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1. Introduction

Human volitional movement is orchestrated by dynamic changes in brain activity that can be
detected by noninvasive electrophysiological recording using electroencephalography (EEG) or
magnetoencephalography (MEG). At least two kinds of movement-related brain activity can be
observed: movement–related cortical potentials (MRCP) and event-related desynchronization/
synchronization (ERD/ERS) in the alpha (8-13Hz) and beta frequency band (16-30Hz) as reviewed
in [1-3]. Both have been observed prior to movement onset and represent the activation of
widespread sensorimotor networks responsible for the preparation and intention to move.
Although it may be more difficult to identify premovement activity from the spatial distribu‐
tion of MRCP due to the small amplitude of the signal and the need for signal averaging to enhance
the signal-to-noise ratio, changes in oscillatory activity may be detectable even on a single trial
basis. Functional mapping studies using EEG and MEG have demonstrated that somatotopical‐
ly restricted motor areas are activated before the actual production of certain limb movements.
For example, as assessed by studying movement-related ERD in [4-6], the hand area is activat‐
ed before the production of hand movements whereas the foot area is activated prior to foot
movements. Furthermore, there is a consistent lateralization of activation with right hand
movements activated by predominantly left sensorimotor cortex whereas left hand move‐
ments are activated by right sensorimotor cortex. If the spatial resolution of the signal is high
enough, discrimination of different movement intentions from the spatiotemporal distribution
of oscillatory brain activity should be possible on a single trial basis and could be harnessed as a
flexible control signal for external devices in the design of brain computer interfaces (BCI).

Brain computer interfaces are neural signal driven systems developed as a means of commu‐
nication for patients with severe neuromuscular impairment. Although BCI technology can
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also be used to monitor human attention level or other higher level cognitive tasks such as
decision making as detailed in [7,8], the predominant goal of current BCI efforts is the
restoration of motor function. Due to neurologic conditions such as spinal cord injury, stroke
or Amyotrophic Lateral Sclerosis (ALS), severe motor paralysis may develop and at the
extreme, progress to a locked-in state, where there is complete inability to move but retained
ability to think. By detecting brain activity associated with specific user intentions and
translating thought into action, BCI provides a potential medium for communication and
rehabilitation. By providing users with feedback control, BCI systems may be useful in
promoting cortical plasticity after conditions including stroke or spinal cord injury.

There are two methodological approaches to BCI: invasive and non-invasive. The invasive
approach utilizes intracortical neuronal population activity as detected with microelectrode
arrays implanted directly into the brain with the advantage of high signal strength. Several
groups in [9-11] have utilized this approach successfully for the prediction of movement
trajectory, cursor control or use of a robotic arm. However, due to the inherent technical
demands and risks of surgical implantation, non-invasive techniques are generally used. In
the non-invasive approach, electroencephalography (EEG) and magnetoencephalography
(MEG) have emerged as the most viable options. Any activity in the brain is accompanied by
changes in ion concentrations in neurons leading to polarization and depolarization. Such
neuronal population activity can be measured by EEG, whereas MEG measures the magnetic
field associated with these currents. Both modalities have a time resolution on the order of
milliseconds, allowing for the study of the highly dynamic activity of the brain in contrast to
slower response time from imaging-based BCI using positron emission topography (PET),
optical imaging using near infrared spectroscopy (NIRS) or functional MRI signals as in [12].
EEG is advantageous in that it is portable and cost effective but as magnetic fields suffer far
less degradation than electric fields from the spatial blurring effect of the skull, MEG provides
a better spatial resolution leading to more accurate decoding, as reviewed in [13]. The advant‐
age of MEG is the more simplified reconstruction of signals into source space leading to
reduction of noise and subsequent better feature separation. MEG may have a greater potential
to interpret brain activity on a single trial basis instead of utilizing indirect control of brain
rhythmic activity or slow cortical potentials as used in current EEG-based BCI and detailed in
[14,15]. However, the lack of portability and the costs of MEG instrumentation are impractical
for general BCI use.

Optimization of BCI involves the use of technology and design of signal processing algorithms
with a fast response time, low error rate, and reduced training time. Due to the need for high
temporal precision, electromagnetic signals are the most practical for widespread BCI use.
Signal processing algorithms using a combination of spatial and temporal filters or signal
averaging extract relevant features, enhance the signal-to-noise ratio and reduce classification
error and are an active area of research reviewed in [16,17]. Ideally, BCI operation on a single
trial basis is preferred due to the improved response speed and higher information transfer
rate, but at the cost of a potentially noisier signal with higher error rate depending on the
feature selected. In addition, identifying signal features that represent the activation of
biologically realistic sources reduces the likelihood of misclassification from neurophysiologic
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artifacts such as eye blinks, scalp muscle activity or cognitive activity unrelated to the task
paradigm. Shorter training times reduce the likelihood of mental fatigue and improve the
generalizability of use for diverse patient populations. A task paradigm based on movement
direction or natural motor behavior may also reduce training time as it may be more intuitive.

In this chapter we present a multi-dimensional prediction based BCI that reliably decodes
human movement intention. We previously demonstrated that ERD/ERS changes using a
contingent negative variation based four class-paradigm can be reliably discriminated using
EEG in [18]. In this study, subjects began to prepare for one of four movements after viewing
an initial cue signal. After a period, they performed the movement, but the classification took
place during the period of mental preparation. We also demonstrated that spatially distinct
movement intentions using the right hand and left hand using an ERD/ERS paradigm can be
reliably classified and differentiated with MEG signals in [19]. However, several potential BCI
users may have brain injury specifically affecting the structural or functional integrity of the
hand area, limiting the ability to generalize from this paradigm. If the prediction/decoding of
movement intentions to move the right hand, left hand, leg and tongue before movements
occur is robust, the natural behavior of human intentions to move different effectors can be
decoded to control a two-dimensional cursor for BCI applications. Our BCI performance
critically depends on the reliable decoding of intention from the spatial distribution of brain
activity. We adopted synthetic aperture magnetometry (SAM) as a spatial filter for enhancing
the spatial resolution of MEG signals. The robustness of the prediction suggests that spatially
filtered MEG can be used as a robust BCI method supporting multi-dimensional control.

2. Spatiotemporal filtering in BCI

2.1. Optimizing BCI signals for classification

In order to extract a robust control signal for classification from multichannel EEG or MEG
data, various signal processing methods are available. The selection of a simple task paradigm
associated with a reliable neurophysiological signal is an important first step prior to data
processing and classification. As ERD is a fundamental physiological signal associated with
natural movements, it is a logical choice for analysis. Spatial and temporal filters reduce the
data load and improve discrimination and classification. As many potential signals including
ERD are spatially restricted to the sources of activation from somatotopic representation and
lateralization, algorithms that enhance the spatial signal may improve the distinctness of
spatial patterns. Restricting the analysis to a subset of electrodes or sensors over areas of
interest (i.e., C3 and C4 EEG electrodes over sensorimotor cortical regions) is a simple method
of spatial filtering. Computational data-driven spatial filters that have been used in EEG-based
BCI include independent component analysis (ICA), common spatial patterns (CSP), surface
Laplacian derivation (SLD), and principal component analysis (PCA) in [20-23]. These methods
are similar in their ability to enhance the spatial resolution of the feature in order to enhance
discrimination. In the temporal domain, frequency filters may be used to reduce dimension‐
ality as different cognitive tasks may be associated with dynamic changes in specific frequency
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bands. Furthermore, there may be subject-specific dominant frequency band changes associ‐
ated with the same task, making optimization and selection of temporal filters an adaptive
process. Temporal filters that are used include finite impulse response (FIR) filtering, power
spectral density (PSD) estimation and discrete wavelet transformation (DWT). Signal averag‐
ing is also a commonly used method in the P300 and visual evoked potential (VEP) based BCI
systems in [24,25] to enhance signal quality although this may slow down the response time.

The exact choice or combination of signal processing methods may depend on the task
paradigm utilized or the subject population studied. Comparison of the combination of various
methods including spatial and temporal filtering, feature extraction and pattern classification
have been explored by several groups in decoding single trial EEG signals associated with
movement in [26,27]. These studies demonstrate the critical point that the selection of com‐
putational methods can affect the speed and accuracy of BCI performance.

2.2 Synthetic Aperture Magnetometry (SAM) and Source Space BCI

Synthetic aperture magnetometry (SAM) is a powerful adaptive beamforming approach used
in MEG. Beamforming is a technique used in radar or sonar technology that involves estimat‐
ing the contribution of a single source to a group of sensors by excluding activity from all other
sources. SAM is a minimum variance beamformer technique that is designed to pass the signal
from a small region of interest with unit gain while blocking signals from outside that area as
detailed in [28]. Data from single trials are used to estimate sensor weight matrices which then
applied to raw MEG data from sensors yield source images. The number of sources does not
need to be specified using this method. SAM takes advantage of the spatial and temporal
correlation of MEG sensor arrays and acts as a spatial filter to map three dimensional source
power. The spatial distribution of event-related changes in cortical rhythm within a specified
frequency range and time window relative to the event can be estimated. Furthermore, using
the sensor weight covariance matrices, virtual sensor time series can be generated and used for
source based estimates of changes in activation or connectivity.  This technique has been
demonstrated to be effective in localizing source activation associated with various cognitive
tasks including speech, motor and sensory processing in [29-31]. It has been used effectively in
various clinical settings including preoperative localization of motor cortex for tumor resec‐
tion, identification of epileptogenic foci and mapping language areas as demonstrated in [32-35].

Source space analysis methods are a relatively novel avenue in BCI research. Compared with
sensor based signals, source based signals should be less noisy and provide better features for
classification. High-resolution EEG techniques including source reconstruction have been
proposed as a useful method in [36] to improve BCI accuracy. Several EEG studies have used
source reconstruction methods in classifying movement related signals in [37-40]. A prior
study utilized beamforming techniques as a spatial filter in BCI design using EEG data in [37].
Regions of interest were preselected and beamforming was used to suppress source activity
outside of the regions of interest. Results showed better classification accuracy compared to
surface Laplacian and comparable to common spatial pattern (CSP) filtering in the setting of
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large artifacts. Another EEG study used a source reconstruction method with a spherical head
model and simple source distribution to demonstrate better classification rate compared to
electrodes studying movement related ERD and MRCP in [38]. These studies provide evidence
that source localization may help refine accuracy of classification using EEG. However, source
localization including beamforming using EEG may be limited by sparse electrode sampling
in typical EEG-based BCI compared to the dense whole head sensor coverage with MEG,
limiting the ability to estimate sources accurately. Furthermore, the signal-to-noise ratio of
EEG signals on a single trial basis is low, making source localization more difficult. The
Laplacian spatial filter is commonly used for EEG signals to improve the signal-to-noise ratio.
However, due to the more intricate geometry of magnetic fields compared to electric fields, it
is not possible to find a general spatial filter that improves the signal-to-noise ratio analogous
to Laplacian filtering. For MEG signals, the position and orientation of the sources of interest
must be taken into account as well.

Due to the more robust source localization methods with MEG, source space MEG BCI analysis
may be a powerful paradigm to enhance signal strength for improving feature classification.
Prior MEG based BCI studies have been conducted based on the sensor domain, focusing
mainly on the source identification problem [41-43]. In [44], a source based MEG analysis was
proposed using a novel blind source separation method called functional source separation
(FSS) to identify sources of activation and source time courses for potential BCI use. There are
few beamformer based MEG BCI studies despite the robustness of these techniques in mapping
movement-related desynchronization as demonstrated in prior studies. As movement-related
ERD can be somatotopically restricted as well as lateralized, we hypothesized that using SAM
as a spatial filter would give rise to improved separation of spatially distinct patterns for
classification.

3. Methods

3.1. Subjects

Eight healthy volunteers, 5 male and 3 female (age: 31±8 years) participated in the experiment.
All subjects participating in this study were right-handed according to the Edinburgh inven‐
tory in [45]. All subjects had not received prior BCI-related training. The protocol was
approved by the Institutional Review Board. All subjects gave written informed consent for
the study.

3.2. Experimental paradigm

A visual warning cue randomly selected from a set of four cues: ‘right” for right hand
extension, ‘left’ for left hand extension, ‘leg’ for left foot extension, and ‘tongue’ for pressing
the tongue against the roof of the mouth, was presented on a computer screen placed about
50 cm in front of the subject (see Figure 1). The subjects were instructed to prepare for the
movement without physically moving after the initial cue presentation. The duration of the
visual cue was 0.5 s. After 2.5sec a ‘GO’ signal was displayed at which time the subject started
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physically moving as soon as possible. This continued for another 2.5 sec after which a stop
signal was displayed at which time the subject stopped moving and returned to baseline rest.
A 4-7 sec rest period was given after which the process was repeated. During the period of
visual stimuli the subjects were asked to keep eyes open and reduce blinks as much as possible.
The subjects were allowed to become familiar with the paradigm before data recording. The
experiment consisted of 6-7 sessions with each session consisting of 30 movement tasks, i.e.
about 45 trials for each of four movements. Subjects were asked to keep the head still during
recording to reduce head motion. Trials contaminated with EMG activities before the ‘GO’ cue
were excluded both for the classification and analysis.

Figure 1. Experimental paradigm. Activation period: -1 second to 0 before ‘GO’ cue. Control period: -1 second to 0
before warning cue of ‘Right Hand’, ‘Left Hand’, ‘Foot’ and ‘Tongue’. At the “GO” cue, subjects began repeated exten‐
sions of the right hand, left hand or left foot or tongue movements as per the initial instruction cue. Subjects contin‐
ued the movements until the “STOP” cue. Data from the activation and control windows were used for SAM analysis,
with virtual channels during the activation period used for classification/prediction.

3.3. Data acquisition

MEG data was recorded at 600 Hz using a 275-channel CTF whole head MEG system (VSM
MedTech Inc., Coquitlam BC, Canada) in a shielded environment. The CTF MEG system is
equipped with synthetic 3rd gradient balancing, an active noise cancellation technique that
uses a set of reference channels to subtract background interference.

High-resolution structural MRI images were also acquired for co-registration for each subject
using a magnetization-prepared rapid acquisition by gradient echo sequence (MP-RAGE) (TI/
TE/TR/FA=725/2.928/7.6/6°, FOV=22 cm, partition thickness=1.2mm, 256 x 256, in-plane voxel
size=0.859375).

EMG was recorded using bipolar electrodes over the right and left wrist extensors (extensor
digitorum communis), and left ankle dorsiflexors (tibialis anterior). This allowed for the
exclusion of any trial with movement prior to the ‘GO’ cue by monitoring for premature
muscular activity. Premature motor execution was monitored by the experimenter by EMG
and trials with early activation were excluded from the analysis.
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3.4. SAM analysis

Synthetic Aperture Magnetometry (SAM) was used for source localization of MEG signals.
“Source localization” implies simplification of the complex activity of a very large numbers of
neurons to a few parameters that help describe that activity, as in [46]. During SAM analysis,
the SAM images were created for active state vs. control state, i.e. it extracted a dominant
modulated source from a background of less pronounced modulation and noise.

MEG analysis software developed at NIMH MEG core facility was used for epoching data,
SAM analysis and MRI conversion. For all measurements, fiducial skin markers were placed
on subjects’ nasion and bilateral preauricular points. The data was epoched according to the
marker events for a period of 9 sec starting 1 sec before the instruction cue and continuing 8
sec after. For SAM analysis, all epoched data for each event (‘right’, ‘left’, ‘leg’, or ‘tongue’)
were pooled together to form a grand dataset. Before SAM analysis, a multisphere head model
was created for each subject (threshold value about 40% to determine the boundary of shells)
based on anatomical images of each subject using MEG analysis software.

For SAM Analysis, single-trial event-related MEG data from the grand datasets were used to
compute covariance matrices for each dataset corresponding to each event. The frequency
range of interest was the beta band (15-30 Hz). The active state was defined 1 sec before ‘GO’
cue to ‘GO’ cue onset (1.5 s – 2.5 s); -1 s to instruction cue onset was set as the control state (-1
s – 0 s) (see Figure 1). These parameters were fed in to compute the covariance between the
active and the control state. For ERD analysis a statistical parametric image was computed, on
a voxel- by-voxel basis, from the difference in cortical power for the two states, relative to their
noise variance. Only voxels displaying statistically significant power changes were displayed
in color scale on the individual MRI. Thus an optimal spatial filter was designed which created
a 3D source image comparing the source strength for the two states. This image was super‐
posed on the MRI image of the subjects to obtain the source- signal-to-noise ratio image
corresponding to each event for all the subjects.

3.5 Virtual channel selection

A virtual channel is tuned to a particular source or target. In SAM analysis as described above,
a beamformer was calculated for each voxel of the image, and the beamformer was used to
calculate a source power estimate. The same beamformer was used to determine coefficients
or weights for each channel, and a virtual channel was obtained from a weighted sum of all
the MEG channels with those weights. The target location for the present study was the motor
cortex area. As previously described, human limb movements are controlled predominantly
by the contralateral sensorimotor areas. The source-signal-to-noise ratio image obtained
through SAM analysis would have high activity regions in these areas. Consistent with
expected somatotopic representations, virtual channels were selected from regions showing
strong ERD in the left and right hand, leg and tongue areas respectively. Around 20-30 virtual
channels were selected for each subject.
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3.6. Time–course analysis of MEG sensor and virtual channel data

The digital MEG signal was sent to a DELL PC workstation and was offline processed using
a home-made MATLAB (Math Works, Natick, MA) Toolbox: brain-computer interface to
virtual reality or BCI2VR [27,47]. This was used for time-course analysis, feature extraction
and classification for MEG-Sensor domain as well as Virtual channel data.

3.6.1. Time–frequency analysis of MEG sensor data

Time-Frequency analysis was performed on the MEG sensor data (See Figure 2) to observe the
power (ERD) patterns for each event. The region of interest was selected in the motor cortex
areas associated with human movement intention as detailed in [48-50]. The MEG channels
constrained to the central MEG sensors associated with the right hand, left hand, leg, or tongue
area depending on the event were used for the analysis. It was intended to analyze the power
in the beta band, i.e. the ERD patterns with respect to the time-course of the motor tasks. Power
in the frequency range 0- 60 Hz, for four movements was calculated using the Welch method
described in [51], which was applied with the use of a Hamming window to reduce side-lobe
effect and estimation variance. A baseline correction was introduced from -1 s to 0 s. The length
of the sliding window was 1 s with a slide increment of 0.1 s. The segment length was 0.25 s
with frequency resolution of 4 Hz and there was no overlapping between consecutive
segments.

3.6.2. Time–course of event-related power for virtual channel data

An event related power analysis was performed on the virtual channel data obtained through
SAM analysis. We intended to observe the ERD patterns over time for each event. The time-
course of event-related power was obtained from the variance of virtual channel signal in a
sliding window with length of 1s and a slide increment of 0.1 s. These virtual channels were
already filtered from the beta band. A baseline correction was introduced from -1 s to 0.5 s.
Event related power analysis was performed to verify whether ERD was a dominant pattern
for virtual channels selected when subjects were intending to perform the four different
movements.

3.7. Feature extraction and classification

The data pool consisted of about 180 trials with 45 samples for each of four classes. The offline
performance of multi-class classification was evaluated from 10-fold cross-validation; 90% of
data pool was used for training, and the other 10% was used for testing so that the testing
dataset was independent from the training dataset. For classification methods using feature
evaluation for feature selection, those parameters or features were also determined by training
data set only.

3.7.1. Feature extraction for MEG sensors and virtual channels

For MEG -Sensor based classification, the MEG channels were constrained through empirical
channel reduction; this covered the entire motor cortex area. Thus the central 52 MEG chan‐
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nels  were  used  for  sensor  based  classification  (The  layout  can  be  found in  http://  kur‐
age.nimh.nih.gov/meglab/Meg/Meg). For SAM-filtered virtual channel based classification of
movement intensions from MEG data, channel reduction was achieved through the selection of
virtual channels. Also, the selection of beta band (15- 30 Hz) to study ERD served as an impor‐
tant parameter for feature reduction. In the MEG-Sensor domain, the power samples were
calculated in the beta band (15- 30 Hz) for the active state period when subjects were intending
or urging to move (1.5 s – 2.5 s), the segment length was 0.25 s with no overlapping between
consecutive segments. For Virtual channels, the beta band power samples were calculated as
the variance of the data samples from the active state period before movement occurred.

The SAM-filtered MEG virtual channel signals or MEG sensor domain signals provided high-
dimensional features; for example, 25 virtual channels with 16 frequency bins produced 400
features. A subset of features determined by feature selection was determined for classification.

3.7.2. Feature selection and classification

The feature selection was achieved by either Bhattacharyya distance or genetic algorithm.

Bhattacharyya distance: The Bhattacharyya distance is the square of mean difference between
two task conditions divided by the averaged variance of the samples in two task conditions

Figure 2. Time-frequency analysis in the sensor domain. Time-frequency map for movements of the right hand, left
hand, leg and tongue for subjects S1, S3, S4 and S5 are plotted from the MEG raw sensor domain (left corner of each
map, M – MEG, R – right, L – left, and C – central). Power is symbolized by blue for ERD and red for ERS. The region of
interest corresponding to the active state period corresponding to movement intention is marked by the black ellipse.
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so that a larger Bhattacharyya distance will lead to better classification accuracy as described
in [52]. The empirically extracted features were ranked by Bhattacharya distance for further
classification.

Genetic Algorithm (GA): Genetic algorithms are computational models inspired by evolution
as described in [53]. It is a stochastic search in the feature space guided by the concept of
inheriting, where at each search step, good properties of the parent subsets found in previous
steps are inherited. 10-fold cross-validation was used with a Mahalanobis linear distance
(MLD) classifier for feature evaluation as in [54]. The population size used was 20, the number
of generations was 100, the crossover probability was 0.8, the mutation probability was 0.01,
and the stall generation was 20.

The classification techniques were developed in a home-made MATLAB (Math Works, Natick,
MA) Toolbox: brain-computer interface to virtual reality or BCI2VR described in [27,47]. It was
intended to use these classification techniques to reliably decode human movement intentions
spatially for the four classes. The classifiers selected were based on their performance in
previous computational comparison studies in [27,54-56].

GA-based Mahalanobis Linear Distance Classifier (GA-MLD): The Mahalanobis Distance Classifier
had proved effective for classification in previous studies [27,57]. It was further optimized
using GA-based feature extraction method. The optimal feature subset was selected by GA,
and the selected features providing the best cross-validation accuracy were applied to a
Mahalanobis Linear Distance Classifier (MLD) as in [52]. The number of features for the subset
was 4, which was determined from the 10-fold cross-validation accuracy with feature numbers
of 2, 4, 6, and 8.

Direct Decision Tree Classifier (DTC): A Decision tree is a classifier which uses symbolic treelike
representations of finite sets of if-then-else questions that are natural, intuitive and interpret‐
able as in [58]. For example, a certain feature subset of channels over the left motor cortex area
are associated with right hand movement as shown in [59-61]. Then, these would be the best
to discriminate intention to move the right hand, whereas they might operate rather poorly
for the discrimination of other movement intentions. We used multistage classification, i.e.,
decision tree classifier (DTC), to discriminate one intention from others in each successive
stage. At each level of DTC, the features for one-to-others classification were ranked by
Bhattacharya distance (see detailed method in [27]) and the 4 features with higher rank were
used for classification by MLD. The number of the feature for classification was determined
from preliminary comparison (through 10-fold cross validation accuracy) with numbers of 2,
4, 6 and 8.

4. Results

4.1. Sensor–based ERD/ERS visualization

ERD/ERS visualizations for 4 subjects are included from MEG sensor data to demonstrate
characteristic power changes located over motor cortical regions (Figure 2). Power changes
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were notable for a sustained decrease in the 8-30 Hz range beginning 1-1.5 second before S2
and continuing through the time of execution of movement. From the ERD images, it was
observed that ERD signals were enhanced during the period of motor execution compared
with the movement intention period.

4.2. SAM–based spatial visualization of ERD activation

Spatially filtered ERD activity was visualized using SAM. Figure 3 demonstrates SAM images
from 4 subjects demonstrating activation of motor areas corresponding to the intention to move
under the four different conditions. Virtual channels were derived from the areas of peak ERD
activation for power analysis, feature extraction and classification.

Figure 3. SAM image. Coronal and axial views of the head are shown for subjects S1, S3, S4 and S5. Virtual channels
corresponding to the ERD (Blue) over areas of activation corresponding to movement intention were chosen from
areas marked by the green circle for further classification.

4.3. Virtual channel power analysis

Time-frequency analysis was performed on single-trial MEG virtual sensor data. The time
course of ERD/ERS changes from virtual channels demonstrates consistent patterns of
desynchronization associated with the time period chosen for prediction (Figure 4).
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Figure 4. Time course of event-related power change for SAM-Virtual channel signal. Time-power maps for events
Right hand, Left Hand, Leg and Tongue for the single-trial MEG data for subjects S1, S3, S4 and S5 are plotted for
corresponding SAM-Virtual channels over regions of interest (LMC – left motor cortex, Central medial cortex, RMC –
right motor cortex). The region of interest corresponding to the active state period for movement intention is marked
by the black ellipse.

4.4. Classification

To compare the advantage of using SAM, results from virtual channel classification were
compared with MEG sensor based classification. Classification of signals using 2 different
classification methods (GA-MLD and DTC) were higher using MEG virtual sensors compared
to raw sensors (Table 1). The virtual channel-based classification accuracy for four classes using
GA-MLD was on average 88.90% with standard deviation of 7.74%. Similarly, virtual channel
based classification using direct DTC was 73.34% with standard deviation of 16.71%.

Classification with MEG sensors was much less accurate. MEG sensor based classification
accuracy using GA-MLD was 42.41% with standard deviation of 7.26%. Using direct DTC,
accuracy was 30.13% with standard deviation 5.56%.

Subject SAM Virtual Sensor MEG Sensor Domain Total no. of

GA-MLD (%) DTC (%) GA-MLD (%) DTC (%) samples/trials

S 1 96 ± 0.44 85.19 ± 4.14 40.78 ± 2.11 30.44 ± 3.01 191

S 2 87.31 ± 1.32 61.75 ± 2.04 33.57 ± 2.32 26.14 ± 3.56 219
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Subject SAM Virtual Sensor MEG Sensor Domain Total no. of

GA-MLD (%) DTC (%) GA-MLD (%) DTC (%) samples/trials

S 3 89.17 ± 1.62 85.75 ±1.86 44 ± 1.36 31.37 ± 2.97 181

S 4 84.25 ± 1.55 73.37 ±1.86 51.11 ± 2.16 29.5 ± 2.53 200

S 5 99.14 ± 0.19 97.16 ± 0.85 53.15 ± 1.66 41.90 ± 0.66 202

S 6 79.69 ± 2.36 42.68 ± 3.12 44.56 ± 1.57 32 ± 2.79 202

S7 96.58 ± 0.97 71.25 ± 3.61 38.18 ± 2.91 25.55 ± 3.33 177

S8 79.08 ± 2.06 69.58 ± 4.52 33.94 ± 2.07 24.17 ± 2.77 173

Table 1. SAM-Virtual channel signal vs. MEG-Sensor signal Classification

5. Discussion

In this study, a prediction based BCI was designed using spatially filtered MEG signals
associated with four different movement intentions. Successful classification of discrete
movement intentions was achieved with a high degree of accuracy. The results from this study
demonstrate that the spatiotemporal activity associated with human movement intention is
predictable and can be spatially separated and used for classification. These movement
intentions can be potentially used as control mechanisms. Previously, we reported our results
in [16] classifying movement based intentions from MEG using ERD/ERS patterns generated
from right and left hand movement. The limitations of the previous paradigm are the reliance
on the integrity of hand movement, which is often compromised in BCI user populations such
as those with unilateral stroke or motor neuron disease. The ability to differentiate effector
specific movement intentions from a range of body parts allows for a greater flexibility of our
BCI approach.

All subjects demonstrated ERD before and during the movement, followed by ERS after the
movement. ERD occurred in similar regions for the intention and movement execution period.
As expected, desynchronization signals were stronger during actual movement than during
movement intention. Distinct movement intentions led to distinctly different regions of
activity in the brain, although some overlapping regions were also found. ERD activation was
seen bilaterally suggesting coordination between both the hemispheres, although generally
one side would dominate. For left hand movement, right motor cortex was predominantly
activated whereas for right hand movement left motor cortex region showed greater activity.
For leg movement, mesial motor cortex was activated. Tongue activity showed a great deal of
variation across the subjects activating regions of both hemispheres. Global activation of motor
networks have been reported for movements of the foot and tongue in [62], potentially making
the distinction between classes more difficult due to overlap of activation. The tongue
representation is relatively small and distributed across both hemispheres. The hand area also
was activated during tongue movement. This may occur because the tongue is more difficult
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to move as compared to hand or foot, leading to a broader region of activation overlap as
detailed in [62,63]

All subjects showed dynamic activity mostly in the beta band (15-30 Hz). This is consistent
with previous studies demonstrating the important role of beta band activity in motor control
[3]. All eight subjects showed different regions of activation for different movement intentions,
but these regions varied from subject to subject. Each individual subject had particular pairs
of movement intentions which produced better results than the rest, but the trends were not
consistent across the subjects. This variability may be related to inherent differences in terms
of individual motor learning and movement strategy. More research in this area may explain
this trend. More generally, such research could lead to a better understanding of different
neural activity involved in the learning of a motor task.

Previous studies have demonstrated the feasibility of using MEG signals for BCI purposes in
[64-67]. In [65], a MEG study exploring the decoding of movement directions, a reasonable
detection accuracy was achieved from signals associated with the motor execution of physical
movement. Although it seems more intuitive for BCI users to control directional movement,
practical application of BCI substitutes more reliable control for the intuitiveness of the
approach. Comparing the premovement data to the results in that study, our BCI provided
much better classification accuracy. The best detection accuracy was found to be after move‐
ment onset, which may not be useful in subject populations who can not physically move.
Furthermore, the approach utilized in that study was performed on the sensor domain level.
The conclusions from this study suggest that spatial filtering may lead to improved perform‐
ance using their paradigm. Another study in [66] used MEG and sensorimotor mu rhythm
control with successful results in 6 out of 8 patient, but their approach required extensive
training over several weeks. In contrast, our BCI requires less extensive training and a faster
response time due to the natural motor task performed.

Our method showed that MEG provides high resolution both spatially and temporally. If
optimized techniques are used for source imaging, robust results can be obtained for suitable
multi dimensional BCI control. By applying SAM filter, the classification accuracy was
significantly improved with the average classification accuracy 91±12%. These results dem‐
onstrate that SAM spatial filter may effectively improve MEG signal spatial resolution to
achieve an accurate classification of movement intentions. Four-class classification in this
study using spatial filtering was highly accurate despite the visualized overlap of activation
across different body parts. BCI results using this method may be further improved by
replacing tongue movement with an alternative movement, such as the right foot. With better
classification technique it may be possible to classify even finger movements, which may help
in complex higher level control.

6. Conclusion

A high performance BCI was designed using spatially filtered MEG signals to decode move‐
ment intentions on a single trial basis. The combination of a natural motor task paradigm, SAM

Functional Brain Mapping and the Endeavor to Understand the Working Brain30



spatial filtering and event-related desynchronization analysis at the source level was able to
discriminate four different movement intentions with a high level of accuracy. Although the
computational analysis was performed offline, the robust performance suggests that online
implementation using this paradigm would be effective in the setting of real-time feedback
and user adaptation. Overall, this BCI has the following advantages over other BCIs: two-
dimensional control, a more natural control scheme, less training time, high spatial resolution,
and robust performance.

Due to the lack of portability and higher costs, MEG is less practical for BCI use compared with
EEG. However, the advantages of MEG include high spatiotemporal resolution and robust
spatial filtering methods facilitating reduced computational load and improved decoding and
classification accuracy. The high level of multidimensional control attainable through the use
of MEG signals as demonstrated in this study has great potential for future BCI applications.
Such a MEG-based system could be used for patients to monitor and enhance ERD sensori‐
motor rhythms to facilitate motor rehabilitation or to practice in improving the efficiency of
motor intention or imagery for BCI purposes using less costly technology such as EEG.
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