Quantifying robustness and calculating the probability of meaningful error in proton radiotherapy delivery utilizing a dense D_{ii} matrix

Massachusetts General Hospital

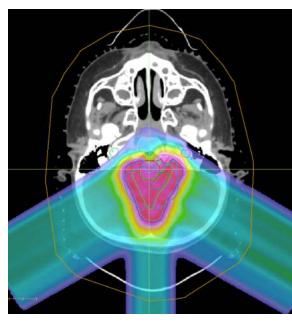
<u>J. Brownstein¹ MD</u>, D. Giantsoudi¹ PhD, C.C. Wang^{1,2,3} MD, C. Grassberger¹ PhD, H. Paganetti¹ PhD

¹Massachusetts General Hospital- Harvard Medical School, Radiation Oncology, Boston, USA. ²National Taiwan University Cancer Center, Radiation Oncology, Taipei, Taiwan. ³National Taiwan University Hospital, Radiation Oncology, Taipei, Taiwan

Robust Optimization

- Systematic errors from the range uncertainties of proton radiation therapy can cause significant underdosing of targets or overdosing of healthy tissues
- Robust Optimization mitigates these risks by yielding a treatment plan that incorporates uncertainties, often including a distribution of 3-5 possibilities for proton range,

Limitations


- There are currently limited tools available to evaluate robustness and convey this information to the physician.
- Incorporating both range and setup uncertainties, requires simulation of many scenarios and was formerly considered impractical

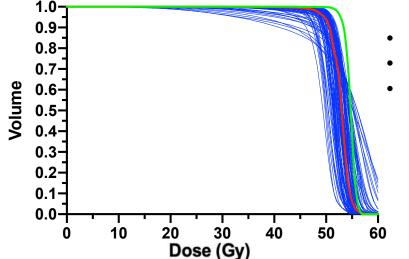
Aim: Design a streamlined platform that allows optimization and evaluation of 100 error scenarios that simultaneously considers both setup and range uncertainties

Uncertainty Models				
Standard	No Uncertainty			
"Shift0mm"	σ _{range} =3.5%; No Setup Uncertainty; n=100 scenarios			
"Shift1mm"	σ_{range} =3.5%; σ_{ISO} =1mm; n = 100 scenarios			
"Shift2mm"	σ_{range} =3.5%; σ_{ISO} =2mm; n = 100 scenarios			
"FiveScen"	σ _{range} =3.5%; No Setup Uncertainty; n=5 scenarios			
Creating Dense D. Matrix				

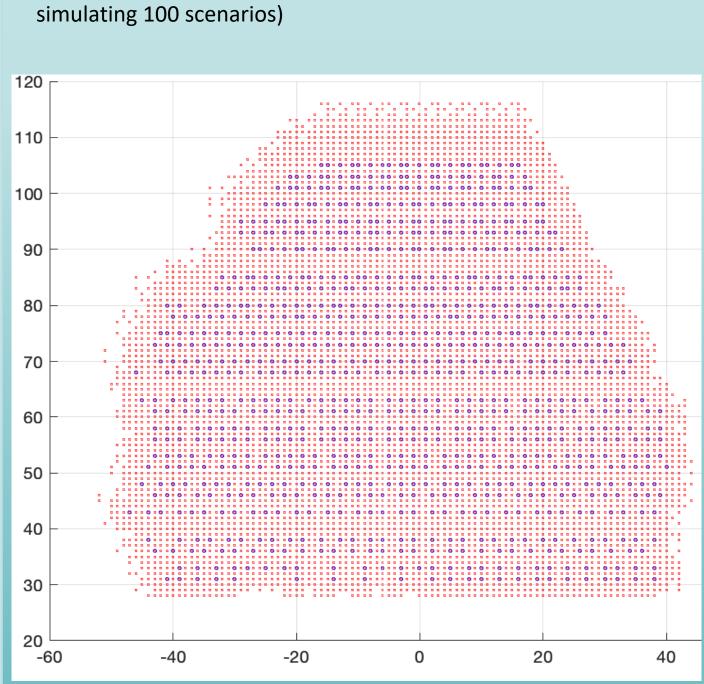
Creating Dense D_{ij} Matrix

- Considering assumed uncertainty conditions (e.g. σ_{range} =3.5%; σ_{ISO} =1mm), apply 100 random normal shifts to the isocenter and range of each beam spot in the nominal plan
- Quantize shifted beam spots of each uncertainty scenario to a dense grid with 1mm beam spot spacing
- Utilize Monte Carlo to calculate Dense D_{ij} matrix comprised of every quantized beam spot encountered in 100 scenarios.
- Employ the Dense D_{ij} matrix to efficiently calculate individual D_{ij} matrices for each of the 100 scenarios.
- Utilize the scenario D_{ij} to evaluate uncertainty and/or facilitate robust optimization
- Dense D_{ij} matrix ~35 x size of standard Dij matrix (i.e. 35% the size of

Results

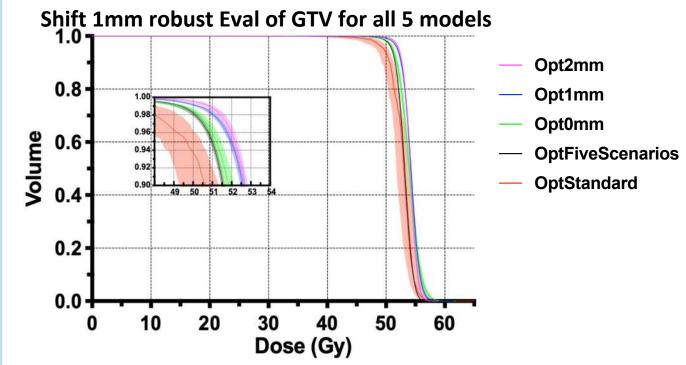

4 yo with ependymoma

Objectives Optimization Mean Square Error


- GTV > 54Gy**, GTV < 55.8 Gy**
- Brainstem < 56 Gy**
- Cord < 50 Gy**
- Cochlea < 45 Gy

****** Robust optimization for expected dose

Standard Optimization With Robust Evaluation with "Shift1mm"


- Green line = nominal scenario
- Blue lines = 100 scenarios
- Red line = median scenario

Dense D_{ij} **Matrix in X-Z plane**. Red dots are beam spot locations in Dense D_{ij} Matrix. Blue dots are beam spot locations for an individual scenario D_{ij}, which correspond to beam spots already calculated in the Dense D_{ij} Matrix

Presenting Author:

Jeremy Brownstein MD: Jeremy.Brownstein@gmail.com

(Bright lines = median DVH; Shaded regions = IQR)

GTV Statistics-Robust Evaluation with "Shift 1mm" model

	Median Min	Median D95	P(D95>50Gy)	P(D95>52Gy)
Standard	36.7 Gy	49.6 Gy	40%	0%
Shift 0mm	46.7 Gy	51.9 Gy	98%	45%
Shift 1mm	47.2 Gy	52.2 Gy	100%	61%
Shift 2mm	48.9 Gy	52.5 Gy	100%	78%
FiveScen	46.5 Gy	51.2 Gy	98%	0%

Conclusion:

- Efficient robust evaluation/optimization for both setup and range uncertainties is feasible utilizing dense D_{ij} Matrix.
- Failure to evaluate robustness may lead to a plan with substandard metrics (e.g. Standard or FiveScen)