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Abstract

To develop a circular economy, nutrients from waste streams need to be recovered and 
brought back to agricultural production as much as possible. Liquid waste streams pose 
a specific problem because high water content makes transport expensive. Treatment of 
wastewater and diluted waste streams to recover nutrients are briefly discussed, and two 
options that are not much used are discussed: sorption to increase the fraction of nutri-
ents found in the solid phase and nitrification of liquid to reduce nitrogen losses. Then, 
availability of nutrients to plants and environmental effects are discussed. It is concluded 
that there is little information on how treatment options affect how bioavailable the nutri-
ents are and that this should be taken into account when treatment option is chosen.
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1. Introduction

Many organic waste streams have high nutrient content, and can, if treated properly, become 

good fertilizers and soil improvers. There are many reasons to promote this use:

1. Resource efficiency: Nutrients in waste resource can replace mineral fertilizers and there-

fore reduce resource mining and energy use.

2. Organic agriculture cannot use mineral fertilizers and needs to use organic fertilizers to get 

nutrients for crop growth.
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3. Organic fertilizers also contain organic matter as well as organically bound nutrients. 
Organic matter can improve soil fertility and reduce soil degradation in some cases, and 
organically bound nutrients are released slowly.

4. Carbon can be sequestered in the soil and reduce atmospheric build-up.

The benefits of organic matter additions to soil have been stated by many authors [1–4]; how-

ever, the evidence suggests that mineral fertilizers usually are better at supplying plants with 
nutrients and avoid leaching losses, at least in the short term. However, in the longer term, 

building organic matter in the soil can improve nutrient retention. Slow release of nutrients 
may be beneficial for some crops (with long-period nutrient uptake e.g. root crops) and under 
some conditions (humid conditions with leaching losses early in the season), but less benefi-

cial for other crops and conditions [5].

Many organic waste streams contain a lot of water, making transport difficult and expensive 
in economic and environmental terms. Examples of diluted waste streams can be sewage, 
biogas digestate, animal manure, various industrial waste streams, animal manure and fish 
sludge from aquaculture.

An overview of wastewater treatment can be found in textbooks, for example, [6–8]. Choice 

of treatment has so far almost exclusively focused on cleaning the water sufficiently to be 
discharged to the recipient; the resource recovery perspective has not received much atten-

tion. However, this is now changing because of concern of resource mining, particularly for 

phosphorus [9, 10] and high-energy consumption in nitrogen fertilizer production [11].

Options for concentration (alone or in combination) can be:

• dewatering (by centrifuge or press)

• flocculation, settling

• precipitation

• drying, evaporation

• biological stabilization, wet composting

In most cases, liquid waste streams are left to let whatever can settle do so. There are also 
methods to increase settling and flocculation. Some form of stabilization is also common, 
either aerobic by use of oxygen or by anaerobic digestion for biogas production.

Dewatering leaves an organic rest with relatively low water content and a liquid residue with 

dissolved substances. As soluble nutrients are the most readily plant available, that means 

that a large fraction of the plant available nutrients will be found in the liquid phase. Often 

no good use of the liquid phase can be found, and it enters into sewage treatment systems. In 
many cases also some chemicals (polymers) are required to give proper separation [12]. This 

is costly, and chemicals can also have potentially negative environmental effects.

Dissolved nutrients can be precipitated out of solution. This is commonly done to get 

phosphorus out of wastewater before discharge to the recipient. Unfortunately, an almost 
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insoluble salt results, and plant availability is very low [13, 14], although different for different 
precipitation chemicals [15].

Drying or water reduction by evaporation can be good options if cheap or waste heat is avail-

able. However, most liquid waste streams contain most of the nitrogen on ammonium form, 

and some measures must be applied to prevent losses of nitrogen as ammonia [16]. This is 

commonly achieved by acidifying the solution first or collecting the ammonia in biofilter acid 
trap afterwards.

Fertilizer products developed from organic residues can be called organic fertilizers or biofer-

tilizers. This chapter deals with biofertilizers developed from liquid waste streams and dis-

cusses how biofertilizer quality in agricultural and environmental terms depend on treatment.

2. New treatment option to increase fraction in the solid phase and 

make liquid waste stable

Some newer options to increase recycling are discussed before Sorption is a physical and 
chemical process by which one substance becomes attached to another. By adding cheap sor-

bents to a liquid waste stream prior to dewatering, the fraction of nutrients found in the solid 

phase after dewatering can be increased. Nitrification is a microbial process where ammo-

nium is transferred to nitrate. This leaves a stable solution that can be applied and evaporated 

without losses of ammonia.

2.1. Sorption

Some sorbents can be used to remove nutrients from liquid waste streams and concentrate 
them in a solid phase that can be separated by dewatering. Sorption is a physical and chemical 
process by which one substance becomes attached to another. Sorbents are the solid sub-

stances they attach to, sorbate are the substances (dissolved or gaseous) that attach. Organic 
material is a weak sorbent, sorption properties can be greatly increased by charring [17]. The 

sorbents can be charred organic material (e.g. biochar, hydrochar, activated carbon) or some 
clay or other minerals (bentonite, zeolite, vermiculite). Cation exchange is the most common; 
there are reports on removal of ammonium ([18–24]. Some authors also report potassium 
removal [22, 23]. Sorption of anions appears to be more difficult, but there are some reports of 
phosphorous sorption [18, 20, 22–26]. Sorption of nitrate is difficult, but it appears that it can 
be achieved on some biochars produced at high temperature [27, 28]. There are also reports 

of sorption of hydrogen sulfide (reviewed by [29]) and also one report on ammonia removal 
from the gas phase [30].

2.2. Nitrification

It is possible to reduce or eliminate losses of ammonia from liquid waste by reducing pH, or 
nitrogen can be collected in biofilters or by stripping afterwards [31].

Losses of ammonia from liquid waste can also be eliminated by transforming ammonium to 

nitrate by a microbial process prior to storage and/or evaporation and application. The process 
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also lowers pH, and that will also reduce ammonia volatilization, so that a small free and sta-

ble product will be the result. There are reports on tests on this for digestate and urine [32–34]. 

This process happens naturally in soil, and it can also be made to happen in an aerated reactor, 

this is done in many sewage treatment plants [35, 36]. It is also similar to wet-composting 
where nitrogen transformations happen as well as carbon consumption and stabilization [37].

Nitrification has two steps; both are microbially mediated [35]. In the first step, ammonia 
is oxidized to nitrite (NO

2
-) by bacteria belonging to the genus Nitrosomonas. In the second 

step, nitrite is oxidized to nitrate (NO
3
-), mostly by Nitrospira and Nitrobacter microorganisms 

[35, 38, 39]. However, high nitrite concentrations inhibit both processes, and it is therefore 

important to control the processes so that the intermediate products do not accumulate. This 

means process parameters must be controlled so that both steps can proceed at the same rate 

[40]. As ammonia oxidizing bacteria use ammonia as a substrate, not ammonium, this gener-

ally means controlling parameters of the concentration of free ammonia in solution is kept 

relatively low, for example, moderate pH and temperature [40].

3. What do we know about how treatment options affect plant 
availability?

It is known from numerous studies that not all nutrients in biofertilizers based on organic 
residues are available to crop plants, and sometimes also become available only after some 

time, and predicting the availability over time can be challenging [41, 42]. Plants take up dis-

solved nutrients, and nutrients that are dissolved or readily soluble will usually be 100% plant 

available. This is the case for mineral fertilizers. Most studies of plant availability of nutrient 

have assessed final products, for example, [43–47]. There are few studies assessing the same 

waste residue treated in different ways. This makes it difficult to disentangle the effect of 
feedstock from the effect of treatment option.

Dissolved nutrients in liquid organic waste will usually be bioavailable. Dewatering will 

therefore usually mean that most of the readily plant available nutrients are found in the 

liquid phase. How well plant nutrients are recycled will then depend on what happens to the 

liquid phase. Often it is not recycled optimally because transport costs are too high.

Precipitation can make nutrients less available, or even almost unavailable. This is well known 

for phosphorus removal from sewage treatment [15, 48]. The most common precipitation 

agents are aluminum and iron salts, leaving phosphorous almost unavailable to crop plants. 

Excess precipitation chemicals may even make soil phosphorus less available.

It is usually assumed that drying does not affect nutrient quality, so that plant availability 
remains unaltered. However, there is very little experimental evidence confirming that this is 
actually true. Knoop et al. [49] compared composting and drying as treatment options. They 

found that the content of plant available nitrogen decreased during drying although less than 

during composting, probably because the most plant available nitrogen is lost as ammonia. 

The fraction of phosphorus that was plant available also decreased during drying. There was 

no difference between air (20–30°C) and own dried (70°C). However, phosphorus availability 
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was measured chemically; it is not certain that this corresponded exactly to actual plant avail-
ability measured in plant growth experiments. We have some indications that drying at high 
temperature at least may make phosphorus more plant available. This requires further study.

Most biological stabilization options will make the nutrients more available as they are 

decomposition processes, which mineralize the nutrients. However, during aerobic treat-

ment (composting), some of the nitrogen is lost, more the more open the process is [50–52]. 

Anaerobic treatment will also usually make nutrients more available [53], an exception is 
phosphorus during anaerobic digestion of precipitated sewage sludge [54], probably because 

excess precipitation chemicals are used, which precipitate mineralized phosphorus.

Adding sorbents before dewatering can be a way to increase the fraction of nutrients found 

in the liquid phase as discussed in Section 2. The authors usually state that solid product can 
be applied in agriculture as a fertilizer, but there are surprisingly few studies that investigate 

if sorbed nutrients are as bioavailable as nutrients added the conventional way. One study 

found that ammonia sorbed as gas was bioavailable, but the degree of availability was not 

compared to conventional fertilizer application [55]. Another study found that sorbed nutri-

ents were slowly desorbed in soil [56]. Our own unpublished studies suggest that ammonium 

sorbed to zeolite is less plant available than conventionally added ammonium. A recent study 

[57] found that at least some nitrogen sorbed to zeolite from urine was plant available. They 

also suggest that nitrification could be an important driver of release of nitrogen from zeolite, 
as liming increased the recovery of mineral nitrogen. It is possible that zeolite and other sor-

bents provide surface area for biofilm development, and it could therefore stimulate nitrifica-

tion. This requires further study.

Nitrification has also been discussed as a possible way to treat liquid waste. The question 
if nitrate or ammonium is the preferable fertilizer is a complicated one. Usually nitrate is 

preferred, because it can be taken up faster and only ammonium as a fertilizer can be harmful 

to some plants [58, 59]. However, nitrate is also more easily leached and can be lost from the 

soil profile before plants can take it up. As such, ammonium can be regarded as a slow release 
fertilizer, as it is usually quite quickly nitrified in agricultural soil.

4. How does treatment affect environmental performance of 
biofertilizers?

Most environmental problems related to fertilizer use, either mineral or organic, are related 

to losses to the environment, as leaching and runoff and as gas. Loss of nitrogen and phos-

phorus to waterways and coastal areas can result in eutrophication and algal blooms [60]. 

Losses of ammonia gas can also lead to over-fertilization and acidification [61]. In addition, 
a small fraction of the nitrogen lost as gas is lost as nitrous oxide, a powerful greenhouse gas 
and as NOx [62, 63]. The best way to avoid losses is therefore to time fertilizer application or 

availability with crop demand, so that the crop can take it up before it is lost, this will be a 

win-win situation. Losses can also be reduced by reducing application rates, but this will also 

reduce yield.
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Biofertilizers usually induce larger losses per unit nutrients added than mineral fertilizers. 
This is partly because not all nutrients in organic fertilizers are immediately available and 

may become available later when plants cannot take them up. However, this depends on crop 

type as well, some crops take up nutrients throughout the growing season, and then slow-

release fertilizers may be an advantage [5].

The environmental effect of acidification has not been much studied. Particularly the effect 
on losses of nitrogen a nitrous oxide would be an interesting field of study, as the effect of 
pH on emissions of this gas is particularly complicated [62–66]. Denitrification rate increases 
with pH up to above neutral, but the fraction that is nitrous oxide rather than dinitrogen gas 
is higher at acidic pH. The effect on emission of the greenhouse gas nitrous oxide is therefore 
difficult to predict.

Addition of sorbents to increase the fraction of nutrients found in the solid phase has been 

discussed in Section 2. There is also some evidence that sorbents could reduce gaseous 
losses from soils, including greenhouse gases. Vermiculite and bentonite have been shown 

to decrease emissions of ammonia and nitrous oxide when mixed with manure prior to [67, 

68] and increase nutrient retention after application [69]. However, Dietrich [70] did not find 
any effect of bentonite additions to digestate on nitrous oxide emission, so this also requires 
further study.

Nitrification as treatment option was also discussed in Section 2. Most environmental effects 
are related to losses; as mentioned in the previous section, nitrate is more easily lost by 

leaching. However, it is also more easily taken up by plants, and if application is timed with 

demand, losses can be low. As greenhouse gases can be emitted by a number of processes 
[62, 63, 71], it is difficult to predict if nitrification prior to application will increase or decrease 
emissions. However, a review found lower emissions from nitrate-based fertilizers [62], sug-

gesting that nitrification may be favorable.

5. Conclusion and outlook

Sorption can be a good way to get a larger fraction of available nutrients in the solid phase 
prior to dewatering. Nitrification prior to storage and application may be a good way to 
reduce losses of nitrogen. However, little is known about if these and other treatments affect 
how plant available the nutrients are. More effort should be directed at understanding how 
treatment options affect plant availability, to be able to choose the best options.
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