Chapter 4

Nullspace of Compound Magic Squares

Saleem Al-Ashhab
Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74678

Abstract

In this chapter, we consider special compound 4n x 4n magic squares. We determine a
2n — 3 dimensional subspace of the nullspace of the 4n x 4n squares. All vectors in the
subspaces possess the property that the sum of all entries of each vector equals zero.
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1. Introduction

A semi-magic square is an n X n matrix such that the sum of the entries in each row and
column is the same. The common value is called the magic constant. If, in addition, the sum of
all entries in each left-broken diagonal and each right-broken diagonal is the magic constant,
then we call the matrix a pandiagonal magic square. Rosser and Walker show that a
pandiagonal 4 x 4 magic square with magic constant 2s has in general the following structure.

[ea)
(o)
"
©

s—C s — s—A s—B
s—¢ s—p s—E s—0
where

w=2—-A-B-C

0=2s—A—-B—-E
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¢c=A+E-C

p=B+C-E

This result was developed by Rosser and Walker. Hendricks proved that the determinant of a
pandiagonal magic square is zero. We note that every antipodal pair of elements add up to
one-half of the magic constant. Al-Amerie considered in his M.Sc thesis some of the results
here. There are three fundamental primitive pandiagonal squares which are 4 x 4. Kraitchik

(see [3, 8]) has shown how to derive all pandiagonal squares from three particular ones.

We define a certain class of 6 x 6 magic squares, which has a similar structure to the structure

of a pandiagonal 4 x 4 magic square. In this class each antipodal pair will add up to one-third

of the magic constant. Precisely, we have:

Definition 1: A 6 x 6 magic square with 3s as a magic constant is called panmagic if

The following matrix is a possible form for this kind of squares:

a;j 4+ ay = s, for each i, j, k, [ such that i = k (mod 3) and j = [ (mod 3).

M R w T L K
Q ] I H G F
P E D C A
s—T s—L s—K s—M s—R s—W
s—H s—G s—F s—Q s—] s—1
s—C s—B s—A s—P s—E s—D
where
M=]J+I+H+E+D+C—-L-K-=,
W=K-I+F-D+A,
P=3-E-D-C-B-A
Q=3—-]-I-H-G-F
R=L-]+G—-E+B,
9s
T:EfoKfoGfFfoBfA.
Note that we have the following relations:
M+Q+P=T+H+C
R+J+E=L+G+B, 1)

W+I1+D=K+F+A.
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Using Maple we can show that the 6 x 6 panmagic square possesses a nontrivial null space,
which can be written in the following form:

{Z(x17x27x37 —X1, —X2, _x3)l : ZGR}

where
x1=(A-D)(G—-])(B-E)I—-F),
xy = (F = I)(B 4 2C + E — 3s) + 2FD — 2AI 4 (D — A)(G + ] + 2H — 3s),
x3=(B—E)(F+I+2H)+ (A+D+2C+2B+2E—3s)(] - G).

Note that the sum of all entries of the vectors is zero. For example:

—51 39 26 0 9 13
54 —-10 -2 -5 4 -5
-5 1 2 3 17 18
12 3 -1 63 —27 —14
17 8 17 —42 22 14
9 -5 —6 17 11 10

has as nullspace {z(34,115, —132, —34, —115,132)" : zeR}.

Definition 2: A 8 x 8 square consisting of 4 pandiagonal magic squares A1, A1z, A21, A2y hav-
ing the same magic sum in the form

{An Alz}
Ay Ax
is called a compound magic square if the following relation holds:

Axn + A1n = A + Anr.
It is easy to check if the last relation guarantees that the square is a magic 8 x 8 square. In the
same manner we can combine four panmagic squares in a magic square.

Definition 3: Let By, Bi1, Bio, Bo1 be panmagic squares having the same magic constant.
Assume that By + B11 = B1z + Bp1. Then the matrix

{Bn Byp }
By Bx
is called the compound 12 x 12 magic square.

The condition By, + B11 = B1z + By ensures that the compound 12 x 12 magic square is magic.
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2. Main results

We prove first a simple result for a compound square of 4 x 4 squares. We then generalize this
result for an arbitrary number of squares.

Proposition 1: The compound 8 x 8 magic square processes a three-dimensional subspace of its
nullspace.

Proof: First we note that the vector

(17 17 17 17 _17 _17 _17 _1)1
is a nonzero vector, which belongs to the nullspace of the square, since the squares have the
same magic constant.

Now, the square Aj; (res. Ajp) has a nonzero vector vy (res. vi2), which belongs to the
nullspace of the square, since Aji(res. Aqp) is a pandiagonal magic square. We look for four
numbers f,, f15, f21, f2, such that the vector

(fllvll +fia012 >
fnvn +fyv
belongs to the nullspace of the square. To do this we compute the following matrix multiplication:

(fnvll + f1p012 ) (All (fllvll +leUlZ) + An (levll + f012) )
faon + fpv1 At (fron +f1p012) + A (fyom + f012)

A An
A Axn

According to the choice of vy, and v1; we obtain the vector (g, gz)/ as the result of matrix
multiplication, where:

81 = Anif o012 + Arof 011,
9, = Ao1v11f 1 + A21v1af 15 + (A12v11 + A21011)f 5y + (An1v12 — Anvn)f 5,

Note that we used the relation Ay = Ajr + Ay — A11. We can rewrite the vector (g1 , gz)/ in the

form.
fu
0 Anvy  Apon 0 fi2 2
Anvnr Anviz (A +An)on (An —An)on ]| £,
fa

According to Al-Ashhab (see [3]) we can assume that the vectors in the nullspace of the
pandiagonal magic square are
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!
— * ** * skk s P
v = ( i Vi 7—vi]-7—vz-]->,for i=1j=12

Further, we can assume that

aij b,‘j C,‘]' d,‘]‘
eij f ij 8ij hij
A,‘j = 4,j=12
S—C,‘]' S—d,‘]‘ S—{Zi]' S—b,'j
s—&; s—hj s—ej s—f;
Hence, we can assume that:
a; 0% + bijvl* — vl — dijo (a; Ct/)Uij + (by dl])vi/
* .. ok
€ij Uj; +f1'jvij — &V — hijvi* ( - gi/)”ij + (fij - hu)%‘
Aijoy = = N
—Cjj U — divf" + a;jvj; + bijvi* — (a5 — c)v5; — (bij — dyj) 05
gz] 11 h,]U + e’]UI] +fz]vq - (eij - g,]) < ij 1/>

Since the sum of two pandiagonal magic squares is pandiagonal magic, we deduce that four
rows in the matrix in Eq. (2) are redundant. Since we have the relations

anten =cn+8y; = an—cn=—(en—gy)
bi+fy =du+hn = by —dn=—(f;; —hn)

the application of elementary row operations on the matrix in Eq. (2) yields to

o 12 21 0 ]

Juu G2 T2t 4qy G — 712
0 0 0

o O O O O O
o O © O O
o O © O O
o O ©O O O

where

This analysis enables us to conclude the following relations from (2):
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12721 + 1712 — G1p721 —q1p t 7112
- ; fo +
112 q11

f11:

21
f22rf12 = Ty f21'
12

If we set
f12=0 f01 =0, fo =y, f11 =712 = Gy

which is consistent with the previous relations, we conclude that the vector

(r12 — qp)on
411912

belongs to the nullspace of the square. We can make another choice as follows.
f2r =0 fo = 102010, f1o = —121901 f11 = 11y, — 112 (121 + 4y
and we obtain a vector belonging to the nullspace of the square, which is

( (ra1G1, — 112 (ra1 +4y7) )Jon1 — 721’111”12>

—121411011

Now, the vectors vy, v11 are linearly independent, since they correspond to different magic
squares. Hence, the last two vectors are linearly independent. Also the vector

(17 17 17 17 717 717 713 71)/

is linearly independent with the last two vectors, since its first two entries are not the opposite
of the third and fourth entry. [

For example, the following square is a compound 8 x 8 magic square.

0 14 —19 13 10 5 -22 15
—12 6 7 7 -20 13 12 3
23 -9 4 —-10 26 —11 —6 -1
-3 -3 16 -2 -8 1 24 -9
—16 25 -17 16 —6 16 -20 18
1 -2 2 7 -7 5 7 3
21 -12 20 —21 24 —14 10 -12
2 -3 3 6 -3 1 11 -1

For this square we can construct as described the following two vectors in its nullspace
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38 722 38 722 f
(fg,T,g,f?,—wo, 7544,170,544)

216006 85026 216006 85026
5 ) 5 ) 5 ) 5 )

t
3774, —-71706, —3774, 71706)
In fact, its nullity is 3. Thus, these two vectors together with

(17 17 17 17 _17 _17 _17 _1),
form a basis of its nullspace.

We prove now a similar result to the previous proposition, where we replace the 4 x 4 square
with a 6 x 6 one.

Proposition 2: The compound 12 x 12 magic square possess a three-dimensional subspace of
its nullspace.

Proof: First we note that the vector

(1,1,1,1,1,1—1,-1,-1,-1,-1,-1)

is a nonzero vector, which belongs to the nullspace of the square, since the squares have the
same magic constant.

We look for scalars vy, v, v3, v4, U5, Vg Such that

ain b oo du oen fy ap b o di e fp o1 7 707
S huoin gy ki o & hiz i jp ki he v 0
mip M1 011 Py Gy 11 M2 Mz 012 Py G T2 U3 0
S*d1157€11S7f1157&1157h1157C11S*d125761257](1257[11257[71257&2 —01 0
S*jHS*kuS*lllnglls7}’11157i1157]‘1257k125711257g1257h1257i12 —02 0
S7}71157%1577‘11S7H’I115771115701157}!71257%257?‘1257”’!1257111257012 —03 _ 0
a1 bn o dn e fy an bn cn dn en fy o | O
81 ha iy ko b1 §p 2 iy ko vs 0
Mmp1 Mp1 021 Py fpp Y21 M2 M2 022 Poy (pp 122 (43 0
S7d2157621S7f21S7(12157171157C2157d225762257’)(2257(12257172257@2 —Uy 0
S7j2157k2157121S7g2157]12157i21S7]'2257k225712257g2257h22571'22 —0Us5 0
_57p2157q2157I’21S7H’lz157nzls702157}!72257q22577‘22$771122$7n2257022_ L—0¢ J _0_

We transform this equation into a linear system, in which we eliminate the redundant equa-
tions. The system becomes

(a1 —dn)vr + (b —en)vn + (Cn —f11)7J3 + (412 — d12)vg + (12 — e12)vs + (C12 —flz)Ue =0
(811 —711)o1 + (1 — ka)va + (i — n)vs + (84, — Jio)vs + (2 — k12)vs + (i12 — l12)ve = 0
(mll - PH)Ul + (7111 - qn)vz + (011 — r11)v3 + (mlz - P12)04 + (7112 - fhz)vs + (012 = r12)v6 =0
(421 — da1)o1 + (ba1 — e21)v2 + (21 — fq) 03 + (a22 — do2)vs + (b2 — €22)vs5 + (c22 — f,) 06 = 0
(821 = Jo1)01 + (o1 — ko1)v2 + (21 — 121)v3 + (§2p — Jon) Vs + (22 — k22)vs + (ina — lan)ve = 0
(21 — pyy )or + (121 — 451 )02 + (021 — 721)v3 + (M22 — Poy ) Vs + (22 — Gy ) U5 + (022 — 722)v6 = 0
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From the definition of the panmagic square we know that

@ + g + mij = dij + j; +p; = (@ —dy) + <8q jij) = (mif - Pi,-) ©)
bij 4 hij 4+ nij = ejj + kij + 9 = (bij - eij) + (hij - eij) =- (”ij - ‘71‘]‘) @)
Glyroy=fy+ltry = (ci—fy) + G —ly) = — (05— ry) ®)

Thus, due to Egs. (3)—(5), we can reduce the linear system to the following

(411 — d11)o1 + (b1 — enn)v2 + (c11 — f11)v3 + (a12 — d12)vs + (bi2 — e12)vs + (c12 — f1,)06 =0
(811 —j11)v1 + (1 — kan)vz + (i1 — l11)vs + (810 — o) 0 + (h12 — ki2)vs + (in2 — h2)ve = 0
(a1 — da1)v1 + (ba1 — e21)v2 + (21 — f51) 03 + (a22 — do2)va + (b2 — €22)v5 + (22 — f1) V6 =0
(821 = Jor )01 + (h21 = k21)v2 + (i21 — 1)03 + (82 — fon) Vs + (22 — ka2)v5 + (22 — I2)ve = 0

We can verify using the computer that the coefficient matrix of this system has in general the
rank four. Hence, we deduce that vy, v5, v3, v4 depends on vs and ve. By letting v5 and v take
the values 0 and 1 we obtain two linearly independent vectors in the nullspace. These two
vectors do not possess the property that the first six elements are the opposite of the last six
elements. Hence, they are independent of the vector (1,1,1,1,1,1-1,-1,-1,-1, -1, -1).[]

Remark: We did not here make use of the relation By, + Bi1 = Bz + Byi. It actually does not
affect the proof.

For example, the following square is a compound 12 x 12 magic square.

—51 39 26 0 9 13 6 17 15 —6 0 4
54 -10 -2 -5 4 -5 20 5 2 0 9 0
-5 1 2 3 17 18 —24 6 7 8 19 20
12 3 -1 63 —27 —14 18 12 8 6 -5 -3
17 8 17 —42 22 14 12 3 12 -8 7 10

9 -5 —6 17 11 10 4 -7 -8 36 6 5

2 53 45 —131 33 34 59 31 34 —137 24 25
—-10 0 10 11 12 13 —44 15 14 16 17 18
-89 21 22 23 29 30 —108 26 27 28 31 32
143 -21 -22 10 —41 -33 149 —12 -13 —47 -19 -22
1 0 -1 22 12 2 —4 -5 —6 56 -3 -2
-11 -17 —18 101 -9 -10 -16 -19 —20 120 —14 -15

Using the computer we can verify that its nullity is 3. In other words, the constructed subspace
is the nullspace itself.
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We can generalize the previous result for an arbitrary number of squares involved in the
compound square.

Theorem 1: Let A;; be the distinct pandiagonal magic square with magic constant 2s having the
structure:
a,‘j bij C,‘j d,‘]'
€ij fi 8ij hij
S*C,‘j S*d,‘j sfa[]» S*b,‘j
s—&; s—hj s—e s—f;
such that A;j = Ayj + Ajp — Aq for i,j =1, ..., n. Assume that (a1; + c12 — c11 — a12) # 0. Then,
the following 4nx 4n matrix
[A11A1 Az... A1, ]
AnAxn Ax...A
Az1Az Aszz...Asy

_AnlAn2 An3 . -Ann
possesses a 2n — 3 dimensional subspace of its nullspace, which is generated by the vectors

biy1-di1-b1z + di2

(a1 +c12 — 11 — an2)
—(b11-d11-b1a + di2)
(a11 + c12 — 11 — an2)
—(b11-d11-b12 + di2)
ai + Ci2 — €11 — a2
(br1-di1-b1a + di2)
—(an1 +c12 — 11 —an2)

(0]

and
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a2 +¢13 — C12 — 413

0

—(a12 + c13 — €12 — a13)
0

—(a11 — c11 +c13 — a13)
0

an —cn +ci3 — a3

0
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by —din —biz +dis
—(a11 4 c12 — c11 — an)
(b1 —din — b1z + di3)
ap +ci2 —c11 — a2
(b1 —du — b1z +di3)
0

b1y —din —biz +dis

0

12 + Cip — C12 — A1

0

—(a12 + c1y — c12 — a1n)
0

—(a11 — c11 + c1y — A1)
0

ap —c1 +Cip — A

0

by —diy — by, +diy
—(a11 +c12 — c11 —an)
— (b1 — di1 — by, +din)
ap +ci2 —ci —an
—(b11 —duy — b1y +din)
0

b1 —di — b1y +din

0

ain +c12 — e — an 0 0] (0]

0 ap +ci2 — ¢ — an : :

—(a11 +c12 — en — an2) 0 0] 0]

0 —(an +c12 — ¢ —an) a1+ C12 —C11 — a2 0

(0] [0] 0 ap +ci2 —ci — a2

: : —(a11 + c12 — e — an) 0

(0] [0] 0 —(a11 +c12 —en — a12)

Proof: We will check first that these vectors belong to the nullspace of the matrix. When we
multiply the first vector with the matrix, we obtain a vector having in the first row

(a11 — e ) (b — din — biz + dio) + (b — dun)(ann — ci1 — a2 + c12) — (a12 — c12) (b1 — din — bio +di2)—
(b12 — di2)(an1 — c11 — a2 + c12)
= (bi1 —di — bio +d12)[(a11 — c11) — (@12 — c12)] — {(a11 — c11 — a2 + c12)[(b11 — d1) — (b2 — d12)]} =0

Since we know that

(a1 —cnn) = —(611 —gn), (b1 —dn) = _(fu - h11)~

we obtain zero in the second row of the vector. Since the third and fourth rows of the squares
are complementary to the first two rows, we deduce that the third and fourth rows of the
vector are also zero. Now, the fifth entry of the vector is

(a21 — c21)(bi1 — d11 — bz + di2) + (b21 — do1) (@11 — c11 — a2 + c12)—
(a2 — c22) (b1 — di1 — bz +di2) — (b2 — d)(a11 — c11 — Ay +c12) =
(b11 —dy — bz +di2)[(a21 — c21) — (a2 — c22)] — {(an1 — c11 — a2 + c12)[(b21 — da1) — (boz — d)]}

We use the following relations according to our assumption

axp = ayp + a1 — ayy, byy = bip + by — by,
€2 = C12 + €1 — C11, dop = dyp +dyy — dy1.

and obtain

(b1 —di1 — biz +di2)[(a21 — c21) — (@12 + a21 — a1 — c12 — 21 + ¢11))
—{(a11 — c11 — a2 + c12)[(bor — da1) — (b2 + bar — by — dip — dor +d11)]}
= (bi1 —di — b1z +dp2)[—(a12 — any — c12 + c11)] = (@11 — c11 — ap + c12) [~ (b12 — by — di2 +d11)] =0

We continue checking all rows until we reach the last entry, which is
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(am = cm) (b1 —din — bia +di2) + (byy — di1) (a1 — c11 — a1 + c12)—
(a2 — o) (b1 —din — bia +di2) — (b — d2)(a11 — c11 —app +c12) =
(b1 —di1 — bz +d2)[(am — cm) — (2 — cn2)] — (a11 — c11 — a2 + c12)[(bp1 — du1) — (b — di2)]

We use

Apy = a2 + ayy — ag1, by = b + byr — by,
Cn2 = C12 + Cp1 — C11, 2 = d1o + dy1 — dy1.

in order to obtain this value of the entry

(b1 — di1 — biz +di2)[(@n1 — ¢u1) — (a12 + a1 — 11 — €12 — €1 + C11)]
—{(a11 —c11 — a2 + c12)[(by1 — du1) — (b12 + by — b1y — dip — dyn +du1)]}
= (by1 — d11 — b1z +di2)[— (@12 — a11 — c12 + c11)] — (@1 — c11 — @12 + c12)[— (b1 — by — dip +dn1)] =

Hence, we finished checking the first vector.
Now, we turn our attention to the second vector. When we multiply the matrix with it, we
obtain in the first entry.

(a,,—c; Na,, —c, —ays +e3)—(a,, —e, Na,, —¢, —a; +e3)+(a,s —ej Ma, —c; —a,, +¢,) =

(@, —¢y )@y, —¢) —(ay; —e)]=la, —cp)lay, —¢y)) —(ay; —¢)]+(ay; —¢)lla,, —¢,) —(a,; —¢,,)]
=la,, —¢; Nayp —cp)—(ay —ey Nays —e3)—(a, —epNay, —e ) +(ay —epla; —e) +a; —e )ay, —¢yy)
=(a;; —c;3)an—c,) =0

Using the relations

(ﬂ11 - 011) = —(811 - gu)
(b1 —dn) = —(fll - hu)

we deduce that the second entry is also zero. In a similar manner we can deal with the third

and fourth entries. The fifth entry will be

(a21 — c21)(a12 — c12 — @13 + c13) — (A2 — c22)(a11 — c11 — @13 + c13) + (a23 — 23)(a11 — €11 — A12 + C12)

We use the relations

Ay = A12 + a1 — A11, €2 = C12 + C21 — C11
A3 = A13 + a1 — A11, C23 = €13 + C21 — C11

to obtain for the fifth entry.

= (a21 — ca1)[(a12 — ¢12) — (@13 — c13)] — (@12 + Az — an — c12 — e + cup)[(an — c11) — (@13 — c13)]

+(ﬂ13 +ax —ann —ci3 —Cc1 + Cn)[(ﬂn - Cn) (ﬂlz - Clz)]

= (a1 — ca1)(a12 — c12) — (a21 — c21) (@13 — c13) — (@21 — ca1)(a11 — c11) + (21 — c21) (@13 — c13)

—(a12 — c12)(ar1 — en) + (a2 — c12) (a3 — c13) + (ann — 611)2 + (a1 — c11)(as — c13) + (a13 — c13)(ann — cnn)
(

—(a13 — c13)(a12 — c12) + (21 — cn)(a11 — c11) — (a2 — c21)(a12 — c12) — (a11 — Cn)z + (a12 — c12)(ann —c11) =0
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We continue checking the entries until we reach the last entry, which is

(@m — cu1)(a12 — c12 — @13 + c13) — (@2 — cu2)(a11 — 11 — @13 + ¢13) + (a3 — ¢3) (a1 — c11 — a2 + c12)

Using the relations

py = 12 + Ay1 — A11, Cn2 = C12 + Cu1 — C11
Ap3 = M3 + Ay1 — A11, Cn3 = €13 + Cu1 — C11

we get

= (a1 — cn1)[(a12 — c12) — (@13 — c13)] — (@12 + a1 — 11 — €12 — €1 + c11)[(a11 — c11) — (a13 — c13)]
+(a13 + am — a1 — c13 — ¢ +cn)[(an1 — cnn) — (a2 — c12)]

= (a1 — cm1)(m2 — c12) = (@m1 — ) (@13 — c13) — (@1 — Cu1)(@11 — c11) + (@1 — c1) (@13 — c13)
—(m2 — c12)(ann — e11) + (412 — c12) (@13 — c13) + (a1 — C11)2 + (a11 — c11)(a13 — c13)+

(a13 — c13)(a11 — c11) — (@13 — c13) (@12 — €12) + (@1 — €1) (@11 — c11) — (@1 — 1) (A2 — c12)—

(a11 — C11)2 + (a2 — cr2)(a1n —c11) =0

Hence, the second vector belongs to the nullspace of the (41 x 4n)-matrix.

Similarly, we can check that all the other vectors are included in the nullspace of the (4n x 4n)-
matrix. We check the last vector (the (21 — 3)-th vector) belongs to the nullspace of the (41 x 4n)-
matrix. The first entry by matrix multiplication is:

(a1 — c11)(bir — din — b + diy) + (b1 — din) (@ — c11 — 12 + c12)—
(a12 — c12) (b1 — di1 — b1y +din) — (b1n — d1a) (a1 — c11 — a2 +c12) =
(bn —dy — b + dln)[(ﬂn - C11) - (alz - Clz)} - (ﬂ11 —C11 —an+ Clz)[(bu - du) - (bln - dln)] =0

As before we deduce also that the second, third, and fourth entries are zero. The fifth entry is

(a1 — e21) (011 — di1 = biy + d1y) + (b1 — do1) (@11 — e — @12 + c12)—

(a2 — c22)(b11 — di1 = biy + din) — (ban — doy) (a1 — c11 — a2 + c12) =

(b1 — d11 — b1y + di)[(a21 — c21) — (a2 — c22)] — (a11 — €11 — a2 + c12)[(b21 — do1) — (b2y — do)] = (b11 — dvy — b1y + d1y)
[

(@21 — c21) — (@12 + a1 — an — c12 — 21 +cn)]

We use the relations
Ay = A1p + a1 — ain
by = b1y + b — bn
€2 = C12 +C21 — C11
doy = d1y +doy —du

Therefore, this entry is

(bn —dy — b, + dm)[(llm - Cz]) — (a1 + a1 — a1 —c12 — 01 + Cn)]
—{(a11 — c11 — a2 + c12)[(ba1 — do1) — (b1n + bo1 — b1y — diy — dog +dn)]}
= (b11 — di1 — by +dip)[—(a12 — an1 — c12 + )] — {(an — er1 — a2 + c12)[— (1w — bi1 — diy +d11)]} =0
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When we reach the (2n — 3)th entry, we find that it is

(am — cm) (b1 — di1 — by +d1) + (b1 — du1) (a1 — c11 — a1z + c12)—
(@nn — Ccun)(b11 — di1 — b1y + din) = (byn — dyn) (a11 — €11 — @12 +C12) =
(b1 —di1 — b1y + di)[(an1 — cn1) — (@un — Cun)]—

{(an1 — 11 — aro +c12)[(bn1 — du1) — (bun — dun)]}

We use the relations

Ay = 01 + A1 — A11
bnn = bln + bnl - bll
Cnn = Cln + Cu1 — €11

dnn = dln + dnl - dll

to prove that this entry is

(11 — di1 — biy +di)[(@n — cm) — (@12 + a1 — 411 — c12 — Cu1 + €11))
—{(an1 — 11 — a2 + c2)[(b1 — du1) — (b1y + by — by — d1y — dg +du)]}
= (bi1 —dn — by +d1y) [~ (012 — a1 — ci2 +cn1)] — (@11 — c11 — a1z + c12)[— (b1 — b1 —diy +dn1)] =0

We prove now that the vectors are linearly independent. Let ki, k, k3, ..., ko4, k2y—3 €R such
that

by — din — bz + di2 a2 + €13 — €12 — i3 b1 —di1 — b1y + diy 0
—(an +ci2 —ci1 —anz) 0 —(an +ci2 —ci1 —an) 0
—(b11 — di1 — bia +d12) —(a12 +c13 — c12 — a13) —(b11 — di1 — by, +din) 0
(a11 + €12 — 11 — an2) 0 a +cip — 11 — diz 0
—(bi1 — di1 — bia +di2) —(ann —c11 + o3 — ai3) —(bi1 — di1 — b1y +d1n) 0
aj1 +ci2 — ¢ —an 0 0 0
(b11 — dn1 — bip +d12) a1 — ¢ +c13 —a13 b1 — di1 — b1y + din 0
—(an +c12 —c11 —anz) 0 0 0
ki O +ka| a1 +ci2 —cin —an + ootk =10
0 0 0 0
0 —(an1 +c12 — e —an) 0 0
0 0 0 0
0
0 0 0 0
0 0 a; +c12 — C11 — diz 0
0 0 0 0
0 0 —(an +c12 — e —an) 0

This leads us to the following vector which is a zero vector.
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ki(b11 — din — bio + di2) + k(a2 + c13 — c1o — ai3) + ka(biy — diyy — bz +diz) + ...+
kon—a(ai2 + c1n — c12 — a1n) + kan—3(b11 — di1 — b1y + d1n)

—ki(a11 + ci2 — c11 — a12) — k3(ann + c12 — c11 — ar2) — kop—z(an + c12 — ci1 — a2)
—ki(b11 — di1 — bz + di2) — ka(@a + c13 — c12 — a13) — k3 (b1 — din — b1z +diz) — ...~
kau-a(aa + c1n — c12 — a1y) — kay—3(b11 — di1 — big +dyy)

ki(ann + c12 — cin — a2) + ka(an1 + ci2 — 11 — a12) + kou—s(a11 + c12 — c11 — a12)
—ki(bi1 —di — b +di2) — ka(ann — cn +c13 — ai3) —ka(bin —din — bz +diz) —...—
kau—a(an — c11 4 c1q — a1) — kan—3(b11 — din — b1y + din)

ki(a1 +c12 — c11 — an2)

ki(b11 — di1 — b1z + di2) +ka(ann — cn1 + c13 — m3) +ka(bry —dig — biz +diz) + ...+
kau-a(an — c11 4 c1n — a1u) + kan-3(b11 — din — b1y + din)

—ki (a1 + c12 — c11 — ar2)

ka(a11 + c12 — c11 — an2)

ks(a11 +c12 — c11 — an2)

—kz (a1 + c12 — c11 — a12)

—k3 (a1 + c12 — c11 — a12)

kau—s(an +c12 — c11 — a2)
kau-3(an +c12 — c11 — a2)
—kon—a(a11 +c12 — c11 — an2)
—kon—3(a11 +c12 — c11 — an)

From the (4n — 2)-th row of this vector we obtain the equation

kop—3(ayn +c12 —c11 —ap) =0

According to our assumptions we must have ky,_3 = 0. Similarly, we obtain k»,_4 = 0 from the
(4n — 3)-th row. We continue checking all the rows up to the tenth row, which looks like this

ks(air +c12 —cnn —a2) =0
Hence, we conclude that k3 = 0. From the ninth (res. eighth) row we obtain k, = 0 (res. k; = 0).

Since all ky, ky, ks, ..., koy—a, koy_3 are zero, we are done.l]
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