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1. Introduction

The pioneering work of Cohen and Boyer in recombinant DNA (deoxyribonucleic acid)
technology [1] gave birth to genetic engineering and the biotechnology industry. The related
Cohen-Boyer patents [2-4] that protected the technology played a stellar role in the rapid rise
of the biotechnology industry [5, 6]. The next landmark was the creation of a bacterial cell
controlled by a chemically synthesized genome by Craig Venter and his group in 2010 [7].
More recently, Floyd Romesberg and colleagues in 2014 [8] reported the creation of a semi-
synthetic organism with an expanded genetic alphabet that has raised both hope and fear [9].
The new letters in the alphabet are artificially created nucleotides not found in Nature. Along
with these breakthroughs, the great promise of CRISPR (clustered regularly interspaced short
palindromic repeats), and in particular CRISPR-Cas9 gene editing technology pioneered by
Feng Zhang in 2012 [10] as a new way of making precise, targeted changes to the genome of
a cell or an organism (see Section 2.3) has set the stage for major advances in synthetic biology,
which aims to design and construct new biological parts, novel artificial biological pathways,
organisms or devices and systems including the re-design of existing natural biological
systems for useful purposes.

Researchers  are  now  focussing  on  developing  tools  and  methods  that  would  enable
them to  encode,  in  artificially  created  or  natural  DNA,  basic  genetic  functions  in  novel
combinations  by  design.  The  aim  is  to  artificially  create  biological  systems  of  increas‐
ing size, complexity, and tailored functionality. Currently synthesis capabilities far exceed
design  capabilities  in  the  sense  that  we  know  how  to  build  but  not  yet  with  clarity
what to build [11].  Synthesis  capabilities  are developing at  a  pace where DNA synthesis
can  be  automated  and  the  desired  DNA  produced  once  the  sequence  is  provided  to
vendors.  This  integration of  biology and traditional  engineering is  occurring so  rapidly,
it  appears  likely  that  a  couple  of  decades  hence  researchers  may  begin  producing
synthetic organisms that can produce not only pharmaceutical products but also industrial
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products  such as  bio-fuels  on a  commercial  scale.  Possible  socio-economic  benefits  from
synthetic  biology  research  is  thus  enormous,  but  then  so  is  the  possibility  of  the
technology’s  misuse.  The  concerns  range  from  bioethical  and  environmental  worries  to
bio-terrorism,  say,  by  malicious  release  of  genetically  engineered  viruses  targeted  at
specific  ethnic  groups.  The main concern here  is  the  illegal  creation and growth of  bio-
weapons.

The socio-economic promise of synthetic biology has spurred both public and private invest‐
ments and made people introspect about its consequences and impact on human society. All
players involved in creating and commercialising this knowledge-and-capital intensive
emerging technology are obviously deeply interested in knowing how they would gain or lose
from the intellectual property (IP) system in place and whether that system needs to be
changed, replaced, or abolished from their respective perspective.

DNA as an information carrier gained currency in the 1950s with the discovery of the double-
helix structure of cellular DNA by James Watson and Francis Crick in 1953 [12]. Prior to that
biologists talked of biological “specificity”. In 1953, Watson and Crick noted: “...it therefore
seems likely that the precise sequence of the bases is the code which carries the genetical
information...” (Emphasis added) [13]. Now the language of information is pervasive in
molecular biology—genes are linear sequences of bases (like letters of an alphabet) that carry
information (like words) for the production of proteins (like sentences). The process of going
from DNA sequences to proteins we use words like “transcription” and “translation”, and we
talk of passing genetic “information” from one generation to another. It is rather uncanny that
molecular biology can be understood by ignoring chemistry and treating the DNA as a
computer program (with enough input data included) in stored memory residing in a
computer (the cellular machinery). It is this aspect that bioinformatics exploits. It is analogous
to viewing Euclidean geometry not in terms of drawings but in terms of algebra. In our current
understanding, DNA is an informational polymer. It is a vast chemical information database
that inter alia carries the complete set of instructions for making all the proteins a cell will ever
need. As Albert Lehninger lyrically put it, understanding the DNA is the study of “the
molecular logic of the living state.” [14].

The intellectual property (IP) system, as it stands, did not anticipate the convergence of the
patenting of information carrying living matter, a knowledge-based global economic system,
and the ascendancy of a research-centric and innovative biotechnology industry. Therefore,
the IP system is already under great strain because biotechnology related IP has been patched
onto an existing patent system in an ad hoc manner. For example, in the complex legal maze,
intellectual property rights (IPR) related to DNA synthesis, which is at the core of synthetic
biology, may be inadvertently infringed by DNA synthesis companies in terms of enforceable
trade secret, trademark, copyright or patent laws, simply by constructing DNA sequences for
their clients [15].

That the DNA is an information encoded molecule, makes the interpretation of IP laws that
much more difficult by judges who are generally ignorant about the deep science that supports
biotechnology. Indeed organisms are defined by the information encoded in their genomes,
and since the origin of life that information is believed to have been encoded using a two-base-
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pair genetic alphabet (A–T and G–C). Recent research has expanded the alphabet to include
several man-made unnatural base pairs (UBPs) which can be efficiently PCR-amplified and
transcribed in vitro and whose unique mechanism of replication has been characterized.
Clearly, the expansion of an organism’s genetic alphabet leads us into unknown scientific
territory related to DNA replication, gene expression, unknown proteins, DNA repair, etc. [8].
While the core principles of synthetic biology are common to those of well-practised recombi‐
nant DNA techniques, the biggest differences lie in the size, scope, accuracy, and speed of
genetic changes that can now be accomplished [16]. Note that genetic modification incorpo‐
rates DNA from one species into another; genome editing introduces new mutations into an
organism’s own DNA (similar to what Nature does or we do through selective breeding but
on an accelerated time scale).

The critical IP issue in synthetic biology is determining, in an equitable manner, the nature of
the IP rights to be allocated, to whom they should be allocated and the context in which they
should be allocated for the overall socio-economic benefit of society. This chapter therefore
briefly introduces synthetic biology and its relevance to human society, the intellectual
property it may generate, equitable modes of protecting the generated intellectual property,
and suggests changes to patent laws keeping in mind the changing socio-economic circum‐
stances in which it must operate.

This chapter is written for young researchers and students in synthetic biology for whom a
basic understanding of IPR issues related to their subject has assumed great importance.

2. Synthetic biology — Its aims and relevance

Synthetic biology is a revolutionary development in life sciences. It is highly multidisciplinary
where molecular biology, physical sciences and engineering merge to design and construct
new biological parts, novel artificial biological pathways, organisms or devices and systems
including the re-design of existing natural biological systems for useful purposes. We may call
it bioengineering. It has already produced tumour-seeking microbes for cancer treatment,
photosynthetic systems to produce energy, artificial life, etc. Like engineering, it too aims to
produce standardized components and connectors, manufacturing and assembly processes,
test vehicles and certification processes, etc. to enable production and marketing of increas‐
ingly sophisticated and functional systems on a mass scale. In a sense, “Synthetic biology is
the engineering of biology: the synthesis of complex, biologically based (or inspired) systems
which display functions that do not exist in nature. This engineering perspective may be
applied at all levels of the hierarchy of biological structures – from individual molecules to
whole cells, tissues and organisms. In essence, synthetic biology will enable the design of
‘biological systems’ in a rational and systematic way.” [17].

Enormous expectations rest on future advancements in systems biology as it has the potential
to radically change the way we approach key technologies, such as medicine and manufac‐
turing. Current efforts have focused on creating highly generic capabilities (the building
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blocks) in the form of bio-tools and bio-processes that can be scaled for industrial application.
Given the high intellectual calibre of the synthetic biology research community, it appears
inevitable that the scientific knowledge they produce and place in the public domain will
quickly be translated into industrial applications of high economic value by equally talented
industry researchers. This raises obvious concerns about the ownership and control of
generated intellectual property that may lead to high commercial value in a twenty-first
century economy that truly belongs to the life sciences. The key enabling technology is DNA
synthesis. The workspace includes microbes, mammalian cells, plants, etc. Its applications
include therapeutics, energy (e.g., fuels), chemicals, agriculture, etc.

The pioneering paper of Watson and Crick [12] that elucidated the double helix structure of
cellular DNA has been hailed as the greatest discovery in biology since Darwin’s theory of
evolution. In their paper, they showed that the structure was made possible by the unique base
pairing of nucleotides guanine (G) with thymine (T), and adenine (A) with cytosine (C), each
member of a pair belonging to opposing strands. It is this pairing that allows base pairs to be
arbitrarily stacked as a double helix. In a famous understatement, they wrote: “It has not
escaped our notice that the specific pairing we have postulated immediately suggests a
possible copying mechanism for the genetic material.” It was the potential for explaining
biological function of DNA that led to the widespread acceptance of the double helix model
rather than any compelling structural evidence. The helical structure was not rigorously
determined by X-ray crystallography until the late 1970s [18]. Whereas cells were regarded as
the basic building blocks of living organisms during the nineteenth century, the Watson and
Crick paper [12] shifted attention from cells to DNA molecules in the middle of the twentieth
century, when geneticists began to seriously explore the molecular structure of genes.

In his 2013, State of the Union message, President Barack Obama said:

If we want to make the best products, we also have to invest in the best ideas...
Every dollar we invested to map the human genome returned $140 to our
economy... Today, our scientists are mapping the human brain to unlock the
answers to Alzheimer’s... Now is not the time to gut these job-creating investments
in science and innovation. Now is the time to reach a level of research and
development not seen since the height of the Space Race.1

On 02 April 2014, President Obama unveiled a bold new research initiative designed to
revolutionize our understanding of the human brain.2 The BRAIN (Brain Research through
Advancing Innovative Neurotechnologies) initiative’s ultimate aim is to help researchers find
new ways to treat, cure, and even prevent brain disorders, such as Alzheimer’s disease,
epilepsy, and traumatic brain injury. Undoubtedly, synthetic biology will play a signal role in
this initiative and much of the needed basic research will happen in the universities.

1 See http://www.whitehouse.gov/the-press-office/2013/02/12/president-barack-obamas-state-union-address.

2 Fact Sheet: BRAIN Initiative, The White House, 02 April 2013, http://www.whitehouse.gov/the-press-office/2013/04/02/
fact-sheet-brain-initiative
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2.1. DNA carries information

DNA is Nature’s digital recording medium. The molecular instructions for creating living
organisms are encoded in the complex DNA molecule, a portion of which passes from parent
to offspring during the reproduction process. Natural DNA is a linear sequence of four types
of nucleotides: A, T, G, and C. Each organism’s DNA sequence is unique and autobiographical;
it determines an organism’s unique characteristics, e.g., the colour of a person’s eyes, the shape
of his nose, his resistance to disease, etc. Other molecules in a biological cell “read” the DNA
sequence and set in motion the physical and chemical processes the cell calls for. For example,
the vast information carried by the DNA includes the complete set of instructions for making
all the proteins a cell will ever need. Over the years biologists have discovered certain tricks
for manipulating DNA in a manner similar to manipulating character strings in a text. For
example, they can copy DNA fragments using the polymerase chain reaction (PCR) or clone
it using a cloning vector; cut DNA using molecular scissors called restriction enzymes; join
two complementary DNA strands into a double-stranded molecule in a process called
hybridization; and measure the size of DNA fragments without sequencing them using a
technique called gel-electrophoresis. The enormous potential of CRISPR genome editing
technology lies in its ability to precisely insert DNA into a cell in vivo. For example, CRISPR,
allows one to snip out mutated DNA and replace it with the correct sequence. It thus offers
possible means of treating many genetic disorders [19].

2.2. The extended DNA alphabet

Since the late 1990s, researchers have discovered that DNA construction can be extended
beyond the natural bases (C, G, A, and T) to include man-made ones and artificial DNA
constructed. An expanded “DNA alphabet” will obviously allow cramming of more informa‐
tion by way of larger variety of coding patterns for a given number of nucleotides comprising
a DNA strand, e.g. an extended genetic code and thus enable a wider range of applications
from precise molecular probes and nano-machines to useful new life forms. [20, 21].

Watson and Crick [12] showed that natural bases form two base pairs (A-T, G-C) as a result of
specific hydrogen bonding patterns. The unnatural base pairs created by Romesberg’s group
[8] too pair stably and selectively in DNA. These new base pairs draw upon unnatural
hydrogen-bonding topologies as well as upon shape complementarity and hydrophobic forces
as opposed to only hydrogen bonding in natural pairs and are also synthesized with high
fidelity by DNA polymerases. Romesberg et al have succeeded in creating DNA strands using
the two natural base pairs and a third unnatural base pair of their design with high fidelity [8].
In a sense, researchers may well be anticipating and pre-empting evolutionary events that left
to themselves would have taken a few million years to occur.

2.3. CRISPR technology

CRISPR technology is a new way of making precise, targeted changes to the genome of a cell
or an organism. CRISPRs are often associated with cas genes that code for proteins related to
CRISPRs. By inserting a plasmid containing cas genes and specifically designed CRISPRs, an
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organism's genome can be cut at any desired location. Since its invention in 2012, the CRISPR/
Cas system has been widely used for gene editing (silencing, enhancing or changing specific
genes) in basic research. The importance of the CRISPR/Cas adaptive immune system is that
it is a prokaryotic immune system that confers resistance to foreign genetic elements such as
plasmids and phages and provides a form of acquired immunity. CRISPR spacers recognize
and silence these exogenous genetic elements like RNAi in eukaryotic organisms. It is in
building the elaborate system of DNA-cutting proteins and guide RNA sequences that requires
extensive engineering to function in eukaryotic cells, and to insert new genes where the
targeted host DNA is excised. For a quick introduction to CRISPR technology, see [22].

On 15 April 2014, the USPTO issued the first patent (US8697359, CRISPR-Cas systems and
methods for altering expression of gene products) to cover CRISPR-Cas9 gene editing
technology to Feng Zhang, the sole inventor, just six months after the patent application was
filed on 15 October 2013. The patent is assigned to MIT, and the Broad Institute with Broad
managing the patent’s licensing. The patent claims a modified version of the CRISPR-Cas9
system that is found naturally in bacteria and which microbes use to defend themselves against
viruses. The patent, inter alia, claims methods for designing and using CRISPR’s molecular
components. It is widely expected that Broad will adopt a liberal licensing policy that would
make the technology available to scientists for research around the world.

CRISPR is already revolutionizing biomedical research because it provides a very efficient way
of recreating disease-related mutations in lab animals and cultured cells. It also holds the
promise of treating genetic diseases in humans in unprecedented ways, e.g., by directly
correcting mutations on a patient’s chromosomes. Mental illnesses too may find similar
remedies. Since 2012, CRISPR’s use in research has spread like wildfire. The chemistry behind
the Cas9 protein is still being explored.

2.4. NGS + CRISPR technologies

The first generation DNA sequencing developed in 1975 by Edward Sanger [23] remained the
gold-standard for two and a half decades. It was used in the Human Genome Project that cost
$3 billion and 13 years to sequence the human genome and was completed in 2003. In com‐
parison, next-generation sequencing (NGS) use non-Sanger based, high-throughput technol‐
ogies to sequence millions and billions of DNA strands in parallel, are much faster and cheaper.
In fact, an entire genome can be sequenced in a day. And when it is coupled with powerful
computational algorithms, say, to answer questions related to mutational spectrum of an
organism on a genome-wide scale, we have phenomenal opportunities to understand our
biological selves. Targeted sequencing facilitates discovery of disease causing mutations for
diagnosis of pathological conditions, and of genes and regulatory elements associated with
disease [24, 25]. For trends in DNA sequencing costs, see http://www.genome.gov/sequen‐
cingcosts/. (In 2014, it was less than $0.1 per raw mega-base of DNA sequence compared to
about $1k in 2004; during 2007-2010, the cost fell sharply.) NGS is not yet ready for clinical use.

For recent  advances in CRISPR-Cas9 technology see [26].  In principle,  NGS and CRISPR
technology  together  would  allow  one  to  change  a  genome  at  will  to  almost  anything
one  wants  and  even  elicit  enough  detailed  information  about  disease  risks,  ancestry
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and  other  traits  of  a  person  to  determine  his  identity.  Clearly,  such  advances  raise
privacy,  ethical,  legal,  and  other  social  issues  that  are  presently  barely  understood  and
therefore need careful  study.  A NIH initiated study in the U.S.  [27]  notes:  “The ongoing
evolution  of  genomic  research  and  health  care  requires  a  continuing  analysis  of  the
normative  underpinnings  of  beliefs,  practices  and  policies  regarding  research,  health
and  disease.  In  addition,  as  personal  genomic  information  permeates  many  aspects  of
society,  it  has  profound  implications  for  how  we  understand  ourselves  as  individuals
and  as  members  of  families,  communities,  and  society--and  even  for  how  we  under‐
stand  what  it  means  to  be  human.  Long-held  beliefs  about  the  continuum  between
health and disease may be transformed, as will  concepts of  free will  and responsibility.”

3. Intellectual property rights — Its aims and relevance

Forms of intellectual property rights (IPR) are copyright, trademark (including service mark
and geographical indication), trade secret, and patent. Depending on the type, government
granted rights enable owners to select who may access and use their property and to protect
it against infringement. Since the protections granted by a government vary from jurisdiction
to jurisdiction, the acquisition, registration, or enforcement of IPR must be pursued or obtained
separately in each territory of interest. Intellectual properties, in general, are creative ideas and
expressions of the human mind that have commercial value. The owner of an intellectual
property can generally transfer (with or without consideration), license (or rent), or mortgage
it to third parties. Most exclusive rights are nothing more than the right to sue an infringer.
Those wishing to use an intellectual property held by another, must license it from the owner.
In many jurisdictions the law places limits on the restrictions the licensor can impose on the
licensee.

A license results if the IP owner transfers less than all of his IP rights. The party receiving the
license is called the licensee. If the license is given to only a single person and pursuant to the
terms of the license is not permitted to license others, the license is termed an exclusive license.
If licenses are given to multiple parties or to one person reserving the right to license it to others
at a future date, the license is termed a nonexclusive license. In the case of an exclusive license,
the owner of the intellectual property cannot make, use, or sell the intellectual property unless
he has expressly reserved the right to do so in the license agreement. If all the rights are
transferred to someone, it is known as an assignment. Variations in the terms of a license
agreement are virtually limitless, depending upon the needs, desires, and bargaining positions
of the parties involved.

3.1. Copyright

Copyright is an exclusive right conferred by a government on the creator of a work (e.g.,
original literary, dramatic, musical, artistic works in books, recordings, films, videos, etc.) to
exclude others from reproducing it, distributing it to the public, performing it in public, or
displaying it in public. Copyright law protects the holder’s right to decide how and where his
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material is used, not just the right to earn profits from the work. Copyright protection comes
into effect immediately upon the creation of something that can be protected and is ‘fixed’ in
some way, e.g., on paper, on film, on electronic media (including the Internet), etc. It is not
necessary to register a copyright or take any official action to obtain it. However, registration
is advisable as it strengthens the owners claim to copyright in litigation. The doctrine of fair
use allows non-owners of a copyright work to use such work in a limited way without being
accused of infringement.

Things that cannot be copyrighted include abstract ideas, procedures, processes, systems,
methods of operations, concepts and principles, regardless of how they are expressed, whether
it be by words, illustration, or in some three-dimensional form. Of course, the manner in which
they are expressed may be copyrighted, but not the labour that goes into creating a work.
Unfortunately, the line between copyrighted material and non-copyrightable ideas, wherever
it is drawn, will seem arbitrary to many.

3.2. Trademark and other marks

A mark used in trade—trademark, service mark, certification mark, collective mark, geo‐
graphical indication—is any sign which can distinguish the goods and services, as appropriate,
of one trader from those of another. A mark may be words, logos, pictures, shape of a product
or container, or a combination of these. (Certain kinds of marks are not permitted, e.g., marks
which are immoral, deceptive, or scandalous, national symbols, national flags, etc.) A trade‐
mark serves to identify the origin of goods and creates goodwill for the owner; it signifies that
all goods bearing the mark come from or are controlled by a single source and are of specified
quality.

3.3. Trade secret

It is any device or information that gives an advantage over competitors who do not know
about it or do not use it. Its value lies in its secrecy. Its owner is responsible for protecting it
(e.g., through non-disclosure agreements, by restricting access, etc.). Infringement of a trade
secret is a type of unfair competition. The subject matter of trade secrets usually includes sales
methods, distribution methods, consumer profiles and advertising strategies, lists of suppliers
and clients, and manufacturing processes. The Coca Cola recipe is a famous example of a trade
secret. What information constitutes a trade secret is case specific. Unfair practices related to
trade secrets obviously include industrial or commercial espionage, breach of contract, and
breach of confidence.

3.4. Patent

A patent is a limited period monopoly property right granted to an inventor for his invention
by a Government subject to prescribed conditions, which include that the invention must be
novel, nonobvious to those ordinarily skilled in the art, useful, and fully disclosed. Four types
of inventions are eligible for such utility patents: process, machine, manufacture, or composi‐
tion of matter. They are known as statutory subject matter. In exchange of a patent, the inventor
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describes the secrets related to the invention, publishing them as per law for all to see, absorb,
and improve upon but not infringe. This description must be so clear and detailed as to enable
a person skilled in the technologies relevant to the said invention to independently reproduce
the invention (enablement requirement) without undue extra-solution activity, such as further
research, data gathering, etc. on his part. In fact, this description should leave no doubt that
the patent applicant was in possession of the claimed invention at the time of filing his
application. Patents may be sought on non-trivial improvements over existing inventions. The
life of a granted patent is usually 20 years from the filing date of the first valid patent appli‐
cation claiming the invention.

Patent monopoly differs from market monopoly; a patent is a right to exclude, a right to prevent
trespassing. In this sense it is similar to, say, the right to keep one’s personal properties free
from trespassers. A patent grants its owner the right to exclude others from making, using,
selling or offering to sell, and importing the claimed invention in the country of grant; it does
not confer any right to practice the invention. This is because in practicing the invention, one
may well need complementary patents held by others unwilling to license or there may be
other laws, rules or regulations that prevent its practice. Patents are issued only to the first
inventor (or group of joint inventors) of an invention who files a legally valid patent applica‐
tion; all others are barred, even if they independently created the invention. Consequently,
those other inventors must get a license from the first inventor if they wish to practice the
invention. Although grant of patents is subject to country-specific constraints, there is univer‐
sal agreement among nations that patents seeking pre-emptive monopoly of abstract ideas
(e.g., mathematical formulas), laws of nature, natural phenomena, and products of nature are
ineligible. What else to exclude from patent monopoly is a national prerogative, largely
dependent on government policy related to prevailing socio-economic conditions it must
manage, and international treaty obligations.

Two recent rulings by the Supreme Court of the United States (SCOTUS) are of importance to
the biotechnology industry since it invokes the dictum that “laws of nature, natural phenom‐
ena and abstract ideas” are not patentable. In March 2012, the court ruled against Prometheus
Laboratories in California observing that it could not patent metabolite levels to guide drug
dosing [28]. Then, in June 2013, the court struck down a patent claim by Myriad Genetics of
Utah that linked certain DNA sequences to female breast cancer [29]. It held that a naturally
occurring DNA segment is a product of nature and its mere isolation does not make it
patentable. However, cDNA may be patentable as it is not a naturally occurring substance.
Thus to get a gene patent one will have to show that it is significantly different from any natural
gene. However, in a diametrically opposite ruling, the Federal Court of Australia in D’Arcy v
Myriad Genetics Inc. [2014] FCAFC 115 on 05 September 2014 ruled unanimously that isolated
DNA and RNA are patentable subject matter under Australian law (Patents Act 1990 (Cth) s
18(1), Statute of Monopolies s 6). To say the least, this makes gene patenting a complex issue
if such patents are sought in multiple countries.

Governments grant patents to human inventors only. Post-grant they may be assigned to
people or institutions. A patent granted by a government is enforceable only in the territory it
governs. One may, however, seek patents for the same invention from multiple countries.
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Patent laws of a country do not over-ride its other laws that might regulate the invention’s use.
Patent laws of a country may take into account moral, cultural, ethical, social, environmental,
or scientific concerns of society. Patent rights may be exercised by the patentee, his heirs or
assigns. When a patent expires, the related invention becomes the common heritage of
mankind.

Limited period patent monopoly may provide an enormous first mover advantage to an
entrepreneur, especially if it involves new technology that could lead to a natural monopoly.

3.5. Traditional knowledge

The World Health Organisation (WHO) defines traditional medicine as [30]:

Traditional medicine is the sum total of the knowledge, skills, and practices based
on the theories, beliefs, and experiences indigenous to different cultures, whether
explicable or not, used in the maintenance of health as well as in the prevention,
diagnosis, improvement or treatment of physical and mental illness.

This knowledge, much of it undocumented and available only to small groups of people
through oral transmission from generation to generation, predates molecular biology by
centuries and hence belongs to prior art (public domain). Its importance to synthetic biology
is that such knowledge may provide promising directions of research in the hunt for exotic
genes.

4. IP outputs of synthetic biology and public concerns

Deciphering the working of a cell, leave alone creating an artificial one, is far more than just
listing its constituent parts, e.g., listing its genes. We also need to know how the parts connect
and operate together, e.g., how genes and proteins interact to, say, form larger modules and
circuits analogous to those in electronic systems. More sophisticated conceptual understand‐
ing is needed to advance synthetic biology towards rational construction and redesign of
biological circuitry. In addition, development of new computer models, computational
algorithms and experimental techniques are needed for exploring gene interactions. Already
known techniques, such as chemical modification of proteins and splicing and rearrangement
of genetic information in the DNA have matured to a level where they can be used to redesign
basic molecular interactions and pathways of living cells. Further, the development of
machines and methods for rapid synthesis of DNA with specified sequences has made it
possible to build wholly synthetic, highly complex collections of genes and even to synthesize
living organisms from the genome up. In fact, biology inspired templates for engineering
nanostructures is emerging as a dominant research theme.

Notable contributions in synthetic biology include those from Dae-Kyun Ro, et al, Production
of the antimalarial drug precursor artemisinic acid in engineered yeast, [Nature, 2006] in
therapeutics; Marc Gitzinger, et al, Controlling transgene expression in subcutaneous implants
using a skin lotion containing the apple metabolite phloretin, [PNAS, 2009] in therapeutics;
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Shota Atsumi, et al, Non-fermentative pathways for synthesis of branched-chain higher
alcohols as biofuels, [Nature, 2008] in fuels; Yoon Sung Nam, et al, Biologically template
photocatalytic nanostructures for sustained light-driven water oxidation, [Nature Nanotech‐
nology, 2010] in solar energy; John E. Dueber, et al, Synthetic protein scaffolds provide modular
control over metabolic flux, [Nature Biotechnology, 2009] in chemicals; Tae Seok Moon, et al,
Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E.
coli, [Metabolic Engineering, 2010] in chemicals; Michael B. Elowitz & Stanislas Leibler, A
synthetic oscillatory network of transcriptional regulators, [Nature, 2000] in biological
computing, programmability; Eileen Fung, et al, A synthetic gene-metabolic oscillator, [Nature,
2005] in biological computing, programmability; Marcel Tigges, et al, A tuneable synthetic
mammalian oscillator, [Nature, 2009] in biological computing, programmability; Tai Danino,
A synchronized quorum of genetic clocks, [Nature, 2010] in biological computing, programm‐
ability; Daniel G. Gibson, et al, Creation of a bacterial cell controlled by a chemically synthe‐
sized genome, [Science, 2010], in extending the principles of design and construction to whole
organisms; Denis A. Malyshev, et al, A semi-synthetic organism with an expanded genetic
alphabet, [Nature, 2014], in expanding the genetic code to incorporate unnatural nucleotides
and base pairing; Cong, L., et al, Multiplex Genome Engineering Using CRISPR/Cas Systems,
[Science, 2013], in gene editing.

Research efforts in synthetic biology are largely concentrated in the United States and to a
substantially lesser degree in the European Union. Currently no country has the necessary
framework for coordinating its research activities, fostering a community of researchers, and
creating a forum for the establishment of goals, shared tools, and professional standards.
Biological research, more than ever, needs to address ethical and safety concerns of society,
especially with respect to synthetic biology if the research community is to gain public trust
without raising Frankensteinian fears.

In general, perceived safety and investment risks involved in converting proof-of-concept
products and processes developed in laboratories and making them market ready are very
high and intimately related to the mode of IP dissemination, e.g., open source, patents, IP
commons, and private law initiatives. The last is based on contractual agreements that are
basically binding among those involved and not on third parties. The open source movement
has generally restricted itself to basic research outputs that form the foundation on which
subsequent applied research depends. As synthetic biology results move out of research labs
and migrate to industry to be integrated into marketable products, altruistic open source
initiatives and private profit motive collide. The potential for fierce litigation suddenly arises
whose source is the patent system, which has the unenviable task of delicately balancing the
need to encourage innovation through grants of limited period monopoly and protect public
interest through minimal free-market encroachment.

4.1. The bright side of IP outputs

Due  to  genetic  engineering,  modern  biotechnology  has  progressed  well  beyond  simply
using  natural  strains,  classic  breeding,  and  strain  selection  to  produce  a  variety  of
chemical  products.  Artemisinin,  a  critical  ingredient  in  malaria  drugs  is  now  pro‐
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duced  from  yeast  altered  through  synthetic  biology.  Rennet,  a  key  processing  aid  in
cheese  making,  since  the  1990s  has  been  made  by  a  microbe  altered  with  insertion  of
a  single  bovine  gene  and  is  in  wide  use  in  the  U.S.  Algal  oil  is  produced  by  geneti‐
cally modifying algae which is now used in making laundry detergent.  Synthetic biology
techniques  are  now  used  to  coax  bacteria,  fungi  and  other  organisms  into  producing
substances  they  would  not  otherwise  produce.  Some  of  the  micro-organisms  synthetic
biologists  create to make ingredients  like orange and grapefruit  flavourings have passed
the  muster  of  the  Environmental  Protection  Agency  of  the  U.S.  while  the  U.S.  Food
and  Drug  Administration  says  the  ingredients  they  produce  are  “generally  recognized
as  safe”.  Some  companies  also  produce  food-grade  vanillin,  resveratrol  and  citrus
flavourings  from  yeast  and  other  microorganisms  via  synthetic  biology.  Yet  enough
misgivings  in  public  perception  exist  that  companies  shy  away  from  admitting  that
some  of  their  products  are  created  or  mediated  by  artificial  organisms  made  possible
by  synthetic  biology  [31].  Nevertheless,  synthetic  biology  continues  to  tackle  far  more
ambitious  goals.  Here  are  some  examples.

1. Three-person IVF. The Human Fertilization and Embryology Authority in the U.K. that
regulates the use of human eggs, sperm, and embryos in treatment and research has
assessed two types of in vitro fertilisation (IVF) methods: one that involves removing
parental nuclei from a fertilized egg and placing them into a donor embryo from a second
woman, and another that moves the nucleus from the mother's egg into a donor egg, which
then can be fertilized. The aim is to help women with mitochondrial diseases have healthy
babies. The report [32] noted that three-person IVF is expected to be ready for use in
preventing the birth of children with mitochondrial disease through assisted conception
in about two years. Its use on humans in the U.K. will need Parliamentary approval.

2. Next generation sequencing. Fourteen year old Joshua lay in a coma for weeks, his brain
swelling with fluid due to an unknown cause. With parental approval, doctors ran a test
with an experimental new technology that searched the child’s cerebrospinal fluid for
pieces of DNA that might belong to the pathogen causing his encephalitis. They were able
to pinpoint the cause within 48 hours. The child had been infected with an obscure species
of bacteria, which the doctors eradicated within days [33]. The technology although years
away from clinical use has raised hopes of powerful diagnostic tools for presently
undiagnosable diseases becoming available in the future.

3. Exome sequencing. In June 2014, researchers in the Finding of Rare Disease Genes (FORGE)
project reported analysing 264 rare disorders using exome sequencing and identifying the
causal mutations to 146 of them and identifying 67 novel genes [34].

4. Whole-genome sequencing. A recent paper in Nature [35] has suggested that whole-genome
sequencing can diagnose severe intellectual disability in newborns even when standard
tests don’t. Based on data on 50 patients with severe intellectual disability and their
unaffected parents, the genome-wide analysis found 84 novel sequence variations and 8
novel structural variations associated with the disability. Previous gene screens in the
same patients had failed to identify disease markers. The results led to a diagnosis of 42
percent of patients studied. Can a synthetic biology remedy be far behind?
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5. Gene editing technology. In Nature Biotechnology [36] researchers reported the use of
CRISPR-Cas9 to alter the genome of the human malaria parasite Plasmodium falciparum.
This parasite has been difficult to manipulate with existing tools. Researchers were able
to specifically disrupt chromosomal loci and generate marker-free, single nucleotide
substitutions with high efficiency. They were also able to generate a strain of the protozoan
resistant to a key malaria treatment.

6. Solar energy. An article in Nature [37] reported that in Caltech’s Jorgensen’s Lab more than
80 researchers are engaged in using inorganic material (silicon, nickel, iron, etc.) to create
artificial photosynthesis. Their goal “is to use sunlight to make hydrogen and other fuels
much more efficiently than real leaves ever made biomass.” Making fuels using power
from the Sun, which is effectively inexhaustible but also carbon-free would be a boon.
While not synthetic biology, it is inspired by it.

7. Genome transfer. Researchers have found that allopolyploidization can also occur by
asexual mechanisms. They have shown that “upon grafting—a mechanism of plant–plant
interaction that is widespread in nature—entire nuclear genomes can be transferred
between plant cells”. They have created a new allopolyploid plant species from an
herbaceous species and a woody species in the nightshade family. The new species is
fertile and produces fertile progeny [38]. Synthetic biology, in conjunction with a potential
asexual mechanism of speciation opens up vast new possibilities for the generation of
novel allopolyploid crop species.

8. De-extinction, reanimation. Recreating extinct species is no longer far-fetched. Synthetic
biology not only makes it feasible to revive them but also improve them by boosting their
immunity and fertility, their ability to draw nutrition from available food, and to cope
with environmental stress. Just as a new vaccine can reduce demand on medical resources,
improved species make for better ecological compatibility and balance. Indeed, George
Church is currently modifying genes from an Asian elephant to make them more mam‐
moth-like [39].

4.2. The dark side of IP outputs

New technologies come with unknown risks of using and not using it! They have their share
of scary stories and apprehensions. Construction of artificial life that goes well beyond
traditional recombinant DNA technology, is both ambitious and ominous. But then modern
civilization is the result of past risk taking. With older and mature technologies we gradually
found ways of muting their dark side by enacting legislation and creating regulatory bodies.

While possible socio-economic benefits from synthetic biology are enormous, so is the
possibility of its misuse. The concerns range from bioethical and environmental worries to bio-
terrorism, say, by malicious release of genetically engineered viruses targeted at specific
population groups. The main concern is the creation and growth of bio-weapons. They can be
created surreptitiously, cheaply, on a mass scale, and released in a variety of inexpensive ways
into the environment using a variety of delayed triggering mechanisms that would camouflage
their presence. Bio-weapons make the lethality of atomic and nuclear weapons passé.
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A panel of life sciences experts in 2003 noted [40]:

• “The effects of some of these engineered biological agents could be worse than any disease
known to man.”

• “The genomic revolution is pushing biotechnology into an explosive growth phase. … [T]he
resulting wave front of knowledge will evolve rapidly and be so broad, complex, and widely
available to the public that traditional intelligence means for monitoring WMD [weapons
of mass destruction] development could prove inadequate to deal with the threat from these
advanced biological weapons.”

A decade later, these concerns have become more pronounced. The threat spectrum is diverse
and elusive and already impossible to comprehensively defend against. The pace, breadth,
and volume of the evolving scientific base in synthetic biology and its easy public accessibility
makes the controlled development of bio-weapons a hopeless task.

4.3. The regulatory side of IP outputs

Synthetic biology ingredients are rapidly entering consumer products and food [31]. The
legitimate concern of various advocacy groups is that synthetic biology is so new that there
are as yet no regulations in place for the creation, use, and disposal of new synthetic organisms
or even credible risk assessment methods before such organisms are released in the environ‐
ment [41, 42]. The fear is that premature, wider, large-scale industrial use of synthetic biology
ingredients is likely to cause serious harm to biodiversity and farmers. The fact remains that
scientists cannot predict, at this nascent stage of synthetic biology, what new forms of life or
attempts to ‘reprogram’ existing organisms, such as yeast and algae, would do to the envi‐
ronment and human life, given that they can now generate millions of new, untested organisms
on a mass production scale. The possible effects range from beneficial, benign, to ecological
and economic disaster. The core ecological concern is that artificial organisms breed, repro‐
duce, and once released into the environment cannot be recalled. Hence the fear of unintended
consequences. Of course, as synthetic biology matures, many equitable solutions are also likely
to emerge.

In this ‘good-bad’ debate, the real concern is the regulation of artificially created living
organisms rather than the non-living chemical products (bio-fuels, pharmaceuticals, oils, etc.)
they produce. For the latter, reasonable regulatory mechanisms exist and they are continuously
evolving. Chemistry is much better understood than the biochemistry of life. Therefore, the
demand, as is sometimes made, for labelling ingredients as having come from synthetic biology
processes in products has no scientific basis. The chemical properties of an ingredient are
independent of the process used in making them.

The regulatory aspect of such synthetic biology products as genetically engineered microbes,
plants and animals, promises to be a nightmare. Concerns related to environmental, health,
and food safety require specialized regulating agencies. R&D advances in synthetic biology
have been so rapid and novel that existing regulatory agencies are either unable to cope or
find themselves without the authority to review. The sheer variety and increasing complexity
of artificial life, many of which can be generated within a short span, makes their risk assess‐
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ment a great challenge. Not only will the regulators need additional funding to meet increased
workload and expertise requirements, but also the legal authority to carry out certain tasks
not included in current laws. See, e.g., [16]. Most countries currently lack human, financial, and
scientific resources to set up effective regulatory agencies or even frame regulatory policies.

Another major concern is the accidental release of artificial organisms in the environment. In
some cases, researchers can design organisms with built-in safety features. For example, by
designing organisms that can survive and breed only in an artificially created environment,
such as by controlling the chemical sources of energy they have access to or by the reassignment
of the stop codon. It was recently discovered that in the standard genetic code the stop codon
can undergo recoding in nature. Reassignment of the stop codon has been observed in
bacteriophages and bacteria indicating that bacteriophages can infect hosts with a different
genetic code. This can lead to phage-host antagonism based on code differences. Its implication
in synthetic biology is that the stop codon reassignment may be used as a means to engineer
organisms to prevent the exchange of genetic information between engineered and naturally
occurring species.

Clearly, synthetic biology requires new methods of risk assessment because it involves exotic
biological systems based on an alternative biochemical structure, e.g., genetic code based on
novel types of nucleotides, or an enlarged number of base pairs. There is also the risk of
synthetic biology skills diffusing into wrong hands (e.g., Do-it-yourself biology, amateurs, and
bio-hackers) with time as these skills begin to percolate down the education system.

4.4. The societal side of IP outputs

Since artificially created biological systems will often be expected to interact with natural
biological systems, including human societies, there are moral and ethical concerns and the
need to develop a rational public–science interface to address those concerns [44]. In particular,
what should be the relationship between humans and artificially created living organisms and
the moral and legal status of the products, e.g., transgenic humans. Indeed, how would we
define human life? What would be the legal status of artificial humans, especially if illegally
created? What if they formed their own societies, rules of governance and rules of interaction
with natural humans? What if there were to occur a sudden spurt of diversification of the
human species, engineered or accidental? Could it lead to the collapse of human society as we
know it today and the extinction of natural humans?

Precision editing of DNA will eventually enable us to alter not just individual organisms but
also ecosystems. It would then be possible to wipe out diseases like malaria by altering
Anopheles mosquitoes, which have evolved resistance to anti-malarial drugs and insecticides
(a vaccine against malaria has been elusive), by modifying their genome, disabling or hinder‐
ing their reproductive cycle or building up resistance to parasites through highly heritable
genes, and then releasing them throughout the population. However, the accessible nature of
the technology, such a “gene drive” could also be used irresponsibly and raise the risks of
accidental or even intentional harmful effects [45]. Given the delicate ecological balance needed
for human survival, how is responsible behaviour to be integrated with the patent system?
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Historically, pioneering technologies have created intense patentability debates [46, 47] that
range from conceptual to political. For example, IPR opponents in the past had argued
agriculture was not an industry, patents on pharmaceuticals would be unethical, biotechnol‐
ogy is about trying to play God, software and business methods are non-technical, etc. In the
1970s, concerns surfaced about recombinant DNA technology that innocuous microbes could
be engineered into human pathogens resistant to then known antibiotics, or enable them to
produce toxins, or transform them into cancer causing agents [47]. Fears have since abated.
Recombinant DNA technology now dominates research in biology. In synthetic biology, the
fears are more in terms of our ability to regulate research and industrial activities so that these
activities are carried out safely [16] and the human species preserved.

4.5. The IPR side of IP outputs

In societies that abhor monopoly rights and favour level playing fields of competition, even
limited period monopoly creates social tension. Thomas Jefferson (1743–1826), the third
President of the United States (1801–1809), the principal author of the Declaration of Inde‐
pendence (1776), a well-known scientist of his time, the initiator of the first U.S. patent system
in 1790, and the author of the 1793 Patent Act, had this to say in 1813 in a letter to Isaac
McPherson [48]:

Considering the exclusive right to invention as given not of natural right, but for
the benefit of society, I know well the difficulty of drawing a line between the
things which are worth to the public the embarrassment of an exclusive patent,
and those which are not.

The demarcation debate between openness and limited period monopoly may never end. In
synthetic biology this debate is complex because it involves the assimilation of a new technol‐
ogy by society and of inventions that were never anticipated to become part of the patent
system. Indeed, some of these future inventions may well be bio-robots and bio-computers
with the DNA serving as programmable memory. It would require tremendous legislative
efforts to equitably deal with such live inventions. However, one expects that bio-weapons,
like atomic weapons, would be kept outside the patent system.

5. Look before leaping to patent

Before filing a patent application, ensure that a thorough prior art search is done and in relation
to that prior art, map out all possible obvious extensions to the art that are likely to occur to a
person of ordinary skill in synthetic biology (e.g., the average post-doc). If your invention goes
beyond the obvious extensions, and fulfils the statutory requirements of novelty, non-
obviousness and utility then expeditiously file a patent application for your invention ensuring
that you fully describe the invention (including the best mode) therein. File a provisional
application if necessary to claim priority over other inventors and follow it up in a timely
manner with a non-provisional application. Scrupulously follow patent office protocols.
Getting a patent is expensive, so a business analysis before filing is prudent.
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5.1. Prior art search

Prior art or state-of-the-art is all information, available in any form (including social media),
in the public domain. It does not include secret information, e.g., trade secrets or confidential
communications. Patentability searches of prior art – to decide whether or not an invention is
patentable – especially from the point of view of novelty and non-obviousness are routinely
performed by patent examiners. Even then, it is usually prudent to pre-emptively carry out a
similar search. Inter alia, such a search provides valuable information to the lawyer drafting
the patent application. First, it helps him define the prior art and the background of the
invention so that he can highlight patentable features of the invention. Second, he will be able
to strike a balance between framing too broad or too narrow claims for the invention.

Learn the art of prior art search. Automated searches (e.g., Google scholar) are valuable as a
lead-in to conducting a specialized manual search or as a follow-up to locate patents or other
prior art after a manual search. If affordable, get a professional search done. Note that no search
can guarantee that it is complete or completely accurate. More importantly, only the absence,
and not the existence, of novelty of your invention can be established.

5.2. PHOSITA

This legal fictional person (or a team) having ordinary skill in the art, called a PHOSITA who
is neither a genius nor a layperson, is considered to possess average skills and knowledge in
a particular technical field and hence unlikely to ever become an inventor. He thus serves as
a reference for determining by comparison whether an invention is obvious or not. If a
PHOSITA is deemed capable of coming up with the invention if required, assuming he/she
would make the effort to study relevant prior art, then the particular invention is deemed
unpatentable. Note that a “person of ordinary skill is also a person of ordinary creativity, not
an automaton.” [49]. Further, “in many cases a person of ordinary skill will be able to fit the
teachings of multiple patents together like pieces of a puzzle.” [49].

The skill profile of a PHOSITA is determined on a case-by-case basis, depending on the level
and technological features of the invention. Factors used in profiling include the education
level of the inventor, type of problems encountered in the art, known prior art solutions,
rapidity with which innovations are made in the art, sophistication of the technology, and
education level of active workers in the field. Clearly, a PHOSITA’s profile changes with time
as he continuously imbibes new advances in related technologies. A PHOSITA of today, may
have been an expert yesterday! This is clearly true in synthetic biology where the PHOSITA
will most likely be a researcher with a PhD.

5.3. Novelty, non-obviousness, utility, written description, claims

Only an invention that can be classified as machine, manufacture, process, or composition of
matter and further if it is considered novel with respect to prior art, non-obvious to a PHOSITA,
and useful to society at the time the patent application (provisional or non-provisional) is filed
is eligible for consideration of a patent grant provided the invention is clearly and fully
described. Patent prosecution is the process by which a non-provisional patent application is
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defended before the patent office. Prosecution begins with the filing of the non-provisional
patent application and ends with the final decision on the application by the patent office.

Obviousness creates a ‘patent-free’ zone around the prior art related to the invention and
prevents trivial advances from being patented. Under the doctrine of equivalents, straying into
the patent-free zone of a valid patent amounts to infringing the patent. (See Section 6.2.)

The invention must have a useful effect or a purpose meaningful to society else the invention
is not patentable. The invention’s utility must be specific to the subject matter claimed, credible
to a person skilled in the field, and should not require further research to discover it.

The written technical description of the invention should enable a person skilled in the art to
reproduce and use the claimed invention without undue research or experimentation beyond
those normally expected from such a person. Because the experimentation may be complex
for a particular invention it will not become undue if a person of skill in the art typically engages
in such complex experimentation. The inventor must point out how his invention differs from
prior art. Finally, the non-provisional application must include one or more claims that
distinctly spell out specific aspects of the invention which the inventor claims are his intellec‐
tual property in need of legal protection. Omitted aspects that could have been claimed are
deemed to have been gifted to mankind. Likewise, disclosing the invention by putting it in
public use, testing it in public, describing it in a speech in a technical conference, sale of the
invention, disclosing the invention to people without a signed non-disclosure agreement with
them, discussing it in the social media, etc. before filing a patent application may be construed
as placing the invention in the public domain and hence ineligible for a patent.

It must be clear from the written description that the applicant was in possession of the claimed
invention at the time of filing. There is no statutory requirement that the inventor disclose why
the invention works or how it was developed. Inventors are expected to write their invention
using the language and ideas that are accepted in the field of the invention, say, by a PHOSITA.
In some countries, it is a statutory requirement that the inventor set forth the best mode
contemplated by him of carrying out his invention.

While the written description must be followed by one or more claims through which the
inventor points out and distinctly claims aspects of the invention he believes are his original
non-obvious contributions, he should not pre-emptively claim ideas, laws of nature or natural
phenomena. Each claim must be so drafted that patent examiners and potential infringers can
understand what the claimed subject matter is. Writing claims is a specialized art, and should
preferably be drafted by a patent attorney. Claims lie at the heart of infringement litigation
and they form the most important part of a patent.

A patent is invalid if its claims, read in light of the invention’s description and prosecution
history, fail to inform, with reasonable certainty, those skilled in the art about the scope of the
invention. However, when the invention is novel and non-obvious, words may not exist to
describe it so the law allows words to be invented and defined to describe the invention to fill
unintended idea gaps in a language.
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5.4. Business prudence

Economic viability of a patent depends on the following:

Detectability. Once a patent is granted, the idea and implementation details become public.
Hence, to enforce your patent, you must be able to detect infringement easily, otherwise
keeping the invention a trade secret may be a better option.

Non-avoidability. If viable alternatives to your invention exist or can be developed within
reasonable timeframes and costs, then seeking a patent may be unwarranted.

Business value. Acquiring a patent is both time-consuming and expensive. So weigh the
potential benefits that may accrue from a patent against potential risks of not seeking a patent.

Technology obsolescence. Track emerging technologies and technology trends to determine if
your invention will become obsolete in the near future.

Since biotechnology patents generally underpin business, it is imperative that patent applica‐
tions are prepared and prosecuted by experienced patent attorneys and that inventors work
closely with them to minimize prosecution hurdles and future litigation possibilities.

6. Look before litigating

Infringement occurs when someone unauthorized makes, uses, offers for sale or sells a
patented invention within territories where it is protected, or imports into that territory the
patented invention during the term of the patent. Infringement and litigation is mainly about
the power to regulate the manner in which patented goods and services are traded, not how
people use them. Patent disputes seldom throw up clear-cut good guys and bad guys. Each
feuding party is likely to honestly believe its actions are reasonable and lawful. Litigation costs
are usually very high, so anticipate spending a million or more U.S. dollars. No infringement
occurs outside the term of a patent. Patent offices have no jurisdiction over infringement issues,
only designated courts have. The relief sought from courts for infringement may be an
injunction to prevent further infringement, and award of damages for past infringement.
Alleged infringers, if challenged, are quite likely to counter-challenge by questioning the
validity of the disputed patent. While the Government that granted the patent may use the
patented invention without permission of the patent owner, it must, nevertheless, compensate
the owner.

6.1. Obviousness and obvious–to-try

Obviousness  and  “obvious  to  try”  are  not  synonyms.  The  mere  fact  that  something  is
“obvious  to  try”  in  view  of  prior  art  does  not  automatically  imply  that  the  invention
resulting  therefrom is  obvious.  This  is  especially  true  where  the  number  of  things  one
can obviously  try  are  very many (say tens-of-thousands or  millions  as  can happen with
respect  to  chemical  molecules)  and  the  search  would  amount  to  finding  a  needle  in  a
haystack.  That  is,  the  prior  art  does  not  contain  any  suggestion  or  teaching  that  might
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suggest  how  the  invention  might  be  accomplished  or  any  basis  for  reasonable  expect‐
ation  that  beneficial  results  will  accrue  by  proceeding  along  the  lines  taken  by  an
inventor.  There  are,  however,  situations  where  “obvious  to  try”  or  “worth  a  try”  may
be  indicative  of  obviousness.  In  KSR  v.  Teleflex  [49],  the  SCOTUS  indicated  one:

When there is a design need or market pressure to solve a problem and there are
a finite number of identified, predictable solutions, a person of ordinary skill has
good reason to pursue the known options within his or her technical grasp. If this
leads to the anticipated success, it is likely the product [is] not of innovation but
of ordinary skill and common sense.

6.2. Doctrine of equivalents

The judicially created doctrine of equivalents, universally followed, is a rule of claim inter‐
pretation wherein a product or process, although not literally infringing nevertheless infringes
if it performs substantially the same function in substantially the same way to obtain the same
result as a patented product or process. The doctrine extends patent protection beyond the
literal language of the claim.

Literal infringement of a patent, though rare, occurs when the alleged infringing product or
process is an obvious near replica. Generally, people try to work around a patented invention
by introducing differences and variations they hope will be large enough to beat the doctrine
of equivalents. Deciding equivalency is tricky as it must deal with two opposing public policies:
(1) the need to provide public notice as to what infringes by requiring clear and distinct claims,
and (2) the need to prevent an infringer from avoiding liability by covert means. Of course,
one may ask, “What if a device performs substantially the same function in a substantially
different way to obtain the same result?” This leads us to the reverse doctrine of equivalents
(Section 6.3). In determining equivalency, courts may seek expert opinion as to scientific or
engineering facts and the decision may well lean on the more believable expert. Note that
things that are equivalent for one purpose may not be so for other purposes.

6.3. Reverse doctrine of equivalents

The reverse doctrine of equivalents circumscribes the doctrine of equivalents. The SCOTUS in
Graver Tank [50] ruled that:

The wholesome realism of this doctrine [of equivalents] is not always applied in
favor of a patentee but is sometimes used against him. Thus, where a device is so
far changed in principle from a patented article that it performs the same or similar
function in a substantially different way, but nevertheless falls within the literal
words of the claim, the doctrine of equivalents may be used to restrict the claim
and defeat the patentee’s action for infringement. [Citations omitted.]

Thus, where an invention relies on the fundamental concept embodied in a patent but, say,
relies on “a significant advance” in technology, the accused device does not infringe by virtue
of the reverse doctrine of equivalents. Once a patentee establishes literal infringement, the
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burden is on the alleged infringer to establish non-infringement under the reverse doctrine of
equivalents.

6.4. Prosecution history estoppel

Estoppel means a bar preventing one from making an allegation or a denial that contradicts
what one has previously claimed as the truth. This can happen, e.g., during patent prosecution,
if a claim is rejected by the patent examiner citing prior art and the claim is then amended and
narrowed to avoid the prior art. In such a case the patentee is barred from asserting the
narrowed claim in a broader sense under the doctrine of equivalents or recapture what was
surrendered in the amendment. Thus when prosecution history estoppel applies, only literal
infringement may be invoked.

6.5. Research exemption

Generally, use of patented inventions in pure research is exempt from infringement liabilities.
That is, if the pursuit is no more than “for amusement, to satisfy idle curiosity, or for strictly
philosophical inquiry.” [51]. Still caution is warranted as the scope of exemption varies from
country to country and whether the research is associated with a commercial goal. If it is,
exemption is unlikely. Researchers in synthetic biology need to be very cautious, especially if
their research is funded by industry or is likely aimed towards a commercial product.
Generally, use of patented inventions in research and tests in preparation for regulatory
approval from government bodies is exempt if conducted within a limited period prior to the
patent’s expiry. This e.g., allows generic manufacturers to prepare generic drugs in advance
without infringing relevant patents.

6.6. Method claims

Unlike product claims, process or method claims are generally problematic in litigation. In the
United States where patent litigation is rampant, the SCOTUS has often enough reversed the
decisions of the Court of Appeals for the Federal Circuit (CAFC) in patent litigation [52]. In a
recent case, Limelight v. Akamai [53] the SCOTUS while unanimously overturning the CAFC’s
decision, commented, “The Federal Circuit’s analysis fundamentally misunderstands what it
means to infringe a method patent. A method patent claims a number of steps; under this
Court’s case law, the patent is not infringed unless all the steps are carried out.” It also held
that a defendant is not liable for induced infringement if there is no direct infringement. The
decision has raised some concerns in the biotech industry since biotech patents often include
complicated, multi-step methods. It now appears that the patent system could be gamed by
infringers by simply outsourcing part of the process to avoid lawsuits.

6.7. Balancing conflicting requirements

Balancing the requirements for non-obviousness in litigation, with the constraints imposed by
the doctrine of equivalents, reverse doctrine of equivalents, and prosecution history estoppel
can be tricky because much depends on prior art related to the patent-in-suit, the profile of the
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PHOSITA, and exact wordings of the patent’s claims. In most cases, the issue involves the
expansionary scope of the doctrine of equivalents and whether obvious-to-try is the same as
obvious from the perspective of the PHOSITA. Some of the trickiest situations involve the
opposing tendencies of the doctrine of equivalents and prosecution history estoppel. Such
matters are best left to experienced lawyers.

7. Sundry IP protection issues in biotechnology

In scientific research, openness in sharing foundational research results and tools promptly
with the scientific community advances the field more rapidly than otherwise. This requires
that synthetic biologists collaboratively create a basic platform where, e.g., standardized
biological parts that are safe, ethical, and cost effective are easily accessible to facilitate the
development of other inventions needed by society but require an industrial setting, a profit
motive, and IPR protection. A shared basic platform will foster less acrimonious market
competition. Basic research is curiosity-driven and largely government funded; product
development is market-driven and requires huge private funding. The government owns the
mint, the private sector does not nor can it crowd-source funds via taxation. IP laws try to
bridge this gulf. The task is far from easy as the following two examples indicate.

1. Galileo seeks IPR. The Venetian Senate passed the first patent law on March 14, 1474,
granting limited duration monopoly for original devices. That same Venice in 1594
granted Galileo a “privilege” (a patent) for 21 years on a machine which he had invented
[54] “for raising water and irrigating land with small expense and great convenience,” on
the condition that it had never before been thought of or made by others. In his petition
for the privilege he said, “it not being fit that this invention, which is my own, discovered
by me with great labour and expense, be made the common property of everyone” and
adding that if he were granted the privilege, “I shall the more attentively apply myself to
new inventions for universal benefit.” Clearly, even Galileo, the father of modern science,
was not willing to divulge his invention only to have it copied for free exploitation by
others. Galileo’s argument pervades the modern patent system.

2. The Bayh-Dole Act. In the late 1970s the U.S. Government realized with shock that while it
held title to approximately 28,000 patents (at the time all patents resulting from federal
R&D funding at universities were owned by the government), fewer than 5% were
licensed to industry for development of commercial products. Literally, results of billions
of dollars of federal R&D investment were under-utilized in commerce. The remedy was
the Bayh-Dole Act of 1980. It went against prevailing wisdom that patents resulting from
tax-payer funded research should belong to taxpayers and availed by industries under
non-exclusive licenses. It turned out that without an exclusive license, companies were
wary of investing the huge sums required to turn those inventions into marketable
products when the resulting products could easily be appropriated by competitors. The
business risks were too high. Therefore, under the Act, the government relinquished its
ownership rights to future patents arising from federally funded R&D in the universities
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and small businesses and turned them over to the fund recipients. It also permitted them
to grant exclusive licenses thereby creating the needed incentives for private firms to
invest. Many countries have since enacted Bayh-Dole type Acts. About the Act, The
Economist (December 14, 2002) wrote:

Possibly  the  most  inspired  piece  of  legislation  to  be  enacted  in  America
over  the  past  half-century  was  the  Bayh-Dole  act  of  1980...  More  than
anything,  this  single  policy  measure  helped  reverse  America’s  precipitous
slide  into  industrial  irrelevance.

7.1. Limited period monopoly versus dedicated to the public

The quid pro quo of the patenting system is that in exchange for government granted limited
period monopoly, the inventor must fully disclose the details of the invention so that further
innovation and improvement of the invention by others can continue. On the patent’s expiry,
the invention falls in the public domain and all patent rights are extinguished. Patent law
encourages such inventions where without a patent the incentive to invent products and
processes useful to society is unlikely to occur rapidly enough. For example, not having patents
may mean not having certain drugs and therapies.

Acquiring patents is expensive; fighting litigation even more so. So the key question in framing
a patent system is: “Will concentration of monopoly power in a given technology be detri‐
mental to industrial growth in the long run?” The answer depends on the scale and availability
of funding. Only those with deep pockets can afford to acquire a sizable patent portfolio. The
second question, “Is the patent office ready to handle this technology?” New technologies that
come rapidly to the fore can be a nightmare for any patent office because of lack of examiners,
inadequate repository of and access to prior art, inadequate case-law from which they can seek
guidance, etc. Not every country has the ability or the resources to cope with such a situation.
The third question, “How high should the bar be set for grant of patents in terms of novelty
and non-obviousness?” Higher the bar, less will be the cost of enforcing patent law since a
great many infringement battles can be eliminated and more inventions will populate the
public domain. How the answers to the three questions are dynamically balanced will decide
how well the patent system serves society. This balancing act is far from easy given that
substantial and rapid technological advancement is not possible if based purely on the
innovative capabilities of ordinary people. Only extraordinary people are capable of such feats
and many of them require the incentive of government granted and protected privileges in
order to be productive, e.g., Galileo. Patents promote trade and commerce and avoid the
accumulation of trade secrets.

7.2. Patents common

There is a perennial dilemma: How does one encourage innovation without eroding the vitality
of the scientific commons? What is the right balance between philanthropy and profit incen‐
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tive? Should the balancing be driven by free market mechanisms or government intervention?
Reforms in the patent system are undoubtedly warranted but what they should be are unclear.

The biotechnology industry, recognizing these dilemmas, has funded certain initiatives in the
past with the clear aim of placing the resulting research output in the public domain in the
larger interests of both industry and society via patents-information commons. These initiatives
sought a balance between the intellectual property system that quarantines new knowledge
and information and the goal of science to put them in the public domain expeditiously [55].
For example, to mitigate debilitating competition, like-minded companies have collaborated
to create and share IP among themselves to enhance the scale, scope and speed of innovation;
used cross-licensing, patent pools, and patent exchanges to lower the cost of exchanging IP;
embraced open standards to enhance inter-operability and encourage collaboration; and
invested in pre-competitive information-commons to boost their downstream product
development. Some well-known examples of pre-competitive information-commons are
Merck Gene Index (1995), Merck sponsored project to create patent-free transgenic mice (1997), SNP
Consortium (1999), International HapMap Project (2002), and The Genographic Project (2005).

The National Institutes of Health (NIH) in the U.S. too has been active in creating information
commons. Since 1996, all human genomic DNA sequence information that it funds is placed
in the public domain. In December 1999, it adopted a general statement of “Principles and
Guidelines for Sharing of Biomedical Research Resources”3 that said:

[T]he use of patents and exclusive licenses is not the only, nor in some cases the
most appropriate, means of implementing the [Bayh-Dole] Act. Where the subject
invention is useful primarily as a research tool, inappropriate licensing practices
are likely to thwart rather than promote utilization, commercialization, and public
availability.

In the same spirit, the Guidelines encourage unencumbered transfer of unpatentable research
tools to other needy researchers. Of course, in view of the Bayh-Dole Act, the Guidelines could
not restrain grantees from filing patent applications.

In August 2014, NIH issued a final policy on genomic data sharing that builds on and replaces
its earlier policy issued in 2007 in an effort to promote the sharing of data from genome-wide
association studies, and through the creation of the database of Genotypes and Phenotypes
(dbGaP), a two-tiered system for distributing data. One tier offers open-access with no
restriction and the other provides controlled access that can be used only for research purposes
consistent with the original informed consent under which the data were collected. This new
policy (available at http://gds.nih.gov/03policy2.html) will go into effect in January 2015. NIH’s
preference for open access understandably comes from its top leadership which is typically
drawn from academia and the basic research community that sanctifies open access. A survey
of deals and business models that highlight the more charitable side of the pharmaceutical and
biotechnology industry is available at [56].

3 Available from http://grants.nih.gov/grants/intell-property_64FR72090.pdf.
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8. Universities taste entrepreneurship

8.1. Some history

The Bayh-Dole Act spurred U.S. universities to seek patents and facilitated university-industry
partnerships that turned universities into engines of economic growth. However, a Bayh-Dole
type Act is unlikely to succeed elsewhere as it requires a system of world-class research
universities, brilliant research faculty, a continuous stream of brilliant doctoral students and
post-docs, and access to substantial funds to create and maintain research infrastructure. In
1980, the U.S. had all these. Even then, only companies with the wherewithal to convert
university generated basic research results into marketable end-products benefited most. So
far the most successful example has been the bio-medical sector [55]. For example, in FY 2007,
top licensing revenue earners included: New York University (approx. $791.2 million),
Columbia University ($135.6 million), The University of California system ($97.6 million),
Northwestern University ($85 million), and Wake Forest University ($71.2 million).4 Most of
these earnings came from biomedical discoveries, rather than physical sciences. Even in
biomedicine, it was often a block-buster patent that strikingly stood out. For example, New
York University’s largest licensing income came from an undisclosed portion of its worldwide
royalty interest in the monoclonal antibody Remicade; it was $650 million!

Here is another example of IP treasure troves in universities. World-wide the top 10 univer‐
sities granted U.S. patents in 2012 were: (1) The Regents of University of California (357); (2)
Massachusetts Institute of Technology (216); (3) Stanford University (182); (4) Wisconsin
Alumni Research Foundation (155); (5) Tsinghua University (149); (6) University of Texas (141);
(7) California Institute of Technology (136); (8) National Taiwan University (122); (9) University
of Michigan (97); (10) University of Illinois, National Chiao Tung University, and University
of Utah Research Foundation (85 each).

To play the IP game on this scale, U.S. universities have had to change dramatically. Since the
founding of Harvard University in 1636 when universities provided their students with the
requisite classical background and knowledge of leadership and government, the shift to a
radically new training-centred curriculum to accommodate mechanical science, agricultural
technology, etc. that would complement the new rapidly industrializing economy and the
aspirations of the emerging middle class, was remarkable enough. This shift to science-
inclusive education helped propel the U.S. economy well into the twentieth century. Post-
Bayh-Dole, universities are once again adapting themselves to remain relevant in a global
innovation-driven economy, in which researchers are highly mobile, technology obsolescence
rates are high, and knowledge acquisition is a continuous requirement. A unique feature of
this transition is the birth of the entrepreneurial professor who sets up companies, sometimes
taking his graduate students along with him. (Often the same university that does research in
science also does research in business management!) Many young professors now routinely

4 Ben Butkus, Biomed Dominates Tech Transfer in US; NYU, Columbia, MassGen Tops in Licensing Income, GenomeWeb,
January 28, 2009, http://www.genomeweb.com/biotechtransferweek/biomed-dominates-tech-transfer-us-nyu-columbia-
massgen-tops-licensing-income
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acquire managerial skills by participating in multimillion dollar R&D projects. To such
academics, university-industry collaboration comes easily. Indeed, they expect and get help
from their university in spinning-off start-ups to exploit their research. Such ‘commercializa‐
tion’ has not eroded basic research, which continues to fascinate top researchers dreaming of
Nobel Prizes. In fact, biomedical researchers strive to find clinical applications of their basic
research.

8.2. Technology transfer

The technology transfer process between university and industry is complex because it must
contend with two fundamentally different and sometimes opposing cultures of dealing with
the profit motive. Universities need to ensure that the process does not unduly compromise
their educational and research mission. Bayh-Dole type provisions facilitate technology
transfer by giving universities the necessary autonomy and IP ownership rights, which
provides greater legal certainty and acts as a strong incentive for industries to collaborate with
universities. However, the downside is that universities must involve themselves in hitherto
unfamiliar activities, such as creating technology transfer offices, and developing interdisci‐
plinary teams with legal, business, scientific, and licensing expertise. For an informative
tutorial on technology transfer in U.S. colleges and universities see [57]. Inter alia it discusses
“the role technology transfer plays in adding value to the academic and research mission of
universities and colleges.” Of course, remodelling of universities alone is not enough. An entire
ecosystem is required that includes the university system, the intellectual property system,
immigration laws, technology transfer offices, venture capitalists, and most importantly,
opportunities for researchers to remain mobile—getting gifted people to work in a poor
country will therefore be an arduous task.

The corner stone of basic research is insight which begins as tacit knowledge held by research‐
ers. The diffusion of tacit knowledge via university-industry collaboration is crucial for
technology transfer and commercial success. This means that star scientists—their accessibil‐
ity, location, motivation to collaborate at the bench-science level with scientists in industry in
converting basic scientific knowledge into commercially viable products and processes—will
be crucial in determining the pace at which tacit knowledge is diffused [58, 6]. Graduating
students too carry considerable tacit knowledge derived from their faculty mentors with them
when they join the biotech industry as employees. Donald Kennedy, a former editor-in-chief
of the journal Science and President Emeritus of Stanford University, once aptly noted,
“Technology transfer is the movement of ideas in people.” This movement in biotechnology
frequently requires the protective cover of patents to ensure adequate return on investment in
commercialization. The biotechnology industry’s ascendency has meant that universities are
no longer not-for-profit ivory towers.

A crucial activity of university technology transfer offices is the marketing of their patent
portfolios. An outstanding example of marketing is the Cohen-Boyer patents by Stanford
University. It was master-minded by Neils Reimers who had an unusual talent for balancing
academic values and industries’ needs. And the Bayh-Dole Act which Congress passed on
December 12, 1980 some ten days after the first Cohen-Boyer patent was granted, was a
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godsend. Reimers designed a trail-blazing licensing program. By end of 2001, the three Cohen-
Boyer patents had made $255 million in licensing revenues from licenses granted to 468
companies. More importantly, 2,442 products were developed from the patented technology
that included drugs to mitigate the effects of heart disease, anaemia, cancer, HIV-AIDS,
diabetes, etc. Remarkably, the patents never faced litigation. Reimers showed that cutting edge
university-centred research, patents, and industry collaboration could be integrated into a
formidable system that can propel a country’s economic agenda, without the university
sacrificing its core values [5].

It now appears that CRISPR-Cas9 technology is the new superstar in biotechnology. Zhang’s
patent (U.S. patent No. 8,697,359) is the first to cover this technology. While the Cohen-Boyer
patents survived their terms without litigation, one hopes that Zhang’s patent assigned to
Broad Institute will be so blessed. Zhang’s patent significantly simplifies gene editing com‐
pared to other contemporary techniques, e.g., TALEN and zinc fingers. Since Zhang’s method
allows one to basically reengineer any organism by modifying its own genome, it immediately
opens up the possibility of engineering a variety of applications ranging from better agricul‐
tural crops (e.g., drought resistant) to bio fuels to disease detection to personalised medicine
(e.g., by correcting the causative mutation), and, of course, of better understanding of gene
functioning [26]. So, one expected development is the blooming of patent thickets. The financial
stake around the CRISPR-Cas9 technology in the private sector is expected to be enormous
and with patent thickets the potential for fierce litigation will be high. A likely development
is that if exclusive licences do not create hurdles, companies would try to gather as many patent
licences as they can to ensure their freedom to pursue their research and commercial goals.
This could be an optimal solution for rapidly developing a plethora of products and processes
that will in any case need a large number of players to chip in, much like the electronics
industry, where there is space for many players to compete against and collaborate with.

8.3. Litigation

While research universities now see a patent portfolio as a potential source of revenue
generation, few are enthusiastic or even prepared to enforce their patents, when infringed,
through litigation. In the U.S., universities, by law, must participate as plaintiffs in enforcement
lawsuits over their exclusively licensed patents regardless of a university’s effective ability or
enthusiasm to do so [59, 60]. Therefore to preserve licensing freedom, patent application
preparation and its prosecution must be strategized to discourage litigation. Clearly, univer‐
sities must maintain excellent technology transfer offices, whose members are not only
“licensing and business development professionals” but who also “handle technologies from
inception through research”; “handle conflict of interest issues”; close deals with commercial
partners, and “then (God forbid)” participate in litigation to protect IP rights [61].

A few recent  high profile  cases indicate that  the brave may sometimes inherit  the earth.
For  example,  in  the  Carnegie  Mellon  University  (CMU)  patent  lawsuit  against  Mar‐
vell  Technology  Group,  which  allegedly  appropriated  CMU  research  for  a  computer
chip used in high-speed drives, the jury awarded the university $1.17 billion in December
2012  [62].  On  appeal,  Marvell  was  ordered  to  pay  enhanced  penalties  of  $1.5  billion
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for  wilful  infringement  of  CMU  patents  [63].  In  another  case,  Varian  Medical  Sys‐
tems,  which  allegedly  infringed on  the  University  of  Pittsburgh patents  for  a  respirato‐
ry  device,  a  judge  awarded  $85.8  million.  Such  cases  have  made  other  universities
wonder  if  their  technology  transfer  offices  should  get  more  aggressive  in  protecting
patents  [62].  Once  a  patent  is  infringed  the  alternatives  are  litigation  or  an  out-of-
court  settlement.  In  litigation,  the  patent  will  almost  certainly  be  dissected  in  terms  of
the  doctrine  of  equivalents,  prosecution  history  estoppel,  the  subjectively  determined
profile  of  the  PHOSITA,  applicable  prior  art  relative  to  the  patent,  clarity  of  descrip‐
tion  of  the  invention,  the  breadth  and  narrowness  of  claims,  etc.  Litigation  results  are
often  uncertain.  In  the  U.S.,  e.g.,  some  one-third  of  district  court  decisions  on  claim
boundaries  are reversed on appeal  [64],  while  a  large number of  CAFC patent  decisions
have  been  reversed  by  the  SCOTUS  on  appeal  [52].

A commercially successful patent attracting litigation is a fair possibility because a patent’s
validity is not guaranteed. Post-grant a patent may be found invalid because of erroneous
evaluation of the invention by the patent examiner during prosecution, or because he was
simply blindsided by undetected prior art, etc. In addition, one must be prepared to deal with
intentional predatory moves by patent trolls and the calculated overreach of some patent
owners in asserting patent claims against non-infringing entities. Their general aim is to either
drag the target into expensive litigation or force it into licensing agreements under the threat
of litigation, which small and medium enterprises can ill afford.

9. Patent law reforms

Since Galileo (1564-1642), science has dramatically affected society. Industry, transportation,
communications and medicine have all undergone such revolutionary changes that most
mortals today appear to have semi-divine powers compared to pre-seventeenth century
denizens of the world. The common man’s focus has shifted from seeking divine favours to
diligently acquiring human invented technological gadgets and services. Today,

Western industrial technology has transformed the world more than any leader,
religion, revolution, or war. Nowadays only a handful of people in the most
remote corners of the earth survive with their lives unaltered by industrial
products. The conquest of the non-Western world by Western industrial technol‐
ogy still proceeds unabated. [65].

Yet some of these technological and scientific advances, such as genetically engineered plants
and animals, human cloning, electronic surveillance, the use of robots, and now the possibility
of genetically engineered humans raise serious moral and ethical issues, which demand
legislative solutions and hence political intervention. If the track record of politicians, say, in
handling problems related to climate change is any indication, we can expect synthetic biology
related calamities to inundate us before they act. Their inadequate understanding of synthetic
biology and the legislative process driven by one-person-one-vote electoral dynamics in a
knowledge-driven society where knowledge creators and knowledgeable people constitute a
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miniscule minority creates an anomaly. Intellect-driven legislations require an entirely
different legislative process than mass-and-emotion-driven legislations. When laws of Nature
and laws of man collide, catastrophe results.

9.1. Challenges

For patents to be an effective tool to promote innovation, they should be scarce and hard to
obtain, especially in today’s knowledge driven world, where the population of university
educated people is far larger than it was several centuries ago when the modern patent system
was instituted in England during the rule of Queen Elizabeth (reign: 1558 – 1603). An enormous
knowledge gulf separates the PHOSITA of the Elizabethan era and of today. The biggest
challenge patent examiners face today is the objective profiling of the modern biotechnology
PHOSITA whose profile is prone to rapid changes, sometimes within months.

The second challenge is related to patent seeking researchers whose desire is to seek patents
in anticipation that their discoveries will eventually, but during the lifetime of a patent, lead
to substantial, if not miraculous, benefits to society that truly touches peoples’ lives. The
challenge patent examiners face here is, whether or not the applicant is claiming a ‘law of
Nature’, or whether granting a patent will be against the interests of society (e.g., patents on
nuclear weapons are banned), such as creating obstacles to further research or advancement
of the invention.

The third challenge is fulfilling the need for a new patent system that would minimize
litigation. When patent offices are inundated with patent applications in highly competitive
cutting-edge technology areas populated with extremely well qualified PHOSITAS, deter‐
mining overlapping claims among applications is an incredibly demanding task, and therein
lies the source of debilitating and fierce future litigations. Current legal systems are visibly
deficient in handling such litigations so remedies may lie elsewhere, e.g., in the form of
peacemakers among feuding parties.

The fourth challenge is providing adequate scientific research support to the judiciary. It needs
a permanent science advisory body to enhance its understanding of the scientific basis on
which biotechnology patent claims rest and in creating a plausible PHOSITA profile acceptable
to the scientific community on a case-by-case basis. This will substantially simplify and
accelerate judicial proceedings in biotechnology patent litigation and lead to greater consis‐
tency in judicial decisions. The science advisory body can bring about greater clarity to the
vexing question: “When is obvious-to-try the same as obviousness?” in relation to the profiled
PHOSITA.

The fifth challenge is integrating introductory IPR courses in science and engineering curricula
in universities to bring home to students the paramount economic relevance of their acquired
scientific and technical knowledge and skills.

9.2. Questions

The fact that synthetic biology involves the creation of artificial living matter or modification
of living matter through human intervention raises important questions related to biosecurity,
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biosafety, bioethics, and environmental health and sustainability. Their answers will require
consultation with engineers, scientists, attorneys, innovators, teachers, students, policymak‐
ers, and ordinary citizens. However, before doing so society must decide how synthetic biology
as a scientific discipline is to be handled. That is, establish rules and regulations of ownership,
diffusion, and access to the knowledge the discipline generates and accumulates. Concurrent‐
ly, to further the bio-economy, it must establish global engagement and collaborative models,
mentor and nurture young leaders, create next-generation manufacturing facilities, and
address standards-related issues. The crucial questions are:

• When do basic research results benefit society most if placed in the public domain as
opposed to limited period IP monopoly of those results?

• When it is appropriate for industry to seek private ownership of inventions derived from
the results of open innovation?

• When is an open innovation policy in synthetic biology likely to discourage industry from
developing commercially viable products and processes?

Johnson [66] notes that synthetic biology needs “public policies and collaborative mechanisms
that promote broad and robust pre-competitive openness, sharing, and access” and “strong
and robust IPR” to enable “later-stage economic value creation, IPR-enabled commercializa‐
tion, and market-based investments”. They will indeed help in aligning international invest‐
ments, in framing lab-to-market policies, and in creating global manufacturing and marketing
policies to facilitate global commerce.

9.3. Harmonization

There are serious obstacles to globally harmonizing patent laws [67]. Disparate national laws
have caused a number of complicated cross-border IP disputes and multiple infringement
suits. For example, software and business method patents are permitted only in some coun‐
tries. Even when patent laws are similar in two countries, their interpretation by the courts
may vary widely. Patent laws operate on the principle of territoriality and the needs of
individual nations. Thus in a globalized, knowledge-driven economy, technologically
advanced nations support strong patent protection to spur innovation, while the less advanced
see it as barriers erected to restrict their access to new goods and dilute their welfare programs.
Current national patent laws embody premises and concepts that were shaped by the Indus‐
trial Revolution; they are not malleable enough for the knowledge and information-driven age
that has given rise to such exotic technologies as nano-technology, information technology,
biotechnology, and robotics (and in the future, possibly bio-robotics). Today’s inventor is
frequently university educated or a researcher or a member of a large R&D team rather than
an artisan or a technician. There is thus an acute need for harmonization of patent law and its
enforcement. The assumption is that a uniform legal system would reduce legal uncertainties,
cost of litigation, and barriers to trade. Other potential benefits include liberalized technology
transfer and increased foreign direct investment from developed countries to the developing
and underdeveloped countries and thus raise living standards globally. Ideally, harmoniza‐
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tion would improve the world’s capacity to innovate as a whole, which would be greater than
the sum from its parts.

The World Intellectual Property Organization (WIPO) has been leading harmonization efforts.
It currently administers the Patent Cooperation Treaty (PCT), the Paris Convention, the Patent
Law Treaty, the Budapest Treaty, and the Strasbourg Agreement. However, these are not
enough. WIPO’s Standing Committee on the Law of Patents (SCP), created in 1998 to spur
substantive harmonization efforts, has a wide representation of interested parties. So far, their
deliberations have resulted in the Patent Law Treaty in 2000. Its modest aim is to harmonize
formal procedures, e.g., related to the filing date for a patent application, the form and content
of the application, and representation. During 2001-2006, discussions on framing a Substantive
Patent Law Treaty generated enough disagreements that they were put on hold in 2006. The
SCP has since focused “on building a technical and legal resource base from which to hold
informed discussions in order to develop a work program” while larger issues related to
exceptions and limitations to patent rights; technology transfer; quality of patents, including
opposition systems; confidentiality of communications between patent advisors and their
clients; and patents and health hibernate.

Clearly, a bold experiment in universalising IPR governance and rule of law is sorely needed.
Present disparities in IP laws and innovation capabilities among nations have created a
“creditors and debtors” relationship where creditors appear to impose conditions that would
perpetuate their dominance over debtors via institutions such as the WTO. Biotechnology
provides strategic socio-economic advantages to creditor nations because of their research
universities. This means that flight of capital and talent to countries with top research univer‐
sities coupled with their liberal immigration policies for researchers can quickly deplete the
talent pool of debtor countries. Of course, smart creditors know that helping debtors improve
their circumstances makes for better, amicable, long-term, diversified, and more profitable
business. Helping debtor countries build world-class universities would be one such example.

However, for synthetic biology, there is more to IP protection than just utility patents. Products
arising from DNA synthesis and construction may also qualify as human authored original
“literary work and artistic works” and hence eligible for copyright protection. Further, DNA
is an information carrying molecule much like a computer program, which too is copyrighta‐
ble. Likewise synthetic biology motifs can be used as trademarks and tacit knowledge locked
up in a researcher’s mind and selectively shared may deserve trade secret protection. And, of
course, one can seek design patents for novel DNA designs.

10. Conclusions

The genetic uniqueness of each individual implies the existence of numerous undiscovered
non-trivial interactions in the human genome that would make linking individual factors to a
disease condition highly complex. These interactions, due to inheritability, must account for
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family history to correctly interpret genotyping results to provide personalised medical
treatment. Indeed, they must go beyond and ask how a given genome copes with a dynamic
environment. The magnitude of this task has propelled the convergence of life sciences with
other fields, e.g., physics, chemistry, mathematics, computing, engineering, social sciences, etc.
in search of new and innovative solutions. A recent NRC study notes [68]:

The scientific opportunities enabled by convergence—the coming together of
insights and approaches from originally distinct fields—will make fundamental
contributions in our drive to provide creative solutions to the most difficult
problems facing us as a society. This convergence provides power to think beyond
usual paradigms and to approach issues informed by many perspectives instead
of few.

Synthetic biology makes personalised medicine appear within reach in terms of developing
personalized drugs and diagnostics, minimizing adverse drug reactions, and personalising
treatments by enabling people to make personalized health decisions. However, to take
research results from the lab to the patient’s bedside, to the community (translational appli‐
cation) and finally make it accessible to every human on Earth is a colossal endeavour that
calls for a very high level of convergence. The time has come for governments to frame policies
that would enable the desired convergence. The U.S. government, e.g., is discussing a “mod‐
ular” policy [69] with public participation. A module, e.g., may include education, basic
research, and infrastructure; another that promotes market-oriented innovation through R&D
tax credit, intellectual property policies, etc.; and yet another for catalysing breakthroughs in
such areas as clean energy, biotechnology, nanotechnology, advanced manufacturing,
information technology, and space technologies.

Genomics researchers are the new super-stars of science. A Thomson Reuters report provides
a listing of authors who have written multiple highly cited reports and have thereby demon‐
strated their tremendous influence on ongoing research in their respective fields. Out of the
seventeen hottest researchers a dozen belong to genomics [70]. Not surprisingly, the US sits
atop the genomics-related patent filings heap, trailed by Europe and Asia, indicating the
dominance of the U.S. both in research and its translation. [71]. An enigmatic world order is
in the making.
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