
tivize people to reach predefined goals [8]. To implement their incentives, they
simply remove the corresponding edges from the task graph. However, there is a
computational drawback to this approach. As we have shown in previous work,
an optimal set of edges to remove from a task graph with n nodes is NP-hard to
approximate within a factor less than

√
n/3 [2]. A more general form of incen-

tives avoiding these harsh complexity theoretic limitations are penalty fees. In
the graphical model penalty fees are at least as powerful as choice reduction and
admit a polynomial time 2-approximation [3].

1.2 Incentive Design for an Uncertain Present Bias

Frederick, Loewenstein and O’Donoghue have surveyed several attempts to esti-
mate people’s temporal discount functions [6]. But as estimates differ widely
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across studies and individuals, the difficulty of predicting a person’s temporal
discount function becomes apparent. Clearly, this poses a serious challenge for
the design of reliable incentives. After all, Alice and Bob’s scenario demonstrates
how arbitrarily small changes in the present bias can cause significant changes in
a person’s behavior. In this work we address the effects of incomplete information
about a person’s present bias in two different notions of uncertainty.

In Sect. 3 we consider naive individuals whose exponential discount rate is
δ = 1, but whose present bias β is unknown. The only prior information we have
about β is its membership in some larger set B. Our goal is to construct incentives
that are robust with respect to the uncertainty induced by B. More precisely,
we are interested in incentives that work well for any present bias contained in
B. An alternative perspective is that we try to construct incentives which are
not limited to a single person, but serve an entire population of individuals with
different present bias values. A simple instance of this problem in which a single
task must be partitioned and stretched over a longer period of time has been
studied by Kleinberg and Oren [8]. But like most research on incentivizing het-

erogeneous populations, see e.g. [12], Kleinberg and Oren’s results are restricted
to a very specific setting. They themselves suggest the design of more general
incentives as a major research direction for the graphical framework [8].

Using penalty fees as our incentive of choice and a fixed reward to keep
people motivated, we present the first results in this area. Our contribution is
twofold. On the one hand, we try to quantify the conceptual loss of efficiency
caused by incomplete knowledge of β. For this purpose we introduce a novel
concept called price of uncertainty, which denotes the smallest ratio between
the reward required by an incentive that accommodates all β ∈ B and the
reward required by an incentive designed for a specific β ∈ B. We present an
elegant algorithmic argument to prove that the price of uncertainty is at most 2.
Remarkably, this bound holds true independent of the underlying graph G and
present bias set B. To complement our result, we construct a family of graphs
G and present bias sets B for which the price of uncertainty converges to a
value strictly greater than 1. On the other hand, we consider the computational
problem of constructing penalty fees that work for all β ∈ B, but require as little
reward as possible. Drawing on the same algorithmic ideas we used to bound the
price of uncertainty yields a polynomial time 2-approximation. Furthermore, we
present a non-trivial proof to show that the decision version of the problem is
contained in NP. Since all hardness results of [3] also apply under uncertainty,
we know that there is no 1.08192-approximation unless P = NP.

1.3 Incentive Design for a Variable Present Bias

In Sect. 4 we generalize our notion of uncertainty to individuals whose present
bias β may change arbitrarily over time within the set B. This model is inspired
by work of Gravin et al. [7], except that we do not rely on the assumption that
β is drawn independently from a fixed probability distribution. Instead, our goal
is to design penalty fees that work well for all possible sequences of β over time.
We believe this to be an interesting extension of the fixed parameter case as the
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variability of β may capture changes in a person’s temporal discount function
caused by unforeseen cognitive biases different from her present bias. As a result
we obtain more robust penalty fees.

Again, our contribution is twofold. On the one hand, we introduce the price

of variability to quantify the conceptual loss of efficiency caused by unpredictable
changes in β. Similar to the price of uncertainty, we define this quantity to be the
smallest ratio between the reward required by an incentive that accommodates
all possible changes of β ∈ B over time and the reward required by an incentive
designed for a specific and fixed β ∈ B. However, unlike the price of uncertainty,
the price of variability has no constant upper bound. Instead, the ratio seems
closely related to the range τ = max B/min B of the set B. By generalizing our
algorithm from Sect. 3 we obtain an upper bound of 1+τ for the price of variabil-
ity. To complement this result, we construct a family of graphs G for which the
price of variability converges to τ/2. On the other hand, we consider the com-
putational aspects of constructing penalty fees for a variable β. As a result of
the unbounded price of variability, we are not able to come up with a constant
polynomial time approximation. Instead, we obtain a (1 + τ)-approximation.
However, by using a sophisticated reduction from VECTOR SCHEDULING,
we prove that no efficient constant approximation is possible unless NP = ZPP.
We conclude our work by studying a curious special case of variability in which
individuals may temporarily lose their present bias. For this scenario, which is
characterized by the assumption that 1 ∈ B, optimal penalty fees can be com-
puted in polynomial time.

2 The Model

In the following we introduce Kleinberg and Oren’s graphical framework [8]. Let
G = (V,E) be a directed acyclic graph with n nodes that models some long-term
project. The start and end states are denoted by the terminal nodes s and t.
Furthermore, each edge e of G corresponds to a specific task whose inured effort
is captured by a non-negative cost c(e). To finish the project, a present biased
agent must sequentially complete all tasks along a path from s to t. However,
instead of following a fixed path, the agent constructs her path dynamically
according to the following simple procedure:

When located at any node v different from t, the agent tries to evaluate
the minimum cost she needs to pay in order to reach t. For this purpose she
considers all outgoing edges (v, w) of her current position v. Because the tasks
associated with these edges must be performed immediately, the agent assesses
their cost correctly. In contrast, all future tasks, i.e., tasks on a path from v to
t not incident to v, are discounted by her present bias of β ∈ (0, 1]. As a result,
we define her perceived cost for taking (v, w) to be dβ(v, w) = c(v, w) + βd(w),
where d(w) denotes the cost of a cheapest path from w to t. Furthermore, we
define dβ(v) = min{c(v, w) + βd(w) | (v, w) ∈ E} to be the agent’s minimum

perceived cost at v. Since the agent is oblivious to her own present bias, she only
traverses edges (v, w) for which dβ(v, w) = dβ(v). Ties are broken arbitrarily.
Once the agent reaches the next node, she reiterates this process.
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To motivate the agent, a non-negative reward r is placed at t. Because the
agent must reach t before she can collect r, her perceived reward for reaching t
is βr at each node different from t. When located at v �= t, the agent is only
motivated to proceed if dβ(v) ≤ βr. Otherwise, if dβ(v) > βr, she quits. We say
that G is motivating, if she does not quit while constructing her path from s
to t. Note that sometimes the agent can construct more than one path from s to
t due to ties in the perceived cost of incident edges. In this case, G is considered
motivating if she does not quit on any such path.

For the sake of a clear presentation, we will assume throughout this work
that each node of G is located on a path from s to t. This assumption is sensible
because the agent can only visit nodes reachable from s. Furthermore, she is not
willing to enter nodes that do not lead to the reward at t. Consequently, only
nodes that are on a path from s to t are relevant to her behavior. All nodes not
satisfying this property can be removed from G in a simple preprocessing step.

2.1 Alice and Bob’s Scenario

To illustrate the model, we revisit Alice and Bob’s scenario. The task graph G is
depicted in Fig. 1. Remember that a = 1/2− ε and b = 1/2+ ε denote Alice and
Bob’s respective present bias. For convenience let 0 < ε ≤ 1/54. Furthermore,
assume that a reward of r = 27 is awarded upon reaching t.

We proceed to analyze Alice and Bob’s walk through G. At their initial
position s they must decide whether they move to vA or vB. For this pur-
pose they try to find a path that minimizes the perceived cost. As the more
present biased person, Alice’s favorite path is s, vA, vAA, t with a perceived cost
of da(s) = da(s, vA) = 8−14ε. By choice of ε this cost is covered by her perceived
reward ar = 27/2 − 27ε. Consequently, she is motivated to traverse the first edge
and moves to vA. A similar argument shows that Bob moves to vB. Once they
reach their new nodes, Alice and Bob reevaluate plans. From Alice’s perspective
vA, vAA, t is still the cheapest path to t. Bob, however, suddenly prefers vB, vAB , t
to his original plan. Nevertheless, both of their perceived cost remains covered
by their perceived reward and they move to vAA and vAB respectively. At this
point the only option is to take the direct edge to t. For Alice the perceived cost
at vAA is sufficiently small to let her reach t. In contrast, Bob’s perceived cost of
db(vAB) = 16 exceeds his perceived reward of br = 27/2 + 27ε and he quits.

2.2 Cost Configurations

Bob’s behavior in the previous example demonstrates how present biased deci-
sions can deter people from reaching predefined goals. To ensure an agent’s suc-
cess it is therefore sometimes necessary to implement external incentives such as
penalty fees. In the graphical model, penalty fees allow us to arbitrarily raise the
cost of edges in G. More formally, let c̃ be a so called cost configuration, which
assigns a non-negative extra cost c̃(e) to all edges e of G. The result is a new
task graph Gc̃, whose edges e have a cost of c(e) + c̃(e). A present biased agent
navigates through Gc̃ according to the same rules applying in G. We say that c̃
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is motivating if and only if Gc̃ is. To avoid ambiguity we annotate our notation
whenever we consider a specific c̃, e.g., we write dc̃ and dβ,c̃ instead of d and dβ .

We conclude this section with a brief demonstration of the positive effects
penalty fees can have in Alice and Bob’s scenario. Let c̃ be a cost configuration
that assigns an extra cost of c̃(vB , vAB) = 1/2 to (vB , vAB) and c̃(e) = 0 to all
other edges e �= (vB , vAB). Note that G and Gc̃ are identical task graphs except
for the cost of (vB , vAB). Because Alice does not plan to take (vB , vAB) on her
way through G and has even less reason to do so in Gc̃, we know that c̃ does
not affect her behavior. For similar reasons, c̃ does not affect Bob’s choice to
move to vB . However, once Bob has reached vB his perceived cost of the path
vB, vAB , t is db,c̃(vB , vAB) = 19/2 + 16ε, whereas his perceived cost of vB, vBB ,
t is only db,c̃(vB , vBB) = 19/2 + ε. Since the latter option appears to be cheaper
and is covered by his perceived reward, Bob proceeds to vBB and then onward
to t. As a result c̃ yields a task graph that is motivating for Alice and Bob alike.
This is a considerable improvement to the original task graph.

3 Uncertain Present Bias

In this section we consider agents whose present bias β is uncertain in the sense
that our only information about β is its membership in some set B ⊂ (0, 1].
We call B the present bias set. For technical reasons we assume that B can be
expressed as the union of constantly many closed subintervals from the set (0, 1].
This way the intersection of B with a closed interval is either empty or contains
an efficiently computable minimal and maximal element. To measure the degree
of uncertainty induced by B, we define the range of B as τ = max B/min B.

3.1 A Decision Problem

Our goal is to construct a cost configuration c̃ that is motivating for all β ∈ B,
but requires as little reward as possible. To assess the complexity of this task,
let UNCERTAIN PRESENT BIAS (UPB) be the following decision problem:

Definition 1 (UPB). Given a task graph G, present bias set B and reward

r > 0, decide whether a cost configuration c̃ motivating for all β ∈ B exists.

If τ = 1, i.e., B only contains a single present bias parameter, UPB is identical to
the decision problem MOTIVATING COST CONFIGURATION (MCC) studied
in [3]. Since MCC is NP-complete, UPB must be NP-hard. But unlike MCC it
is not immediately clear if UPB is also contained in NP. The reason is that
proving MCC ∈ NP only requires to verify whether a given cost configuration is
motivating for a single value of β; a property that can be checked in polynomial
time [2]. However, proving UPB ∈ NP requires to verify whether a given cost
configuration is motivating for all β ∈ B. Taking into account that B may very
well be an infinite set, it becomes clear that we cannot check all values of β
individually. Interestingly, we do not have to; checking a finite subset B′ ⊆ B of
size O(n2) turns out to be sufficient.
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Proposition 1. For any task graph G, reward r and present bias set B a finite

subset B′ ⊆ B of size O(n2) exists such that G is motivating for all β ∈ B if it

is motivating for all β ∈ B′.

The above proposition is related to a theorem by Kleinberg and Oren, which
bounds the number of paths an agent takes as β varies over (0, 1] by O(n2) [8].
Kleinberg and Oren’s argument does not only establish existence of B′, but also
yields a polynomial time algorithm to construct B′, which in turn implies that
UPB ∈ NP. Due to space constraints, we refer to the full version of this paper
for a corresponding proof of Proposition 1 as well as all other omitted proofs.

Corollary 1. UPB is NP-complete.

3.2 The Price of Uncertainty

Since UPB is NP-complete, it makes sense to consider the corresponding opti-
mization problem UPB-OPT. For this purpose, let r(G,B) be the infimum over
all rewards admitting a cost configuration motivating for all β ∈ B and define:

Definition 2 (UPB-OPT). Given a task graph G and present bias set B,

determine r(G,B).

Clearly, UPB-OPT must be at least as hard as the optimization version of MCC.
Consequently, we know that UPB has no PTAS and is NP-hard to approximate
within a ratio less than 1.08192 [3]. But does the transition from a certain to an
uncertain β reduce approximability?

Setting complexity theoretic considerations aside for a moment, an even more
general question arises: How does the transition from a certain to an uncertain
β affect the efficiency of cost configurations assuming unlimited computational
resources? To quantify this conceptual difference in efficiency, we look at the
smallest ratio between optimal cost configurations motivating for all β ∈ B and
optimal cost configurations motivating for a specific β ∈ B. We call this ratio
the price of uncertainty.

Definition 3 (Price of Uncertainty). Given a task graph G and a present bias

set B, the price of uncertainty is defined as r(G,B)/ sup{r(G, {β}) | β ∈ B}.
Let us illustrate the price of uncertainty by going back to Alice and Bob’s

scenario and assume that B = {a, b} with a = 1/2−ε and 1/2+ε. In other words,
the agent either behaves like Alice or she behaves like Bob, but we do not know
which. It is easy to see that in either case the agent minimizes her maximum per-
ceived cost on the way from s to t by taking the path P = s, vB , vBB , t. This min-
max cost, which is either da(vB , vBB) = 19/2−ε or db(vB , vBB) = 19/2+ε, pro-
vides two lower bounds for the necessary reward when divided by the respective
present bias. More formally, it holds true that r(G, {a}) ≥ (19/2 − ε)/(1/2 − ε)
and r(G, {b}) ≥ (19/2 + ε)/(1/2 + ε). However, as we have seen in Sect. 2, nei-
ther Alice nor Bob are willing to follow P without external incentives. To dis-
courage the agent from leaving P , we assign an extra cost of c̃(s, vA) = 5ε to
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Algorithm 1. UncertainPresentBiasApprox

1 b ← min B; P ← minmax path from s to t w.r.t db(e); α ← max{db(e) | e ∈ P};
2 foreach v ∈ V \ {t} do ς(v) ← successor of v on a cheapest path from v to t;
3 T = {(v, ς(v)) | v ∈ V \ {t}};
4 foreach e ∈ E do c̃(e) ← 0;
5 foreach e ∈ E \ (P ∪ T ) do c̃(e) ← 2α/b + 1;
6 foreach (v, w) ∈ T such that v ∈ P and w /∈ P do

7 P ′ ← v, ς(v), ς(ς(v)), . . . , t;
8 u ← first node of P ′ different from v that is also a node of P ;
9 c̃(v, w) ← cost of most expensive edge of P ′ between v and u;

10 return c̃;

(s, vA), c̃(vB , vAB) = 1/2 + 16ε to (vB , vAB) and c̃(e) = 0 otherwise. This extra
cost does not affect the agent’s maximum perceived cost along P , which she still
experiences at (vB , vBB). As a result, our bounds for r(G, {a}) and r(G, {b})
are tight and we get sup{r(G, {β}) | β ∈ B} = r(G, {a}). Moreover, because we
have used the same cost configuration c̃ to derive r(G, {a}) and r(G, {b}), it
must hold true that r(G,B) = sup{r(G, {β}) | β ∈ B}, implying that the price
of uncertainty in Alice and Bob’s scenario is 1.

3.3 Bounding the Price of Uncertainty

As Alice and Bob’s scenario demonstrates, cost configurations designed for an
uncertain β are not necessarily less efficient than those designed for a specific β.
Therefore one might wonder whether scenarios exist in which a real loss of effi-
ciency is bound to occur, i.e., can the price of uncertainty be greater than 1?
The following proposition shows that such scenarios indeed exist.

Proposition 2. There exists a family of task graphs and present bias sets for

which the price of uncertainty converges to 1.1.

As the price of uncertainty can be strictly greater than 1, the question for
an upper bound arises. Ideally, we would like to design a cost configuration c̃
motivating for all β ∈ B assuming the reward is set to ̺r(G, {b}) for some
constant factor ̺ > 1 and b = min B. Clearly, the existence of such a c̃ would
imply a constant bound of ̺ for the price of uncertainty independent of G and B.
Using a generalized version of the approximation algorithm we proposed in [3],
it is indeed possible to construct a c̃ with the desired property for ̺ = 2.

The main idea of UncertainPresentBiasApprox is simple: First, the algo-
rithm computes a value α such that α/b is a lower bound on the reward necessary
for agents with present bias b, i.e., r(G, {b}) ≥ α/b. In particular, this bound
implies sup{r(G, {β}) | β ∈ B} ≥ α/b. Next the algorithm constructs a c̃ such
that a reward of 2α/b is sufficiently motivating for all β ∈ B, i.e., r(G,B) ≤ 2α/b.
As a result the price of uncertainty can be at most 2. In the following we try to
convey the intuition behind the algorithm in more detail.
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We begin with the computation of α. For this purpose let P be a path
minimizing the maximum cost an agent with present bias b perceives on her
way from s to t. We call P a minmax path and define α = max{db(e) | e ∈ P}
to be the maximum perceived edge cost of P . Since cost configurations cannot
decrease edge cost, it should be clear that α is a valid lower bound on the reward
required for the present bias b, i.e., r(G, {b}) ≥ α/b.

We proceed with c̃. The goal is to assign extra cost in such a way that any
agent with a present bias β ∈ B traverses only two kinds of edges. The first kind
of edges are those on P . It is instructive to note that each such edge (v, w) ∈ P
is motivating for a reward of α/b if β ≥ b. The reason is that

dβ(v, w) = β
(c(v, w)

β
+ d(v, w)

)

≤ β
(c(v, w)

b
+ d(v, w)

)

= β
db(v, w)

b
= β

α

b
.

In particular, P is motivating for each present bias β ∈ B. The second kind
of edges are on cheapest paths to t. To identify these edges, the algorithm assigns
a distinct successor ς(v) to each node v ∈ V \{t} such that (v, ς(v)) is the initial
edge of a cheapest path from v to t. Since we assume t to be reachable from all
other nodes of G at least one suitable successor must exist. By definition of ς,
we know that P ′ = v, ς(v), ς(ς(v)), . . . , t is a cheapest path from v to t. We call
P ′ the ς-path of v and T = {(v, ς(v)) | v ∈ V \ {t}} a cheapest path tree.

Remember that we try to keep agents on the edges of P and T . For this
purpose, we assign an extra cost of c̃(e) = 2α/b + 1 to all other edges. This
raises their perceived cost to at least 2α/b + 1; a price no agent is willing to
pay for a perceived reward of β2α/b. However, since we have not assigned any
extra cost to T so far, the perceived cost of edges in P and T is unaffected by
the current c̃. In particular, all edges of P are still motivating for a reward of
α/b and any present bias β ∈ B. To keep agents from entering costly ς-paths
P ′ = v, ς(v), ς(ς(v)), . . . , t, we assign an extra cost to the out-edges (v, ς(v)) of P ,
i.e., v ∈ P but ς(v) /∈ P . The extra cost c̃(v, ς(v)) is chosen to match the cost of
a most expensive edge on P ′ between v and the next intersection of P ′ and P . It
is easy to see that the resulting c̃ can no more than double the perceived cost of
any edge in P , see the proof of Theorem 1 for a precise argument. Furthermore,
the perceived cost of any out-edge (v, ς(v)) of P is either high enough to keep
agents on P or they do not encounter edges exceeding the perceived cost of
(v, ς(v)) until they reenter P . We conclude that a reward of 2α/b is sufficiently
motivating, leading us to one of the central results of our work.

Theorem 1. The price of uncertainty is at most 2.

It is interesting to note that UncertainPresentBiasApprox can be exe-
cuted in polynomial time. Furthermore, in the proof of Theorem1 we argue that
α/b ≤ r(G,B) ≤ 2α/b. As a result we have also found an efficient constant factor
approximation of UPB-OPT.

Corollary 2. UPB-OPT admits a polynomial time 2-approximation.



The Price of Uncertainty in Present-Biased Planning 335

4 Variable Present Bias

So far we have considered agents with an unknown but fixed present bias. We
now generalize this model to agents whose β may vary arbitrarily within B
as they progress through G. It is convenient to think of β as a present bias

configuration, i.e., an assignment of present bias values β(v) ∈ B to the nodes
v of G. Whenever the agent reaches a node v, she acts according to the current
present bias value β(v). We say that G is motivating with respect to a present
bias configuration β if and only if the agent does not quit on a walk from s to t.

To illustrate the consequences of a variable present bias we revisit Alice and
Bob’s scenario once more. Recall that the agent in this scenario is either like Alice
with a present bias of a = 1/2− ε or like Bob with a present bias of b = 1/2+ ε,
i.e., B = {a, b}. But while she had to commit to one present bias before, she is
now free to change between a and b. For instance, her present bias could be b
at s and vB , but a otherwise, i.e., β(v) = b for v ∈ {s, vB} and β(v) = a for
v ∈ V \ {s, vB}. In this case she walks along the same path Bob would take, i.e.,
s, vB , vAB , t. However, there is a subtle difference. At vAB the agent behaves
like Alice and needs strictly more reward than Bob to remain motivated while
traversing (vAB , t). Under closer examination, which we will not go into detail
here, it is in fact easy to see that the variability of β makes our agent more
expensive to motivate than any agent with a fixed present bias from B.

4.1 Computational Consideration

Let G be an arbitrary task graph and B a suitable present bias set. We want to
construct a cost configuration c̃ that is motivating for all present bias configura-
tion β ∈ BV , but requires as little reward as possible. Using arguments similar to
those of Sect. 3, the computational challenges of this task are readily apparent.
In particular, the corresponding decision problem VARIABLE PRESENT BIAS
(VPB) is equivalent to MCC whenever B only contains a single element.

Definition 4 (VPB). Given a task graph G, present bias set B and reward

r > 0, decide whether a cost configuration c̃ motivating for all β ∈ BV exists.

Because MCC is NP-complete [3], it immediately follows that VPB is
NP-hard. A proof that VPB ∈ NP can be found in the full version of this
paper.

Corollary 3. VPB is NP-complete.

As it is NP-hard to find optimal cost configurations for general B, we turn
to the optimization version of the problem. For this purpose let r(G,BV ) be
the infimum over all rewards admitting a cost configuration c̃ motivating for all
β ∈ BV and define VPB-OPT as:

Definition 5 (VPB-OPT). Given a task graph G and present bias set B,

determine r(G,BV ).
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Interestingly, approximating VPB-OPT seems to be much harder than
UPB-OPT. The reason why the 2-approximation for UPB-OPT, i.e.,
UncertainPresentBiasApprox, does not work anymore is simple. Recall that
the cost configuration c̃ returned by the algorithm lets the agent take short-
cuts along cheapest paths to t. To ensure that these shortcuts do not become
too expensive, c̃ assigns extra cost to their initial edge. This way the per-
ceived cost within a shortcut should not be greater than that for entering.
As long as the present bias is fixed, this works fine. However, if the present
bias can change, the agent may become more biased within a shortcut and
require higher rewards to stay motivated. One way to fix this problem is to let
the assigned extra cost depend on τ , i.e., the range of B. More precisely, we
multiply the cost assigned in line 9 of Algorithm1 by τ and change line 5 to
assign a cost of c̃(e) = (1 + τ)α/b + 1. As a result we obtain a new algorithm
VariablePresentBiasApprox with an approximation ration of 1 + τ .

Theorem 2. VPB-OPT admits a polynomial time (1 + τ)-approximation.

Although VariablePresentBiasApprox yields a good approximation for
a moderately variable present bias, it does not provide constant approxima-
tion bounds like UncertainPresentBiasApprox. Surprisingly, a sophisticated
reduction from VECTOR SCHEDULING (VS) [4], shows that VPB-OPT can-
not have an efficient constant factor approximation unless ZPP = NP.

Theorem 3. No polynomial time algorithm can approximate VPB-OPT within

a constant factor ̺ > 1, unless NP = ZPP.

4.2 Occasionally Unbiased Agents

Although VPB is hard to solve in general, a curious special case consisting of
all present bias sets B for which 1 ∈ B is not. Note that agents whose present
bias varies within such a B becomes temporarily unbiased whenever 1 is drawn.
For this reason we call these agents occasionally unbiased. A behavioral pattern
unique to occasionally unbiased agents is that they may start to walk along a
cheapest path at any point in time whenever their present bias becomes 1. As
a result we can reduce VPB to a decision problem we call CRITICAL NODE
SET (CNS) for occasionally unbiased agents.

Definition 6 (CNS). Given a task graph G, present bias set B and reward r,
decide the existence of a critical node set W .

We consider a node set W critical if the following properties hold: (a) s ∈ W .
(b) Each node v ∈ W has a path P to t that only uses nodes of W . (c) All edges
e of P satisfy db(e) ≤ br with b = min B. As it turns out, such a W contains
exactly those nodes an occasionally unbiased agent may visit with respect to a
motivating cost configuration. This allows us to reduce VPB to CNS.

Proposition 3. If 1 ∈ B, then VPB has a solution if and only if CNS has one.
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Algorithm 2. DecideCriticalNodeSet

1 δ(t) ← 0;
2 foreach v ∈ V \ {t} in reverse topological order do

3 U ← {w | (v, w) ∈ E and c(v, w) + βδ(w) ≤ b};
4 if U = ∅ then δ(v) ← ∞; else δ(v) ← min{c(v, w) + δ(w) | w ∈ U};

5 if δ(s) < ∞ then return “yes” else return “no”;

All that remains to show is that CNS is decidable in polynomial
time. A straight forward approach to this simple algorithmic problem is
DecideCriticalNodeSet. We therefore conclude that VPB is efficiently solv-
able for occasionally unbiased agents.

Corollary 4. If 1 ∈ B, then VPB can be solved in polynomial time.

4.3 The Price of Variability

To conclude our work, we take a step back from computational considerations
and look at the implications of variability from a more general perspective. Our
goal is to quantify the conceptual loss of efficiency incurred by going from a
fixed and known present bias to an unpredictable and variable one. Similar to
the price of uncertainty we define the price of variability as the following ratio.

Definition 7 (Price of Variability). Given a task graph G and a present bias

set B, the price of variability is defined as r(G,BV )/ sup{r(G, {β}) | β ∈ B}.

It seems obvious that the price of variability depends closely on the structure
of G and B. Nevertheless, we would like to find general bounds for the price of
variability much like we did in Sect. 3 for the price of uncertainty. As a first step,
it is instructive to note that the price of uncertainty is a natural lower bound for
the price of variability. The reason for this is that each cost configuration that
motivates an agent whose present bias varies arbitrarily in B must also motivate
an agent whose present bias is a fixed value from B. Therefore it holds true that
r(G,BV ) ≥ r(G,B), which immediately implies the stated bound. Sometimes
this bound is tight. Consider for instance Alice and Bob’s scenario. As we have
shown in Sect. 3, it is possible to construct a cost configuration c̃ verifying a price
of uncertainty of 1. Using similar arguments, it is easy to see that c̃ remains
motivating if we allow the present bias to vary, implying an identical price of
variability. However, for general instances of G and B this tight relation between
the price of uncertainty and the price of variability is lost. In fact, we can show
that unlike the price of uncertainty, which has a constant upper bound of 2, the
price of variability may become arbitrarily large as the range of B increases.

Proposition 4. There exists a family of task graphs and present bias sets for

which the price of variability converges to τ/2.
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Although Proposition 4 implies that the price of variability can become sub-
stantially larger than the price of uncertainty, it should be noted that the task
graph constructed in the proof of this proposition is close to a worst case sce-
nario. In particular, we can show that the price of variability cannot exceed τ +1,
which is roughly twice the value obtained by Proposition 4. To verify this upper
bound, it is helpful to recall the proof of Theorem2. In the process of establish-
ing the approximation ratio of VariablePresentBiasApprox we have argued
that the cost configuration c̃ returned by the algorithm motivates any agent with
a present bias configuration β ∈ BV for a reward of at most (τ+1)r(G, {min B}).
Consequently, it holds true that r(G,BV ) ≤ (τ +1)r(G, {min B}), implying that
the price of variability cannot exceed τ + 1.

Corollary 5. The price of variability is at most τ + 1.
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