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Abstract

In this chapter, theoretical and implementation details of the algorithms of hierarchical
modeling and hierarchical hp-approximations, residual error estimation methods and
four-step adaptive procedures are considered in the context of their application to
modeling and simulation of the problems of elasticity, dielectricity and piezoelectricity.
In the hierarchical modeling, 3D-based hierarchical elastic and dielectric models are
applied. The adaptive discretization process is based on the hierarchical shape functions
and the constrained approximations. In the error estimation, the equilibrated residual
method is applied, which serves the total and approximation error assessment. These
errors control the model and hp-adaptivity. In the case of adaptive algorithms, four-step
procedure is utilized. It includes global solutions on the initial mesh, mesh modified in
order to remove some undesired numerical phenomena, the intermediate h-refined
mesh and the final (or target) p-enriched mesh. Examples demonstrating the effectivity
of the mentioned modeling and approximation, error estimation and adaptivity control
parts of the overall simulation algorithm in the three classes of problems are presented.

Keywords: adaptivity, modeling, simulation, finite elements, hierarchical models,
hierarchical approximations, error estimation, adaptivity control, algorithms, effectivity,
elasticity, dielectricity, piezoelectricity

1. Introduction

This chapter constitutes a continuation and extension of the previous work [1] on theoretical and

implementation difficulties in application of the adaptive hierarchical modeling and hp-adaptive

finite element analysis to elasticity, dielectricity and piezoelectricity. In the cited work, the 3D-

based elastic, dielectric and piezoelectric hierarchies of models were elucidated. These models

are based on either three-dimensional theories or reduced models polynomially constrained

through the thickness. In the mentioned work, also the hierarchical approximations for the three
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classes of hierarchical models are presented. The rules for ordering the hierarchical models and

approximations are described. Then, the a posteriori error estimation, based on the equilibrated

residual method (ERM) applied to the three classes of problems, is presented. The similarities

and differences between the element (local) problems necessary for the element error estimation

for these three cases are addressed. Finally, the three- and four-step error-controlled adaptive

procedures for the three classes of problems are proposed. The procedures require the global

problem solution on the initial, modified, intermediate (h-refined) and final (p-enriched) meshes.

In this chapter, attention is paid to the effectivity of the algorithms for adaptive modeling and

simulation of three considered classes of physical phenomena, that is, elasticity, dielectricity

and piezoelectricity. Effectivity of hierarchical approximations within elastic, dielectric and

piezoelectric media is compared. For this purpose, convergence curves for the analogous

model problems within three mentioned classes of problems are generated and assessed. Also,

the exemplary comparative results of the approximations are presented for these three classes

of model problems. In the case of the error estimation, the global and local (element) effectivity

indices for the total, approximation and modeling errors, where the latter is the difference of

the former two, in the exemplary model problems of elasticity, dielectricity and piezoelectricity

are calculated and compared. The exemplary distribution of the element error indicators and

the global values of the error estimators for the model problems of three classes are presented

and compared. In the case of the adaptive procedures, the model- and hpq-adaptive algo-

rithms, where h represents the element size parameter, while p and q stand for the element

longitudinal and transverse orders of approximation, are of our interest. These algorithms

are controlled with the estimated values of the modeling, approximation and total errors. In

order to check the effectivity of these algorithms, results necessary for the obtainment of the

hp-adaptive convergence curves for the mentioned three model problems of elasticity, dielec-

tricity and piezoelectricity are produced. The convergence is assessed in the context of obtain-

ment of the target values of the errors in subsequent steps of the adaptive calculations for three

classes of problems. Also, the comparative results of the adaptive solutions of the model

problems of three classes are presented.

1.1. Research objectives

The main objective of this research is to demonstrate the effectivity of our generalizing algo-

rithms [1] adapted, modified or developed for the problems of elasticity, dielectricity and

piezoelectricity. Also, the issue of comparison of the corresponding effectivities for these three

classes of problems is of our interest. In relation to these objectives, the presented general

approach to adaptive modeling and simulation is numerically tested in the context of the

approximation algorithms, error estimation algorithms and adaptivity control algorithms as

well.

1.2. State-of-the-art issues

In this brief survey, the issues of hierarchical modeling, hierarchical approximations, error

estimation and adaptivity control are addressed. The survey is limited to the numerical tech-

niques used in this chapter and the papers directly utilized for this research—no general
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overview of the four mentioned issues is presented. The interested readers can find such

overviews in some of the publications cited below.

The 3D-based hierarchical shell models utilizing three-dimensional degrees of freedom (dofs)

and conforming to higher order shell theories were firstly proposed in [2] and repeated in [3].

The conventional hierarchical shells, employing mid-surface dofs, were proposed in [4]. The

3D-based approach was extended onto the first-order shell and shell-to-shell theories in [3, 5].

The latter works also extend the 3D-based hierarchical modeling onto 3D elasticity and solid-

to-shell transition models. The author of this chapter is not aware of any hierarchical models of

linear dielectricity. Some hierarchic piezoelectric models were presented in [6] in the context of

multilayered plate structures. Suggestions on introduction of the 3D-based hierarchical dielec-

tric and piezoelectric models were formulated in [1, 7].

The hierarchical and constrained approximations necessary for p- and h-adaptivity, respec-

tively, are adopted in our work and were proposed in [8]. Hierarchical approximations for

conventional shells were developed in [4], for 3D-based shells in [2, 9] and for complex

structures in [5]. The last paper collects partial results presented in [9–12]. Classical and

hierarchical approximations for piezoelectric problems were elaborated in [6, 13]. Hierarchical

approximations for the complex 3D or 3D-based hierarchical models of dielectrics and piezo-

electrics were proposed in the works [1, 7].

The general considerations on error estimation based on the equilibrated residual method can

be found in [14]. Application of this method to 3D elasticity was described in [15]. The method

was also applied to the hierarchical shells of conventional character in [16]. The analogous

approach for the 3D-based first-order shells was developed in [17, 18]. The method was also

utilized to error estimation in the 3D-based complex structures [19]. Application of the method

to dielectric and piezoelectric problems was suggested in [1, 20].

Finally, adaptivity control by means of the three-step strategy for simple structures was

presented in [21]. Within this strategy, three subsequent meshes are generated—initial, inter-

mediate (or h-refined) and target (or p-enriched) ones. The method was applied to adaptive

analysis of conventional hierarchical models of shell- and plate-like structures in [16]. In that

work, the third step is split into two, that is, q and p enrichments are performed in sequence.

The original three-step strategy was then extended in [3] by addition of the fourth step in

which the mesh is modified to get rid of the numerical consequences of the improper solution

limit, numerical locking and edge effect. The model adaptivity is performed along with the

h-step and p and q enrichments are performed simultaneously. Such a four-step adaptive stra-

tegy is applied to modeling and simulation of complex elastic structures in [19]. Adaptive

simulation in electric or electromechanical problems is less advanced. Adaptivity for simple

piezoelectrics was introduced in [22]. Application of the three- or four-step strategies to the

analysis of simple and complex dielectrics and piezoelectrics was suggested in [1].

1.3. Novelty of the research

The main novelty of the presented research consists in application of the chosen techniques of

hierarchical modeling and approximation, error estimation and adaptivity control, effective in
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the adaptive modeling and simulation of the elasticity problems, to the adaptive analysis of

dielectric and piezoelectric phenomena.

The novelty of this particular chapter is the direct comparison of the robustness of the model-

ing and simulation algorithms of the coupled problem of piezoelectricity and the problems of

pure elasticity and pure dielectricity.

2. Model problems

The following model problems are considered in this chapter: the linear static problem of

elasticity, the linear electrostatic problem and the linear problem of stationary piezoelectricity.

For each of the model problems, the appropriate finite element formulation is presented. For

this purpose, the standard engineering matrix notation is applied.

2.1. Elastostatics

Here, the problems of a three-dimensional (solid) and 3D-based shell or solid-to-shell bodies

are considered. Such problems were presented in [1]. In that work, the local (strong) and

variational (weak) formulations of the problems are given. These formulations take advantage

of the former considerations from [2, 23, 24] and are repeated in [3]. Using the variational

formulation presented therein, one can derive the global finite element equations of the prob-

lem under consideration and write them in the following form:

KM qq,hp ¼ FV þ FS (1)

where KM is the global stiffness matrix, while FV and FS represent the global vectors of the

volume and surface nodal forces. The vector qq,hp stands for the global displacement degrees of

freedom (dof), corresponding to hpq approximation, and is composed of the element (local)

displacement dof vectors q
e
of the elements e ¼ 1, 2,…, E, where E is the total number of

elements within an elastic body. These vectors are defined later in this chapter.

The global stiffness matrix is composed (aggregated) of the element stiffness matrices of the

form

k
e
¼

ð1
0

ð1
0

ð�ξ2þ1

0

BT
e

DB
e
det Jð Þ dξ1dξ2dξ3 (2)

where D denotes the elastic constants matrix, B
e
represents the strain-displacement matrix,

and det Jð Þ is the Jacobian matrix determinant. The limits and coordinates of the integration

correspond to the normalized coordinates ξi, i ¼ 1, 2, 3 of the prismatic elements applied in [1].

The specific forms of the strain-displacement matrix can be found in the works [9, 10, 12] for

the 3D-based versions of the prismatic solid (and hierarchical shell), first-order shell and solid-

to-shell (and shell-to-shell) adaptive elements, respectively.
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The nodal mass forces vector can be defined in the standard way

f
e

M ¼

ð1
0

ð1
0

ð�ξ2þ1

0

NT
e

f det Jð Þ dξ1dξ2dξ3, (3)

where N
e
and f represent the element shape functions matrix and the mass loading vector,

respectively.

The element nodal forces vector due to the surface traction p can be defined in the following

two forms

f S
e

¼

ð1
0

ð�ξ2þ1

0

NT
e

p wsp Jð Þdξ2dξ1

f S
e

¼

ð1
0

ð1
0

NT
e

p wsp Jð Þdξ3dηi

(4)

corresponding to the bases and sides of the prismatic element. Above the element, bases and

sides are defined with the normalized longitudinal coordinates ξj, j ¼ 1, 2, or the transverse

normalized coordinate ξ3 and the coordinates ηi, i ¼ 1, 2, 3 tangential to the sides of the

element [3, 9]. The term wsp Jð Þ is the coefficient defined with the components of the Jacobian

matrix J (see [3, 9] again).

2.2. Electrostatics

The general formulations of the problems of electrostatics can be found in [25]. Here, classical

linear dielectric models are applied to such problems. The local and variational formulations

for this case was presented in [1] for any 3D or 3D-based geometry (bulky, symmetric-

thickness or transition ones). The corresponding finite element equations read:

KEw
r,hπ ¼ FQ (5)

In Eq. (5), KE represents the global characteristic matrix of dielectricity, while FQ stands for the

global characteristic electric charges nodal vector. The vector wr,hπ is the unknown global nodal

vector of electric potentials. This vector definition results from the applied r, hπ-approximation,

where r and π represent the transverse and longitudinal orders of approximation. The global

potential vector is composed of the element potential vectors w
e
, which are described later in this

chapter. The global matrix KE is the result of summation of the element contributions

kE
e

¼

ð1
0

ð1
0

ð�ξ2þ1

0

bT
e

γb
e

det Jð Þdξ1dξ2dξ3 (6)

with γ and b
e

denoting the electric (or permittivity) constants matrix and the matrix of the

relation between the electric field components and the nodal electric potentials (or shortly
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field-potential matrix). The specific form of the latter matrix in the case of the prismatic

element can be found in the work [26].

The nodal electric charges vector of the element e has to be defined in a different way on the

prismatic element bases and sides, that is,

fQ
e

¼

ð1
0

ð�ξ2þ1

0

nT
e

c wsp Jð Þdξ2dξ1 (7)

and

fQ
e

¼

ð1
0

ð1
0

nT
e

c wsp Jð Þdξ3dηi (8)

where n
e
and c are the element shape functions vector and the scalar density of the surface

electric charges.

2.3. Stationary piezoelectricity

The local and variational formulations of linear piezoelectricity combine our former consider-

ations concerning the linear elasticity and linear dielectricity [13, 27]. This approach was repeated

in [1]. The corresponding finite element formulation can be written in the form a coupled system

of equations. The coupling is represented by the matrix KC in the following way

KMqq,hp � KCw
r,hπ ¼ FV þ FS,

KT
Cq

q,hp þ KEw
r,hπ ¼ FQ

(9)

The coupling term can be called the global characteristic matrix of piezoelectricity, while

the rest terms retain their previous meaning. The additional remark concerns special or sim-

plified versions of the above equation. The inverse or direct piezoelectric problems can be

considered here with the right-hand side terms equal to zero in the first and second equation,

respectively. It is also worth mentioning that different pq and πr adaptive approximations of

the vectorial displacement and scalar electric fields are proposed in (9), with the common

h-approximation.

The global matrix of piezoelectricity introduced above can be obtained through the standard

finite element summation procedure, where the following element contributions are employed

kC
e

¼

ð1
0

ð1
0

ð�ξ2þ1

0

BT
e

Cb
e
det Jð Þdξ1dξ2dξ3 (10)

with C representing the piezoelectric (coupling) constants matrix.

The element contributions to the other terms of (9) are defined as before, that is, in accordance

with (2)–(4) and (6)–(7). Note that the different shape functions matrices, N
e
and n

e
, for the

displacements and potential fields are employed here due to the different orders of
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approximations, pq and πr, within both fields. Thanks to this, the corresponding adaptation

processes within both fields can be performed independently.

3. The applied numerical techniques

3.1. Hierarchies of models

The presented elastic, dielectric and piezoelectric models are all based on the 3D-based approach,

which results in the application of the three-dimensional or 3D-based degrees of freedom (dofs)

only. The mechanical shell and transition models are also equipped with such dofs. This means

that mid-surface degrees of freedom of the conventional shell and transition models are not

applied. The so-called through-thickness dofs are employed instead. Also, some constraints are

imposed on the three-dimensional displacements field of the shell and transition models so as to

obtain the equivalence of the conventional and 3D-based descriptions. The related issues are

presented in detail in the works [3, 5]. Analogously, in [7], the 3D-based hierarchy of dielectric

models was proposed. It includes the three-dimensional and symmetric-thickness hierarchical

models. Three-dimensional and 3D-based through-thickness dofs are employed in these models.

In the latter work, also the 3D-based mechanical and dielectric models were combined, so as to

obtain the 3D-based hierarchy of the piezoelectric models. This idea was also recalled in [1]. Note

that all the presented 3D-based models, either elastic, dielectric or piezoelectric ones, can be

treated as the 3D models polynomially constrained through the thickness.

The mechanical hierarchy M of the 3D or 3D-based elastic models M reads:

M∈M, M ¼ 3D;MI;RM; 3D=RM;MI=RMf g (11)

with 3D denoting three-dimensional elasticity, MI representing hierarchical shell models of

higher order, RM being the first-order shell model corresponding to Reissner theory of shells

and 3D=RM and MI=RM standing for the transition models of solid-to-shell or shell-to-shell

character. The hierarchical shell and shell-to-shell models constitute two sub-hierarchies:

MI ¼ M2;M3;M4;…f g,

MI=RM ¼ M2=RM;M3=RM;M4=RM;…f g
(12)

where I represents the order of the hierarchical modelMI. This order is equivalent to the order

of polynomial constraints defining the transverse displacement.

Subsequently, the hierarchy E of 3D-based dielectric models E includes:

E∈E, E ¼ 3D;EJf g (13)

where 3D represents three-dimensional theory of dielectricity, while EJ denotes the 3D-based

hierarchical models. The latter models constitute the following subhierarchy:

EJ ¼ E1;E2;E3;…f g (14)
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with J standing for the order of the hierarchical dielectric theory (the polynomial order of the

through-thickness constraints of electric potential).

The 3D-based hierarchy P of piezoelectric models P consists of the following component models:

P∈P, P ¼ M;Eð Þ : M∈M;E∈Ef g (15)

The hierarchy is composed of all combinations M;Eð Þ of the elastic models M from (11) and

(12) and dielectric models E defined in (13) and (14), that is,

P ¼ 3D; 3Dð Þ, MI; 3Dð Þ, RM; 3Dð Þ, 3D=RM; 3Dð Þ, MI=RM; 3Dð Þf

3D;EJð Þ, MI;EJð Þ, RM;EJð Þ, 3D=RM;EJð Þ, MI=RM;EJð Þg
(16)

3.2. Hierarchical and constrained approximations

In the proposed approach, each of the 3D or 3D-based elastic, dielectric and piezoelectric

models is approximated with the three-dimensional hierarchical shape functions. The func-

tions applied in this work are originated from [8]. Their main feature is that they allow different

orders of approximation on each of the element edges and sides. Such different orders are

necessary for the local (element) q- and p-adaptivity. These different orders are obtained due to

the shape function definition based on tensor products of the directional (longitudinal and

transverse) shape functions of different orders. The specific form of the directional and three-

dimensional functions for the case of the 3D solid and 3D-based hierarchical shell elements was

presented in [3, 9]. The case of the solid-to-shell and shell-to-shell elements is addressed in

[3, 12], while the first-order shell element shape functions are shown in [3, 10]. The analogous

functions for the three-dimensional and hierarchical symmetric-thickness dielectric elements

are given in [26]. In the case of the piezoelectric elements, the idea is to combine the elastic

elements of various mechanical models with the dielectric elements. This idea is implemented

in [1, 26]. Some details concerning shape functions of the component (elastic and dielectric) and

combined (piezoelectric) elements are presented in the following paragraphs.

The displacement field of the elastic and piezoelectric elements is defined through the interpo-

lation function u ¼ u ξð Þ describing displacements u ¼ u1; u2; u3ð ÞT of any point ξ of the nor-

malized geometry of the element. This interpolant is a sum of four component functions:

u ξð Þ ¼ u1 ξð Þ þ u2 ξð Þ þ u3 ξð Þ þ u4 ξð Þ (17)

The first component function u1 ξð Þ of the element vertices is defined as a product of the linear

vertex node shape function matrix Nv and the corresponding vector of nodal threesomes of

directional dofs, that is,

u1 ξð Þ ¼ Nv ξð Þqv (18)

where the mentioned vector is: qv ¼ …; q1, i; q2, i; q3, i;…
h iT

, and where i ¼ 1, 2,…, Iv with Iv

being the number of vertex nodes within the element.
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The second component interpolant u2 ξð Þ, corresponding to the element edges, is equal to the

product of the higher-order shape function matrices, Nh and Nu, of the element horizontal and

vertical (upright) mid-edge nodes and the corresponding dof vectors:

u2 ξð Þ ¼ Nh ξð Þqh þNu ξð Þqu (19)

The mentioned vectors of degrees of freedom at the horizontal and vertical nodes are as

follows: qh ¼ …; q1, i,k; q2, i,k; q3, i,k;…
h iT

, qu ¼ …; q1, j, l; q2, j, l; q3, j, l;…
h iT

, i ¼ 1, 2,…, Ih, j ¼

1, 2,…, Iu, where Ih and Iu are the numbers of the horizontal and upright mid-edge nodes,

while k and l represent numbers of dofs at these nodes.

The subsequent interpolant u3 ξð Þ corresponds the higher order mid-base and mid-side nodes

of the element. The function is obtained through the multiplication of the shape function

matrices, Nb and Νs, by the corresponding dofs vectors in accordance with

u3 ξð Þ ¼ Nb ξð Þqb þNs ξð Þqs (20)

where the vectors of nodal dofs are equal to: qb ¼ …; q1, i,k; q2, i,k; q3, i,k;…
h iT

, qs ¼

…; q1, j, l; q2, j, l; q3, i, l;…
h iT

with i ¼ 1, 2,…, Ib and j ¼ 1, 2,…, Is. Here, Ib and Is denote the num-

bers of the mid-base and mid-side nodes, while k and l are dof numbers at these nodes.

The last component interpolant u4 ξð Þ, assigned to the element higher order middle node, is

defined as a product of the shape function matrix Nm and the corresponding dof vector:

u4 ξð Þ ¼ Nm ξð Þqm (21)

where the dof vector is: qm ¼ …; q1,k; q2,k; q3,k;…
h iT

, with k standing for a dof number at this

node.

With N
e
¼ Nv ξð Þ;Nh ξð Þ;Nu ξð Þ;Nb ξð Þ;Nv ξð Þ;Nm ξð Þ½ � and q

e
¼ qv; qh; qu; qb; qs; qm

� �T
Eq. (17)

can be written in the alternative standard form

u ξð Þ ¼ N
e
ξð Þq

e
(22)

The function f ¼ f ξð Þ interpolating electric potential at any point ξ of the normalized dielec-

tric or piezoelectric element is also defined as a sum of four components

f ξð Þ ¼ f1 ξð Þ þ f2 ξð Þ þ f3 ξð Þ þ f4 ξð Þ (23)

The linear interpolant f1 ξð Þ of the element vertices is equal to the product of the vector nv of

shape functions for the vertices and the corresponding nodal vector of scalar dofs, that is,

f1 ξð Þ ¼ nv ξð Þwv (24)
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where wv ¼ …;wi;…½ �T and i ¼ 1, 2,…, Jv, with Jv denoting the number of vertices within the

element.

The higher order interpolant f2 ξð Þ, corresponding to horizontal and vertical (upright) mid-

edge nodes, is equal to a product of the shape function vectors nh and nu and the

corresponding vectors of nodal dofs:

f2 ξð Þ ¼ nh ξð Þwh þ nu ξð Þwu (25)

with wh ¼ …;wi,k;…
� �T

, wu ¼ …;wi, l;…
� �T

, i ¼ 1, 2, ,…, Jh, j ¼ 1, 2,…, Ju. Above, the numbers

of the horizontal and upright mid-edge nodes are equal to Jh and Ju, respectively, while k and l

are numbers of the consecutive dofs at these nodes.

The next higher order interpolation function f3 ξð Þ, dealing with the mid-base and mid-side

nodes, can be calculated with the multiplication of the shape function vectors nb and ns of these

nodes and the respective vectors of nodal dofs:

f3 ξð Þ ¼ nb ξð Þwb þ ns ξð Þws (26)

while wb ¼ …;wi,k;…
� �T

and ws ¼ …;wi, l;…
� �T

. Additionally, i ¼ 1, 2,…, Jb and j ¼ 1, 2,…, Js
with Jb and Js standing for the numbers of the mid-base and mid-side nodes, respectively, and

k, l being dofs numbers at these nodes.

The last component function f4 ξð Þ, assigned for the middle node, needs multiplication of the

shape function vector nm of the node and the corresponding vector of the nodal dofs

f4 ξð Þ ¼ nm ξð Þwm (27)

where wm ¼ …;wk;…½ �T , and k represents the number of a hierarchical dof at the middle node.

Note that when n
e
¼ nv ξð Þ; nh ξð Þ; nu ξð Þ; nb ξð Þ; ns ξð Þ; nm ξð Þ½ � and w

e
¼ wv;wh;wu;wb;ws;wm½ �T ,

Eq. (23) can be written in the well-known general form

f ξð Þ ¼ n
e
ξð Þw

e
(28)

Here, we discuss on the constrained approximation. Such an approximation is necessary for

h-adaptivity, which results in neighborhood of the element of different sizes, that is, the

undivided elements e of the initial mesh are adjacent to the divided elements f of the h-adapted

mesh. A further consequence of the different sizes is the constrained (or hanging) nodes of the

smaller elements, which do not possess their counterparts in the neighboring bigger elements.

In order to assure continuity of the field of displacements and the electric potential field

between such elements, the constraining relations have to be introduced to the contributions

of the smaller elements f to Eqs. (1), (5) and (9), before the assemblage of the global matrices

and vectors. The constraining relation for the case of displacements reads:
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q
f
¼

qs
f

qu
f

2

6

4

3

7

5
¼

I 0

0 Cq

fe

2

4

3

5

qs
f

qw
e

2

6

4

3

7

5
(29)

where the parts qs
f
and qu

f
of q

f
include the unconstrained and constrained dofs of the smaller

element f , qw
e
contains displacements of the constraining nodes of the bigger neighbor e, while

Cq

fe

and I represent the constraint coefficient matrix and the unity matrix. In the case of the

electric potential, the analogous relation reads:

w
f
¼

ws

f

wu

f

2

6

4

3

7

5
¼

I 0

0 Cw

fe

2

4

3

5

ws

f

ww

e

2

4

3

5 (30)

The general rules for the constrained approximation are presented in [8]. These rules are

applied in [3, 14, 26] where the methods of obtainment of the constraint coefficients for the

two-dimensional and three-dimensional cases are described.

3.3. Error estimation

The equilibrated residualmethodof error estimation [14–16, 19] applied to solidmechanics is based

on the solution of the approximated local (element) problems of mechanical equilibrium. The

corresponding equilibrium condition, written in the language of finite elements, takes the form:

k
e

Mq
e Q,HP

¼ f
e

V þ f
e

S þ f
e

R (31)

with k
e

M standing for the element stiffness matrix, f
e

V and f
e

S denoting the nodal mass and

surface forces vectors, and f
e

R representing the nodal forces vector due to the equilibrated

interelement stress loadings. In (31), q
e Q,HP is the solution displacements vector in the approx-

imated local problem. Note that the discretization parameters H, P and Q (the element size,

and the longitudinal and transverse approximation orders in the local problems) can be

different to their global counterparts h, p and q. The element solutions from the above relation

give the global error estimate, which upper-bounds the true error [15, 16, 19]. In the presented

approach, the above relation is applied to both the approximation and total errors estimation.

However, different values of the discretization parameters are applied in both cases, that is,

H ¼ h, P ¼ pþ 1, Q ¼ q and H ¼ h, P ¼ pþ 1, Q ¼ qþ 1, respectively. The modeling error is

calculated as the difference of the previous two errors.

As demonstrated in the work [20], application of the equilibrated residual methods to dielec-

tric problems needs solution of the local (element) electric equilibrium problems. Such equilib-

rium, expressed in the language of finite elements, can be written in the following way:
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k
e

Ew
e P,HΠ

¼ f
e

Q þ f
e

H (32)

In the above-mentioned equation, the term k
e

E stands for the element characteristic matrix of

dielectricity, f
e

Q is the element nodal vector due to surface charges, while f
e

H represents nodal

forces due to the equilibrated interelement charges. The vector w
e P,HΠ is the solution vector of

electric potential in the local problem. The solution is approximate and the corresponding

discretization parameters H, Π, P (the element size and longitudinal and transverse approxi-

mation orders) can be different to their global counterparts h, π, r. In the cases of the approx-

imation and total errors, the values of H ¼ h, Π ¼ πþ 1, P ¼ r and H ¼ h, Π ¼ πþ 1,

P ¼ r þ 1 are applied, respectively. Again, the collection of the local solutions obtained by

means of (32) leads to the error estimate, which upper-bounds the true total and true approx-

imation errors, and the modeling error is defined as the difference of these two errors.

Generalization of the equilibrated residual methods onto piezoelectric problems was proposed

and developed in [1, 20, 26]. In accordance with this proposition, the above mechanical and

electrical local equilibria Eqs. (31) and (32) have to be replaced by the coupled equations

describing electromechanical equilibrium. Such equations take the following finite element form:

k
e

M q
e Q,HP

� k
e

Cw
e P,HΠ

¼ f
e

V þ f
e

S þ f
e

R

k
e
T
Cq
e Q,HP

þ k
e

Ew
e P,HΠ

¼ f
e

Q þ f
e

H

(33)

The coupled local solutions q
e Q,HP and w

e P,HΠ of the above set have one disadvantage. It lies in

the lack of the upper-bound property of the total, approximation and modeling errors by the

residual-based global estimators obtained from the local solutions of (33).

In the works [1, 26], the decoupled version of the above set was also proposed as a simpler

alternative:

k
e

M q
e Q,HP

¼ k
e

Cw
e r,hπ

þ f
e

V þ f
e

S þ f
e

R

k
e

Ew
e P,HΠ

¼ �k
e
T
Cq
e q,hp

þ f
e

Q þ f
e

H

(34)

In Eqs. (31) and (32) and in the above two sets of equations, the vectors of the equilibrated

nodal forces and charge are defined in accordance with:

f R
e

¼

ð

Se\S

NT
e

re uhpq
� �� �

dSe ¼
X

f

ð

Sef

NT
e

re uhpq
� �� �

dSef (35)

and

fH
e

¼

ð

Se\S

nT
e

he fhπr
� �� �

dSe ¼
X

f

ð

Sef

nT
e

he fhπr
� �� �

dSef (36)
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where Se and S are the element and body surfaces, while re u
hpq

� �� �

and he fhπr
� �� �

denote the

equilibrated interelement (between element e and any of its neighbors f ) stress vector and the

equilibrated interelement charge density acting on the common sides Sef between the elements.

Some more details on how to calculate the equilibrated stresses and charge can be found in

[3, 19, 26].

3.4. Adaptive strategy

The adaptive strategy applied in this chapter takes advantage of the Texas three-step strategy

[21]. The original strategy is assigned for structures of simple geometry (a single geometrical part

of one type) and simple physical description (one model). Such a strategy is designed for hp-

adaptivity and consists of three steps: initial, intermediate and final ones, where three subse-

quent global problem solutions are obtained. In this strategy, the solution on the initial mesh is

followed by the error estimation and error-controlled h-adaptation (element refinement). In

this way, the intermediate mesh is formed. The solution on this mesh is then followed by the

error estimation and the error-controlled p-adaptivity (element approximation order enrich-

ment). The problem solution on this mesh is followed by the error estimation again.

The original strategy was extended in three ways [3, 26]. First, structures of complex geometry

and complex physical description can be analyzed in the presented approach. Second, the

h-step of the adaptation is enriched with the model adaptivity, while the p-step of the strategy

is completed with q-adaptivity (enrichment of the element transverse approximation order)

[19] in the way different to the earlier proposition of [4]. Third, the strategy is enhanced

through the addition of one more adaptation step called the modification one. In this step, the

initial mesh is modified so as to remove the undesired numerical phenomena, such as the

improper solution limit, numerical locking or boundary layers [28]. The extended strategy can

be applied to elastic [3, 19], dielectric [1] and piezoelectric [1, 26] problems. Some difficulties in

the application of the strategy to the cases of piezoelectricity are described in [1]. The analo-

gous comments for the case of elasticity can be found in [29, 30].

Description of the error-controlled adaptivity for elastic, dielectric and piezoelectric structures

is started with the h-adaptivity within the mechanical field (hence index M). In accordance

with [19, 21], the new number of elements nIM in the intermediate mesh (denoted with index I),

which replace an element of the initial mesh, is equal to:

n
2μ0M

=dþ1

IM
¼

η20M
EI

γ2
a, I u0

2
U

�

�

�

�

(37)

where η0M
is the estimated value of the approximation error from the initial mesh, μ0M

repre-

sents the known or assumed h-convergence rate, d denotes dimensionality (equal to 2 or 3) of

the adapted geometrical part. Additionally, EI is the total number of elements in the interme-

diate mesh, u0
2
U

�

�

�

� is the strain energy norm of the solution from the initial mesh, while the

coefficient γa, I determines the expected relative value of the global approximation error within

the intermediate mesh.
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In the case of the mechanical field, local (element) p-enrichments are controlled with the

longitudinal (or overall) element approximation order pT of the final (or target) mesh (marked

with the index T). The longitudinal order corresponds to thin-walled structures, while the

overall order to three-dimensional bodies. The following common formula [19, 21] determines

this parameter:

p2ν0MT ¼
p
2ν0M
0 η2IM EI

γ2
a,T u0

2
U

�

�

�

�

(38)

with ηIM representing the estimated value of the approximation error from the intermediate

mesh, ν0M being the given p-convergence rate, p0 denoting the longitudinal approximation

order from the initial mesh and γa,T standing for the expected relative value of the global

approximation error in the target mesh.

In the case of q-adaptivity within the mechanical field of the thin-walled structures, the target

values of the element transverse approximation orders qT can be defined in accordancewith [3, 19]:

qT ¼ q0 �
1

2
log t=2l

θ2
IM

EI

γ2
m,T u0

2
U

�

�

�

�

(39)

Above, q0 is the element transverse order from the initial mesh, t and 2l represent the thickness

and length of the thin-walled part of the structure, θIM is the estimated value of the modeling

error from the intermediate mesh and γm,T denotes the expected relative value of the modeling

error in the target mesh.

The h-adaptivity within the electric field needs determination of the new number (denoted

with index E) of elements, nIE , in the intermediate mesh (marked with index I again). Such a

number has to be determined for each element of the initial mesh. This number is equal to:

n
2μ0E

=dþ1

IE
¼

η20E EI

γ2
a, I f0

2
W

�

�

�

�

(40)

Above, the quantity η0E stands for the estimated value of the approximation error in the initial

mesh, the exponent μ0E
is the assumed h-convergence rate and the norm f0

2
W

�

�

�

� represents the

electrostatic energy corresponding to the initial mesh.

Note that in the case of piezoelectricity, for each element, the final subdivision is determined

with

nI ¼ max nIM ; nIE
� �

(41)

as the common mesh division is applied for the mechanical and electric fields (see [1]).

The value of the longitudinal (or overall) approximation order πT within the electric field of an

element of the target (final) mesh can be calculated from [26]:
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π
2ν0M
T ¼

π
2ν0E
0E

η2IEEI

γ2
a,T f0

2
W

�

�

�

�

(42)

where ηIE is the estimated approximation error value from the intermediate mesh, ν0E is the

assumed problem-dependant p-convergence rate and π0 is the longitudinal approximation

order within the initial mesh.

Finally, in the case of q-adaptivity of thin dielectric or piezoelectric body, the element trans-

verse order of approximation of the electric potential field in the final mesh has to be deter-

mined. The following formula can be proposed for this purpose [26]:

rT ¼ r0 �
1

2
log t=2l

θ2
IE
EI

γ2
m, t

�

�f0
2
W

�

�

(43)

where r0 is the element transverse approximation order applied in the initial mesh, t and 2l are

the transverse and longitudinal dimensions of a thin member (body or part) and θIE is the

modeling error estimated value of a finite element of the intermediate mesh.

4. Numerical examples

In this section, some comparative examples for problems of elasticity, dielectricity and piezo-

electricity are presented. Attention is focused on the comparison of effectiveness of three main

algorithms applied in our generalizing approach to adaptive modeling and analysis of the

problems of three mentioned classes. The tested numerical procedures include hierarchical

approximations, error estimation and error-controlled adaptivity. In the first case of hierarchi-

cal approximations, convergence curves for the three classes of problems are compared. In the

second case of error estimation with the equilibrated residual method, effectivities of the global

estimators in three problems are presented. In the third case of adaptive procedure, effectivity

of the adaptation is checked through the comparison of the adaptive convergence curves. Also,

the ability to reach the assumed admissible error in problems of three types is assessed.

4.1. Model structures

Here, the same domain geometry is considered in the problems of elasticity, dielectricity and

piezoelectricity. Its square longitudinal dimensions are equal to 2l ¼ 3:1415 � 10�2 m, while its

thickness equals t ¼ 0:01 � 10�2 m. The domain thickness may change if necessary. This domain

can represent a plate structure in the mechanical case, a thin dielectric in the electric case and a

thin piezoelectric structure in the electromechanical case.

So as to be able to compare three different physical problems, physical properties of the mate-

rials and the external load and charge are assumed such that the inducedmechanical and electric

potential energies are of the same order. The isotropic mechanical properties of the plate struc-

ture and thin piezoelectric correspond to a typical piezoelectric material and are taken from [27].
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Young’s modulus is assumed to be equal to E ¼ 0:5 � 1011 N=m2, while the applied Poisson’s

ratio is ν ¼ 0:294. The isotropic dielectric properties of the dielectric and piezoelectric are

characterized with the permittivity equal to δ ¼ 0:1593 � 10�7 F/m. The nonzero anisotropic

piezoelectric constants are d13 ¼ d23 ¼ �0:15 � 10�9 C/N, d33 ¼ 0:3 � 10�9 C/N and d52 ¼

d61 ¼ 0:5 � 10�9 C/N (compare [27] again). The surface load of magnitude p ¼ 0:4 � 106 N=m2 is

applied to the upper surface of the elastic and piezoelectric structures. Furthermore, the surface

electric charge of density c ¼ 0:2 � 10�1 C=m2 is applied to the upper surface of the dielectric and

piezoelectric domains.

The kinematic boundary conditions within the mechanical field of displacements of the elastic

and piezoelectric structures assume all edges (lateral sides) clamped—no displacements on these

edges are present. In the case of the electric field of potential within the dielectric and piezoelec-

tric domains, grounding is assumed around the domain (zero potential on the lateral sides).

In the next sections, only symmetric quarters of the structures are shown due to the symmetry

of the applied geometry, load and charge distributions and boundary conditions.

4.2. Convergence of hierarchical approximations

Figures 1 and 2 illustrate distributions of the effective value (sef ) of a stress tensor (effective

stress) and the electric displacement vector magnitude (dm) for the purely mechanical and

electric problems, while Figures 3 and 4 present the same quantities corresponding to the

electromechanical problem. The displayed values are obtained due to solution of the corres-

ponding global problems, either (1) or (5) or (9). Comparing Figure 1 with Figure 3 as well as

Figures 2 and 4, one can notice that the stresses in the piezoelectric case are changed with

Figure 1. Effective stress in the purely mechanical case.
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respect to the purely elastic case due to the presence of the electromechanical coupling.

Similarly, the electric displacements of the piezoelectric case look different to those of the purely

dielectric example due to the influence of the coupled mechanical displacements field.

Figure 2. Magnitude of electric displacement in the purely electric case.

Figure 3. Effective stress in the coupled problem.
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The h- and p-convergence curves for the elastostatic case are presented in Figures 5 and 6.

The electrostatic problem solution h- and π-convergence curves are displayed in Figures 7

and 8. The solution convergence curves for the stationary piezoelectricity are shown in

Figures 9 and 10. In these figures, the absolute values of the approximation errors are plotted

versus the number N of the applied degrees of freedom. The number of degrees of freedom

changes due to the increase in either the number of subdivisions m ¼ l=h (the case of h-

convergence) or the longitudinal approximation order p or π (the case of p-convergence).

The applied values of the discretization parameters of the uniform meshes are m ¼ 1, 2,…, 8,

p ¼ π ¼ 1, 2,…, 6 while the transverse orders of approximation are kept constant and equal

to q � I ¼ 2 or/and r � J ¼ 2, with π � pi and r � rho. The error is calculated as a square root

of the difference of the potential energy of the numerical solution and the exact value of this

energy in three cases: mechanical, electric or electromechanical. As the exact values of the

solutions to three problems are not known, these values are replaced by the best numerical

ones obtained from the meshes of p ¼ π ¼ 9, h ¼ 9, q ¼ r ¼ 2.

The following findings can be formulated based on the analysis and comparison of the

drawings. The convergence curves for the purely mechanical problem consist of three parts.

The first part, almost horizontal and flat, corresponds to the presence of the numerical

locking. The second part of the highest slope corresponds to the so-called asymptotic con-

vergence. The third part of worse convergence is affected by the influence of the boundary

layer. Such a picture of convergence is typical for elastic problems and displacement finite

element formulation (compare [5]). In the case of the pure dielectricity, the curves consists of

two parts only—the second and third ones. No locking is observed for this problem. In the

case of the coupled problem of piezoelectricity, three parts of the curves appear again. As far

Figure 4. Magnitude of electric displacement in the coupled problem.
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as the asymptotic convergence range is concerned, it should be noticed that in the purely

electric case, the convergence is much higher (slopes are more steep) than in the purely

mechanical problem. Additionally, the boundary layer effect in the dielectric problem is less

severe than in the mechanical one—the slopes of the third parts of the curves are higher in

the former case.

Figure 6. p-Convergence in the purely elastic problem.

Figure 5. h-Convergence in the purely elastic problem.
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As it comes to the piezoelectricity, the following observations can be seen. The first parts of the

convergence curves in the case of the coupled problem are not flat but are bent, that is, the

monotonic character of these parts is not retained. This observation reflects the fact of change

Figure 7. h-Convergence in the purely dielectric problem.

Figure 8. p-Convergence in the purely dielectric problem.
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of the sign of the potential energy, which is composed of mechanical, electric and coupling

contributions of different signs. The solution convergence curves of the piezoelectric problem,

in the asymptotic and boundary-layer ranges, lie just between the corresponding curves of the

pure problems, with a tendency to be closer to the purely mechanical case.

Figure 9. h-Convergence in the coupled piezoelectric problem.

Figure 10. p-Convergence (π ¼ p) in the coupled problem.
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4.3. Effectivity of error estimation

In this section, results concerning application of the equilibrated residual method to the

analogous model problems of elastostatics, electrostatics and stationary piezoelectricity are

presented. The data of the problems are taken from Section 4.1. The thickness of the analyzed

domains is now equal to t ¼ 0:15 � 10�2 m. The surface traction equals now p ¼ 4:0 � 106 N=m2.

This value has changed due to the thickness change so as to assure the same order of the

electric and mechanical potential energies, as well as the same order of the electric and

mechanical parts of this energy, in the tests concerning three mentioned problems of elasticity,

dielectricity and piezoelectricity. Presentation of the results starts with the purely elastic case.

In Figure 11, the chosen example of the estimated total error distribution is presented for the

uniform mesh discretization parameters m ¼ 3, p ¼ 4 and q ¼ 2. The level of the relative

estimated total errors in elements (denoted as Mð Þnt) for the mechanical problem can be seen

in the figure, as well as the average global value of the error estimator, marked as avr. The

estimated local errors represent the square root of the difference between the mechanical

potential energies of the numerical global solution under consideration, determined by (1),

and the solution obtained from the local problems (31). In the case of a local error indicator,

these energies are limited to a single element, while in the case of the global error estimator, the

energies of all elements are taken into account. Figure 12 presents effectivity indices of the

global error estimators as a function of the longitudinal approximation order p. The effectivity

indices are calculated as ratios of the global estimators by the global values of the true total,

approximation and modeling errors. The global values of the errors are equal to the square

root of the difference of the appropriate energies. As the exact values of the solutions,

Figure 11. Estimated total errors in the purely mechanical case.
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necessary for the exact energy values, are not known, they are replaced with the numerical

values obtained by using (1), from the finest and richest meshes possible, that is, with m ¼ 9,

p ¼ 9 and q ¼ 2 or q ¼ 6 in the cases of the approximation and total errors calculations,

respectively.

Figures 13 and 14 display the analogous results for the electrostatic case. The first figure shows

the exemplary distribution of the locally estimated relative total errors (denoted as Eð Þnt), and

also the average error estimate (marked with avr), for m ¼ 3, π � pi ¼ 4, r � rho ¼ 2. The

global solution to the problem (5) and the solutions to the local problems (32) are employed

for the determination of two electric potential energies. These energies correspond to the

numerical solution and the estimate of the exact solution. As far as the second figure is

concerned, it illustrates the change of the effectivity indices of estimation of the total, approx-

imation and modeling errors as a function of the longitudinal order of approximation π. In

order to obtain the necessary exact values of the energies, the global problem (5) was applied

again, with m ¼ 9, π ¼ 9 and r ¼ 2 or r ¼ 6, for the calculation cases of the approximation and

total errors, respectively.

The analogous estimated error distributions and the analogous plots of the effectivity indices

versus p ¼ π for the piezoelectricity case are shown in Figures 15–18. Here, the numerical and

estimated values of the mechanical and electric parts of potential energies, necessary for the

exemplary local and average estimated error values determination, are obtained from (9), with

m ¼ 3, p ¼ π ¼ 4, q ¼ r ¼ 2 and (33), respectively. The exact energy values necessary for

effectivity calculations are obtained through the global numerical approximation (9), with

m ¼ 9, p ¼ π ¼ 9 and q ¼ r ¼ 2 or q ¼ r ¼ 6 and π � pi, r � rho.

Figure 12. Effectivities of the estimators in the purely mechanical case.
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Comparing Figures 11, 13, 15 and 17, one can notice that the estimated total error level for the

cases of elasticity and dielectricity are not the same for the corresponding model problems, as

the latter problem produces the lower local and global error estimates. The average relative

Figure 13. Estimated total errors in the purely electric case.

Figure 14. Effectivities of the estimators in the purely electric case.
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values of the total error estimates for these two cases are equal to 0.128 and 0.013, respectively.

In the case of the piezoelectricity, the estimated local and global error values are higher than in

the previous two cases. The mechanical and electric parts of the average total error estimate are

Figure 15. Mechanical parts of the estimated total errors (piezoelectricity).

Figure 16. Effectivities of estimators’ mechanical parts (piezoelectricity).
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equal to 0.221 and 0.018, respectively. As far as the effectivities for three model problems from

Figures 12, 14, 16, 18 are concerned, one can see that the pure problems deliver very similar

effectivities—in both problems close to the desired values of 1. The values are almost everywhere

Figure 17. Electrical parts of the estimated total errors (piezoelectricity).

Figure 18. Effectivities of estimators’ electrical parts (piezoelectricity).
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larger than 1, and this result is consistent with the upper bound property of the estimation

present in the pure problems (compare [19]). In the case of the coupled piezoelectric problem,

global effectivities are much greater than 1, that is, the estimated global error values are much

overestimated. This suggests that some additional techniques should be applied in the error

estimation by the equilibrated residual method if one wants the effectivities to become closer to

1. A remedy can be the application of the higher order equilibration [14] in the piezoelectricity

problems, instead of the linear equilibration used in this work and usually applied to pure

problems.

4.4. Convergence of hp-adaptivity

In Figures 19–24, the results illustrating both hp-adapted meshes and convergence of the

corresponding adaptation processes are presented for three model problems of elasticity,

dielectricity and piezoelectricity. In these problems, the original data are recalled from Section 4.1.

The thickness of the domains is equal to t ¼ 0:15 � 10�2 m, as in the previous test. In this way,

the influence of the error estimation, performed in the previous subsection, on effectiveness of

the mesh adaptation presented here can be assessed. Also, it is worth noticing that for the

applied thickness value, the locking and boundary layer phenomena do not influence conver-

gence very much. Note also that the presented adaptation is controlled with the estimated

values of the element approximation errors within the displacements and electric potential

fields by means of the formulas (37), (38) or/and (40), (42).

In the first two figures, the purely elastic case is presented. Figure 19 presents the mesh

obtained in the three-step adaptive process. Both the changes of the mesh density and the

Figure 19. Final hp-adapted mesh in the purely mechanical case.
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element changes of the longitudinal order of approximation can be seen in Figure 19. The

initial mesh (not displayed) corresponds to the discretization parameters m ¼ 3, p ¼ 4 and

q ¼ 2. In this mesh, the longitudinal approximation order equal to p ¼ 4 is applied in order to

Figure 20. hp-Adaptive convergence in the purely mechanical case.

Figure 21. Final hπ-adapted mesh in the purely electric case.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques184



remove the influence of the locking phenomenon present in purely mechanical problems.

The target approximation error for the final mesh is assumed to be 0.1 with the ratio of the

errors from the intermediate and final meshes equal to 2. The next Figure 20 displays the

Figure 22. hπ-Adaptive convergence in the purely electric case.

Figure 23. Final hp-adapted mesh in the coupled problem.

Adaptive Modeling and Simulation of Elastic, Dielectric and Piezoelectric Problems
http://dx.doi.org/10.5772/intechopen.72265

185



hp-convergence of the solution during the adaptation process. In the error calculations, the exact

value of the energy is replaced with the value obtained for the best numerical discretization of

the second-order (q ¼ 2) hierarchical shell model, where m ¼ 9 and p ¼ 9. The final true error

value corresponds to the lowest (third) point of the convergence curve. This value can be

compared with the horizontal dotted line corresponding to the admissible error level.

Figures 21 and 22 present the similar results for the purely electric case. The first of them

displays the final mesh resulting from the three-step adaptation. The only difference within the

applied discretization parameters is π ¼ 2 within the electric potential field of the initial mesh.

This value replaces p ¼ 4 in the displacements field of the previous example. The assumption

of π ¼ 2 results from lower error level within the former field and the lack of the numerical

locking within dielectric problems. Subsequently, the second figure illustrates the hπ-conver-

gence curve of the adapted solution. The curve can be compared with the admissible error

level again. The exact solution, necessary for the error calculations, is approximated by the

numerical solution corresponding to m ¼ 9, π ¼ 9 and r ¼ 2.

The next two couples, Figures 23 and 24, as well as Figures 25 and 26, present exactly the same

results, that is, final meshes and adaptive convergence curves for the displacements and electric

potential fields, respectively, in the case of the coupled problem of piezoelectricity. For both fields,

exactly the same initial mesh and error control parameters are applied as for the pure problems of

elasticity and dielectricity. The presence of locking in piezoelectric problems is taken into account,

hence p ¼ 4 and π ¼ 2 are set within the initial meshes of the corresponding fields. In the case of

the adaptive convergence curves, the admissible error levels are marked with the dotted lines

Figure 24. hp-Adaptive convergence in the coupled problem.
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again. The numerical approximation of the exact solution entering the error calculations is

obtained from the discretization based on m ¼ 9, p ¼ π ¼ 9, q ¼ r ¼ 2.

Discussion of the obtained numerical results can be concluded in the following way. In the case

of the pure elasticity, the admissible error value is reached in three steps. The estimated

average approximation error relative value for the initial mesh is 0.084. A relatively rare

h-mesh is generated as the error is relatively low in the initial mesh and overestimation for

p ¼ 4 does not occur (compare Figure 12). Then the mesh is well p-enriched.

In the case of the pure dielectricity, the relatively fine h-mesh is produced because of the error

overestimation for π ¼ 2 (see Figure 14) present in the initial mesh. The estimated average

approximation error relative value for the initial mesh is moderate and equal to 0.124. As a

result, the p-enrichment is reduced (barely visible). The admissible error is reached, however.

In the case of the piezoelectricity, the changes in the common h-mesh come from the relatively

large errors of the displacements field in the initial mesh. The corresponding average error value

for the displacements field is equal to 0.227, while for the electric potential field, it equals 0.127.

The displacements field errors in elements are larger than those of the electric potential field. As a

result, the common h-mesh is too fine for the electric potential. This effect is enforced by the

overestimation for π ¼ 2 (Figure 18). The following π-enrichment is weak. However, the admis-

sible error level is reached for the potential field. This demonstrates that the idea of the common

h-mesh for both fields works well also in the case of the field of lower errors. As far as the

displacement field is concerned, one can notice that the error overestimation for p ¼ 4 (see

Figure 16) in the common h-mesh produces too rich p-mesh for displacements and thus the

Figure 25. Final hπ-adapted mesh in the coupled problem.
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corresponding admissible error value is far exceeded. The obtained solution for displacements is

better than expected.

5. Conclusions

In this chapter, the algorithms of hierarchical modeling, hierarchical approximations, error

estimation and adaptivity control, so far utilized successfully for elastic problems, are applied

to the problems of dielectricity and piezoelectricity. To the best knowledge, no examples of

such application had been reported in the existing literature.

This chapter shows how to assess effectivity of the algorithms of hierarchical approximations,

equilibrated residual method of error estimation and three-step adaptive procedure, originally

applied to elasticity and possible also in dielectricity and the coupled piezoelectric problems.

The observations from the tests concerning hierarchical hp-approximations allow for the following

generalizations. The applied hierarchical approximations can be effective in modeling and simu-

lation of all three classes of problems. The h- and p-convergence rate is the highest for the purely

dielectric problems and the lowest for the analogous purely elastic ones. The convergence of the

piezoelectric problems is located between the convergences of the corresponding pure problems.

In the case of the pure problems, the convergence curves are monotonic, while in the case of the

coupled problems of piezoelectricity, the loss of monotonicity can happen because of the sign

change of the electromechanical potential energy.

Figure 26. hπ-Adaptive convergence in the coupled problem.
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The general conclusions concerning the applied error estimation method are as follows. In the

pure problem of elasticity, the effectivities of the modeling, approximation and total errors are all

close to 1.0, except for the cases of poor discretization (p ¼ 1, 2). In the pure dielectric problems,

the values of the effectivities are between 0.9 and 1.0. For the cases of poor discretization, these

values are close to 2.0. In the case of piezoelectricity, the indices are close to their values from the

pure problems for low values of the approximation order, that is, for p ≤ 3 or/and π ≤ 3. For higher

values of the approximation order, the corresponding effectivities are much higher than 1.0 for

the approximation error. A bit smaller overestimation can be seen in the case of the total error. It

can be concluded that for rich discretizations, some additional techniques are necessary in the

case of piezoelectricity, so as to enforce values of the effectivities closer to 1.0.

Generalizations related to the applied adaptivity control algorithms can be formulated in the

following way. For the analogous mechanical, electric and electromechanical problems, the

three-step adaptive strategy leads to similar convergence results as it comes to the final mesh

true error level, even though the hp-path in each of three cases can be different. The final error

values are usually smaller or close to the admissible error level. In the case of piezoelectricity,

too fine or/and too rich meshes may be generated, if overestimation, coming from the error

estimation procedure, occurs.

The results concerning the effectivity of the application of the mentioned three algorithms to

the dielectric and piezoelectric problems as well as the comparative effectivity analysis of the

analogous mechanical, electric and electromechanical problems are unique—no other exam-

ples of such results can be found in the related literature.
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