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Preface

Third Preface, 2008

This text has been out of print for several years, with the author holding copy-

rights. Since I continue to hear from young algebraic geometers who used this as

their first text, I am glad now to make this edition available without charge to anyone

interested. I am most grateful to Kwankyu Lee for making a careful LaTeX version,

which was the basis of this edition; thanks also to Eugene Eisenstein for help with

the graphics.

As in 1989, I have managed to resist making sweeping changes. I thank all who

have sent corrections to earlier versions, especially Grzegorz Bobiński for the most

recent and thorough list. It is inevitable that this conversion has introduced some

new errors, and I and future readers will be grateful if you will send any errors you

find to me at wfulton@umich.edu.

Second Preface, 1989

When this book first appeared, there were few texts available to a novice in mod-

ern algebraic geometry. Since then many introductory treatises have appeared, in-

cluding excellent texts by Shafarevich, Mumford, Hartshorne, Griffiths-Harris, Kunz,

Clemens, Iitaka, Brieskorn-Knörrer, and Arbarello-Cornalba-Griffiths-Harris.

The past two decades have also seen a good deal of growth in our understanding

of the topics covered in this text: linear series on curves, intersection theory, and

the Riemann-Roch problem. It has been tempting to rewrite the book to reflect this

progress, but it does not seem possible to do so without abandoning its elementary

character and destroying its original purpose: to introduce students with a little al-

gebra background to a few of the ideas of algebraic geometry and to help them gain

some appreciation both for algebraic geometry and for origins and applications of

many of the notions of commutative algebra. If working through the book and its

exercises helps prepare a reader for any of the texts mentioned above, that will be an

added benefit.
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First Preface, 1969

Although algebraic geometry is a highly developed and thriving field of mathe-

matics, it is notoriously difficult for the beginner to make his way into the subject.

There are several texts on an undergraduate level that give an excellent treatment of

the classical theory of plane curves, but these do not prepare the student adequately

for modern algebraic geometry. On the other hand, most books with a modern ap-

proach demand considerable background in algebra and topology, often the equiv-

alent of a year or more of graduate study. The aim of these notes is to develop the

theory of algebraic curves from the viewpoint of modern algebraic geometry, but

without excessive prerequisites.

We have assumed that the reader is familiar with some basic properties of rings,

ideals, and polynomials, such as is often covered in a one-semester course in mod-

ern algebra; additional commutative algebra is developed in later sections. Chapter

1 begins with a summary of the facts we need from algebra. The rest of the chapter

is concerned with basic properties of affine algebraic sets; we have given Zariski’s

proof of the important Nullstellensatz.

The coordinate ring, function field, and local rings of an affine variety are studied

in Chapter 2. As in any modern treatment of algebraic geometry, they play a funda-

mental role in our preparation. The general study of affine and projective varieties

is continued in Chapters 4 and 6, but only as far as necessary for our study of curves.

Chapter 3 considers affine plane curves. The classical definition of the multiplic-

ity of a point on a curve is shown to depend only on the local ring of the curve at the

point. The intersection number of two plane curves at a point is characterized by its

properties, and a definition in terms of a certain residue class ring of a local ring is

shown to have these properties. Bézout’s Theorem and Max Noether’s Fundamen-

tal Theorem are the subject of Chapter 5. (Anyone familiar with the cohomology of

projective varieties will recognize that this cohomology is implicit in our proofs.)

In Chapter 7 the nonsingular model of a curve is constructed by means of blow-

ing up points, and the correspondence between algebraic function fields on one

variable and nonsingular projective curves is established. In the concluding chapter

the algebraic approach of Chevalley is combined with the geometric reasoning of

Brill and Noether to prove the Riemann-Roch Theorem.

These notes are from a course taught to Juniors at Brandeis University in 1967–

68. The course was repeated (assuming all the algebra) to a group of graduate stu-

dents during the intensive week at the end of the Spring semester. We have retained

an essential feature of these courses by including several hundred problems. The re-

sults of the starred problems are used freely in the text, while the others range from

exercises to applications and extensions of the theory.

From Chapter 3 on, k denotes a fixed algebraically closed field. Whenever con-

venient (including without comment many of the problems) we have assumed k to

be of characteristic zero. The minor adjustments necessary to extend the theory to

arbitrary characteristic are discussed in an appendix.

Thanks are due to Richard Weiss, a student in the course, for sharing the task

of writing the notes. He corrected many errors and improved the clarity of the text.

Professor Paul Monsky provided several helpful suggestions as I taught the course.
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“Je n’ai jamais été assez loin pour bien sentir l’application de l’algèbre à la géométrie.

Je n’ai mois point cette manière d’opérer sans voir ce qu’on fait, et il me sembloit que

résoudre un probleme de géométrie par les équations, c’étoit jouer un air en tour-

nant une manivelle. La premiere fois que je trouvai par le calcul que le carré d’un

binôme étoit composé du carré de chacune de ses parties, et du double produit de

l’une par l’autre, malgré la justesse de ma multiplication, je n’en voulus rien croire

jusqu’à ce que j’eusse fai la figure. Ce n’étoit pas que je n’eusse un grand goût pour

l’algèbre en n’y considérant que la quantité abstraite; mais appliquée a l’étendue, je

voulois voir l’opération sur les lignes; autrement je n’y comprenois plus rien.”

Les Confessions de J.-J. Rousseau
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Chapter 1

Affine Algebraic Sets

1.1 Algebraic Preliminaries

This section consists of a summary of some notation and facts from commuta-

tive algebra. Anyone familiar with the italicized terms and the statements made here

about them should have sufficient background to read the rest of the notes.

When we speak of a ring, we shall always mean a commutative ring with a mul-

tiplicative identity. A ring homomorphism from one ring to another must take the

multiplicative identity of the first ring to that of the second. A domain, or integral

domain, is a ring (with at least two elements) in which the cancellation law holds. A

field is a domain in which every nonzero element is a unit, i.e., has a multiplicative

inverse.

Z will denote the domain of integers, while Q, R, and C will denote the fields of

rational, real, complex numbers, respectively.

Any domain R has a quotient field K , which is a field containing R as a subring,

and any elements in K may be written (not necessarily uniquely) as a ratio of two

elements of R. Any one-to-one ring homomorphism from R to a field L extends

uniquely to a ring homomorphism from K to L. Any ring homomorphism from a

field to a nonzero ring is one-to-one.

For any ring R, R[X ] denotes the ring of polynomials with coefficients in R. The

degree of a nonzero polynomial
∑

ai X i is the largest integer d such that ad 6= 0; the

polynomial is monic if ad = 1.

The ring of polynomials in n variables over R is written R[X1, . . . , Xn]. We often

write R[X ,Y ] or R[X ,Y , Z ] when n = 2 or 3. The monomials in R[X1, . . . , Xn] are the

polynomials X
i1

1 X
i2

2 · · ·X
in
n , i j nonnegative integers; the degree of the monomial is

i1+·· ·+ in . Every F ∈ R[X1, . . . , Xn] has a unique expression F =
∑

a(i )X (i ), where the

X (i ) are the monomials, a(i ) ∈ R. We call F homogeneous, or a form, of degree d , if all

coefficients a(i ) are zero except for monomials of degree d . Any polynomial F has a

unique expression F = F0 +F1 +·· ·+Fd , where Fi is a form of degree i ; if Fd 6= 0, d is

the degree of F , written deg(F ). The terms F0, F1, F2, . . . are called the constant, lin-

ear, quadratic, . . . terms of F ; F is constant if F = F0. The zero polynomial is allowed

1



2 CHAPTER 1. AFFINE ALGEBRAIC SETS

to have any degree. If R is a domain, deg(FG) = deg(F )+deg(G). The ring R is a sub-

ring of R[X1, . . . , Xn], and R[X1, . . . , Xn] is characterized by the following property: if

ϕ is a ring homomorphism from R to a ring S, and s1, . . . , sn are elements in S, then

there is a unique extension of ϕ to a ring homomorphism ϕ̃ from R[X1, . . . , Xn] to S

such that ϕ̃(Xi ) = si , for 1 ≤ i ≤ n. The image of F under ϕ̃ is written F (s1, . . . , sn).

The ring R[X1, . . . , Xn] is canonically isomorphic to R[X1, . . . , Xn−1][Xn].

An element a in a ring R is irreducible if it is not a unit or zero, and for any fac-

torization a = bc, b,c ∈ R, either b or c is a unit. A domain R is a unique factorization

domain, written UFD, if every nonzero element in R can be factored uniquely, up to

units and the ordering of the factors, into irreducible elements.

If R is a UFD with quotient field K , then (by Gauss) any irreducible element F ∈
R[X ] remains irreducible when considered in K [X ]; it follows that if F and G are

polynomials in R[X ] with no common factors in R[X ], they have no common factors

in K [X ].

If R is a UFD, then R[X ] is also a UFD. Consequently k[X1, . . . , Xn] is a UFD for

any field k. The quotient field of k[X1, . . . , Xn] is written k(X1, . . . , Xn), and is called

the field of rational functions in n variables over k.

If ϕ : R → S is a ring homomorphism, the set ϕ−1(0) of elements mapped to zero

is the kernel of ϕ, written Ker(ϕ). It is an ideal in R. And ideal I in a ring R is proper

if I 6= R. A proper ideal is maximal if it is not contained in any larger proper ideal. A

prime ideal is an ideal I such that whenever ab ∈ I , either a ∈ I or b ∈ I .

A set S of elements of a ring R generates an ideal I = {
∑

ai si | si ∈ S, ai ∈ R}. An

ideal is finitely generated if it is generated by a finite set S = { f1, . . . , fn}; we then write

I = ( f1, . . . , fn). An ideal is principal if it is generated by one element. A domain in

which every ideal is principal is called a principal ideal domain, written PID. The

ring of integers Z and the ring of polynomials k[X ] in one variable over a field k are

examples of PID’s. Every PID is a UFD. A principal ideal I = (a) in a UFD is prime if

and only if a is irreducible (or zero).

Let I be an ideal in a ring R. The residue class ring of R modulo I is written R/I ;

it is the set of equivalence classes of elements in R under the equivalence relation:

a ∼ b if a−b ∈ I . The equivalence class containing a may be called the I -residue of a;

it is often denoted by a. The classes R/I form a ring in such a way that the mapping

π : R → R/I taking each element to its I -residue is a ring homomorphism. The ring

R/I is characterized by the following property: if ϕ : R → S is a ring homomorphism

to a ring S, and ϕ(I ) = 0, then there is a unique ring homomorphism ϕ : R/I → S

such that ϕ=ϕ◦π. A proper ideal I in R is prime if and only if R/I is a domain, and

maximal if and only if R/I is a field. Every maximal ideal is prime.

Let k be a field, I a proper ideal in k[X1, . . . , Xn]. The canonical homomorphism

π from k[X1, . . . , Xn] to k[X1, . . . , Xn]/I restricts to a ring homomorphism from k

to k[X1, . . . , Xn]/I . We thus regard k as a subring of k[X1, . . . , Xn]/I ; in particular,

k[X1, . . . , Xn]/I is a vector space over k.

Let R be a domain. The characteristic of R, char(R), is the smallest integer p such

that 1+·· ·+1 (p times) = 0, if such a p exists; otherwise char(R) = 0. If ϕ : Z→ R is

the unique ring homomorphism fromZ to R, then Ker(ϕ) = (p), so char(R) is a prime

number or zero.

If R is a ring, a ∈ R, F ∈ R[X ], and a is a root of F , then F = (X −a)G for a unique
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G ∈ R[X ]. A field k is algebraically closed if any non-constant F ∈ k[X ] has a root.

It follows that F = µ
∏

(X −λi )ei , µ, λi ∈ k, where the λi are the distinct roots of F ,

and ei is the multiplicity of λi . A polynomial of degree d has d roots in k, counting

multiplicities. The field C of complex numbers is an algebraically closed field.

Let R be any ring. The derivative of a polynomial F =
∑

ai X i ∈ R[X ] is defined to

be
∑

i ai X i−1, and is written either ∂F
∂X

or FX . If F ∈ R[X1, . . . , Xn], ∂F
∂Xi

= FXi
is defined

by considering F as a polynomial in Xi with coefficients in R[X1, . . . , Xi−1, Xi+1, . . . , Xn].

The following rules are easily verified:

(1) (aF +bG)X = aFX +bGX , a,b ∈ R.
(2) FX = 0 if F is a constant.
(3) (FG)X = FX G +FGX , and (F n)X = nF n−1FX .
(4) If G1, . . . ,Gn ∈ R[X ], and F ∈ R[X1, . . . , Xn], then

F (G1, . . . ,Gn)X =
n∑

i=1

FXi
(G1, . . . ,Gn)(Gi )X .

(5) FXi X j
= FX j Xi

, where we have written FXi X j
for (FXi

)X j
.

(6) (Euler’s Theorem) If F is a form of degree m in R[X1, . . . , Xn], then

mF =
n∑

i=1

Xi FXi
.

Problems

1.1.∗ Let R be a domain. (a) If F , G are forms of degree r , s respectively in R[X1, . . . , Xn],

show that FG is a form of degree r+s. (b) Show that any factor of a form in R[X1, . . . , Xn]

is also a form.

1.2.∗ Let R be a UFD, K the quotient field of R. Show that every element z of K may

be written z = a/b, where a,b ∈ R have no common factors; this representative is

unique up to units of R.

1.3.∗ Let R be a PID, Let P be a nonzero, proper, prime ideal in R. (a) Show that P is

generated by an irreducible element. (b) Show that P is maximal.

1.4.∗ Let k be an infinite field, F ∈ k[X1, . . . , Xn]. Suppose F (a1, . . . , an) = 0 for all

a1, . . . , an ∈ k. Show that F = 0. (Hint: Write F =
∑

Fi X i
n , Fi ∈ k[X1, . . . , Xn−1]. Use

induction on n, and the fact that F (a1, . . . , an−1, Xn) has only a finite number of roots

if any Fi (a1, . . . , an−1) 6= 0.)

1.5.∗ Let k be any field. Show that there are an infinite number of irreducible monic

polynomials in k[X ]. (Hint: Suppose F1, . . . ,Fn were all of them, and factor F1 · · ·Fn+
1 into irreducible factors.)

1.6.∗ Show that any algebraically closed field is infinite. (Hint: The irreducible monic

polynomials are X −a, a ∈ k.)

1.7.∗ Let k be a field, F ∈ k[X1, . . . , Xn], a1, . . . , an ∈ k. (a) Show that

F =
∑

λ(i )(X1 −a1)i1 . . . (Xn −an)in , λ(i ) ∈ k.

(b) If F (a1, . . . , an) = 0, show that F =
∑n

i=1
(Xi − ai )Gi for some (not unique) Gi in

k[X1, . . . , Xn].
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1.2 Affine Space and Algebraic Sets

Let k be any field. By An(k), or simply An (if k is understood), we shall mean the

cartesian product of k with itself n times: An(k) is the set of n-tuples of elements of

k. We callAn(k) affine n-space over k; its elements will be called points. In particular,

A1(k) is the affine line, A2(k) the affine plane.

If F ∈ k[X1, . . . , Xn], a point P = (a1, . . . , an) in An(k) is called a zero of F if F (P ) =
F (a1, . . . , an) = 0. If F is not a constant, the set of zeros of F is called the hypersurface

defined by F , and is denoted by V (F ). A hypersurface in A2(k) is called an affine

plane curve. If F is a polynomial of degree one, V (F ) is called a hyperplane in An(k);

if n = 2, it is a line.

Examples. Let k =R.

a. V (Y 2 −X (X 2 −1)) ⊂A2 b. V (Y 2 −X 2(X +1)) ⊂A2

c. V (Z 2 − (X 2 +Y 2)) ⊂A3 d. V (Y 2 −X Y −X 2Y +X 3)) ⊂A2

More generally, if S is any set of polynomials in k[X1, . . . , Xn], we let V (S) = {P ∈
An | F (P ) = 0 for all F ∈ S}: V (S) =

⋂
F∈S V (F ). If S = {F1, . . . ,Fr }, we usually write

V (F1, . . . ,Fr ) instead of V ({F1, . . . ,Fr }). A subset X ⊂An(k) is an affine algebraic set,

or simply an algebraic set, if X =V (S) for some S. The following properties are easy

to verify:

(1) If I is the ideal in k[X1, . . . , Xn] generated by S, then V (S) = V (I ); so every

algebraic set is equal to V (I ) for some ideal I .

(2) If {Iα} is any collection of ideals, then V (
⋃

α Iα) =
⋂

αV (Iα); so the intersection

of any collection of algebraic sets is an algebraic set.

(3) If I ⊂ J , then V (I ) ⊃V (J ).
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(4) V (FG) = V (F ) ∪V (G) for any polynomials F,G ; V (I ) ∪V (J ) = V ({FG | F ∈
I ,G ∈ J }); so any finite union of algebraic sets is an algebraic set.

(5) V (0) = An(k); V (1) = ;; V (X1 − a1, . . . , Xn − an) = {(a1, . . . , an)} for ai ∈ k. So

any finite subset of An(k) is an algebraic set.

Problems

1.8.∗ Show that the algebraic subsets of A1(k) are just the finite subsets, together

with A1(k) itself.

1.9. If k is a finite field, show that every subset of An(k) is algebraic.

1.10. Give an example of a countable collection of algebraic sets whose union is not

algebraic.

1.11. Show that the following are algebraic sets:

(a) {(t , t 2, t 3) ∈A3(k) | t ∈ k};

(b) {(cos(t ),sin(t )) ∈A2(R) | t ∈R};

(c) the set of points in A2(R) whose polar coordinates (r,θ) satisfy the equation

r = sin(θ).

1.12. Suppose C is an affine plane curve, and L is a line in A2(k), L 6⊂ C . Suppose

C = V (F ), F ∈ k[X ,Y ] a polynomial of degree n. Show that L ∩C is a finite set of no

more than n points. (Hint: Suppose L =V (Y −(aX +b)), and consider F (X , aX +b) ∈
k[X ].)

1.13. Show that each of the following sets is not algebraic:

(a) {(x, y) ∈A2(R) | y = sin(x)}.

(b) {(z, w) ∈A2(C) | |z|2 +|w |2 = 1}, where |x + i y |2 = x2 + y2 for x, y ∈R.

(c) {(cos(t ),sin(t ), t ) ∈A3(R) | t ∈R}.

1.14.∗ Let F be a nonconstant polynomial in k[X1, . . . , Xn], k algebraically closed.

Show that An(k)rV (F ) is infinite if n ≥ 1, and V (F ) is infinite if n ≥ 2. Conclude that

the complement of any proper algebraic set is infinite. (Hint: See Problem 1.4.)

1.15.∗ Let V ⊂An(k), W ⊂Am(k) be algebraic sets. Show that

V ×W = {(a1, . . . , an ,b1, . . . ,bm) | (a1, . . . , an) ∈V , (b1, . . . ,bm) ∈W }

is an algebraic set in An+m(k). It is called the product of V and W .

1.3 The Ideal of a Set of Points

For any subset X of An(k), we consider those polynomials that vanish on X ; they

form an ideal in k[X1, . . . , Xn], called the ideal of X , and written I (X ). I (X ) = {F ∈
k[X1, . . . , Xn] | F (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X }. The following properties show

some of the relations between ideals and algebraic sets; the verifications are left to

the reader (see Problems 1.4 and 1.7):

(6) If X ⊂ Y , then I (X ) ⊃ I (Y ).
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(7) I (;) = k[X1, . . . , Xn]; I (An(k)) = (0) if k is an infinite field;

I ({(a1, . . . , an)}) = (X1 −a1, . . . , Xn −an) for a1, . . . , an ∈ k.

(8) I (V (S)) ⊃ S for any set S of polynomials; V (I (X )) ⊃ X for any set X of points.

(9) V (I (V (S))) =V (S) for any set S of polynomials, and I (V (I (X ))) = I (X ) for any

set X of points. So if V is an algebraic set, V = V (I (V )), and if I is the ideal of an

algebraic set, I = I (V (I )).

An ideal that is the ideal of an algebraic set has a property not shared by all ideals:

if I = I (X ), and F n ∈ I for some integer n > 0, then F ∈ I . If I is any ideal in a ring R,

we define the radical of I , written Rad(I ), to be {a ∈ R | an ∈ I for some integer n > 0}.

Then Rad(I ) is an ideal (Problem 1.18 below) containing I . An ideal I is called a

radical ideal if I = Rad(I ). So we have property

(10) I (X ) is a radical ideal for any X ⊂An(k).

Problems

1.16.∗ Let V , W be algebraic sets in An(k). Show that V = W if and only if I (V ) =
I (W ).

1.17.∗ (a) Let V be an algebraic set in An(k), P ∈An(k) a point not in V . Show that

there is a polynomial F ∈ k[X1, . . . , Xn] such that F (Q) = 0 for all Q ∈V , but F (P ) = 1.

(Hint: I (V ) 6= I (V ∪ {P }).) (b) Let P1, . . . ,Pr be distinct points in An(k), not in an

algebraic set V . Show that there are polynomials F1, . . . ,Fr ∈ I (V ) such that Fi (P j ) = 0

if i 6= j , and Fi (Pi ) = 1. (Hint: Apply (a) to the union of V and all but one point.)

(c) With P1, . . . ,Pr and V as in (b), and ai j ∈ k for 1 ≤ i , j ≤ r , show that there are

Gi ∈ I (V ) with Gi (P j ) = ai j for all i and j . (Hint: Consider
∑

j ai j F j .)

1.18.∗ Let I be an ideal in a ring R. If an ∈ I , bm ∈ I , show that (a +b)n+m ∈ I . Show

that Rad(I ) is an ideal, in fact a radical ideal. Show that any prime ideal is radical.

1.19. Show that I = (X 2 +1) ⊂ R[X ] is a radical (even a prime) ideal, but I is not the

ideal of any set in A1(R).

1.20.∗ Show that for any ideal I in k[X1, . . . , Xn], V (I ) = V (Rad(I )), and Rad(I ) ⊂
I (V (I )).

1.21.∗ Show that I = (X1−a1, . . . , Xn−an) ⊂ k[X1, . . . , Xn] is a maximal ideal, and that

the natural homomorphism from k to k[X1, . . . , Xn]/I is an isomorphism.

1.4 The Hilbert Basis Theorem

Although we have allowed an algebraic set to be defined by any set of polynomi-

als, in fact a finite number will always do.

Theorem 1. Every algebraic set is the intersection of a finite number of hypersurfaces

Proof. Let the algebraic set be V (I ) for some ideal I ⊂ k[X1, . . . , Xn]. It is enough to

show that I is finitely generated, for if I = (F1, . . . ,Fr ), then V (I ) =V (F1)∩·· ·∩V (Fr ).

To prove this fact we need some algebra:
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A ring is said to be Noetherian if every ideal in the ring is finitely generated. Fields

and PID’s are Noetherian rings. Theorem 1, therefore, is a consequence of the

HILBERT BASIS THEOREM. If R is a Noetherian ring, then R[X1, . . . , Xn] is a Noethe-

rian ring.

Proof. Since R[X1, . . . , Xn] is isomorphic to R[X1, . . . , Xn−1][Xn], the theorem will fol-

low by induction if we can prove that R[X ] is Noetherian whenever R is Noetherian.

Let I be an ideal in R[X ]. We must find a finite set of generators for I .

If F = a1+a1X +·· ·+ad X d ∈ R[X ], ad 6= 0, we call ad the leading coefficient of F .

Let J be the set of leading coefficients of all polynomials in I . It is easy to check that

J is an ideal in R, so there are polynomials F1, . . . ,Fr ∈ I whose leading coefficients

generate J . Take an integer N larger than the degree of each Fi . For each m ≤ N ,

let Jm be the ideal in R consisting of all leading coefficients of all polynomials F ∈ I

such that deg(F ) ≤ m. Let {Fm j } be a finite set of polynomials in I of degree ≤ m

whose leading coefficients generate Jm . Let I ′ be the ideal generated by the Fi ’s and

all the Fm j ’s. It suffices to show that I = I ′.
Suppose I ′ were smaller than I ; let G be an element of I of lowest degree that is

not in I ′. If deg(G) > N , we can find polynomials Qi such that
∑

Qi Fi and G have the

same leading term. But then deg(G −
∑

Qi Fi ) < degG , so G −
∑

Qi Fi ∈ I ′, so G ∈ I ′.
Similarly if deg(G) = m ≤ N , we can lower the degree by subtracting off

∑
Q j Fm j for

some Q j . This proves the theorem.

Corollary. k[X1, . . . , Xn] is Noetherian for any field k.

Problem

1.22.∗ Let I be an ideal in a ring R, π : R → R/I the natural homomorphism. (a)

Show that for every ideal J ′ of R/I , π−1(J ′) = J is an ideal of R containing I , and

for every ideal J of R containing I , π(J ) = J ′ is an ideal of R/I . This sets up a natural

one-to-one correspondence between {ideals of R/I } and {ideals of R that contain I }.

(b) Show that J ′ is a radical ideal if and only if J is radical. Similarly for prime and

maximal ideals. (c) Show that J ′ is finitely generated if J is. Conclude that R/I is

Noetherian if R is Noetherian. Any ring of the form k[X1, . . . , Xn]/I is Noetherian.

1.5 Irreducible Components of an Algebraic Set

An algebraic set may be the union of several smaller algebraic sets (Section 1.2

Example d). An algebraic set V ⊂ An is reducible if V = V1 ∪V2, where V1, V2 are

algebraic sets in An , and Vi 6=V , i = 1,2. Otherwise V is irreducible.

Proposition 1. An algebraic set V is irreducible if and only if I (V ) is prime.

Proof. If I (V ) is not prime, suppose F1F2 ∈ I (V ), Fi 6∈ I (V ). Then V = (V ∩V (F1))∪
(V ∩V (F2)), and V ∩V (Fi ) $ V , so V is reducible.

Conversely if V =V1∪V2, Vi $ V , then I (Vi ) % I (V ); let Fi ∈ I (Vi ), Fi 6∈ I (V ). Then

F1F2 ∈ I (V ), so I (V ) is not prime.
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We want to show that an algebraic set is the union of a finite number of irre-

ducible algebraic sets. If V is reducible, we write V = V1 ∪V2; if V2 is reducible, we

write V2 =V3 ∪V4, etc. We need to know that this process stops.

Lemma. Let S be any nonempty collection of ideals in a Noetherian ring R. Then S

has a maximal member, i.e. there is an ideal I in S that is not contained in any other

ideal of S .

Proof. Choose (using the axiom of choice) an ideal from each subset of S . Let I0 be

the chosen ideal for S itself. Let S1 = {I ∈S | I % I0}, and let I1 be the chosen ideal

of S1. Let S2 = {I ∈ S | I % I1}, etc. It suffices to show that some Sn is empty. If

not let I =
⋃∞

n=0 In , an ideal of R. Let F1, . . . ,Fr generate I ; each Fi ∈ In if n is chosen

sufficiently large. But then In = I , so In+1 = In , a contradiction.

It follows immediately from this lemma that any collection of algebraic sets in

An(k) has a minimal member. For if {Vα} is such a collection, take a maximal mem-

ber I (Vα0 ) from {I (Vα)}. Then Vα0 is clearly minimal in the collection.

Theorem 2. Let V be an algebraic set in An(k). Then there are unique irreducible

algebraic sets V1, . . . ,Vm such that V =V1 ∪·· ·∪Vm and Vi 6⊂V j for all i 6= j .

Proof. Let S = {algebraic sets V ⊂ An(k) | V is not the union of a finite number

of irreducible algebraic sets}. We want to show that S is empty. If not, let V be

a minimal member of S . Since V ∈ S , V is not irreducible, so V = V1 ∪V2, Vi $
V . Then Vi 6∈ S , so Vi = Vi 1 ∪ ·· · ∪Vi mi

, Vi j irreducible. But then V =
⋃

i , j Vi j , a

contradiction.

So any algebraic set V may be written as V = V1 ∪ ·· · ∪Vm , Vi irreducible. To

get the second condition, simply throw away any Vi such that Vi ⊂ V j for i 6= j . To

show uniqueness, let V =W1 ∪·· ·∪Wm be another such decomposition. Then Vi =⋃
j (W j ∩Vi ), so Vi ⊂W j (i ) for some j (i ). Similarly W j (i ) ⊂Vk for some k. But Vi ⊂Vk

implies i = k, so Vi =W j (i ). Likewise each W j is equal to some Vi ( j ).

The Vi are called the irreducible components of V ; V =V1∪·· ·∪Vm is the decom-

position of V into irreducible components.

Problems

1.23. Give an example of a collection S of ideals in a Noetherian ring such that no

maximal member of S is a maximal ideal.

1.24. Show that every proper ideal in a Noetherian ring is contained in a maximal

ideal. (Hint: If I is the ideal, apply the lemma to {proper ideals that contain I }.)

1.25. (a) Show that V (Y − X 2) ⊂ A2(C) is irreducible; in fact, I (V (Y − X 2)) = (Y −
X 2). (b) Decompose V (Y 4 − X 2,Y 4 − X 2Y 2 + X Y 2 − X 3) ⊂ A2(C) into irreducible

components.

1.26. Show that F = Y 2+X 2(X −1)2 ∈R[X ,Y ] is an irreducible polynomial, but V (F )

is reducible.
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1.27. Let V , W be algebraic sets in An(k), with V ⊂ W . Show that each irreducible

component of V is contained in some irreducible component of W .

1.28. If V = V1 ∪ ·· · ∪Vr is the decomposition of an algebraic set into irreducible

components, show that Vi 6⊂
⋃

j 6=i V j .

1.29.∗ Show that An(k) is irreducible if k is infinite,.

1.6 Algebraic Subsets of the Plane

Before developing the general theory further, we will take a closer look at the

affine plane A2(k), and find all its algebraic subsets. By Theorem 2 it is enough to

find the irreducible algebraic sets.

Proposition 2. Let F and G be polynomials in k[X ,Y ] with no common factors. Then

V (F,G) =V (F )∩V (G) is a finite set of points.

Proof. F and G have no common factors in k[X ][Y ], so they also have no common

factors in k(X )[Y ] (see Section 1). Since k(X )[Y ] is a PID, (F,G) = (1) in k(X )[Y ], so

RF +SG = 1 for some R,S ∈ k(X )[Y ]. There is a nonzero D ∈ k[X ] such that DR = A,

DS = B ∈ k[X ,Y ]. Therefore AF +BG = D . If (a,b) ∈ V (F,G), then D(a) = 0. But

D has only a finite number of zeros. This shows that only a finite number of X -

coordinates appear among the points of V (F,G). Since the same reasoning applies

to the Y -coordinates, there can be only a finite number of points.

Corollary 1. If F is an irreducible polynomial in k[X ,Y ] such that V (F ) is infinite,

then I (V (F )) = (F ), and V (F ) is irreducible.

Proof. If G ∈ I (V (F )), then V (F,G) is infinite, so F divides G by the proposition, i.e.,

G ∈ (F ). Therefore I (V (F )) ⊃ (F ), and the fact that V (F ) is irreducible follows from

Proposition 1.

Corollary 2. Suppose k is infinite. Then the irreducible algebraic subsets of A2(k)

are: A2(k), ;, points, and irreducible plane curves V (F ), where F is an irreducible

polynomial and V (F ) is infinite.

Proof. Let V be an irreducible algebraic set in A2(k). If V is finite or I (V ) = (0), V

is of the required type. Otherwise I (V ) contains a nonconstant polynomial F ; since

I (V ) is prime, some irreducible polynomial factor of F belongs to I (V ), so we may

assume F is irreducible. Then I (V ) = (F ); for if G ∈ I (V ), G 6∈ (F ), then V ⊂V (F,G) is

finite.

Corollary 3. Assume k is algebraically closed, F a nonconstant polynomial in k[X ,Y ].

Let F = F
n1

1 · · ·F nr
r be the decomposition of F into irreducible factors. Then V (F ) =

V (F1) ∪ ·· · ∪V (Fr ) is the decomposition of V (F ) into irreducible components, and

I (V (F )) = (F1 · · ·Fr ).

Proof. No Fi divides any F j , j 6= i , so there are no inclusion relations among the

V (Fi ). And I (
⋃

i V (Fi )) =
⋂

i I (V (Fi )) =
⋂

i (Fi ). Since any polynomial divisible by

each Fi is also divisible by F1 · · ·Fr ,
⋂

i (Fi ) = (F1 · · ·Fr ). Note that the V (Fi ) are infinite

since k is algebraically closed (Problem 1.14).
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Problems

1.30. Let k = R. (a) Show that I (V (X 2 +Y 2 +1)) = (1). (b) Show that every algebraic

subset of A2(R) is equal to V (F ) for some F ∈R[X ,Y ].

This indicates why we usually require that k be algebraically closed.

1.31. (a) Find the irreducible components of V (Y 2 −X Y −X 2Y +X 3) in A2(R), and

also in A2(C). (b) Do the same for V (Y 2 −X (X 2 −1)), and for V (X 3 +X −X 2Y −Y ).

1.7 Hilbert’s Nullstellensatz

If we are given an algebraic set V , Proposition 2 gives a criterion for telling whether

V is irreducible or not. What is lacking is a way to describe V in terms of a given set

of polynomials that define V . The preceding paragraph gives a beginning to this

problem, but it is the Nullstellensatz, or Zeros-theorem, which tells us the exact re-

lationship between ideals and algebraic sets. We begin with a somewhat weaker

theorem, and show how to reduce it to a purely algebraic fact. In the rest of this sec-

tion we show how to deduce the main result from the weaker theorem, and give a

few applications.

We assume throughout this section that k is algebraically closed.

WEAK NULLSTELLENSATZ. If I is a proper ideal in k[X1, . . . , Xn], then V (I ) 6= ;.

Proof. We may assume that I is a maximal ideal, for there is a maximal ideal J con-

taining I (Problem 1.24), and V (J ) ⊂V (I ). So L = k[X1, . . . , Xn]/I is a field, and k may

be regarded as a subfield of L (cf. Section 1).

Suppose we knew that k = L. Then for each i there is an ai ∈ k such that the I -

residue of Xi is ai , or Xi −ai ∈ I . But (X1−a1, . . . , Xn−an) is a maximal ideal (Problem

1.21), so I = (X1 −a1, . . . , Xn −an), and V (I ) = {(a1, . . . , an)} 6= ;.

Thus we have reduced the problem to showing:

(∗) If an algebraically closed field k is a subfield of a field L, and there is a

ring homomorphism from k[X1, . . . , Xn] onto L (that is the identity on k),

then k = L.

The algebra needed to prove this will be developed in the next two sections; (∗)

will be proved in Section 10.

HILBERT’S NULLSTELLENSATZ. Let I be an ideal in k[X1, . . . , Xn] (k algebraically

closed). Then I (V (I )) = Rad(I ).

Note. In concrete terms, this says the following: if F1, F2, . . . , Fr and G are in

k[X1, . . . , Xn], and G vanishes wherever F1,F2, . . . ,Fr vanish, then there is an equa-

tion GN = A1F1 + A2F2 +·· ·+ Ar F r , for some N > 0 and some Ai ∈ k[X1, . . . , Xn].

Proof. That Rad(I ) ⊂ I (V (I )) is easy (Problem 1.20). Suppose that G is in the ideal

I (V (F1, . . . ,Fr )), Fi ∈ k[X1, . . . , Xn]. Let J = (F1, . . . ,Fr , Xn+1G−1) ⊂ k[X1, . . . , Xn , Xn+1].
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Then V (J ) ⊂An+1(k) is empty, since G vanishes wherever all that Fi ’s are zero. Ap-

plying the Weak Nullstellensatz to J , we see that 1 ∈ J , so there is an equation 1 =∑
Ai (X1, . . . , Xn+1)Fi +B(X1, . . . , Xn+1)(Xn+1G −1). Let Y = 1/Xn+1, and multiply the

equation by a high power of Y , so that an equation Y N =
∑

Ci (X1, . . . , Xn ,Y )Fi +
D(X1, . . . , Xn ,Y )(G −Y ) in k[X1, . . . , Xn ,Y ] results. Substituting G for Y gives the re-

quired equation.

The above proof is due to Rabinowitsch. The first three corollaries are immediate

consequences of the theorem.

Corollary 1. If I is a radical ideal in k[X1, . . . , Xn], then I (V (I )) = I . So there is a

one-to-one correspondence between radical ideals and algebraic sets.

Corollary 2. If I is a prime ideal, then V (I ) is irreducible. There is a one-to-one cor-

respondence between prime ideals and irreducible algebraic sets. The maximal ideals

correspond to points.

Corollary 3. Let F be a nonconstant polynomial in k[X1, . . . , Xn], F = F
n1

1 · · ·F nr
r the

decomposition of F into irreducible factors. Then V (F ) = V (F1)∪ ·· · ∪V (Fr ) is the

decomposition of V (F ) into irreducible components, and I (V (F )) = (F1 · · ·Fr ). There

is a one-to-one correspondence between irreducible polynomials F ∈ k[X1, . . . , Xn] (up

to multiplication by a nonzero element of k) and irreducible hypersurfaces in An(k).

Corollary 4. Let I be an ideal in k[X1, . . . , Xn]. Then V (I ) is a finite set if and only if

k[X1, . . . , Xn]/I is a finite dimensional vector space over k. If this occurs, the number

of points in V (I ) is at most dimk (k[X1, . . . , Xn]/I ).

Proof. Let P1, . . . ,Pr ∈ V (I ). Choose F1, . . . ,Fr ∈ k[X1, . . . , Xn] such that Fi (P j ) = 0 if

i 6= j , and Fi (Pi ) = 1 (Problem 1.17); let F i be the I -residue of Fi . If
∑
λi F i = 0, λi ∈ k,

then
∑
λi Fi ∈ I , so λ j = (

∑
λi Fi )(P j ) = 0. Thus the F i are linearly independent over

k, so r ≤ dimk (k[X1, . . . , Xn]/I ).

Conversely, if V (I ) = {P1, . . . ,Pr } is finite, let Pi = (ai 1, . . . , ai n), and define F j by

F j =
∏r

i=1
(X j − ai j ), j = 1, . . . ,n. Then F j ∈ I (V (I )), so F N

j
∈ I for some N > 0 (Take

N large enough to work for all F j ). Taking I -residues, F
N

j = 0, so X
r N

j is a k-linear

combination of 1, X j , . . . , X
r N−1

j . It follows by induction that X
s

j is a k-linear combi-

nation of 1, X j , . . . , X
r N−1

j for all s, and hence that the set {X
m1

1 , · · · · ·X
mn

n | mi < r N }

generates k[X1, . . . , Xn]/I as a vector space over k.

Problems

1.32. Show that both theorems and all of the corollaries are false if k is not alge-

braically closed.

1.33. (a) Decompose V (X 2 +Y 2 − 1, X 2 − Z 2 − 1) ⊂ A3(C) into irreducible compo-

nents. (b) Let V = {(t , t 2, t 3) ∈ A3(C) | t ∈ C}. Find I (V ), and show that V is irre-

ducible.
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1.34. Let R be a UFD. (a) Show that a monic polynomial of degree two or three in

R[X ] is irreducible if and only if it has no roots in R. (b) The polynomial X 2−a ∈ R[X ]

is irreducible if and only if a is not a square inR.

1.35. Show that V (Y 2 − X (X −1)(X −λ)) ⊂A2(k) is an irreducible curve for any al-

gebraically closed field k, and any λ ∈ k.

1.36. Let I = (Y 2 −X 2,Y 2 +X 2) ⊂C[X ,Y ]. Find V (I ) and dimC(C[X ,Y ]/I ).

1.37.∗ Let K be any field, F ∈ K [X ] a polynomial of degree n > 0. Show that the

residues 1, X , . . . , X
n−1

form a basis of K [X ]/(F ) over K .

1.38.∗ Let R = k[X1, . . . , Xn], k algebraically closed, V = V (I ). Show that there is a

natural one-to-one correspondence between algebraic subsets of V and radical ide-

als in k[X1, . . . , Xn]/I , and that irreducible algebraic sets (resp. points) correspond to

prime ideals (resp. maximal ideals). (See Problem 1.22.)

1.39. (a) Let R be a UFD, and let P = (t ) be a principal, proper, prime ideal. Show

that there is no prime ideal Q such that 0 ⊂Q ⊂ P , Q 6= 0, Q 6= P . (b) Let V =V (F ) be

an irreducible hypersurface in An . Show that there is no irreducible algebraic set W

such that V ⊂W ⊂An , W 6=V , W 6=An .

1.40. Let I = (X 2 −Y 3,Y 2 − Z 3) ⊂ k[X ,Y , Z ]. Define α : k[X ,Y , Z ] → k[T ] by α(X ) =
T 9,α(Y ) = T 6,α(Z ) = T 4. (a) Show that every element of k[X ,Y , Z ]/I is the residue

of an element A + X B +Y C + X Y D , for some A,B ,C ,D ∈ k[Z ]. (b) If F = A + X B +
Y C + X Y D , A,B ,C ,D ∈ k[Z ], and α(F ) = 0, compare like powers of T to conclude

that F = 0. (c) Show that Ker(α) = I , so I is prime, V (I ) is irreducible, and I (V (I )) = I .

1.8 Modules; Finiteness Conditions

Let R be a ring. An R-module is a commutative group M (the group law on M is

written +; the identity of the group is 0, or 0M ) together with a scalar multiplication,

i.e., a mapping from R×M to M (denote the image of (a,m) by a·m or am) satisfying:

(i) (a +b)m = am +bm for a,b ∈ R, m ∈ M .

(ii) a · (m +n) = am +an for a ∈ R, m,n ∈ M .

(iii) (ab) ·m = a · (bm) for a,b ∈ R, m ∈ M .

(iv) 1R ·m = m for m ∈ M , where 1R is the multiplicative identity in R.

Exercise. Show that 0R ·m = 0M for all m ∈ M .

Examples. (1) A Z-module is just a commutative group, where (±a)m is ±(m +
·· ·+m) (a times) for a ∈Z, a ≥ 0.

(2) If R is a field, an R-module is the same thing as a vector space over R.

(3) The multiplication in R makes any ideal of R into an R-module.

(4) If ϕ : R → S is a ring homomorphism, we define r · s for r ∈ R, s ∈ S, by the

equation r · s = ϕ(r )s. This makes S into an R-module. In particular, if a ring R is a

subring of a ring S, then S is an R-module.

A subgroup N of an R-module M is called a submodule if am ∈ N for all a ∈ R,

m ∈ N ; N is then an R-module. If S is a set of elements of an R-module M , the
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submodule generated by S is defined to be {
∑

ri si | ri ∈ R, si ∈ S}; it is the smallest

submodule of M that contains S. If S = {s1, . . . , sn} is finite, the submodule generated

by S is denoted by
∑

Rsi . The module M is said to be finitely generated if M =
∑

Rsi

for some s1, . . . , sn ∈ M . Note that this concept agrees with the notions of finitely gen-

erated commutative groups and ideals, and with the notion of a finite-dimensional

vector space if R is a field.

Let R be a subring of a ring S. There are several types of finiteness conditions for

S over R, depending on whether we consider S as an R-module, a ring, or (possibly)

a field.

(A) S is said to be module-finite over R, if S is finitely generated as an R-module.

If R and S are fields, and S is module finite over R, we denote the dimension of S

over R by [S : R].

(B) Let v1, . . . , vn ∈ S. Let ϕ : R[X1, . . . , Xn] → S be the ring homomorphism taking

Xi to vi . The image of ϕ is written R[v1, . . . , vn]. It is a subring of S containing R and

v1, . . . , vn , and it is the smallest such ring. Explicitly, R[v1, . . . , vn] = {
∑

a(i )v
i1

1 · · ·v in
n |

a(i ) ∈ R}. The ring S is ring-finite over R if S = R[v1, . . . , vn] for some v1, . . . , vn ∈ S.

(C) Suppose R = K , S = L are fields. If v1, . . . , vn ∈ L, let K (v1, . . . , vn) be the quo-

tient field of K [v1, . . . , vn]. We regard K (v1, . . . , vn) as a subfield of L; it is the smallest

subfield of L containing K and v1, . . . , vn . The field L is said to be a finitely generated

field extension of K if L = K (v1, . . . , vn) for some v1, . . . , vn ∈ L.

Problems

1.41.∗ If S is module-finite over R, then S is ring-finite over R.

1.42. Show that S = R[X ] (the ring of polynomials in one variable) is ring-finite over

R, but not module-finite.

1.43.∗ If L is ring-finite over K (K , L fields) then L is a finitely generated field exten-

sion of K .

1.44.∗ Show that L = K (X ) (the field of rational functions in one variable) is a finitely

generated field extension of K , but L is not ring-finite over K . (Hint: If L were ring-

finite over K , a common denominator of ring generators would be an element b ∈
K [X ] such that for all z ∈ L, bn z ∈ K [X ] for some n; but let z = 1/c, where c doesn’t

divide b (Problem 1.5).)

1.45.∗ Let R be a subring of S, S a subring of T .

(a) If S =
∑

Rvi , T =
∑

Sw j , show that T =
∑

Rvi w j .

(b) If S = R[v1, . . . , vn], T = S[w1, . . . , wm], show that T = R[v1, . . . , vn , w1, . . . , wm].

(c) If R, S, T are fields, and S = R(v1, . . . , vn), T = S(w1, . . . , wm), show that T =
R(v1, . . . , vn , w1, . . . , wm).

So each of the three finiteness conditions is a transitive relation.
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1.9 Integral Elements

Let R be a subring of a ring S. An element v ∈ S is said to be integral over R if

there is a monic polynomial F = X n +a1X n−1 +·· ·+an ∈ R[X ] such that F (v) = 0. If

R and S are fields, we usually say that v is algebraic over R if v is integral over R.

Proposition 3. Let R be a subring of a domain S, v ∈ S. Then the following are equiv-

alent:

(1) v is integral over R.

(2) R[v] is module-finite over R.

(3) There is a subring R ′ of S containing R[v] that is module-finite over R.

Proof. (1) implies (2): If vn +a1vn−1+·· ·+an = 0, then vn ∈
∑n−1

i=0
Rv i . It follows that

vm ∈
∑n−1

i=0
Rv i for all m, so R[v] =

∑n−1
i=0

Rv i .

(2) implies (3): Let R ′ = R[v].

(3) implies (1): If R ′ =
∑n

i=1
Rwi , then v wi =

∑n
j=1

ai j w j for some ai j ∈ R. Then∑n
j=1

(δi j v − ai j )w j = 0 for all i , where δi j = 0 if i 6= j and δi i = 1. If we consider

these equations in the quotient field of S, we see that (w1, . . . , wn) is a nontrivial

solution, so det(δi j v − ai j ) = 0. Since v appears only in the diagonal of the matrix,

this determinant has the form vn +a1vn−1+·· ·+an , ai ∈ R. So v is integral over R.

Corollary. The set of elements of S that are integral over R is a subring of S containing

R.

Proof. If a,b are integral over R, then b is integral over R[a] ⊃ R, so R[a,b] is module-

finite over R (Problem 1.45(a)). And a ±b, ab ∈ R[a,b], so they are integral over R by

the proposition.

We say that S is integral over R if every element of S is integral over R. If R and

S are fields, we say S is an algebraic extension of R if S is integral over R. The propo-

sition and corollary extend to the case where S is not a domain, with essentially the

same proofs, but we won’t need that generality.

Problems

1.46.∗ Let R be a subring of S, S a subring of (a domain) T . If S is integral over R,

and T is integral over S, show that T is integral over R. (Hint: Let z ∈ T , so we have

zn +a1zn−1 +·· ·+an = 0, ai ∈ S. Then R[a1, . . . , an , z] is module-finite over R.)

1.47.∗ Suppose (a domain) S is ring-finite over R. Show that S is module-finite over

R if and only if S is integral over R.

1.48.∗ Let L be a field, k an algebraically closed subfield of L. (a) Show that any

element of L that is algebraic over k is already in k. (b) An algebraically closed field

has no module-finite field extensions except itself.

1.49.∗ Let K be a field, L = K (X ) the field of rational functions in one variable over K .

(a) Show that any element of L that is integral over K [X ] is already in K [X ]. (Hint: If

zn+a1zn−1+·· · = 0, write z = F /G , F,G relatively prime. Then F n+a1F n−1G+·· · = 0,
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so G divides F .) (b) Show that there is no nonzero element F ∈ K [X ] such that for

every z ∈ L, F n z is integral over K [X ] for some n > 0. (Hint: See Problem 1.44.)

1.50.∗ Let K be a subfield of a field L. (a) Show that the set of elements of L that are

algebraic over K is a subfield of L containing K . (Hint: If vn +a1vn−1 +·· ·+an = 0,

and an 6= 0, then v(vn−1 + ·· · ) = −an .) (b) Suppose L is module-finite over K , and

K ⊂ R ⊂ L. Show that R is a field.

1.10 Field Extensions

Suppose K is a subfield of a field L, and suppose L = K (v) for some v ∈ L. Let

ϕ : K [X ] → L be the homomorphism taking X to v . Let Ker(ϕ) = (F ), F ∈ K [X ] (since

K [X ] is a PID). Then K [X ]/(F ) is isomorphic to K [v], so (F ) is prime. Two cases may

occur:

Case 1. F = 0. Then K [v] is isomorphic to K [X ], so K (v) = L is isomorphic to

K (X ). In this case L is not ring-finite (or module-finite) over K (Problem 1.44).

Case 2. F 6= 0. We may assume F is monic. Then (F ) is prime, so F is irreducible

and (F ) is maximal (Problem 1.3); therefore K [v] is a field, so K [v] = K (v). And

F (v) = 0, so v is algebraic over K and L = K [v] is module-finite over K .

To finish the proof of the Nullstellensatz, we must prove the claim (∗) of Section

7; this says that if a field L is a ring-finite extension of an algebraically closed field

k, then L = k. In view of Problem 1.48, it is enough to show that L is module-finite

over k. The above discussion indicates that a ring-finite field extension is already

module-finite. The next proposition shows that this is always true, and completes

the proof of the Nullstellensatz.

Proposition 4 (Zariski). If a field L is ring-finite over a subfield K , then L is module-

finite (and hence algebraic) over K .

Proof. Suppose L = K [v1, . . . , vn]. The case n = 1 is taken care of by the above dis-

cussion, so we assume the result for all extensions generated by n −1 elements. Let

K1 = K (v1). By induction, L = K1[v2, . . . , vn] is module-finite over K1. We may as-

sume v1 is not algebraic over K (otherwise Problem 1.45(a) finishes the proof).

Each vi satisfies an equation v
ni

i
+ai 1v

ni−1
i

+·· · = 0, ai j ∈ K1. If we take a ∈ K [v1]

that is a multiple of all the denominators of the ai j , we get equations (avi )ni +
aai 1(av1)ni−1 + ·· · = 0. It follows from the Corollary in §1.9 that for any z ∈ L =
K [v1, . . . , vn], there is an N such that aN z is integral over K [v1]. In particular this

must hold for z ∈ K (v1). But since K (v1) is isomorphic to the field of rational func-

tions in one variable over K , this is impossible (Problem 1.49(b)).

Problems

1.51.∗ Let K be a field, F ∈ K [X ] an irreducible monic polynomial of degree n > 0.

(a) Show that L = K [X ]/(F ) is a field, and if x is the residue of X in L, then F (x) = 0.

(b) Suppose L′ is a field extension of K , y ∈ L′ such that F (y) = 0. Show that the
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homomorphism from K [X ] to L′ that takes X to Y induces an isomorphism of L

with K (y). (c) With L′, y as in (b), suppose G ∈ K [X ] and G(y) = 0. Show that F

divides G . (d) Show that F = (X −x)F1, F1 ∈ L[X ].

1.52.∗ Let K be a field, F ∈ K [X ]. Show that there is a field L containing K such that

F =
∏n

i=1
(X −xi ) ∈ L[X ]. (Hint: Use Problem 1.51(d) and induction on the degree.) L

is called a splitting field of F .

1.53.∗ Suppose K is a field of characteristic zero, F an irreducible monic polynomial

in K [X ] of degree n > 0. Let L be a splitting field of F , so F =
∏n

i=1
(X − xi ), xi ∈ L.

Show that the xi are distinct. (Hint: Apply Problem 1.51(c) to G = FX ; if (X − x)2

divides F , then G(x) = 0.)

1.54.∗ Let R be a domain with quotient field K , and let L be a finite algebraic exten-

sion of K . (a) For any v ∈ L, show that there is a nonzero a ∈ R such that av is integral

over R. (b) Show that there is a basis v1, . . . , vn for L over K (as a vector space) such

that each vi is integral over R.



Chapter 2

Affine Varieties

From now on k will be a fixed algebraically closed field. Affine algebraic sets will

be in An = An(k) for some n. An irreducible affine algebraic set is called an affine

variety.

All rings and fields will contain k as a subring. By a homomorphism ϕ : R → S of

such rings, we will mean a ring homomorphism such that ϕ(λ) =λ for all λ ∈ k.

In this chapter we will be concerned only with affine varieties, so we call them

simply varieties.

2.1 Coordinate Rings

Let V ⊂ An be a nonempty variety. Then I (V ) is a prime ideal in k[X1, . . . , Xn],

so k[X1, . . . , Xn]/I (V ) is a domain. We let Γ(V ) = k[X1, . . . , Xn]/I (V ), and call it the

coordinate ring of V .

For any (nonempty) set V , we let F (V ,k) be the set of all functions from V to k.

F (V ,k) is made into a ring in the usual way: if f , g ∈F (V ,k), ( f +g )(x) = f (x)+g (x),

( f g )(x) = f (x)g (x), for all x ∈ V . It is usual to identify k with the subring of F (V ,k)

consisting of all constant functions.

If V ⊂ An is a variety, a function f ∈ F (V ,k) is called a polynomial function if

there is a polynomial F ∈ k[X1, . . . , Xn] such that f (a1, . . . , an) = F (a1, . . . , an) for all

(a1, . . . , an) ∈ V . The polynomial functions form a subring of F (V ,k) containing k.

Two polynomials F,G determine the same function if and only if (F −G)(a1, . . . , an) =
0 for all (a1, . . . , an) ∈ V , i.e., F −G ∈ I (V ). We may thus identify Γ(V ) with the sub-

ring of F (V ,k) consisting of all polynomial functions on V . We have two important

ways to view an element of Γ(V ) — as a function on V , or as an equivalence class of

polynomials.

Problems

2.1.∗ Show that the map that associates to each F ∈ k[X1, . . . , Xn] a polynomial func-

tion in F (V ,k) is a ring homomorphism whose kernel is I (V ).

17
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2.2.∗ Let V ⊂An be a variety. A subvariety of V is a variety W ⊂An that is contained

in V . Show that there is a natural one-to-one correspondence between algebraic

subsets (resp. subvarieties, resp. points) of V and radical ideals (resp. prime ideals,

resp. maximal ideals) of Γ(V ). (See Problems 1.22, 1.38.)

2.3.∗ Let W be a subvariety of a variety V , and let IV (W ) be the ideal of Γ(V ) cor-

responding to W . (a) Show that every polynomial function on V restricts to a poly-

nomial function on W . (b) Show that the map from Γ(V ) to Γ(W ) defined in part

(a) is a surjective homomorphism with kernel IV (W ), so that Γ(W ) is isomorphic to

Γ(V )/IV (W ).

2.4.∗ Let V ⊂ An be a nonempty variety. Show that the following are equivalent:

(i) V is a point; (ii) Γ(V ) = k; (iii) dimk Γ(V ) <∞.

2.5. Let F be an irreducible polynomial in k[X ,Y ], and suppose F is monic in Y :

F = Y n + a1(X )Y n−1 + ·· · , with n > 0. Let V = V (F ) ⊂ A2. Show that the natural

homomorphism from k[X ] to Γ(V ) = k[X ,Y ]/(F ) is one-to-one, so that k[X ] may be

regarded as a subring of Γ(V ); show that the residues 1,Y , . . . ,Y
n−1

generate Γ(V )

over k[X ] as a module.

2.2 Polynomial Maps

Let V ⊂ An , W ⊂ Am be varieties. A mapping ϕ : V → W is called a polyno-

mial map if there are polynomials T1, . . . ,Tm ∈ k[X1, . . . , Xn] such that ϕ(a1, . . . , an) =
(T1(a1, . . . , an), . . . ,Tm(a1, . . . , an)) for all (a1, . . . , an) ∈V .

Any mapping ϕ : V → W induces a homomorphisms ϕ̃ : F (W,k) → F (V ,k), by

setting ϕ̃( f ) = f ◦ϕ. If ϕ is a polynomial map, then ϕ̃(Γ(W )) ⊂ Γ(V ), so ϕ̃ restricts to a

homomorphism (also denoted by ϕ̃) from Γ(W ) to Γ(V ); for if f ∈ Γ(W ) is the I (W )-

residue of a polynomial F , then ϕ̃( f ) = f ◦ϕ is the I (V )-residue of the polynomial

F (T1, . . . ,Tm).

If V = An , W = Am , and T1, . . . ,Tm ∈ k[X1, . . . , Xn] determine a polynomial map

T : An → Am , the Ti are uniquely determined by T (see Problem 1.4), so we often

write T = (T1, . . . ,Tm).

Proposition 1. Let V ⊂An , W ⊂Am be affine varieties. There is a natural one-to-one

correspondence between the polynomial maps ϕ : V → W and the homomorphisms

ϕ̃ : Γ(W ) → Γ(V ). Any such ϕ is the restriction of a polynomial map from An to Am .

Proof. Suppose α : Γ(W ) → Γ(V ) is a homomorphism. Choose Ti ∈ k[X1, . . . , Xn]

such that α(I (W )-residue of Xi ) = (I (V )-residue of Ti ), for i = 1, . . . ,m. Then T =
(T1, . . . ,Tm) is a polynomial map fromAn toAm , inducing T̃ : Γ(Am) = k[X1, . . . , Xm] →
Γ(An) = k[X1, . . . , Xn]. It is easy to check that T̃ (I (W )) ⊂ I (V ), and hence that T (V ) ⊂
W , and so T restricts to a polynomial map ϕ : V → W . It is also easy to verify that

ϕ̃=α. Since we know how to construct ϕ̃ from ϕ, this completes the proof.

A polynomial map ϕ : V → W is an isomorphism if there is a polynomial map

ψ : W → V such that ψ ◦ϕ = identity on V , ϕ ◦ψ = identity on W . Proposition 1

shows that two affine varieties are isomorphic if and only if their coordinate rings

are isomorphic (over k).
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Problems

2.6.∗ Let ϕ : V →W , ψ : W → Z . Show that �ψ◦ϕ= ϕ̃◦ψ̃. Show that the composition

of polynomial maps is a polynomial map.

2.7.∗ If ϕ : V →W is a polynomial map, and X is an algebraic subset of W , show that

ϕ−1(X ) is an algebraic subset of V . If ϕ−1(X ) is irreducible, and X is contained in the

image of ϕ, show that X is irreducible. This gives a useful test for irreducibility.

2.8. (a) Show that {(t , t 2, t 3) ∈A3(k) | t ∈ k} is an affine variety. (b) Show that V (X Z −
Y 2,Y Z −X 3, Z 2−X 2Y ) ⊂A3(C) is a variety. (Hint:: Y 3−X 4, Z 3−X 5, Z 4−Y 5 ∈ I (V ).

Find a polynomial map from A1(C) onto V .)

2.9.∗ Let ϕ : V →W be a polynomial map of affine varieties, V ′ ⊂V , W ′ ⊂W subva-

rieties. Suppose ϕ(V ′) ⊂ W ′. (a) Show that ϕ̃(IW (W ′)) ⊂ IV (V ′) (see Problems 2.3).

(b) Show that the restriction of ϕ gives a polynomial map from V ′ to W ′.

2.10.∗ Show that the projection map pr: An →Ar , n ≥ r , defined by pr(a1, . . . , an) =
(a1, . . . , ar ) is a polynomial map.

2.11. Let f ∈ Γ(V ), V a variety ⊂An . Define

G( f ) = {(a1, . . . , an , an+1) ∈An+1 | (a1, . . . , an) ∈V and an+1 = f (a1, . . . , an)},

the graph of f . Show that G( f ) is an affine variety, and that the map (a1, . . . , an) 7→
(a1, . . . , an , f (a1, . . . , an)) defines an isomorphism of V with G( f ). (Projection gives

the inverse.)

2.12. (a)] Let ϕ : A1 → V = V (Y 2 − X 3) ⊂A2 be defined by ϕ(t ) = (t 2, t 3). Show that

although ϕ is a one-to-one, onto polynomial map, ϕ is not an isomorphism. (Hint::

ϕ̃(Γ(V )) = k[T 2,T 3] ⊂ k[T ] = Γ(A1).) (b) Let ϕ : A1 → V = V (Y 2 − X 2(X +1)) be de-

fined by ϕ(t ) = (t 2 − 1, t (t 2 − 1)). Show that ϕ is one-to-one and onto, except that

ϕ(±1) = (0,0).

2.13. Let V =V (X 2 −Y 3,Y 2 −Z 3) ⊂A3 as in Problem 1.40, α : Γ(V ) → k[T ] induced

by the homomorphism α of that problem. (a) What is the polynomial map f from

A1 to V such that f̃ =α? (b) Show that f is one-to-one and onto, but not an isomor-

phism.

2.3 Coordinate Changes

If T = (T1, . . . ,Tm) is a polynomial map from An to Am , and F is a polynomial in

k[X1, . . . , Xm], we let F T = T̃ (F ) = F (T1, . . . ,Tm). For ideals I and algebraic sets V in

Am , I T will denote the ideal in k[X1, . . . , Xn] generated by {F T | F ∈ I } and V T the

algebraic set T −1(V ) =V (I T ), where I = I (V ). If V is the hypersurface of F , V T is the

hypersurface of F T (if F T is not a constant).

An affine change of coordinates onAn is a polynomial map T = (T1, . . . ,Tn) : An →
An such that each Ti is a polynomial of degree 1, and such that T is one-to-one

and onto. If Ti =
∑

ai j X j + ai 0, then T = T ′′ ◦T ′, where T ′ is a linear map (T ′
i
=∑

ai j X j ) and T ′′ is a translation (T ′′
i
= Xi +ai 0). Since any translation has an inverse

(also a translation), it follows that T will be one-to-one (and onto) if and only if T ′ is
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invertible. If T and U are affine changes of coordinates on An , then so are T ◦U and

T −1; T is an isomorphism of the variety An with itself.

Problems

2.14.∗ A set V ⊂ An(k) is called a linear subvariety of An(k) if V = V (F1, . . . ,Fr ) for

some polynomials Fi of degree 1. (a) Show that if T is an affine change of coordi-

nates on An , then V T is also a linear subvariety of An(k). (b) If V 6= ;, show that

there is an affine change of coordinates T of An such that V T = V (Xm+1, . . . , Xn).

(Hint:: use induction on r .) So V is a variety. (c) Show that the m that appears in

part (b) is independent of the choice of T . It is called the dimension of V . Then

V is then isomorphic (as a variety) to Am(k). (Hint:: Suppose there were an affine

change of coordinates T such that V (Xm+1, . . . , Xn)T = V (Xs+1, . . . , Xn), m < s; show

that Tm+1, . . . ,Tn would be dependent.)

2.15.∗ Let P = (a1, . . . , an), Q = (b1, . . . ,bn) be distinct points of An . The line through

P and Q is defined to be {a1+t (b1−a1), . . . , an+t (bn−an)) | t ∈ k}. (a) Show that if L is

the line through P and Q, and T is an affine change of coordinates, then T (L) is the

line through T (P ) and T (Q). (b) Show that a line is a linear subvariety of dimension

1, and that a linear subvariety of dimension 1 is the line through any two of its points.

(c) Show that, in A2, a line is the same thing as a hyperplane. (d) Let P , P ′ ∈A2, L1,L2

two distinct lines through P , L′
1,L′

2 distinct lines through P ′. Show that there is an

affine change of coordinates T of A2 such that T (P ) = P ′ and T (Li ) = L′
i
, i = 1,2.

2.16. Let k =C. Give An(C) =Cn the usual topology (obtained by identifying C with

R2, and hence Cn with R2n). Recall that a topological space X is path-connected if for

any P,Q ∈ X , there is a continuous mapping γ : [0,1] → X such that γ(0) = P,γ(1) =Q.

(a) Show that Cr S is path-connected for any finite set S. (b) Let V be an algebraic

set in An(C). Show that An(C) rV is path-connected. (Hint:: If P,Q ∈An(C) rV , let

L be the line through P and Q. Then L∩V is finite, and L is isomorphic to A1(C).)

2.4 Rational Functions and Local Rings

Let V be a nonempty variety in An , Γ(V ) its coordinate ring. Since Γ(V ) is a do-

main, we may form its quotient field. This field is called the field of rational functions

on V , and is written k(V ). An element of k(V ) is a rational function on V .

If f is a rational function on V , and P ∈V , we say that f is defined at P if for some

a,b ∈ Γ(V ), f = a/b, and b(P ) 6= 0. Note that there may be many different ways to

write f as a ratio of polynomial functions; f is defined at P if it is possible to find a

“denominator” for f that doesn’t vanish at P . If Γ(V ) is a UFD, however, there is an

essentially unique representation f = a/b, where a and b have no common factors

(Problem 1.2), and then f is defined at P if and only if b(P ) 6= 0.

Example. V =V (X W −Y Z ) ⊂A4(k). Γ(V ) = k[X ,Y , Z ,W ]/(X W −Y Z ). Let X ,Y , Z ,W

be the residues of X ,Y , Z ,W in Γ(V ). Then X /Y = Z /W = f ∈ k(V ) is defined at

P = (x, y, z, w) ∈V if y 6= 0 or w 6= 0 (see Problem 2.20).



2.4. RATIONAL FUNCTIONS AND LOCAL RINGS 21

Let P ∈ V . We define OP (V ) to be the set of rational functions on V that are

defined at P . It is easy to verify that OP (V ) forms a subring of k(V ) containing Γ(V ) :

k ⊂ Γ(V ) ⊂OP (V ) ⊂ k(V ). The ring OP (V ) is called the local ring of V at P .

The set of points P ∈ V where a rational function f is not defined is called the

pole set of f .

Proposition 2. (1) The pole set of a rational function is an algebraic subset of V .

(2) Γ(V ) =
⋂

P∈V OP (V ).

Proof. Suppose V ⊂ An . For G ∈ k[X1, . . . , Xn], denote the residue of G in Γ(V ) by

G . Let f ∈ k(V ). Let J f = {G ∈ k[X1, . . . , Xn] | G f ∈ Γ(V )}. Note that J f is an ideal

in k[X1, . . . , Xn] containing I (V ), and the points of V (J f ) are exactly those points

where f is not defined. This proves (1). If f ∈
⋂

P∈V OP (V ), V (J f ) = ;, so 1 ∈ J f

(Nullstellensatz!), i.e., 1 · f = f ∈ Γ(V ), which proves (2).

Suppose f ∈ OP (V ). We can then define the value of f at P , written f (P ), as fol-

lows: write f = a/b, a,b ∈ Γ(V ), b(P ) 6= 0, and let f (P ) = a(P )/b(P ) (one checks that

this is independent of the choice of a and b.) The ideal mP (V ) = { f ∈OP (V ) | f (P ) =
0} is called the maximal ideal of V at P . It is the kernel of the evaluation homomor-

phism f 7→ f (P ) of OP (V ) onto k, so OP (V )/mP (V ) is isomorphic to k. An element

f ∈OP (V ) is a unit in OP (V ) if and only if f (P ) 6= 0, so mP (V ) = {non-units of OP (V )}.

Lemma. The following conditions on a ring R are equivalent:

(1) The set of non-units in R forms an ideal.

(2) R has a unique maximal ideal that contains every proper ideal of R.

Proof. Let m = {non-units of R}. Clearly every proper ideal of R is contained in m;

the lemma is an immediate consequence of this.

A ring satisfying the conditions of the lemma is called a local ring; the units are

those elements not belonging to the maximal ideal. We have seen that OP (V ) is a

local ring, and mP (V ) is its unique maximal ideal. These local rings play a promi-

nent role in the modern study of algebraic varieties. All the properties of V that

depend only on a “neighborhood” of P (the “local” properties) are reflected in the

ring OP (V ). See Problem 2.18 for one indication of this.

Proposition 3. OP (V ) is a Noetherian local domain.

Proof. We must show that any ideal I of OP (V ) is finitely generated. Since Γ(V ) is

Noetherian (Problem 1.22), choose generators f1, . . . , fr for the ideal I ∩Γ(V ) of Γ(V ).

We claim that f1, . . . , fr generate I as an ideal in OP (V ). For if f ∈ I ⊂ OP (V ), there is

a b ∈ Γ(V ) with b(P ) 6= 0 and b f ∈ Γ(V ); then b f ∈ Γ(V )∩ I , so b f =
∑

ai fi , ai ∈ Γ(V );

therefore f =
∑

(ai /b) fi , as desired.

Problems

2.17. Let V = V (Y 2 − X 2(X + 1)) ⊂ A2, and X ,Y the residues of X ,Y in Γ(V ); let

z = Y /X ∈ k(V ). Find the pole sets of z and of z2.
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2.18. Let OP (V ) be the local ring of a variety V at a point P . Show that there is a nat-

ural one-to-one correspondence between the prime ideals in OP (V ) and the subva-

rieties of V that pass through P . (Hint:: If I is prime in OP (V ), I ∩Γ(V ) is prime in

Γ(V ), and I is generated by I ∩Γ(V ); use Problem 2.2.)

2.19. Let f be a rational function on a variety V . Let U = {P ∈ V | f is defined at

P }. Then f defines a function from U to k. Show that this function determines f

uniquely. So a rational function may be considered as a type of function, but only

on the complement of an algebraic subset of V , not on V itself.

2.20. In the example given in this section, show that it is impossible to write f = a/b,

where a,b ∈ Γ(V ), and b(P ) 6= 0 for every P where f is defined. Show that the pole

set of f is exactly {(x, y, z, w) | y = 0 and w = 0}.

2.21.∗ Let ϕ : V → W be a polynomial map of affine varieties, ϕ̃ : Γ(W ) → Γ(V ) the

induced map on coordinate rings. Suppose P ∈ V , ϕ(P ) = Q. Show that ϕ̃ extends

uniquely to a ring homomorphism (also written ϕ̃) from OQ (W ) to OP (V ). (Note that

ϕ̃ may not extend to all of k(W ).) Show that ϕ̃(mQ (W )) ⊂mP (V ).

2.22.∗ Let T : An → An be an affine change of coordinates, T (P ) = Q. Show that

T̃ : OQ (An) → OP (An) is an isomorphism. Show that T̃ induces an isomorphism

from OQ (V ) to OP (V T ) if P ∈V T , for V a subvariety of An .

2.5 Discrete Valuation Rings

Our study of plane curves will be made easier if we have at our disposal several

concepts and facts of an algebraic nature. They are put into the next few sections to

avoid disrupting later geometric arguments.

Proposition 4. Let R be a domain that is not a field. Then the following are equiva-

lent:

(1) R is Noetherian and local, and the maximal ideal is principal.

(2) There is an irreducible element t ∈ R such that every nonzero z ∈ R may be

written uniquely in the form z = ut n , u a unit in R, n a nonnegative integer.

Proof. (1) implies (2): Let m be the maximal ideal, t a generator for m. Suppose

ut n = v t m , u, v units, n ≥ m. Then ut n−m = v is a unit, so n = m and u = v . Thus

the expression of any z = ut n is unique. To show that any z has such an expression,

we may assume z is not a unit, so z = z1t for some z1 ∈ R. If z1 is a unit we are

finished, so assume z1 = z2t . Continuing in this way, we find an infinite sequence

z1, z2, . . . with zi = zi+1t . Since R is Noetherian, the chain of ideals (z1) ⊂ (z2) ⊂ ·· ·
must have a maximal member (Chapter 1, Section 5), so (zn) = (zn+1) for some n.

Then zn+1 = v zn for some v ∈ R, so zn = v t zn and v t = 1. But t is not a unit.

(2) implies (1): (We don’t really need this part.) m = (t ) is clearly the set of non-

units. It is not hard to see that the only ideals in R are the principal ideals (t n), n a

nonnegative integer, so R is a PID.

A ring R satisfying the conditions of Proposition 4 is called a discrete valuation

ring, written DVR. An element t as in (2) is called a uniformizing parameter for R;
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any other uniformizing parameter is of the form ut , u a unit in R. Let K be the

quotient field of R. Then (when t is fixed) any nonzero element z ∈ K has a unique

expression z = ut n , u a unit in R, n ∈ Z (see Problem 1.2). The exponent n is called

the order of z, and is written n = ord(z); we define ord(0) =∞. Note that R = {z ∈ K |
ord(z) ≥ 0}, and m= {z ∈ K | ord(z) > 0} is the maximal ideal in R.

Problems

2.23.∗ Show that the order function on K is independent of the choice of uniformiz-

ing parameter.

2.24.∗ Let V =A1, Γ(V ) = k[X ], K = k(V ) = k(X ). (a) For each a ∈ k = V , show that

Oa(V ) is a DVR with uniformizing parameter t = X − a. (b) Show that O∞ = {F /G ∈
k(X ) | deg(G) ≥ deg(F )} is also a DVR, with uniformizing parameter t = 1/X .

2.25. Let p ∈ Z be a prime number. Show that {r ∈ Q | r = a/b, a,b ∈ Z, p doesn’t

divide b} is a DVR with quotient field Q.

2.26.∗ Let R be a DVR with quotient field K ; let m be the maximal ideal of R. (a)

Show that if z ∈ K , z 6∈ R, then z−1 ∈ m. (b) Suppose R ⊂ S ⊂ K , and S is also a DVR.

Suppose the maximal ideal of S contains m. Show that S = R.

2.27. Show that the DVR’s of Problem 2.24 are the only DVR’s with quotient field

k(X ) that contain k. Show that those of Problem 2.25 are the only DVR’s with quo-

tient field Q.

2.28.∗ An order function on a field K is a function ϕ from K onto Z∪ {∞}, satisfying:

(i) ϕ(a) =∞ if and only if a = 0.

(ii) ϕ(ab) =ϕ(a)+ϕ(b).

(iii) ϕ(a +b) ≥ min(ϕ(a),ϕ(b)).

Show that R = {z ∈ K | ϕ(z) ≥ 0} is a DVR with maximal ideal m = {z | ϕ(z) > 0}, and

quotient field K . Conversely, show that if R is a DVR with quotient field K , then the

function ord: K → Z∪ {∞} is an order function on K . Giving a DVR with quotient

field K is equivalent to defining an order function on K .

2.29.∗ Let R be a DVR with quotient field K , ord the order function on K . (a) If

ord(a) < ord(b), show that ord(a + b) = ord(a). (b) If a1, . . . , an ∈ K , and for some

i , ord(ai ) < ord(a j ) (all j 6= i ), then a1 +·· ·+an 6= 0.

2.30.∗ Let R be a DVR with maximal ideal m, and quotient field K , and suppose a

field k is a subring of R, and that the composition k → R → R/m is an isomorphism

of k with R/m (as for example in Problem 2.24). Verify the following assertions:

(a) For any z ∈ R, there is a unique λ ∈ k such that z −λ ∈m.

(b) Let t be a uniformizing parameter for R, z ∈ R. Then for any n ≥ 0 there are

unique λ0,λ1, . . . ,λn ∈ k and zn ∈ R such that z =λ0+λ1t +λ2t 2+·· ·+λn t n +zn t n+1.

(Hint:: For uniqueness use Problem 2.29; for existence use (a) and induction.)

2.31. Let k be a field. The ring of formal power series over k, written k[[X ]], is de-

fined to be {
∑∞

i=0
ai X i | ai ∈ k}. (As with polynomials, a rigorous definition is best

given in terms of sequences (a0, a1, . . . ) of elements in k; here we allow an infinite
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number of nonzero terms.) Define the sum by
∑

ai X i +
∑

bi X i =
∑

(ai +bi )X i , and

the product by (
∑

ai X i )(
∑

bi X i ) =
∑

ci X i , where ci =
∑

j+k=i a j bk . Show that k[[X ]]

is a ring containing k[X ] as a subring. Show that k[[X ]] is a DVR with uniformizing

parameter X . Its quotient field is denoted k((X )).

2.32. Let R be a DVR satisfying the conditions of Problem 2.30. Any z ∈ R then de-

termines a power series λi X i , if λ0,λ1, . . . are determined as in Problem 2.30(b). (a)

Show that the map z 7→
∑
λi X i is a one-to-one ring homomorphism of R into k[[X ]].

We often write z =
∑
λi t i , and call this the power series expansion of z in terms of t .

(b) Show that the homomorphism extends to a homomorphism of K into k((X )),

and that the order function on k((X )) restricts to that on K . (c) Let a = 0 in Problem

2.24, t = X . Find the power series expansion of z = (1−X )−1 and of (1−X )(1+X 2)−1

in terms of t .

2.6 Forms

Let R be a domain. If F ∈ R[X1, . . . , Xn+1] is a form, we define F∗ ∈ R[X1, . . . , Xn]

by setting F∗ = F (X1, . . . , Xn ,1). Conversely, for any polynomial f ∈ R[X1, . . . , Xn] of

degree d , write f = f0 + f1 +·· ·+ fd , where fi is a form of degree i , and define f ∗ ∈
R[X1, . . . , Xn+1] by setting

f ∗ = X d
n+1 f0 +X d−1

n+1 f1 +·· ·+ fd = X d
n+1 f (X1/Xn+1, . . . , Xn/Xn+1);

f ∗ is a form of degree d . (These processes are often described as “dehomogenizing”

and “homogenizing” polynomials with respect to Xn+1.) The proof of the following

proposition is left to the reader:

Proposition 5. (1) (FG)∗ = F∗G∗; ( f g )∗ = f ∗g∗.

(2) If F 6= 0 and r is the highest power of Xn+1 that divides F , then X r
n+1(F∗)∗ = F ;

( f ∗)∗ = f .

(3) (F +G)∗ = F∗+G∗; X t
n+1( f + g )∗ = X r

n+1 f ∗+ X s
n+1g∗, where r = deg(g ), s =

deg( f ), and t = r + s −deg( f + g ).

Corollary. Up to powers of Xn+1, factoring a form F ∈ R[X1, . . . , Xn+1] is the same as

factoring F∗ ∈ R[X1, . . . , Xn]. In particular, if F ∈ k[X ,Y ] is a form, k algebraically

closed, then F factors into a product of linear factors.

Proof. The first claim follows directly from (1) and (2) of the proposition. For the

second, write F = Y r G , where Y doesn’t divide G . Then F∗ =G∗ = ǫ
∏

(X −λi ) since

k is algebraically closed, so F = ǫY r ∏
(X −λi Y ).

Problems

2.33. Factor Y 3 −2X Y 2 +2X 2Y +X 3 into linear factors in C[X ,Y ].

2.34. Suppose F,G ∈ k[X1, . . . , Xn] are forms of degree r , r +1 respectively, with no

common factors (k a field). Show that F +G is irreducible.
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2.35.∗ (a) Show that there are d + 1 monomials of degree d in R[X ,Y ], and 1+ 2+
·· ·+ (d +1) = (d +1)(d +2)/2 monomials of degree d in R[X ,Y , Z ]. (b) Let V (d ,n) =
{forms of degree d in k[X1, . . . , Xn]}, k a field. Show that V (d ,n) is a vector space over

k, and that the monomials of degree d form a basis. So dimV (d ,1) = 1; dimV (d ,2) =
d + 1; dimV (d ,3) = (d + 1)(d + 2)/2. (c) Let L1,L2, . . . and M1, M2, . . . be sequences

of nonzero linear forms in k[X ,Y ], and assume no Li = λM j , λ ∈ k. Let Ai j =
L1L2 . . .Li M1M2 . . . M j , i , j ≥ 0 (A00 = 1). Show that {Ai j | i + j = d} forms a basis

for V (d ,2).

2.36. With the above notation, show that dimV (d ,n) =
(d+n−1

n−1

)
, the binomial coef-

ficient.

2.7 Direct Products of Rings

If R1, . . . ,Rn are rings,the cartesian product R1 × ·· · ×Rn is made into a ring as

follows: (a1, . . . , an)+ (b1, . . . ,bn) = (a1 +b1, . . . , an +bn), and (a1, . . . , an)(b1, . . . ,bn) =
(a1b1, . . . , anbn). This ring is called the direct product of R1, . . . ,Rn , and is written∏n

i=1
Ri . The natural projection maps πi :

∏n
j=1

R j → Ri taking (a1, . . . , an) to ai are

ring homomorphisms.

The direct product is characterized by the following property: given any ring R,

and ring homomorphisms ϕi : R → Ri , i = 1, . . . ,n, there is a unique ring homomor-

phism ϕ : R →
∏n

i=1
Ri such that πi ◦ϕ = ϕi . In particular, if a field k is a subring of

each Ri , k may be regarded as a subring of
∏n

i=1
Ri .

Problems

2.37. What are the additive and multiplicative identities in
∏

Ri ? Is the map from Ri

to
∏

R j taking ai to (0, . . . , ai , . . . ,0) a ring homomorphism?

2.38.∗ Show that if k ⊂ Ri , and each Ri is finite-dimensional over k, then dim(
∏

Ri ) =∑
dimRi .

2.8 Operations with Ideals

Let I , J be ideals in a ring R. The ideal generated by {ab | a ∈ I ,b ∈ J } is denoted

I J . Similarly if I1, . . . , In are ideals, I1 · · · In is the ideal generated by {a1a2 · · ·an | ai ∈
Ii }. We define I n to be I I · · · I (n times). Note that while I n contains all nth powers of

elements of I , it may not be generated by them. If I is generated by a1, . . . , ar , then

I n is generated by {a
i1

i
· · ·a

ir
r |

∑
i j = n}. And R = I 0 ⊃ I 1 ⊃ I 2 ⊃ ·· · .

Example. R = k[X1, . . . , Xr ], I = (X1, . . . , Xr ). Then I n is generated by the monomials

of degree n, so I n consists of those polynomials with no terms of degree < n. It fol-

lows that the residues of the monomials of degree< n form a basis of k[X1, . . . , Xr ]/I n

over k.



26 CHAPTER 2. AFFINE VARIETIES

If R is a subring of a ring S, I S denotes the ideal of S generated by the elements

of I . It is easy to see that I nS = (I S)n .

Let I , J be ideals in a ring R. Define I + J = {a +b | a ∈ I ,b ∈ J }. Then I + J is an

ideal; in fact, it is the smallest ideal in R that contains I and J .

Two ideals I , J in R are said to be comaximal if I + J = R, i.e., if 1 = a +b, a ∈ I ,

b ∈ J . For example, two distinct maximal ideals are comaximal.

Lemma. (1) I J ⊂ I ∩ J for any ideals I and J.

(2) If I and J are comaximal, I J = I ∩ J .

Proof. (1) is trivial. If I + J = R, then I ∩ J = (I ∩ J )R = (I ∩ J )(I + J ) = (I ∩ J )I +(I ∩ J )J ⊂
J I + I J = I J , proving (2). (See Problem 2.39.)

Problems

2.39.∗ Prove the following relations among ideals Ii , J , in a ring R:

(a) (I1 + I2)J = I1 J + I2 J .

(b) (I1 · · · IN )n = I n
1 · · · I n

N
.

2.40.∗ (a) Suppose I , J are comaximal ideals in R. Show that I + J 2 = R. Show that

I m and J n are comaximal for all m,n. (b) Suppose I1, . . . , IN are ideals in R, and

Ii and Ji =
⋂

j 6=i I j are comaximal for all i . Show that I n
1 ∩ ·· · ∩ I n

N
= (I1 · · · IN )n =

(I1 ∩·· ·∩ IN )n for all n.

2.41.∗ Let I , J be ideals in a ring R. Suppose I is finitely generated and I ⊂ Rad(J ).

Show that I n ⊂ J for some n.

2.42.∗ (a) Let I ⊂ J be ideals in a ring R. Show that there is a natural ring homomor-

phism from R/I onto R/J . (b) Let I be an ideal in a ring R, R a subring of a ring S.

Show that there is a natural ring homomorphism from R/I to S/I S.

2.43.∗ Let P = (0, . . . ,0) ∈ An , O = OP (An), m = mP (An). Let I ⊂ k[X1, . . . , Xn] be the

ideal generated by X1, . . . , Xn . Show that IO = m, so I r
O = mr for all r .

2.44.∗ Let V be a variety in An , I = I (V ) ⊂ k[X1, . . . , Xn], P ∈ V , and let J be an ideal

of k[X1, . . . , Xn] that contains I . Let J ′ be the image of J in Γ(V ). Show that there is

a natural homomorphism ϕ from OP (An)/JOP (An) to OP (V )/J ′OP (V ), and that ϕ is

an isomorphism. In particular, OP (An)/IOP (An) is isomorphic to OP (V ).

2.45.∗ Show that ideals I , J ⊂ k[X1, . . . , Xn] (k algebraically closed) are comaximal if

and only if V (I )∩V (J ) =;.

2.46.∗ Let I = (X ,Y ) ⊂ k[X ,Y ]. Show that dimk (k[X ,Y ]/I n) = 1+2+·· ·+n = n(n+1)
2

.

2.9 Ideals with a Finite Number of Zeros

The proposition of this section will be used to relate local questions (in terms of

the local rings OP (V )) with global ones (in terms of coordinate rings).
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Proposition 6. Let I be an ideal in k[X1, . . . , Xn] (k algebraically closed), and suppose

V (I ) = {P1, . . . ,PN } is finite. Let Oi =OPi
(An). Then there is a natural isomorphism of

k[X1, . . . , Xn]/I with
∏N

i=1 Oi /IOi .

Proof. Let Ii = I ({Pi }) ⊂ k[X1, . . . , Xn] be the distinct maximal ideals that contain

I . Let R = k[X1, . . . , Xn]/I , Ri = Oi /IOi . The natural homomorphisms (Problem

2.42(b)) ϕi from R to Ri induce a homomorphism ϕ from R to
∏N

i=1 Ri .

By the Nullstellensatz, Rad(I ) = I ({P1, . . . ,PN }) =
⋂N

i=1
Ii , so (

⋂
Ii )d ⊂ I for some d

(Problem 2.41). Since
⋂

j 6=i I j and Ii are comaximal (Problem 2.45), it follows (Prob-

lem 2.40) that
⋂

I d
j
= (I1 · · · IN )d = (

⋂
I j )d ⊂ I .

Now choose Fi ∈ k[X1, . . . , Xn] such that Fi (P j ) = 0 if i 6= j , Fi (Pi ) = 1 (Problem

1.17). Let Ei = 1− (1−F d
i

)d . Note that Ei = F d
i

Di for some Di , so Ei ∈ I d
j

if i 6= j ,

and 1−
∑

i Ei = (1−E j )−
∑

i 6= j Ei ∈
⋂

I d
j
⊂ I . In addition, Ei −E 2

i
= Ei (1−F d

i
)d is in

⋂
j 6=i I d

j
· I d

i
⊂ I . If we let ei be the residue of Ei in R, we have e2

i
= ei , ei e j = 0 if i 6= j ,

and
∑

ei = 1.

Claim. If G ∈ k[X1, . . . , Xn], and G(Pi ) 6= 0, then there is a t ∈ R such that t g = ei ,

where g is the I -residue of G .

Assuming the claim for the moment, we show how to conclude that ϕ is an iso-

morphism:

ϕ is one-to-one: If ϕ( f ) = 0, then for each i there is a Gi with Gi (Pi ) 6= 0 and

Gi F ∈ I ( f = I -residue of F ). Let ti gi = ei . Then f =
∑

ei f =
∑

ti gi f = 0.

ϕ is onto: Since Ei (Pi ) = 1, ϕi (ei ) is a unit in Ri ; since ϕi (ei )ϕi (e j ) =ϕi (ei e j ) = 0

if i 6= j , ϕi (e j ) = 0 for i 6= j . Therefore ϕi (ei ) = ϕi (
∑

e j ) = ϕi (1) = 1. Now suppose

z = (a1/s1, . . . , aN /sN ) ∈
∏

Ri . By the claim, we may find ti so that ti si = ei ; then

ai /si = ai ti in Ri , so ϕi (
∑

t j a j e j ) =ϕi (ti ai ) = ai /si , and ϕ(
∑

t j a j e j ) = z.

To prove the claim, we may assume that G(Pi ) = 1. Let H = 1−G . It follows that

(1− H)(Ei + HEi + ·· ·+ H d−1Ei ) = Ei − H d Ei . Then H ∈ Ii , so H d Ei ∈ I . Therefore

g (ei +hei +·· ·+hd−1ei ) = ei , as desired.

Corollary 1. dimk (k[X1, . . . , Xn]/I ) =
∑N

i=1 dimk (Oi /IOi ).

Corollary 2. If V (I ) = {P }, then k[X1, . . . , Xn]/I is isomorphic to OP (An)/IOP (An).

Problem

2.47. Suppose R is a ring containing k, and R is finite dimensional over k. Show that

R is isomorphic to a direct product of local rings.

2.10 Quotient Modules and Exact Sequences

Let R be a ring, M , M ′ R-modules. A homomorphism ϕ : M → M ′ of abelian

groups is called an R-module homomorphism if ϕ(am) = aϕ(m) for all a ∈ R, m ∈
M . It is an R-module isomorphism if it is one-to-one and onto.

If N is a submodule of an R-module M , the quotient group M/N of cosets of N in

M is made into an R-module in the following way: if m is the coset (or equivalence
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class) containing m, and a ∈ R, define am = am. It is easy to verify that this makes

M/N into an R-module in such a way that the natural map from M to M/N is an

R-module homomorphism. This M/N is called the quotient module of M by N .

Let ψ : M ′ → M , ϕ : M → M ′′ be R-module homomorphisms. We say that the

sequence (of modules and homomorphisms)

M ′ ψ
−→ M

ϕ
−→ M ′′

is exact (or exact at M) if Im(ψ) = Ker(ϕ). Note that there are unique R-module

homomorphism from the zero-module 0 to any R-module M , and from M to 0. Thus

M
ϕ

−→ M ′′ −→ 0 is exact if and only if ϕ is onto, and 0 −→ M ′ ψ
−→ M is exact if and

only if ψ is one-to-one.

If ϕi : Mi → Mi+1 are R-module homomorphisms, we say that the sequence

M1
ϕ1−→ M2

ϕ2−→ ·· ·
ϕn−→ Mn+1

is exact if Im(ϕi ) = Ker(ϕi+1) for each i = 1, . . . ,n. Thus 0 −→ M ′ ψ
−→ M

ϕ
−→ M ′′ −→ 0

is exact if and only if ϕ is onto, and ψ maps M ′ isomorphically onto the kernel of ϕ.

Proposition 7. (1) Let 0 −→V ′ ψ
−→V

ϕ
−→V ′′ −→ 0 be an exact sequence of finite-

dimensional vector spaces over a field k. Then dimV ′+dimV ′′ = dimV .

(2) Let

0 −→V1
ϕ1−→V2

ϕ2−→V3
ϕ3−→V4 −→ 0

be an exact sequence of finite-dimensional vector spaces. Then

dimV4 = dimV3 −dimV2 +dimV1.

Proof. (1) is just an abstract version of the rank-nullity theorem for a linear transfor-

mation ϕ : V →V ′′ of finite-dimensional vector spaces.

(2) follows from (1) by letting W = Im(ϕ2) = Ker(ϕ3). For then 0 −→V1
ϕ1−→V2

ϕ2−→
W −→ 0 and 0 −→W

ψ
−→V3

ϕ3−→V4 −→ 0 are exact, where ψ is the inclusion, and the

result follows by subtraction.

Problems

2.48.∗ Verify that for any R-module homomorphism ϕ : M → M ′, Ker(ϕ) and Im(ϕ)

are submodules of M and M ′ respectively. Show that

0 −→ Ker(ϕ) −→ M
ϕ

−→ Im(ϕ) −→ 0

is exact.

2.49.∗ (a) Let N be a submodule of M , π : M → M/N the natural homomorphism.

Suppose ϕ : M → M ′ is a homomorphism of R-modules, and ϕ(N ) = 0. Show that

there is a unique homomorphism ϕ : M/N → M ′ such that ϕ◦π=ϕ. (b) If N and P
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are submodules of a module M , with P ⊂ N , then there are natural homomorphisms

from M/P onto M/N and from N /P into M/P . Show that the resulting sequence

0 −→ N /P −→ M/P −→ M/N −→ 0

is exact (“Second Noether Isomorphism Theorem”). (c) Let U ⊂ W ⊂ V be vector

spaces, with V /U finite-dimensional. Then dimV /U = dimV /W +dimW /U . (d) If

J ⊂ I are ideals in a ring R, there is a natural exact sequence of R-modules:

0 −→ I /J −→ R/J −→ R/I −→ 0.

(e) If O is a local ring with maximal ideal m, there is a natural exact sequence of

O-modules

0 −→m
n/mn+1 −→O/mn+1 −→O/mn −→ 0.

2.50.∗ Let R be a DVR satisfying the conditions of Problem 2.30. Then mn/mn+1 is an

R-module, and so also a k-module, since k ⊂ R. (a) Show that dimk (mn/mn+1) = 1

for all n ≥ 0. (b) Show that dimk (R/mn) = n for all n > 0. (c) Let z ∈ R. Show that

ord(z) = n if (z) =mn , and hence that ord(z) = dimk (R/(z)).

2.51. Let 0 −→ V1 −→ ·· · −→ Vn −→ 0 be an exact sequence of finite-dimensional

vector spaces. Show that
∑

(−1)i dim(Vi ) = 0.

2.52.∗ Let N ,P be submodules of a module M . Show that the subgroup N +P =
{n + p | n ∈ N , p ∈ P } is a submodule of M . Show that there is a natural R-module

isomorphism of N /N ∩P onto N +P/P (“First Noether Isomorphism Theorem”).

2.53.∗ Let V be a vector space, W a subspace, T : V → V a one-to-one linear map

such that T (W ) ⊂ W , and assume V /W and W /T (W ) are finite-dimensional. (a)

Show that T induces an isomorphism of V /W with T (V )/T (W ). (b) Construct an

isomorphism between T (V )/(W ∩T (V )) and (W +T (V ))/W , and an isomorphism

between W /(W ∩T (V )) and (W +T (V ))/T (V ). (c) Use Problem 2.49(c) to show that

dimV /(W +T (V )) = dim(W ∩T (V ))/T (W ). (d) Conclude finally that dimV /T (V ) =
dimW /T (W ).

2.11 Free Modules

Let R be a ring, X any set. Let MX = {mapping s ϕ : X → R | ϕ(x) = 0 for all but a

finite number of x ∈ X }. This MX is made into an R-module as follows: (ϕ+ψ)(x) =
ϕ(x)+ψ(x), and (aϕ)(x) = aϕ(x) for ϕ,ψ ∈ MX , a ∈ R, x ∈ X . The module MX is

called the free R-module on the set X . If we define ϕx ∈ MX by the rules: ϕx (y) = 0

if y 6= x, ϕx (x) = 1, then every ϕ ∈ MX has a unique expression ϕ =
∑

axϕx , where

ax ∈ R (in fact, ax = ϕ(x)). Usually we write x instead of ϕx , and consider X as a

subset of MX . We say that X is a basis for MX : the elements of MX are just “formal

sums”
∑

ax x.

MX is characterized by the following property: If α : X → M is any mapping from

the set X to an R-module M , then α extends uniquely to a homomorphism from MX

to M .
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An R-module M is said to be free with basis m1, . . . ,mn ∈ M if for X the set

{m1, . . . ,mn} with n elements, the natural homomorphism from MX to M is an iso-

morphism.

If R =Z, a free Z-module on X is called the free abelian group on X .

Problems

2.54. What does M being free on m1, . . . ,mn say in terms of the elements of M?

2.55. Let F = X n + a1X n−1 + ·· · + an be a monic polynomial in R[X ]. Show that

R[X ]/(F ) is a free R-module with basis 1, X , . . . , X
n−1

, where X is the residue of X .

2.56. Show that a subset X of a module M generates M if and only if the homomor-

phism MX → M is onto. Every module is isomorphic to a quotient of a free module.



Chapter 3

Local Properties of Plane Curves

3.1 Multiple Points and Tangent Lines

We have seen that affine plane curves correspond to nonconstant polynomials

F ∈ k[X ,Y ] without multiple factors, where F is determined up to multiplication by

a nonzero constant (Chapter 1, Section 6). For some purposes it is useful to allow F

to have multiple factors, so we modify our definition slightly:

We say that two polynomials F,G ∈ k[X ,Y ] are equivalent if F = λG for some

nonzero λ ∈ k. We define an affine plane curve to be an equivalence class of non-

constant polynomials under this equivalence relation. We often slur over this equiv-

alence distinction, and say, e.g., “the plane curve Y 2 −X 3”, or even “the plane curve

Y 2 = X 3”. The degree of a curve is the degree of a defining polynomial for the curve.

A curve of degree one is a line; so we speak of “the line aX + bY + c”, or “the line

aX +bY + c = 0”. If F =
∏

F
ei

i
, where the Fi are the irreducible factors of F , we say

that the Fi are the components of F and ei is the multiplicity of the component Fi . Fi

is a simple component if ei = 1, and multiple otherwise. Note that the components

Fi of F can be recovered (up to equivalence) from V (F ), but the multiplicities of the

components cannot.

If F is irreducible, V (F ) is a variety in A2. We will usually write Γ(F ), k(F ), and

OP (F ) instead of Γ(V (F )), k(V (F )), and OP (V (F )).

Let F be a curve, P = (a,b) ∈ F . The point P is called a simple point of F if either

derivative FX (P ) 6= 0 or FY (P ) 6= 0. In this case the line FX (P )(X −a)+FY (P )(Y −b) = 0

is called the tangent line to F at P . A point that isn’t simple is called multiple (or

singular). A curve with only simple points is called a nonsingular curve.

We sketch some examples. Since R ⊂ C, A2(R) ⊂A2(C). If F is a curve in A2(C),

we can only sketch the real part of F , ı.e. F ∩A2(R). While the pictures are an aid to

the imagination, they should not be relied upon too heavily.

31



32 CHAPTER 3. LOCAL PROPERTIES OF PLANE CURVES

Examples.

A = Y −X 2 B = Y 2 −X 3 +X

C = Y 2 −X 3 D = Y 2 −X 3 −X 2

E = (X 2 +Y 2)2 +3X 2Y −Y 3 F = (X 2 +Y 2)3 −4X 2Y 2

A calculation with derivatives shows that A and B are nonsingular curves, and

that P = (0,0) is the only multiple point on C ,D,E , and F . In the first two examples,

the linear term of the equation for the curve is just the tangent line to the curve at

(0,0). The lowest terms in C ,D,E , and F respectively are Y 2, Y 2−X 2 = (Y −X )(Y +X ),

3X 2Y −Y 3 = Y (
p

3X−Y )(
p

3X+Y ), and−4X 2Y 2. In each case, the lowest order form

picks out those lines that can best be called tangent to the curve at (0,0).

Let F be any curve, P = (0,0). Write F = Fm +Fm+1+·· ·+Fn , where Fi is a form in

k[X ,Y ] of degree i , Fm 6= 0. We define m to be the multiplicity of F at P = (0,0), write

m = mP (F ). Note that P ∈ F if and only if mP (F ) > 0. Using the rules for derivatives,

it is easy to check that P is a simple point on F if and only if mP (F ) = 1, and in this

case F1 is exactly the tangent line to F at P . If m = 2, P is called a double point; if

m = 3, a triple point, etc.
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Since Fm is a form in two variables, we can write Fm =
∏

L
ri

i
where the Li are

distinct lines (Corollary in §2.6). The Li are called the tangent lines to F at P = (0,0);

ri is the multiplicity of the tangent. The line Li is a simple (resp. double, etc.) tangent

if ri = 1 (resp. 2, etc.). If F has m distinct (simple) tangents at P , we say that P is

an ordinary multiple point of F . An ordinary double point is called a node. (The

curve D has a node at (0,0), E has an ordinary triple point, while C and F have a

nonordinary multiple point at (0,0).) For convenience, we call a line through P a

tangent of multiplicity zero if it is not tangent to F at P .

Let F =
∏

F
ei

i
be the factorization of F into irreducible components. Then mP (F ) =∑

ei mP (Fi ); and if L is a tangent line to Fi with multiplicity ri , then L is tangent to

F with multiplicity
∑

ei ri . (This is a consequence of the fact that the lowest degree

term of F is the product of the lowest degree terms of its factors.)

In particular, a point P is a simple point of F if and only if P belongs to just one

component Fi of F , Fi is a simple component of F , and P is a simple point of Fi .

To extend these definitions to a point P = (a,b) 6= (0,0), Let T be the translation

that takes (0,0) to P , i.e., T (x, y) = (x + a, y +b). Then F T = F (X + a,Y +b). Define

mP (F ) to be m(0,0)(F T ), i.e., write F T = Gm +Gm+1 + ·· · , Gi forms, Gm 6= 0, and let

m = mP (F ). If Gm =
∏

L
ri

i
, Li =αi X +βi Y , the lines αi (X −a)+βi (Y −b) are defined

to be the tangent lines to F at P , and ri is the multiplicity of the tangent, etc. Note

that T takes the points of F T to the points of F , and the tangents to F T at (0,0) to the

tangents to F at P . Since FX (P ) = F T
X (0,0) and FY (P ) = F T

Y (0,0), P is a simple point

on F if and only if mP (F ) = 1, and the two definitions of tangent line to a simple

point coincide.

Problems

3.1. Prove that in the above examples P = (0,0) is the only multiple point on the

curves C , D , E , and F .

3.2. Find the multiple points, and the tangent lines at the multiple points, for each

of the following curves:

(a) Y 3 −Y 2 +X 3 −X 2 +3X Y 2 +3X 2Y +2X Y

(b) X 4 +Y 4 −X 2Y 2

(c) X 3 +Y 3 −3X 2 −3Y 2 +3X Y +1

(d) Y 2 + (X 2 −5)(4X 4 −20X 2 +25)

Sketch the part of the curve in (d) that is contained in A2(R) ⊂A2(C).

3.3. If a curve F of degree n has a point P of multiplicity n, show that F consists of

n lines through P (not necessarily distinct).

3.4. Let P be a double point on a curve F . Show that P is a node if and only if

FX Y (P )2 6= FX X (P )FY Y (P ).

3.5. (char(k) = 0) Show that mP (F ) is the smallest integer m such that for some i +
j = m, ∂m F

∂xi ∂y j (P ) 6= 0. Find an explicit description for the leading form for F at P in

terms of these derivatives.
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3.6. Irreducible curves with given tangent lines Li of multiplicity ri may be con-

structed as follows: if
∑

ri = m, let F =
∏

L
ri

i
+Fm+1, where Fm+1 is chosen to make

F irreducible (see Problem 2.34).

3.7. (a) Show that the real part of the curve E of the examples is the set of points in

A2(R) whose polar coordinates (r,θ) satisfy the equation r =−sin(3θ). Find the polar

equation for the curve F . (b) If n is an odd integer ≥ 1, show that the equation r =
sin(nθ) defines the real part of a curve of degree n+1 with an ordinary n-tuple point

at (0,0). (Use the fact that sin(nθ) = Im(e i nθ) to get the equation; note that rotation

by π/n is a linear transformation that takes the curve into itself.) (c) Analyze the

singularities that arise by looking at r 2 = sin2(nθ), n even. (d) Show that the curves

constructed in (b) and (c) are all irreducible in A2(C). (Hint:: Make the polynomials

homogeneous with respect to a variable Z , and use §2.1.)

3.8. Let T : A2 → A2 be a polynomial map, T (Q) = P . (a) Show that mQ (F T ) ≥
mP (F ). (b) Let T = (T1,T2), and define JQ T = (∂Ti /∂X j (Q)) to be the Jacobian matrix

of T at Q. Show that mQ (F T ) = mP (F ) if JQ T is invertible. (c) Show that the converse

of (b) is false: let T = (X 2,Y ), F = Y −X 2, P =Q = (0,0).

3.9. Let F ∈ k[X1, . . . , Xn] define a hypersurface V (F ) ⊂ An . Let P ∈ An . (a) Define

the multiplicity mP (F ) of F at P . (b) If mP (F ) = 1, define the tangent hyperplane

to F at P . (c) Examine F = X 2 +Y 2 − Z 2, P = (0,0). Is it possible to define tangent

hyperplanes at multiple points?

3.10. Show that an irreducible plane curve has only a finite number of multiple

points. Is this true for hypersurfaces?

3.11. Let V ⊂ An be an affine variety, P ∈ V . The tangent space TP (V ) is defined

to be {(v1, . . . , vn) ∈ An | for all G ∈ I (V ),
∑

GXi
(P )vi = 0}. If V = V (F ) is a hypersur-

face, F irreducible, show that TP (V ) = {(v1, . . . , vn) |
∑

FXi
(P )vi = 0}. How does the

dimension of TP (V ) relate to the multiplicity of F at P?

3.2 Multiplicities and Local Rings

Let F be an irreducible plane curve, P ∈ F . In this section we find the multiplicity

of P on F in terms of the local ring OP (F ). The following notation will be useful: for

any polynomial G ∈ k[X ,Y ], denote its image (residue) in Γ(F ) = k[X ,Y ]/(F ) by g .

Theorem 1. P is a simple point of F if and only if OP (F ) is a discrete valuation ring.

In this case, if L = aX +bY +c is any line through P that is not tangent to F at P, then

the image l of L in OP (F ) is a uniformizing parameter for OP (F ).

Proof. Suppose P is a simple point on F , and L is a line through P , not tangent to F

at P . By making an affine change of coordinates, we may assume that P = (0,0), that

Y is the tangent line, and that L = X (Problems 2.15(d) and 2.22). By Proposition 4

of §2.5, it suffices to show that mP (F ) is generated by x.

First note that mP (F ) = (x, y), whether P is simple or not (Problems 2.43, 2.44).

Now with the above assumptions, F = Y +higher terms. Grouping together those

terms with Y , we can write F = Y G − X 2H , where G = 1+ higher terms, H ∈ k[X ].
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Then y g = x2h ∈ Γ(F ), so y = x2hg−1 ∈ (x), since g (P ) 6= 0. Thus mP (F ) = (x, y) = (x),

as desired.

The converse will follow from Theorem 2.

Suppose P is a simple point on an irreducible curve F . We let ordF
P be the order

function on k(F ) defined by the DVR OP (F ); when F is fixed, we may write simply

ordP . If G ∈ k[X ,Y ], and g is the image of G in Γ(F ), we write ordF
P (G) instead of

ordF
P (g ).

If P is a simple point on a reducible curve F , we write ordF
P instead of ord

Fi

P
,

where Fi is the component of F containing P .

Suppose P is a simple point on F , and L is any line through P . Then ordF
P (L) = 1

if L is not tangent to F at P , and ordF
P (L) > 1 if L is tangent to F at P . For we may

assume the conditions are as in the proof of Theorem 1; Y is the tangent, y = x2hg−1,

so ordP (y) = ordP (x2)+ordP (hg−1) ≥ 2.

The proof of the next theorem introduces a technique that will reappear at sev-

eral places in our study of curves. It allows us to calculate the dimensions of certain

vector spaces of the type OP (V )/I , where I is an ideal in OP (V ).

Theorem 2. Let P be a point on an irreducible curve F . Then for all sufficiently large

n,

mP (F ) = dimk (mP (F )n/mP (F )n+1).

In particular, the multiplicity of F at P depends only on the local ring OP (F ).

Proof. Write O , m for OP (F ), mP (F ) respectively. From the exact sequence

0 −→m
n/mn+1 −→O/mn+1 −→O/mn −→ 0

it follows that it is enough to prove that dimk (O/mn) = n mP (F )+s, for some constant

s, and all n ≥ mP (F ) (Problem 2.49(e) and Proposition 7 of §2.10). We may assume

that P = (0,0), so mn = I n
O , where I = (X ,Y ) ⊂ k[X ,Y ] (Problem 2.43). Since V (I n) =

{P }, k[X ,Y ]/(I n ,F ) ∼= OP (A2)/(I n ,F )OP (A2) ∼= OP (F )/I n
OP (F ) = O/mn (Corollary 2

of §2.9 and Problem 2.44).

So we are reduced to calculating the dimension of k[X ,Y ]/(I n ,F ). Let m = mP (F ).

Then FG ∈ I n whenever G ∈ I n−m . There is a natural ring homomorphism ϕ from

k[X ,Y ]/I n to k[X ,Y ]/(I n ,F ), and a k-linear map ψ from k[X ,Y ]/I n−m to k[X ,Y ]/I n

defined by ψ(G) = FG (where the bars denote residues). It is easy to verify that the

sequence

0 −→ k[X ,Y ]/I n−m ψ
−→ k[X ,Y ]/I n ϕ

−→ k[X ,Y ]/(I n ,F ) −→ 0

is exact. Applying Problem 2.46 and Proposition 7 of §2.10 again, we see that

dimk (k[X ,Y ]/(I n ,F )) = nm −
m(m −1)

2

for all n ≥ m, as desired.
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Note that if OP (F ) is a DVR, then Theorem 2 implies that mP (F ) = 1 (Problem

2.50) so P is simple. This completes the proof of Theorem 1.

It should at least be remarked that the function χ(n) = dimk (O/mn), which is a

polynomial in n (for large n) is called the Hilbert-Samuel polynomial of the local

ring O ; it plays an important role in the modern study of the multiplicities of local

rings.

Problems

3.12. A simple point P on a curve F is called a flex if ordF
P (L) ≥ 3, where L is the

tangent to F at P . The flex is called ordinary if ordP (L) = 3, a higher flex otherwise.

(a) Let F = Y −X n . For which n does F have a flex at P = (0,0), and what kind of flex?

(b) Suppose P = (0,0), L = Y is the tangent line, F = Y + aX 2 + ·· · . Show that P is

a flex on F if and only if a = 0. Give a simple criterion for calculating ordF
P (Y ), and

therefore for determining if P is a higher flex.

3.13.∗ With the notation of Theorem 2, and m=mP (F ), show that dimk (mn/mn+1) =
n+1 for 0 ≤ n < mP (F ). In particular, P is a simple point if and only if dimk (m/m2) =
1; otherwise dimk (m/m2) = 2.

3.14. Let V = V (X 2 −Y 3,Y 2 − Z 3) ⊂A3, P = (0,0,0), m=mP (V ). Find dimk (m/m2).

(See Problem 1.40.)

3.15. (a) Let O =OP (A2) for some P ∈A2, m=mP (A2). Calculateχ(n) = dimk (O/mn).

(b) Let O =OP (Ar (k)). Show that χ(n) is a polynomial of degree r in n, with leading

coefficient 1/r ! (see Problem 2.36).

3.16. Let F ∈ k[X1, . . . , Xn] define a hypersurface in Ar . Write F = Fm +Fm+1 + ·· · ,
and let m = mP (F ) where P = (0,0). Suppose F is irreducible, and let O = OP (V (F )),

m its maximal ideal. Show that χ(n) = dimk (O/mn) is a polynomial of degree r −1

for sufficiently large n, and that the leading coefficient of χ is mP (F )/(r −1)!.

Can you find a definition for the multiplicity of a local ring that makes sense in

all the cases you know?

3.3 Intersection Numbers

Let F and G be plane curves, P ∈A2. We want to define the intersection number

of F and G at P ; it will be denoted by I (P,F ∩G). Since the definition is rather unin-

tuitive, we shall first list seven properties we want this intersection number to have.

We then prove that there is only one possible definition, and at the same time we

find a simple procedure for calculating I (P,F ∩G) in a reasonable number of steps.

We say that F and G intersect properly at P if F and G have no common compo-

nent that passes through P . Our first requirements are:

(1) I (P,F ∩G) is a nonnegative integer for any F , G , and P such that F and G

intersect properly at P . I (P,F ∩G) =∞ if F and G do not intersect properly at P .
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(2) I (P,F ∩G) = 0 if and only if P 6∈ F ∩G . I (P,F ∩G) depends only on the com-

ponents of F and G that pass through P . And I (P,F ∩G) = 0 if F or G is a nonzero

constant.

(3) If T is an affine change of coordinates on A2, and T (Q) = P , then I (P,F ∩G) =
I (Q,F T ∩GT ).

(4) I (P,F ∩G) = I (P,G ∩F ).

Two curves F and G are said to intersect transversally at P if P is a simple point

both on F and on G , and if the tangent line to F at P is different from the tangent line

to G at P . We want the intersection number to be one exactly when F and G meet

transversally at P . More generally, we require

(5) I (P,F ∩G) ≥ mP (F )mP (G), with equality occurring if and only if F and G have

not tangent lines in common at P .

The intersection numbers should add when we take unions of curves:

(6) If F =
∏

F
ri

i
, and G =

∏
G

s j

j
, then I (P,F ∩G) =

∑
i , j ri s j I (P,Fi ∩G j ).

The last requirement is probably the least intuitive. If F is irreducible, it says that

I (P,F ∩G) should depend only on the image of G in Γ(F ). Or, for arbitrary F ,

(7) I (P,F ∩G) = I (P,F ∩ (G + AF )) for any A ∈ k[X ,Y ].

Theorem 3. There is a unique intersection number I (P,F ∩G) defined for all plane

curves F , G, and all points P ∈ A2, satisfying properties (1)–(7). It is given by the

formula

I (P,F ∩G) = dimk (OP (A2)/(F,G)).

Proof of Uniqueness. Assume we have a number I (P,F ∩G) defined for all F , G , and

P , satisfying (1)-(7). We will give a constructive procedure for calculating I (P,F ∩G)

using only these seven properties, that is stronger than the required uniqueness.

We may suppose P = (0,0) (by (3)), and that I (P,F ∩G) is finite (by (1)). The case

when I (P,F ∩G) = 0 is taken care of by (2), so we may proceed by induction; assume

I (P,F ∩G) = n > 0, and I (P, A ∩B) can be calculated whenever I (P, A ∩B) < n. Let

F (X ,0),G(X ,0) ∈ k[X ] be of degree r , s respectively, where r or s is taken to be zero

if the polynomial vanishes. We may suppose r ≤ s (by (4)).

Case 1: r = 0. Then Y divides F , so F = Y H , and

I (P,F ∩G) = I (P,Y ∩G)+ I (P, H ∩G)

(by (6)). If G(X ,0) = X m(a0 +a1X +·· · ), a0 6= 0, then I (P,Y ∩G) = I (P,Y ∩G(X ,0)) =
I (P,Y ∩X m) = m (by (7), (2), (6), and (5)). Since P ∈G , m > 0, so I (P, H ∩G) < n, and

we are done by induction.

Case 2: r > 0. We may multiply F and G by constants to make F (X ,0) and G(X ,0)

monic. Let H =G −X s−r F . Then I (P,F ∩G) = I (P,F ∩H) (by (7)), and deg(H(X ,0)) =
t < s. Repeating this process (interchanging the order of F and H if t < r ) a finite

number of times we eventually reach a pair of curves A,B that fall under Case 1, and

with I (P,F ∩G) = I (P, A∩B). This concludes the proof.

Proof of Existence. Define I (P,F ∩G) to be dimk (OP (A2)/(F,G)). We must show that

properties (1)–(7) are satisfied. Since I (P,F ∩G) depends only on the ideal in OP (A2)
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generated by F and G , properties (2), (4), and (7) are obvious. Since an affine change

of coordinates gives an isomorphism of local rings (Problem 2.22), (3) is also clear.

We may thus assume that P = (0,0), and that all the components of F and G pass

through P . Let O =OP (A2).

If F and G have no common components, I (P,F ∩G) is finite by Corollary 1 of

§2.9. If F and G have a common component H , then (F,G) ⊂ (H), so there is a homo-

morphism from O/(F,G) onto O/(H) (Problem 2.42), and I (P,F ∩G) ≥ dimk (O/(H)).

But O/(H) is isomorphic to OP (H) (Problem 2.44), and OP (H) ⊃ Γ(H), with Γ(H)

infinite-dimensional by Corollary 4 to the Nullstellensatz. This proves (1).

To prove (6), it is enough to show that I (P,F ∩G H) = I (P,F ∩G)+ I (P,F ∩H) for

any F,G , H . We may assume F and G H have no common components, since the

result is clear otherwise. Letϕ : O/(F,G H) →O/(F,G) be the natural homomorphism

(Problem 2.42), and define a k-linear map ψ : O/(F, H) →O/(F,G H) by letting ψ(z) =
Gz, z ∈O (the bar denotes residues). By Proposition 7 of §2.10, it is enough to show

that the sequence

0 −→O/(F, H)
ψ
−→O/(F,G H)

ϕ
−→O/(F,G) −→ 0

is exact.

We will verify that ψ is one-to-one; the rest (which is easier) is left to the reader.

If ψ(z) = 0, then Gz = uF + vG H where u, v ∈ O . Choose S ∈ k[X ,Y ] with S(P ) 6= 0,

and Su = A,Sv = B , and Sz = C ∈ k[X ,Y ]. Then G(C −B H) = AF in k[X ,Y ]. Since

F and G have no common factors, F must divide C −B H , so C −B H = DF . Then

z = (B/S)H + (D/S)F , or z = 0, as claimed.

Property (5) is the hardest. Let m = mP (F ), n = mP (G). Let I be the ideal in

k[X ,Y ] generated by X and Y . Consider the following diagram of vector spaces and

linear maps:

k[X ,Y ]/I n

×k[X ,Y ]/I m

ψ
// k[X ,Y ]/I m+n

ϕ
// k[X ,Y ]/(I m+n ,F,G) //

α

��

0

O/(F,G)
π

// O/(I m+n ,F,G) // 0

where ϕ, π, and α are the natural ring homomorphisms, and ψ is defined by letting

ψ(A,B) = AF +BG .

Now ϕ and π are clearly surjective, and, since V (I m+n ,F,G) ⊂ {P }, α is an isomor-

phism by Corollary 2 in §2.9. It is easy to check that the top row is exact. It follows

that

dim(k[X ,Y ]/I n)+dim(k[X ,Y ]/I m) ≥ dim(Ker(ϕ)),

with equality if and only if ψ is one-to-one, and that

dim(k[X ,Y ]/(I m+n ,F,G)) = dim(k[X ,Y ]/I m+n)−dim(Ker(ϕ)).
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Putting all this together, we get the following string of inequalities:

I (P,F ∩G) = dim(O/(F,G)) ≥ dim(O/(I m+n ,F,G))

= dim(k[X ,Y ]/(I m+n ,F,G))

≥ dim(k[X ,Y ]/I m+n)−dim(k[X ,Y ]/I n)−dim(k[X ,Y ]/I m)

= mn

(by Problem 2.46 and arithmetic).

This shows that I (P,F ∩G) ≥ mn, and that I (P,F ∩G) = mn if and only if both

inequalities in the above string are equalities. The first such inequality is an equality

if π is an isomorphism, i.e., if I m+n ⊂ (F,G)O . The second is an equality if and only if

ψ is one-to-one. Property (5) is therefore a consequence of:

Lemma. (a) If F and G have no common tangents at P, then I t ⊂ (F,G)O for

t ≥ m +n −1.

(b) ψ is one-to-one if and only if F and G have distinct tangents at P.

Proof of (a). Let L1, . . . ,Lm be the tangents to F at P , M1, . . . , Mn the tangents to G .

Let Li = Lm if i > m, M j = Mn if j > n, and let Ai j = L1 · · ·Li M1 · · ·M j for all i , j ≥ 0

(A00 = 1). The set {Ai j | i + j = t } forms a basis for the vector space of all forms of

degree t in k[X ,Y ] (Problem 2.35(c)).

To prove (a), it therefore suffices to show that Ai j ∈ (F,G)O for all i + j ≥ m+n−1.

But i + j ≥ m +n −1 implies that either i ≥ m or j ≥ n. Say i ≥ m, so Ai j = Am0B ,

where B is a form of degree t = i + j −m. Write F = Am0+F ′, where all terms of F ′ are

of degree ≥ m+1. Then Ai j = BF−BF ′, where each term of BF ′ has degree ≥ i+ j+1.

We will be finished, then, if we can show that I t ⊂ (F,G)O for all sufficiently large t .

This fact is surely a consequence of the Nullstellensatz: let V (F,G) = {P,Q1, . . . ,Qs },

and choose a polynomial H so that H(Qi ) = 0, H(P ) 6= 0 (Problem 1.17). Then H X

and HY are in I (V (F,G)), so (H X )N , (HY )N ∈ (F,G) ⊂ k[X ,Y ] for some N . Since H N

is a unit in O , X N and Y N are in (F,G)O , and therefore I 2N ⊂ (F,G)O , as desired.

Proof of (b). Suppose the tangents are distinct, and that

ψ(A,B) = AF +BG = 0,

i.e., AF +BG consists entirely of terms of degree ≥ m +n. Suppose r < m or s < n.

Write A = Ar+ higher terms, B = Bs + ·· · , so AF +BG = Ar Fm +BsGn + ·· · . Then

we must have r +m = s +n and Ar Fm = −BsGn . But Fm and Gn have no common

factors, so Fm divides Bs , and Gn divides Ar . Therefore s ≥ m, r ≥ n, so (A,B) = (0,0).

Conversely, if L were a common tangent to F and G at P , write Fm = LF ′
m−1 and

Gn = LG ′
n−1. Then ψ(G ′

n−1,−F ′
m−1) = 0, so ψ is not one-to-one. This completes the

proof of the lemma, and also of Theorem 3.

Two things should be noticed about the uniqueness part of the above proof.

First, it shows that, as axioms, Properties (1)–(7) are exceedingly redundant; for ex-

ample, the only part of Property (5) that is needed is that I ((0,0), X ∩Y ) = 1. (The

reader might try to find a minimal set of axioms that characterizes the intersection
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number.) Second, the proof shows that the calculation of intersection numbers is a

very easy matter. Making imaginative use of (5) and (7) can save much time, but the

proof shows that nothing more is needed than some arithmetic with polynomials.

Example. Let us calculate I (P,E ∩F ), where E = (X 2 +Y 2)2 +3X 2Y −Y 3, F = (X 2 +
Y 2)3 −4X 2Y 2, and P = (0,0), as in the examples of Section 1. We can get rid of the

worst part of F by replacing F by F − (X 2 +Y 2)E = Y ((X 2 +Y 2)(Y 2 −3X 2)−4X 2Y ) =
Y G . Since no obvious method is available to find I (P,E ∩G), we apply the process

of the uniqueness proof to get rid of the X -terms: Replace G by G + 3E , which is

Y (5X 2 −3Y 2 +4Y 3 +4X 2Y ) = Y H . Then I (P,E ∩F ) = 2I (P,E ∩Y )+ I (P,E ∩H). But

I (P,E ∩Y ) = I (P, X 4 ∩Y ) = 4 (by (7), (6)), and I (P,E ∩H) = mP (E)mP (H) = 6 (by (5)).

So I (P,E ∩F ) = 14.

Two more properties of the intersection number will be useful later; the first of

these can also be used to simplify calculations.

(8) If P is a simple point on F , then I (P,F ∩G) = ordF
P (G).

Proof. We may assume F is irreducible. If g is the image of G in OP (F ), then ordF
P (G) =

dimk (OP (F )/(g )) (Problem 2.50(c)). Since OP (F )/(g ) is isomorphic to OP (A2)/(F,G)

(Problem 2.44), this dimension is I (P,F ∩G).

(9) If F and G have no common components, then

∑

P

I (P,F ∩G) = dimk (k[X ,Y ]/(F,G)).

Proof. This is a consequence of Corollary 1 in §2.9.

Problems

3.17. Find the intersection numbers of various pairs of curves from the examplse of

Section 1, at the point P = (0,0).

3.18. Give a proof of Property (8) that uses only Properties (1)–(7).

3.19.∗ A line L is tangent to a curve F at a point P if and only if I (P,F ∩L) > mP (F ).

3.20. If P is a simple point on F , then I (P,F ∩ (G +H)) ≥ min(I (P,F ∩G), I (P,F ∩H)).

Give an example to show that this may be false if P is not simple on F .

3.21. Let F be an affine plane curve. Let L be a line that is not a component of F .

Suppose L = {(a + tb,c + td) | t ∈ k}. Define G(T ) = F (a +T b,c +T d). Factor G(T ) =
ǫ
∏

(T −λi )ei , λi distinct. Show that there is a natural one-to-one correspondence

between the λi and the points Pi ∈ L ∩ F . Show that under this correspondence,

I (Pi ,L∩F ) = ei . In particular,
∑

I (P,L∩F ) ≤ deg(F ).

3.22. Suppose P is a double point on a curve F , and suppose F has only one tangent

L at P . (a) Show that I (P,F ∩L) ≥ 3. The curve F is said to have an (ordinary) cusp

at P if I (P,F ∩L) = 3. (b) Suppose P = (0,0), and L = Y . Show that P is a cusp if and

only if FX X X (P ) 6= 0. Give some examples. (c) Show that if P is a cusp on F , then F

has only one component passing through P .
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3.23. A point P on a curve F is called a hypercusp if mP (F ) > 1, F has only one tan-

gent line L at P , and I (P,L ∩F ) = mP (F )+1. Generalize the results of the preceding

problem to this case.

3.24.∗ The object of this problem is to find a property of the local ring OP (F ) that

determines whether or not P is an ordinary multiple point on F .

Let F be an irreducible plane curve, P = (0,0), m = mP (F ) > 1. Let m=mP (F ). For

G ∈ k[X ,Y ], denote its residue in Γ(F ) by g ; and for g ∈m, denote its residue in m/m2

by g . (a) Show that the map from {forms of degree 1 in k[X ,Y ]} to m/m2 taking aX +
bY to ax +by is an isomorphism of vector spaces (see Problem 3.13). (b) Suppose

P is an ordinary multiple point, with tangents L1, . . . ,Lm . Show that I (P,F ∩Li ) > m

and li 6= λl j for all i 6= j , all λ ∈ k. (c) Suppose there are G1, . . . ,Gm ∈ k[X ,Y ] such

that I (P,F ∩Gi ) > m and g i 6= λg j for all i 6= j , and all λ ∈ k. Show that P is an

ordinary multiple point on F . (Hint:: Write Gi = Li+ higher terms. l i = g i 6= 0, and

Li is the tangent to Gi , so Li is tangent to F by Property (5) of intersection numbers.

Thus F has m tangents at P .) (d) Show that P is an ordinary multiple point on F

if and only if there are g1, . . . , gm ∈ m such that g i 6= λg j for all i 6= j , λ ∈ k, and

dimOP (F )/(gi ) > m.
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Chapter 4

Projective Varieties

4.1 Projective Space

Suppose we want to study all the points of intersection of two curves; consider

for example the curve Y 2 = X 2+1 and the line Y =αX , α ∈ k. Ifα 6= ±1, they intersect

in two points. When α=±1, they no not intersect, but the curve is asymptotic to the

line. We want to enlarge the plane in such a way that two such curves intersect “at

infinity”.

One way to achieve this is to identify each point (x, y) ∈A2 with the point (x, y,1) ∈
A3. Every point (x, y,1) determines a line in A3 that passes through (0,0,0) and

(x, y,1). Every line through (0,0,0) except those lying in the plane z = 0 corresponds

to exactly one such point. The lines through (0,0,0) in the plane z = 0 can be thought

of as corresponding to the “points at infinity”. This leads to the following definition:

Let k be any field. Projective n-space over k, written Pn(k), or simply Pn , is

defined to be the set of all lines through (0,0, . . . ,0) in An+1(k). Any point (x) =
(x1, . . . , xn+1) 6= (0,0, . . . ,0) determines a unique such line, namely {(λx1, . . . ,λxn+1) |
λ ∈ k}. Two such points (x) and (y) determine the same line if and only if there is

a nonzero λ ∈ k such that yi = λxi for i = 1, . . . ,n +1; let us say that (x) and (y) are

equivalent if this is the case. Then Pn may be identified with the set of equivalence

classes of points in An+1 r {(0, . . . ,0)}.

Elements of Pn will be called points. If a point P ∈ Pn is determined as above by

some (x1, . . . , xn+1) ∈An+1, we say that (x1, . . . , xn+1) are homogeneous coordinates for

P . We often write P = [x1 : . . . : xn+1] to indicate that (x1, . . . , xn+1) are homogeneous

coordinates for P . Note that the i th coordinate xi is not well-defined, but that it is a

well-defined notion to say whether the i th coordinate is zero or nonzero; and if xi 6=
0, the ratios x j /xi are well-defined (since they are unchanged under equivalence).

We let Ui = {[x1 : . . . : xn+1] ∈ Pn | xi 6= 0}. Each P ∈Ui can be written uniquely in

the form

P = [x1 : . . . : xi−1 : 1 : xi+1 : . . . : xn+1].

The coordinates (x1, . . . , xi−1, xi+1, . . . , xn+1) are called the nonhomogeneous coordi-

nates for P with respect to Ui (or Xi , or i ). If we defineϕi : An →Ui byϕi (a1, . . . , an) =

43
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[a1 : . . . : ai−1 : 1 : ai : . . . : an], then ϕi sets up a one-to-one correspondence between

the points of An and the points of Ui . Note that Pn =
⋃n+1

i=1
Ui , so Pn is covered by

n +1 sets each of which looks just like affine n-space.

For convenience we usually concentrate on Un+1. Let

H∞ =Pn rUn+1 = {[x1 : . . . : xn+1] | xn+1 = 0};

H∞ is often called the hyperplane at infinity. The correspondence [x1 : . . . : xn : 0] ↔
[x1 : . . . : xn] shows that H∞ may be identified with Pn−1. Thus Pn = Un+1 ∪ H∞ is

the union of an affine n-space and a set that gives all directions in affine n-space.

Examples. (0) P0(k) is a point.

(1) P1(k) = {[x : 1] | x ∈ k}∪ {[1 : 0]}. P1(k) is the affine line plus one point at

infinity. P1(k) is the projective line over k.

(2) P2(k) = {[x : y : 1] | (x, y) ∈A2}∪ {[x : y : 0] | [x : y] ∈ P1}. Here H∞ is called the

line at infinity. P2(k) is called the projective plane over k.

(3) Consider a line Y = mX +b in A2. If we identify A2 with U3 ⊂ P2, the points

on the line correspond to the points [x : y : z] ∈ P2 with y = mx + bz and z 6= 0.

(We must make the equation homogeneous so that solutions will be invariant under

equivalence). The set {[x : y : z] ∈ P2 | y = mx +bz}∩ H∞ = {[1 : m : 0]}. So all lines

with the same slope, when extended in this way, pass through the same point at

infinity.

(4) Consider again the curve Y 2 = X 2 +1. The corresponding set in P2 is given

by the homogeneous equation Y 2 = X 2 + Z 2, Z 6= 0. {[x : y : z] ∈ P2 | y2 = x2 + z2}

intersects H∞ in the two points [1 : 1 : 0] and [1 : −1 : 0]. These are the points where

the lines Y = X and Y =−X intersect the curve.

Problems

4.1. What points in P2 do not belong to two of the three sets U1,U2,U3?

4.2.∗ Let F ∈ k[X1, . . . , Xn+1] (k infinite). Write F =
∑

Fi , Fi a form of degree i . Let

P ∈ Pn(k), and suppose F (x1, . . . , xn+1) = 0 for every choice of homogeneous coor-

dinates (x1, . . . , xn+1) for P . Show that each Fi (x1, . . . , xn+1) = 0 for all homogeneous

coordinates for P . (Hint: consider G(λ) = F (λx1, . . . ,λxn+1) =
∑
λi Fi (x1, . . . , xn+1) for

fixed (x1, . . . , xn+1).)

4.3. (a) Show that the definitions of this section carry over without change to the

case where k is an arbitrary field. (b) If k0 is a subfield of k, show that Pn(k0) may be

identified with a subset of Pn(k).

4.2 Projective Algebraic Sets

In this section we develop the idea of algebraic sets in Pn = Pn(k). Since the

concepts and most of the proofs are entirely similar to those for affine algebraic sets,

many details will be left to the reader.
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A point P ∈Pn is said to be a zero of a polynomial F ∈ k[X1, . . . , Xn+1] if

F (x1, . . . , xn+1) = 0

for every choice of homogeneous coordinates (x1, . . . , xn+1) for P ; we then write

F (P ) = 0. If F is a form, and F vanishes at one representative of P , then it vanishes

at every representative. If we write F as a sum of forms in the usual way, then each

form vanishes on any set of homogeneous coordinates for P (Problem 4.2).

For any set S of polynomials in k[X1, . . . , Xn+1], we let

V (S) = {P ∈Pn | P is a zero of each F ∈ S}.

If I is the ideal generated by S, V (I ) =V (S). If I = (F (1), . . . ,F (r )), where F (i ) =
∑

F (i )
j

,

F (i )
j

a form of degree j , then V (I ) =V ({F (i )
j

}), so V (S) =V ({F (i )
j

}) is the set of zeros of

a finite number of forms. Such a set is called an algebraic set in Pn , or a projective

algebraic set.

For any set X ⊂Pn , we let I (X ) = {F ∈ k[X1, . . . , Xn+1] | every P ∈ X is a zero of F }.

The ideal I (X ) is called the ideal of X .

An ideal I ⊂ k[X1, . . . , Xn+1] is called homogeneous if for every F =
∑m

i=0
Fi ∈ I , Fi

a form of degree i , we have also Fi ∈ I . For any set X ⊂ Pn , I (X ) is a homogeneous

ideal.

Proposition 1. An ideal I ⊂ k[X1, . . . , Xn+1] is homogeneous if and only if it is gener-

ated by a (finite) set of forms.

Proof. If I = (F (1), . . . ,F (r )) is homogeneous, then I is generated by {F (i )
j

}. Conversely,

let S = {F (α)} be a set of forms generating an ideal I , with deg(F (α)) = dα, and suppose

F = Fm +·· ·+Fr ∈ I , deg(Fi ) = i . It suffices to show that Fm ∈ I , for then F −Fm ∈ I ,

and an inductive argument finishes the proof. Write F =
∑

A(α)F (α). Comparing

terms of the same degree, we conclude that Fm =
∑

A(α)
m−dα

F (α), so Fm ∈ I .

An algebraic set V ⊂Pn is irreducible if it is not the union of two smaller algebraic

sets. The same proof as in the affine case, but using Problem 4.4 below, shows that V

is irreducible if and only if I (V ) is prime. An irreducible algebraic set in Pn is called

a projective variety. Any projective algebraic set can be written uniquely as a union

of projective varieties, its irreducible components.

The operations

{
homogeneous ideals in k[X1, . . . , Xn+1]

} V
⇄

I

{
algebraic sets in Pn(k)

}

satisfy most of the properties we found in the corresponding affine situation (see

Problem 4.6). We have used the same notation in these two situations. In practice

it should always be clear which is meant; if there is any danger of confusion, we will

write Vp , Ip for the projective operations, Va , Ia for the affine ones.

If V is an algebraic set in Pn , we define

C (V ) = {(x1, . . . , xn+1 ∈An+1 | [x1 : . . . : xn+1] ∈V or (x1, . . . , xn+1) = (0, . . . ,0)}
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to be the cone over V . If V 6= ;, then Ia(C (V )) = Ip (V ); and if I is a homogeneous

ideal in k[X1, . . . , Xn+1] such that Vp (I ) 6= ;, then C (Vp (I )) = Va(I ). This reduces

many questions about Pn to questions about An+1. For example

PROJECTIVE NULLSTELLENSATZ. Let I be a homogeneous ideal in k[X1, . . . , Xn+1].

Then

(1) Vp (I ) =; if and only if there is an integer N such that I contains all forms of

degree ≥ N .

(2) If Vp (I ) 6= ;, then Ip (Vp (I )) = Rad(I ).

Proof. (1) The following four conditions are equivalent: (i) Vp (I ) = ;; (ii) Va(I ) ⊂
{(0, . . . ,0)}; (iii) Rad(I ) = Ia(Va(I )) ⊃ (X1, . . . , Xn+1) (by the affine Nullstellensatz); and

(iv) (X1, . . . , Xn+1)N ⊂ I (by Problem 2.41).

(2) Ip (Vp (I )) = Ia(C (Vp (I ))) = Ia(Va(I )) = Rad(I ).

The usual corollaries of the Nullstellensatz go through, except that we must al-

ways make an exception with the ideal (X1, . . . , Xn+1). In particular, there is a one-

to-one correspondence between projective hypersurfaces V = V (F ) and the (non-

constant) forms F that define V provided F has no multiple factors (F is determined

up to multiplication by a nonzero λ ∈ k). Irreducible hypersurfaces correspond to

irreducible forms. A hyperplane is a hypersurface defined by a form of degree one.

The hyperplanes V (Xi ), i = 1, . . . ,n + 1, may be called the coordinate hyperplanes,

or the hyperplanes at infinity with respect to Ui . If n = 2, the V (Xi ) are the three

coordinate axes.

Let V be a nonempty projective variety in Pn . Then I (V ) is a prime ideal, so the

residue ring Γh(V ) = k[X1, . . . , Xn+1]/I (V ) is a domain. It is called the homogeneous

coordinate ring of V .

More generally, let I be any homogeneous ideal in k[X1, . . . , Xn+1], and let Γ =
k[X1, . . . , Xn+1]/I . An element f ∈ Γ will be called a form of degree d if there is a form

F of degree d in k[X1, . . . , Xn+1] whose residue is f .

Proposition 2. Every element f ∈ Γ may be written uniquely as f = f0+·· ·+ fm , with

fi a form of degree i .

Proof. If f is the residue of F ∈ k[X1, . . . , Xn+1], write F =
∑

Fi , and then f =
∑

fi ,

where fi is the residue of Fi . To show the uniqueness, suppose also f =
∑

gi , gi =
residue of Gi . Then F −

∑
Gi =

∑
(Fi −Gi ) ∈ I , and since I is homogeneous, each

Fi −Gi ∈ I , so fi = gi .

Let kh(V ) be the quotient field of Γh(V ); it is called the homogeneous function

field of V . In contrast with the case of affine varieties, no elements of Γh(V ) ex-

cept the constants determine functions on V ; likewise most elements of kh(V ) can-

not be regarded as functions. However, if f , g are both forms in Γh(V ) of the same

degree d , then f /g does define a function, at least where g is not zero: in fact,

f (λx)/g (λx) = λd f (x)/λd g (x) = f (x)/g (x), so the value of f /g is independent of

the choice of homogeneous coordinates.

The function field of V , written k(V ), is defined to be {z ∈ kh(V ) | for some forms

f , g ∈ Γh(V ) of the same degree, z = f /g }. It is not difficult to verify that k(V ) is a
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subfield of kh(V ). k ⊂ k(V ) ⊂ kh(V ), but Γh(V ) 6⊂ k(V ). Elements of k(V ) are called

rational functions on V .

Let P ∈ V , z ∈ k(V ). We say that z is defined at P if z can be written as z = f /g ,

f , g forms of the same degree, and g (P ) 6= 0. We let

OP (V ) = {z ∈ k(V ) | z is defined at P };

OP (V ) is a subring of k(V ); it is a local ring, with maximal ideal

mP (V ) = {z | z = f /g , g (P ) 6= 0, f (P ) = 0}.

It is called the local ring of V at P . The value z(P ) of a function z ∈ OP (V ) is well-

defined.

If T : An+1 →An+1 is a linear change of coordinates, then T takes lines through

the origin into lines through the origin (Problem 2.15). So T determines a map from

Pn to Pn , called a projective change of coordinates. If V is an algebraic set in Pn , then

T −1(V ) is also an algebraic set in Pn ; we write V T for T −1(V ). If V = V (F1, . . . ,Fr ),

and T = (T1, . . . ,Tn+1), Ti forms of degree 1, then V T = V (F T
1 , . . . ,F T

r ), where F T
i
=

Fi (T1, . . . ,Tn+1). Then V is a variety if and only if V T is a variety, and T induces

isomorphisms T̃ : Γh(V ) → Γh(V T ), k(V ) → k(V T ), and OP (V ) → OQ (V T ) if T (Q) =
P .

Problems

4.4.∗ Let I be a homogeneous ideal in k[X1, . . . , Xn+1]. Show that I is prime if and

only if the following condition is satisfied; for any forms F,G ∈ k[X1, . . . , Xn+1], if FG ∈
I , then F ∈ I or G ∈ I .

4.5. If I is a homogeneous ideal, show that Rad(I ) is also homogeneous.

4.6. State and prove the projective analogues of properties (1)–(10) of Chapter 1,

Sections 2 and 3.

4.7. Show that each irreducible component of a cone is also a cone.

4.8. Let V = P1, Γh(V ) = k[X ,Y ]. Let t = X /Y ∈ k(V ), and show that k(V ) = k(t ).

Show that there is a natural one-to-one correspondence between the points of P1

and the DVR’s with quotient field k(V ) that contain k (see Problem 2.27); which DVR

corresponds to the point at infinity?

4.9.∗ Let I be a homogeneous ideal in k[X1, . . . , Xn+1], and

Γ= k[X1, . . . , Xn+1]/I .

Show that the forms of degree d in Γ form a finite-dimensional vector space over k.

4.10. Let R = k[X ,Y , Z ], F ∈ R an irreducible form of degree n, V = V (F ) ⊂ P2, and

Γ = Γh(V ). (a) Construct an exact sequence 0 −→ R
ψ
−→ R

ϕ
−→ Γ −→ 0, where ψ is

multiplication by F . (b) Show that

dimk {forms of degree d in Γ} = dn −
n(n −3)

2

if d > n.
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4.11.∗ A set V ⊂ Pn(k) is called a linear subvariety of Pn(k) if V = V (H1, . . . , Hr ),

where each Hi is a form of degree 1. (a) Show that if T is a projective change of

coordinates, then V T = T −1(V ) is also a linear subvariety. (b) Show that there is a

projective change of coordinates T of Pn such that V T = V (Xm+2, . . . , Xn+1), so V is

a variety. (c) Show that the m that appears in part (b) is independent of the choice

of T . It is called the dimension of V (m =−1 if V =;).

4.12.∗ Let H1, . . . , Hm be hyperplanes in Pn , m ≤ n. Show that H1∩H2∩·· ·∩Hm 6= ;.

4.13.∗ Let P = [a1 : . . . : an+1], Q = [b1 : . . . : bn+1] be distinct points of Pn . The line L

through P and Q is defined by

L = {[λa1 +µb1 : . . . : λan+1 +µbn+1] |λ,µ ∈ k, λ 6= 0 or µ 6= 0}.

Prove the projective analogue of Problem 2.15.

4.14.∗ Let P1,P2,P3 (resp. Q1,Q2,Q3) be three points in P2 not lying on a line. Show

that there is a projective change of coordinates T : P2 → P2 such that T (Pi ) = Qi ,

i = 1,2,3. Extend this to n +1 points in Pn , not lying on a hyperplane.

4.15.∗ Show that any two distinct lines in P2 intersect in one point.

4.16.∗ Let L1,L2,L3 (resp. M1, M2, M3) be lines in P2(k) that do not all pass through

a point. Show that there is a projective change of coordinates: T : P2 →P2 such that

T (Li ) = Mi . (Hint:: Let Pi = L j ∩Lk , Qi = M j ∩Mk , i , j ,k distinct, and apply Problem

4.14.) Extend this to n +1 hyperplanes in Pn , not passing through a point.

4.17.∗ Let z be a rational function on a projective variety V . Show that the pole set

of z is an algebraic subset of V .

4.18. Let H = V (
∑

ai Xi ) be a hyperplane in Pn . Note that (a1, . . . , an+1) is deter-

mined by H up to a constant. (a) Show that assigning [a1 : . . . : an+1] ∈ Pn to H sets

up a natural one-to-one correspondence between {hyperplanes in Pn} and Pn . If

P ∈ Pn , let P∗ be the corresponding hyperplane; if H is a hyperplane, H∗ denotes

the corresponding point. (b) Show that P∗∗ = P , H∗∗ = H . Show that P ∈ H if and

only if H∗ ∈ P∗.

This is the well-known duality of the projective space.

4.3 Affine and Projective Varieties

We consider An as a subset of Pn by means of the map ϕn+1 : An →Un+1 ⊂ Pn .

In this section we study the relations between the algebraic sets in An and those in

Pn .

Let V be an algebraic set in An , I = I (V ) ⊂ k[X1, . . . , Xn]. Let I∗ be the ideal in

k[X1, . . . , Xn+1] generated by {F∗ | F ∈ I } (see Chapter 2, Section 6 for notation). This

I∗ is a homogeneous ideal; we define V ∗ to be V (I∗) ⊂Pn .

Conversely, let V be an algebraic set in Pn , I = I (V ) ⊂ k[X1, . . . , Xn]. Let I∗ be the

ideal in k[X1, . . . , Xn] generated by {F∗ | F ∈ I }. We define V∗ to be V (I∗) ⊂An .

Proposition 3. (1) If V ⊂An , then ϕn+1(V ) =V ∗∩Un+1, and (V ∗)∗ =V .

(2) If V ⊂W ⊂An , then V ∗ ⊂W ∗ ⊂Pn . If V ⊂W ⊂Pn , then V∗ ⊂W∗ ⊂An .
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(3) If V is irreducible in An , then V ∗ is irreducible in Pn .

(4) If V =
⋃

i Vi is the irreducible decomposition of V in An , then V ∗ =
⋃

i V ∗
i

is the

irreducible decomposition of V ∗ in Pn .

(5) If V ⊂An , then V ∗ is the smallest algebraic set in Pn that contains ϕn+1(V ).

(6) If V $ An is not empty, then no component of V ∗ lies in or contains H∞ =
Pn rUn+1.

(7) If V ⊂ Pn , and no component of V lies in or contains H∞, then V∗ $ An and

(V∗)∗ =V .

Proof. (1) follows from Proposition 5 of §2.6. (2) is obvious. If V ⊂An , I = I (V ), then

a form F belongs to I∗ if and only if F∗ ∈ I . If I is prime, it follows readily that I∗ is

also prime, which proves (3).

To prove (5), suppose W is an algebraic set in Pn that contains ϕn+1(V ). If F ∈
I (W ), then F∗ ∈ I (V ), so F = X r

n+1(F∗)∗ ∈ I (V )∗. Therefore I (W ) ⊂ I (V )∗, so W ⊃V ∗,

as desired.

(4) follows from (2), (3), and (5). To prove (6), we may assume V is irreducible.

V ∗ 6⊂ H∞ by (1). If V ∗ ⊃ H∞, then I (V )∗ ⊂ I (V ∗) ⊂ I (H∞) = (Xn+1). But if 0 6= F ∈
I (V ), then F∗ ∈ I (V )∗, with F∗ 6∈ (Xn+1). So V ∗ 6⊃ H∞.

(7): We may assume V ⊂ Pn is irreducible. Since ϕn+1(V∗) ⊂ V , it suffices to

show that V ⊂ (V∗)∗, or that I (V∗)∗ ⊂ I (V ). Let F ∈ I (V∗). Then F N ∈ I (V )∗ for some

N (Nullstellensatz), so X t
n+1(F N )∗ ∈ I (V ) for some t (Proposition 5 (3) of §2.6). But

I (V ) is prime, and Xn+1 6∈ I (V ) since V 6⊂ H∞, so F∗ ∈ I (V ), as desired.

If V is an algebraic set in An , V ∗ ⊂ Pn is called the projective closure of V . If

V = V (F ) is an affine hypersurface, then V ∗ = V (F∗) (see Problem 4.19). Except

for projective varieties lying in H∞, there is a natural one-to-one correspondence

between nonempty affine and projective varieties (see Problem 4.22).

Let V be an affine variety, V ∗ ⊂Pn its projective closure. If f ∈ Γh(V ∗) is a form of

degree d , we may define f∗ ∈ Γ(V ) as follows: take a form F ∈ k[X1, . . . , Xn+1] whose

Ip (V ∗)-residue is f , and let f∗ = I (V )-residue of F∗ (one checks that this is indepen-

dent of the choice of F ). We then define a natural isomorphism α : k(V ∗) → k(V ) as

follows: α( f /g ) = f∗/g∗, where f , g are forms of the same degree on V ∗. If P ∈ V ,

we may consider P ∈V ∗ (by means of ϕn+1) and then α induces an isomorphism of

OP (V ∗) with OP (V ). We usually use α to identify k(V ) with k(V ∗), and OP (V ) with

OP (V ∗).

Any projective variety V ⊂ Pn is covered by the n + 1 sets V ∩Ui . If we form

V∗ with respect to Ui (as with Un+1), the points on V ∩Ui correspond to points on

V∗, and the local rings are isomorphic. Thus questions about V near a point P can

be reduced to questions about an affine variety V∗ (at least if the question can be

answered by looking at OP (V )).

Problems

4.19.∗ If I = (F ) is the ideal of an affine hypersurface, show that I∗ = (F∗).

4.20. Let V =V (Y −X 2, Z −X 3) ⊂A3. Prove:
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(a) I (V ) = (Y −X 2, Z −X 3).

(b) Z W −X Y ∈ I (V )∗ ⊂ k[X ,Y , Z ,W ], but Z W −X Y 6∈ ((Y −X 2)∗, (Z −X 3)∗).

So if I (V ) = (F1, . . . ,Fr ), it does not follow that I (V )∗ = (F∗
1 , . . . ,F∗

r ).

4.21. Show that if V ⊂W ⊂Pn are varieties, and V is a hypersurface, then W =V or

W =Pn (see Problem 1.30).

4.22.∗ Suppose V is a variety in Pn and V ⊃ H∞. Show that V = Pn or V = H∞. If

V =Pn , V∗ =An , while if V = H∞, V∗ =;.

4.23.∗ Describe all subvarieties in P1 and in P2.

4.24.∗ Let P = [0 : 1 : 0] ∈ P2(k). Show that the lines through P consist of the follow-

ing:

(a) The “vertical” lines Lλ =V (X −λZ ) = {[λ : t : 1] | t ∈ k}∪ {P }.

(b) The line at infinity L∞ =V (Z ) = {[x : y : 0] | x, y ∈ k}.

4.25.∗ Let P = [x : y : z] ∈ P2. (a) Show that {(a,b,c) ∈ A3 | ax + by + cz = 0} is a

hyperplane in A3. (b) Show that for any finite set of points in P2, there is a line not

passing through any of them.

4.4 Multiprojective Space

We want to make the cartesian product of two varieties into a variety. Since An ×
Am may be identified with An+m , this is not difficult for affine varieties. The product

Pn ×Pm requires some discussion, however.

Write k[X ,Y ] for k[X1, . . . , Xn+1,Y1, . . . ,Ym+1]. A polynomial F ∈ k[X ,Y ] is called

a biform of bidegree (p, q) if F is a form of degree p (resp. q) when considered as

a polynomial in X1, . . . , Xn+1 (resp. Y1, . . . ,Ym+1) with coefficients in k[Y1, . . . ,Ym+1]

(resp. k[X1, . . . , Xn+1]). Every F ∈ k[X ,Y ] may be written uniquely as F =
∑

p,q Fp,q ,

where Fp,q is a biform of bidegree (p, q).

If S is any set of biforms in k[X1, . . . , Xn+1,Y1, . . . ,Ym+1], we let V (S) or Vb(S) be

{(x, y) | Pn ×Pm | F (x, y) = 0 for all F ∈ S}. A subset V of Pn ×Pm will be called al-

gebraic if V = V (S) for some S. For any V ⊂ Pn ×Pm , define I (V ), or Ib(V ), to be

{F ∈ k[X ,Y ] | F (x, y) = 0 for all (x, y) ∈V }.

We leave it to the reader to define a bihomogeneous ideal, show that Ib(V ) is bi-

homogeneous, and likewise to carry out the entire development for algebraic sets

and varieties in Pn ×Pm as was done for Pn in Section 2. If V ⊂ Pn ×Pm is a vari-

ety (i.e., irreducible), Γb(V ) = k[X ,Y ]/Ib(V ) is the bihomogeneous coordinate ring,

kb(V ) its quotient field, and

k(V ) = {z ∈ kh(V ) | z = f /g , f , g biforms of the same bidegree in Γb(V )}

is the function field of V . The local rings OP (V ) are defined as before.

We likewise leave it to the reader to develop the theory of multiprojective vari-

eties in Pn1 ×Pn2 ×·· ·×Pnr .

If, finally, the reader develops the theory of algebraic subsets and varieties in

mixed, or “multispaces” Pn1 ×Pn2 ×·· ·×Pnr ×Am (here a polynomial should be ho-

mogeneous in each set of variables that correspond to a projective space Pni , but
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there is no restriction on those corresponding to Am), he or she will have the most

general theory needed for the rest of this text. If we define A0 to be a point, then

all projective, multiprojective, and affine varieties are special cases of varieties in

Pn1 ×·· ·×Pnr ×Am .

Problems

4.26.∗ (a) Define maps ϕi , j : An+m →Ui ×U j ⊂Pn ×Pm . Using ϕn+1,m+1, define the

“biprojective closure” of an algebraic set in An+m . Prove an analogue of Proposition

3 of §4.3. (b) Generalize part (a) to maps ϕ : An1 ×Anr ×Am →Pn1 ×Pnr ×Am . Show

that this sets up a correspondence between {nonempty affine varieties in An1+···+m}

and {varieties in Pn1 ×·· ·×Am that intersect Un1+1 ×·· ·×Am}. Show that this corre-

spondence preserves function fields and local rings.

4.27.∗ Show that the pole set of a rational function on a variety in any multispace is

an algebraic subset.

4.28.∗ For simplicity of notation, in this problem we let X0, . . . , Xn be coordinates for

Pn ,Y0, . . . ,Ym coordinates for Pm , and T00, T01, . . . , T0m , T10, . . . , Tnm coordinates for

PN , where N = (n +1)(m +1)−1 = n +m +nm.

Define S : Pn ×Pm →PN by the formula:

S([x0 : . . . : xn], [y0 : . . . : ym]) = [x0 y0 : x0 y1 : . . . : xn ym].

S is called the Segre embedding of Pn ×Pm in Pn+m+nm .

(a) Show that S is a well-defined, one-to-one mapping. (b) Show that if W is

an algebraic subset of PN , then S−1(W ) is an algebraic subset of Pn ×Pm . (c) Let

V =V ({Ti j Tkl−Ti l Tk j | i ,k = 0, . . . ,n; j , l = 0, . . . ,m}) ⊂PN . Show that S(Pn×Pm) =V .

In fact, S(Ui ×U j ) =V ∩Ui j , where Ui j = {[t ] | ti j 6= 0}. (d) Show that V is a variety.
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Chapter 5

Projective Plane Curves

5.1 Definitions

A projective plane curve is a hypersurface inP2, except that, as with affine curves,

we want to allow multiple components: We say that two nonconstant forms F , G ∈
k[X ,Y , Z ] are equivalent if there is a nonzero λ ∈ k such that G = λF . A projective

plane curve is an equivalence class of forms. The degree of a curve is the degree of

a defining form. Curves of degree 1, 2, 3 and 4 are called lines, conics, cubic, and

quartics respectively. The notations and conventions regarding affine curves carry

over to projective curves (see §3.1): thus we speak of simple and multiple com-

ponents, and we write OP (F ) instead of OP (V (F )) for an irreducible F , etc. Note

that when P = [x : y : 1], then OP (F ) is canonically isomorphic to O(x,y)(F∗), where

F∗ = F (X ,Y ,1) is the corresponding affine curve.

The results of Chapter 3 assure us that the multiplicity of a point on an affine

curve depends only on the local ring of the curve at that point. So if F is a projec-

tive plane curve, P ∈ Ui (i = 1, 2 or 3), we can dehomogenize F with respect to Xi ,

and define the multiplicity of F at P , mP (F ), to be mP (F∗). The multiplicity is inde-

pendent of the choice of Ui , and invariant under projective change of coordinates

(Theorem 2 of §3.2).

The following notation will be useful. If we are considering a finite set of points

P1, . . . ,Pn ∈P2, we can always find a line L that doesn’t pass through any of the points

(Problem 4.25). If F is a curve of degree d , we let F∗ = F /Ld ∈ k(P2). This F∗ depends

on L, but if L′ were another choice, then F /(L′)d = (L/L′)d F∗ and L/L′ is a unit in

each OPi
(P2). Note also that we may always find a projective change of coordinates

so that the line L becomes the line Z at infinity: then, under the natural identifica-

tion of k(A2) with k(P2) (§4.3), this F∗ is the same as the old F∗ = F (X ,Y ,1).

If P is a simple point on F (i.e., mP (F ) = 1), and F is irreducible, then OP (F ) is a

DVR. We let ordF
P denote the corresponding order function on k(F ). If G is a form in

k[X ,Y , Z ], and G∗ ∈ OP (P2) is determined as in the preceding paragraph, and G∗ is

the residue of G∗ in OP (F ), we define ordF
P (G) to be ordF

P (G∗). Equivalently, ordF
P (G)

is the order at P of G/H , where H is any form of the same degree as G with H(P ) 6= 0.

53
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Let F , G be projective plane curves, P ∈ P2. We define the intersection number

I (P,F∩G) to be dimk (OP (P2)/(F∗,G∗)). This is independent of the way F∗ and G∗ are

formed, and it satisfies Properties (1)–(8) of Section 3 of Chapter 3: in (3), however,

T should be a projective change of coordinates, and in (7), A should be a form with

deg(A) = deg(G)−deg(F ).

We can define a line L to be tangent to a curve F at P if I (P,F ∩L) > mP (F ) (see

Problem 3.19). A point P in F is an ordinary multiple point of F if F has mP (F )

distinct tangents at P .

Two curves F and G are said to be projectively equivalent if there is a projective

change of coordinates T such that G = F T . Everything we will say about curves will

be the same for two projectively equivalent curves.

Problems

5.1.∗ Let F be a projective plane curve. Show that a point P is a multiple point of F

if and only if F (P ) = FX (P ) = FY (P ) = FZ (P ) = 0.

5.2. Show that the following curves are irreducible; find their multiple points, and

the multiplicities and tangents at the multiple points.

(a) X Y 4 +Y Z 4 +X Z 4.

(b) X 2Y 3 +X 2Z 3 +Y 2Z 3.

(c) Y 2Z −X (X −Z )(X −λZ ), λ ∈ k.

(d) X n +Y n +Z n , n > 0.

5.3. Find all points of intersection of the following pairs of curves, and the intersec-

tion numbers at these points:

(a) Y 2Z −X (X −2Z )(X +Z ) and Y 2 +X 2 −2X Z .

(b) (X 2 +Y 2)Z +X 3 +Y 3 and X 3 +Y 3 −2X Y Z .

(c) Y 5 −X (Y 2 −X Z )2 and Y 4 +Y 3Z −X 2Z 2.

(d) (X 2 +Y 2)2 +3X 2Y Z −Y 3Z and (X 2 +Y 2)3 −4X 2Y 2Z 2.

5.4.∗ Let P be a simple point on F . Show that the tangent line to F at P has the

equation FX (P )X +FY (P )Y +FZ (P )Z = 0.

5.5.∗ Let P = [0 : 1 : 0], F a curve of degree n, F =
∑

Fi (X , Z )Y n−i , Fi a form of de-

gree i . Show that mP (F ) is the smallest m such that Fm 6= 0, and the factors of Fm

determine the tangents to F at P .

5.6.∗ For any F , P ∈ F , show that mP (FX ) ≥ mP (F )−1.

5.7.∗ Show that two plane curves with no common components intersect in a finite

number of points.

5.8.∗ Let F be an irreducible curve. (a) Show that FX , FY , or FZ 6= 0. (b) Show that F

has only a finite number of multiple points.

5.9. (a) Let F be an irreducible conic, P = [0 : 1 : 0] a simple point on F , and Z = 0

the tangent line to F at P . Show that F = aY Z −bX 2 − c X Z −d Z 2, a,b 6= 0. Find a

projective change of coordinates T so that F T = Y Z − X 2 − c ′X Z −d ′Z 2. Find T ′ so

that (F T )T ′ = Y Z − X 2. (T ′ = (X ,Y + c ′X +d ′Z , Z ).) (b) Show that, up to projective
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equivalence, there is only one irreducible conic: Y Z = X 2. Any irreducible conic is

nonsingular.

5.10. Let F be an irreducible cubic, P = [0 : 0 : 1] a cusp on F , Y = 0 the tangent line

to F at P . Show that F = aY 2Z −bX 3−c X 2Y −d X Y 2−eY 3. Find projective changes

of coordinates (i) to make a = b = 1; (ii) to make c = 0 (change X to X − c
3

Y ); (iii) to

make d = e = 0 (Z to Z +d X +eY ).

Up to projective equivalence, there is only one irreducible cubic with a cusp:

Y 2Z = X 3. It has no other singularities.

5.11. Up to projective equivalence, there is only one irreducible cubic with a node:

X Y Z = X 3 +Y 3. It has no other singularities.

5.12. (a) Assume P = [0 : 1 : 0] ∈ F , F a curve of degree n. Show that
∑

P I (P,F ∩X ) =
n. (b) Show that if F is a curve of degree n, L a line not contained in F , then

∑
I (P,F ∩L) = n.

5.13. Prove that an irreducible cubic is either nonsingular or has at most one double

point (a node or a cusp). (Hint: Use Problem 5.12, where L is a line through two

multiple points; or use Problems 5.10 and 5.11.)

5.14.∗ Let P1, . . . ,Pn ∈ P2. Show that there are an infinite number of lines passing

through P1, but not through P2, . . . ,Pn . If P1 is a simple point on F , we may take

these lines transversal to F at P1.

5.15.∗ Let C be an irreducible projective plane curve, P1, . . . ,Pn simple points on C ,

m1, . . . ,mn integers. Show that there is a z ∈ k(C ) with ordPi
(z) = mi for i = 1, . . . ,n.

(Hint: Take lines Li as in Problem 5.14 for Pi , and a line L0 not through any P j , and

let z =
∏

L
mi

i
L0

−
∑

mi .)

5.16.∗ Let F be an irreducible curve in P2. Suppose I (P,F ∩Z ) = 1, and P 6= [1 : 0 : 0].

Show that FX (P ) 6= 0. (Hint: If not, use Euler’s Theorem to show that FY (P ) = 0; but

Z is not tangent to F at P .)

5.2 Linear Systems of Curves

We often wish to study all curves of a given degree d ≥ 1. Let M1, . . . , MN be a fixed

ordering of the set of monomials in X ,Y , Z of degree d , where N is
1
2

(d + 1)(d + 2) (Problem 2.35). Giving a curve F of degree d is the same thing as

choosing a1, . . . , aN ∈ k, not all zero, and letting F =
∑

ai Mi , except that (a1, . . . , aN )

and (λa1, . . . ,λaN ) determine the same curve. In other words, each curve F of degree

d corresponds to a unique point in PN−1 =Pd(d+3)/2 and each point of Pd(d+3)/2 rep-

resents a unique curve. We often identify F with its corresponding point in Pd(d+3)/2,

and say e.g. “the curves of degree d form a projective space of dimension d(d+3)/2”.

Examples. (1) d = 1. Each line aX +bY +c Z corresponds to the point [a : b : c] ∈
P2. The lines in P2 form a P2 (see Problem 4.18).

(2) d = 2. The conic aX 2+bX Y +c X Z +dY 2+eY Z + f Z 2 corresponds the point

[a : b : c : d : e : f ] ∈P5. The conics form a P5.
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(3) The cubics form a P9, the quartics a P14, etc.

If we put conditions on the set of all curves of degree d , the curves that satisfy the

conditions form a subset of Pd(d+3)/2. If this subset is a linear subvariety (Problem

4.11), it is called a linear system of plane curves.

Lemma. (1) Let P ∈P2 be a fixed point. The set of curves of degree d that contain

P forms a hyperplane in Pd(d+3)/2.

(2) If T : P2 → P2 is a projective change of coordinates, then the map F 7→ F T

from {curves of degree d} to {curves of degree d} is a projective change of coordinates

on Pd(d+3)/2.

Proof. If P = [x : y : z], then the curve corresponding to (a1, . . . , aN ) ∈Pd(d+3)/2 passes

through P if and only if
∑

ai Mi (x, y, z) = 0. Since not all Mi (x, y, z) are zero, those

[a1 : . . . : aN ] satisfying this equation form a hyperplane. The proof that F 7→ F T is

linear is similar; it is invertible since F 7→ F T −1
is its inverse.

It follows that for any set of points, the curves of degree d that contain them

form a linear subvariety of Pd(d+3)/2. Since the intersection of n hyperplanes of Pn

is not empty (Problem 4.12), there is a curve of degree d passing through any given

d(d +3)/2 points.

Suppose now we fix a point P and an integer r ≤ d+1. We claim that the curves F

of degree d such that mP (F ) ≥ r form a linear subvariety of dimension d(d+3)
2

− r (r+1)
2

.

By (2) of the Lemma, we may assume P = [0 : 0 : 1]. Write F =
∑

Fi (X ,Y )Z d−i , Fi a

form of degree i . Then mP (F ) ≥ r if and only if F0 = F1 = ·· · = Fr−1 = 0, i.e., the

coefficients of all monomials X i Y j Z k with i + j < r are zero (Problem 5.5). And

there are 1+2+·· ·+ r = r (r+1)
2

such coefficients.

Let P1, . . . ,Pn be distinct points in P2, r1, . . . ,rn nonnegative integers. We set

V (d ;r1P1, . . . ,rnPn) = {curves F of degree d | mPi
(F ) ≥ ri ,1 ≤ i ≤ n}.

Theorem 1. (1) V (d ;r1P1, . . . ,rnPn) is a linear subvariety of Pd(d+3)/2 of dimen-

sion ≥ d(d+3)
2

−
∑ ri (ri+1)

2
.

(2) If d ≥ (
∑

ri )−1, then dimV (d ;r1P1, . . . ,rnPn) = d(d+3)
2

−
∑ ri (ri+1)

2
.

Proof. (1) follows from the above discussion. We prove (2) by induction on m =
(
∑

ri )−1. We may assume that m > 1, d > 1, since otherwise it is trivial.

Case 1: Each ri = 1: Let Vi = V (d ;P1, . . . ,Pi ). By induction it is enough to show

that Vn 6=Vn−1. Choose lines Li passing through Pi but not through P j , j 6= i (Prob-

lem 5.14), and a line L0 not passing through any Pi . Then F = L1 · · ·Ln−1Ld−n+1
0 ∈

Vn−1, F 6∈Vn .

Case 2: Some ri > 1: Say r = r1 > 1, and P = P1 = [0 : 0 : 1]. Let

V0 =V (d ; (r −1)P,r2P2, . . . ,rnPn).

For F ∈V0 let F∗ =
∑r−1

i=0
ai X i Y r−1−i+higher terms. Let Vi = {F ∈V0 | a j = 0 for j < i }.

Then V0 ⊃ V1 ⊃ ·· · ⊃ Vr = V (d ;r1P1,r2P2, . . . ,rnPn), so it is enough to show that

Vi 6=Vi+1, i = 0,1, . . . ,r −1.
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Let W0 = V (d −1;(r −2)P,r2P2, . . . ,rnPn). For F ∈ W0, F∗ = ai X i Y r−2−i +·· · . Set

Wi = {F ∈W0 | a j = 0 for j < i }. By induction,

W0 % W1 % · · ·% Wr−1 =V (d −1;(r −1)P,r2P2, . . . ,rnPn).

If Fi ∈Wi , Fi 6∈Wi+1, then Y Fi ∈Vi , Y Fi 6∈Vi+1, and X Fr−2 ∈Vr−1, X Fr−2 6∈Vr . Thus

Vi 6=Vi+1 for i = 0, . . . ,r −1, and this completes the proof.

Problems

5.17. Let P1,P2,P3,P4 ∈ P2. Let V be the linear system of conics passing through

these points. Show that dim(V ) = 2 if P1, . . . ,P4 lie on a line, and dim(V ) = 1 other-

wise.

5.18. Show that there is only one conic passing through the five points [0 : 0 : 1],

[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1], and [1 : 2 : 3]; show that it is nonsingular.

5.19. Consider the nine points [0 : 0 : 1], [0 : 1 : 1], [1 : 0 : 1], [1 : 1 : 1], [0 : 2 : 1],

[2 : 0 : 1], [1 : 2 : 1], [2 : 1 : 1], and [2 : 2 : 1] ∈P2 (Sketch). Show that there are an infinite

number of cubics passing through these points.

5.3 Bézout’s Theorem

The projective plane was constructed so that any two distinct lines would inter-

sect at one point. The famous theorem of Bézout tells us that much more is true:

BÉZOUT’S THEOREM. Let F and G be projective plane curves of degree m and n

respectively. Assume F and G have no common component. Then

∑

P

I (P,F ∩G) = mn

Proof. Since F ∩G is finite (Problem 5.7), we may assume, by a projective change

of coordinates if necessary, that none of the points in F ∩G is on the line at infinity

Z = 0.

Then
∑

P I (P,F ∩G) =
∑

P I (P,F∗∩G∗) = dimk k[X ,Y ]/(F∗,G∗), by Property (9) for

intersection numbers. Let

Γ∗ = k[X ,Y ]/(F∗,G∗), Γ= k[X ,Y , Z ]/(F,G), R = k[X ,Y , Z ],

and let Γd (resp. Rd ) be the vector space of forms of degree d in Γ (resp. R). The

theorem will be proved if we can show that dimΓ∗ = dimΓd and dimΓd = mn for

some large d .

Step 1: dimΓd = mn for all d ≥ m + n: Let π : R → Γ be the natural map, let

ϕ : R ×R → R be defined by ϕ(A,B) = AF +BG , and let ψ : R → R ×R be defined by

ψ(C ) = (GC ,−FC ). Using the fact that F and G have no common factors, it is not

difficult to check the exactness of the following sequence:

0 −→ R
ψ
−→ R ×R

ϕ
−→ R

π−→ Γ−→ 0.
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If we restrict these maps to the forms of various degrees, we get the following exact

sequences:

0 −→ Rd−m−n
ψ
−→ Rd−m ×Rd−n

ϕ
−→ Rd

π−→ Γd −→ 0.

Since dimRd = (d+1)(d+2)
2

, it follows from Proposition 7 of §2.10 (with a calculation)

that dimΓd = mn if d ≥ m +n.

Step 2: The map α : Γ → Γ defined by α(H) = Z H (where the bar denotes the

residue modulo (F,G)) is one-to-one:

We must show that if Z H = AF +BG , then H = A′F +B ′G for some A′,B ′. For

any J ∈ k[X ,Y , Z ], denote (temporarily) J (X ,Y ,0) by J0. Since F,G , and Z have no

common zeros, F0 and G0 are relatively prime forms in k[X ,Y ].

If Z H = AF +BG , then A0F0 = −B0G0, so B0 = F0C and A0 = −G0C for some

C ∈ k[X ,Y ]. Let A1 = A+CG , B1 = B−C F . Since (A1)0 = (B1)0 = 0, we have A1 = Z A′,
B1 = Z B ′ for some A′,B ′; and since Z H = A1F +B1G , it follows that H = A′F +B ′G ,

as claimed.

Step 3: Let d ≥ m +n, and choose A1, . . . , Amn ∈ Rd whose residues in Γd form a

basis for Γd . Let Ai∗ = Ai (X ,Y ,1) ∈ k[X ,Y ], and let ai be the residue of Ai∗ in Γ∗.

Then a1, . . . , amn form a basis for Γ∗:

First notice that the map α of Step 2 restricts to an isomorphism from Γd onto

Γd+1, if d ≥ m +n, since a one-to-one linear map of vector spaces of the same di-

mension is an isomorphism. It follows that the residues of Z r A1, . . . , Z r Amn form a

basis for Γd+r for all r ≥ 0.

The ai generate Γ∗: if h = H ∈ Γ∗, H ∈ k[X ,Y ], some Z N H∗ is a form of degree

d + r , so Z N H∗ =
∑mn

i=1
λi Z r Ai +BF +CG for some λi ∈ k, B ,C ∈ k[X ,Y , Z ]. Then

H = (Z N H∗)∗ =
∑
λi Ai∗+B∗F∗+C∗G∗, so h =

∑
λi ai , as desired.

The ai are independent: For if
∑
λi ai = 0, then

∑
λi Ai∗ = BF∗ +CG∗. There-

fore (by Proposition 5 of §2.6) Z r ∑
λi Ai = Z s B∗F +Z t C∗G for some r, s, t . But then∑

λi Z r Ai = 0 in Γd+r , and the Z r Ai form a basis, so each λi = 0. This finishes the

proof.

Combining Property (5) of the intersection number (§3.3) with Bézout’s Theo-

rem, we deduce

Corollary 1. If F and G have no common component, then

∑

P

mP (F )mP (G) ≤ deg(F ) ·deg(G).

Corollary 2. If F and G meet in mn distinct points, m = deg(F ),n = deg(G), then

theses points are all simple points on F and on G.

Corollary 3. If two curves of degrees m and n have more than mn points in common,

then they have a common component.

Problems

5.20. Check your answers of Problem 5.3 with Bézout’s Theorem.
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5.21.∗ Show that every nonsingular projective plane curve is irreducible. Is this true

for affine curves?

5.22.∗ Let F be an irreducible curve of degree n. Assume FX 6= 0. Apply Corollary 1

to F and FX , and conclude that
∑

mP (F )(mP (F )−1) ≤ n(n −1). In particular, F has

at most 1
2

n(n −1) multiple points. (See Problems 5.6, 5.8.)

5.23. A problem about flexes (see Problem 3.12): Let F be a projective plane curve

of degree n, and assume F contains no lines.

Let Fi = FXi
and Fi j = FXi X j

, forms of degree n−1 and n−2 respectively. Form a

3×3 matrix with the entry in the (i , j )th place being Fi j . Let H be the determinant

of this matrix, a form of degree 3(n −2). This H is called the Hessian of F . Problems

5.22 and 6.47 show that H 6= 0, for F irreducible. The following theorem shows the

relationship between flexes and the Hessian.

Theorem. (char(k) = 0) (1) P ∈ H ∩F if and only if P is either a flex or a multiple

point of F . (2) I (P, H ∩F ) = 1 if and only if P is an ordinary flex.

Outline of proof. (a) Let T be a projective change of coordinates. Then the Hessian

of F T = (det(T ))2(H T ). So we can assume P = [0 : 0 : 1]; write f (X ,Y ) = F (X ,Y ,1)

and h(X ,Y ) = H(X ,Y ,1).

(b) (n −1)F j =
∑

i Xi Fi j . (Use Euler’s Theorem.)

(c) I (P, f ∩h) = I (P, f ∩g ) where g = f 2
y fxx + f 2

x fy y −2 fx fy fx y . (Hint: Perform row

and column operations on the matrix for h. Add x times the first row plus y times

the second row to the third row, then apply part (b). Do the same with the columns.

Then calculate the determinant.)

(d) If P is a multiple point on F , then I (P, f ∩ g ) > 1.

(e) Suppose P is a simple point, Y = 0 is the tangent line to F at P , so f = y +
ax2 + bx y + c y2 + d x3 + ex2 y + . . .. Then P is a flex if and only if a = 0, and P is

an ordinary flex if and only if a = 0 and d 6= 0. A short calculation shows that g =
2a +6d x + (8ac −2b2 +2e)y+ higher terms, which concludes the proof.

Corollary. (1) A nonsingular curve of degree > 2 always has a flex. (2) A nonsingular

cubic has nine flexes, all ordinary.

5.24. (char(k) = 0) (a) Let [0 : 1 : 0] be a flex on an irreducible cubic F , Z = 0 the

tangent line to F at [0 : 1 : 0]. Show that F = Z Y 2 +bY Z 2 + cY X Z+ terms in X , Z .

Find a projective change of coordinates (using Y 7→ Y − b
2

Z− c
2

X ) to get F to the form

Z Y 2 = cubic in X , Z . (b) Show that any irreducible cubic is projectively equivalent

to one of the following: Y 2Z = X 3, Y 2Z = X 2(X + Z ), or Y 2Z = X (X − Z )(X −λZ ),

λ ∈ k, λ 6= 0,1. (See Problems 5.10, 5.11.)

5.4 Multiple Points

In Problem 5.22 of the previous section we saw one easy application of Bézout’s

Theorem: If F is an irreducible curve of degree n, and mP denotes the multiplicity

of F at P , then
∑ mP (mP−1)

2
≤ n(n−1)

2
.

An examination of the cases n = 2,3 however, indicates that this is not the best

possible result (Problems 5.9, 5.13). In fact:
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Theorem 2. If F is an irreducible curve of degree n, then
∑ mP (mP−1)

2
≤ (n−1)(n−2)

2
.

Proof. Since r := (n−1)(n−1+3)
2

−
∑ (mP−1)(mP )

2
≥ (n−1)n

2
−

∑ (mP−1)mP

2
≥ 0, we may choose

simple points Q1, . . . ,Qr ∈ F . Then Theorem 1 of §5.2 (for d = n − 1) guarantees

the existence of a curve G of degree n − 1 such that mP (G) ≥ mP − 1 for all P , and

mQi
(G) ≥ 1.

Now apply Corollary 1 of Bézout’s Theorem to F and G (since F is irreducible,

there are no common components): n(n −1) ≥
∑

mP (mP −1)+ r . The theorem fol-

lows by substituting the value for r into this inequality.

For small n this gives us some results we have seen in the problems: lines and

irreducible conics are nonsingular, and an irreducible cubic can have at most one

double point. Letting n = 4 we see that an irreducible quartic has at most three

double points or one triple point, etc. Note that the curve X n +Y n−1Z has the point

[0 : 0 : 1] of multiplicity n −1, so the result cannot be strengthened.

Problems

5.25. Let F be a projective plane curve of degree n with no multiple components,

and c simple components. Show that

∑ mP (mP −1)

2
≤

(n −1)(n −2)

2
+ c −1 ≤

n(n −1)

2

(Hint: Let F = F1F2; consider separately the points on one Fi or on both.)

5.26.∗ (char(k) = 0) Let F be an irreducible curve of degree n in P2. Suppose P ∈P2,

with mP (F ) = r ≥ 0. Then for all but a finite number of lines L through P , L intersects

F in n − r distinct points other than P . We outline a proof:

(a) We may assume P = [0 : 1 : 0]. If Lλ = {[λ : t : 1] | t ∈ k}∪ {P }, we need only

consider the Lλ. Then F = Ar (X , Z )Y n−r +·· ·+An(X , Z ), Ar 6= 0. (See Problems 4.24,

5.5).

(b) Let Gλ(t ) = F (λ, t ,1). It is enough to show that for all but a finite number of

λ, Gλ has n − r distinct points.

(c) Show that Gλ has n−r distinct roots if Ar (λ,1) 6= 0, and F ∩FY ∩Lλ = {P } (see

Problem 1.53).

5.27. Show that Problem 5.26 remains true if F is reducible, provided it has no mul-

tiple components.

5.28. (char(k) = p > 0) F = X p+1 − Y p Z , P = [0 : 1 : 0]. Find L ∩ F for all lines L

passing through P . Show that every line that is tangent to F at a simple point passes

through P !

5.5 Max Noether’s Fundamental Theorem

A zero-cycle on P2 is a formal sum
∑

P∈P2 nP P , where nP ’s are integers, and all

but a finite number of nP ’s are zero. The set of all zero-cycles on P2 form an abelian
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group — in fact, it is the free abelian group with basis X =P2, as defined in Chapter

2, Section 11.

The degree of a zero cycle
∑

nP P is defined to be
∑

nP . The zero cycle is positive

if each nP ≥ 0. We say that
∑

nP P is bigger than
∑

mP P , and write
∑

nP P ≥
∑

mP P ,

if each nP ≥ mP .

Let F , G be projective plane curves of degrees m, n respectively, with no common

components. We define the intersection cycle F •G by

F •G =
∑

P∈P2

I (P,F ∩G)P.

Bézout’s Theorem says that F •G is a positive zero-cycle of degree mn.

Several properties of intersection numbers translate nicely into properties of the

intersection cycle. For example: F •G = G•F ; F •G H = F •G +F •H ; and F •(G + AF ) =
F •G if A is a form and deg(A) = deg(G)−deg(F ).

Max Noether’s Theorem is concerned with the following situation: Suppose F , G ,

and H are curves, and H•F ≥G•F , i.e., H intersects F in a bigger cycle than G does.

When is there a curve B so that B•F = H•F −G•F ? Note that necessarily deg(B) =
deg(H)−deg(G).

To find such a B , it suffices to find forms A,B such that H = AF +BG . For then

H•F = BG•F = B•F +G•F .

Let P ∈ P2, F , G curves with no common component through P , H another

curve. We say that Noether’s Conditions are satisfied at P (with respect to F , G , and

H), if H∗ ∈ (F∗,G∗) ⊂OP (P2), i.e., if there are a, b ∈OP (P2) such that H∗ = aF∗+bG∗
(see §5.1 for notation). Noether’s Theorem relates the local and global conditions.

MAX NOETHER’S FUNDAMENTAL THEOREM. Let F,G , H be projective plane curves.

Assume F and G have no common components. Then there is an equation H = AF +
BG (with A, B forms of degree deg(H)−deg(F ), deg(H)−deg(G) respectively) if and

only if Noether’s conditions are satisfied at every P ∈ F ∩G.

Proof. If H = AF +BG , then H∗ = A∗F∗ +B∗G∗ at any P . To prove the converse,

we assume, as in the proof of Bézout’s Theorem, that V (F,G , Z ) = ;. We may take

F∗ = F (X ,Y ,1), G∗ = G(X ,Y ,1), H∗ = H(X ,Y ,1). Noether’s conditions say that the

residue of H∗ in OP (P2)/(F∗,G∗) is zero for each P ∈ F ∩G . It follows from Propo-

sition 6 of §2.9 that the residue of H∗ in k[X ,Y ]/(F∗,G∗) is zero, i.e., H∗ = aF∗ +
bG∗, a,b ∈ k[X ,Y ]. Then Z r H = AF +BG for some r, A,B (Proposition 7 of §2.10).

But in the proof of Step 2 of Bézout’s Theorem we saw that multiplication by Z

on k[X ,Y , Z ]/(F,G) is one-to-one, so H = A′F +B ′G for some A′,B ′. If A′ =
∑

A′
i
,

B ′ =
∑

B ′
i
, A′

i
, B ′

i
forms of degree i , then H = A′

s F +B ′
t G , s = deg(H)−deg(F ), t =

deg(H)−deg(G).

Of course, the usefulness of this theorem depends on finding criteria that assure

that Noether’s conditions hold at P :

Proposition 1. Let F , G, H be plane curves, P ∈ F ∩G. Then Noether’s conditions are

satisfied at P if any of the following are true:

(1) F and G meet transversally at P, and P ∈ H.
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(2) P is a simple point on F , and I (P, H ∩F ) ≥ I (P,G ∩F ).

(3) F and G have distinct tangents at P, and mP (H) ≥ mP (F )+mP (G)−1.

Proof. (2): I (P, H ∩F ) ≥ I (P,G ∩F ) implies that ordF
P (H) ≥ ordF

P (G), so H∗ ∈ (G∗) ⊂
OP (F ). Since OP (F )/(G∗) ∼= OP (P2)/(F∗,G∗) (Problem 2.44), the residue of H∗ in

OP (P2)/(F∗,G∗) is zero, as desired.

(3): We may assume P = [0 : 0 : 1], and mP (H∗) ≥ mP (F∗)+mP (G∗)− 1. In the

notation of the lemma used to prove Property (5) of the intersection number (§3.3),

this says that H∗ ∈ I t , t ≥ m +n −1. And in that lemma, we showed precisely that

I t ⊂ (F∗,G∗) ⊂OP (P2) if t ≥ mP (F )+mP (G)−1.

(1) is a special case both of (2) and of (3) (and is easy by itself).

Corollary. If either

(1) F and G meet in deg(F )deg(G) distinct points, and H passes through these

points, or

(2) All the points of F ∩G are simple points of F , and H•F ≥G•F ,

then there is a curve B such that B•F = H•F −G•F .

In §7.5 we will find a criterion that works at all ordinary multiple points of F .

Problems

5.29. Fix F , G , and P . Show that in cases (1) and (2) — but not (3) — of Proposition

1 the conditions on H are equivalent to Noether’s conditions.

5.30. Let F be an irreducible projective plane curve. Suppose z ∈ k(F ) is defined at

every P ∈ F . Show that z ∈ k. (Hint: Write z = H/G , and use Noether’s Theorem).

5.6 Applications of Noether’s Theorem

We indicate in this section a few of the many interesting consequences of Noether’s

Theorem. Since they will not be needed in later Chapters, the proofs will be brief.

Proposition 2. Let C , C ′ be cubics, C ′•C =
∑9

i=1 Pi ; suppose Q is a conic, and Q•C =∑6
i=1 Pi . Assume P1, . . . ,P6 are simple points on C . Then P7,P8, and P9 lie on a straight

line.

Proof. Let F =C , G =Q, H =C ′ in (2) of the Corollary to Proposition 1.

Corollary 1 (Pascal). If a hexagon is inscribed in an irreducible conic, then the oppo-

site sides meet in collinear points.

Proof. Let C be three sides, C ′ the three opposite sides, Q the conic, and apply

Proposition 2.

Corollary 2 (Pappus). Let L1,L2 be two lines; P1, P2, P3 ∈ L1, Q1, Q2, Q3 ∈ L2 (none

of these points in L1 ∩L2). Let Li j be the line between Pi and Q j . For each i , j ,k with

{i , j ,k} = {1,2,3}, let Rk = Li j .L j i . Then R1, R2, and R3 are collinear.
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Proof. The two lines form a conic, and the proof is the same as in Corollary 1.

Pascal’s Theorem Pappus’ Theorem

Proposition 3. Let C be an irreducible cubic, C ′, C ′′ cubics. Suppose C ′•C =
∑9

i=1 Pi ,

where the Pi are simple (not necessarily distinct) points on C , and suppose C ′′•C =∑8
i=1 Pi +Q. Then Q = P9.

Proof. Let L be a line through P9 that doesn’t pass through Q; L•C = P9+R+S. Then

LC ′′•C = C ′•C +Q +R +S, so there is a line L′ such that L′•C = Q +R +S. But then

L′ = L and so P9 =Q.

Addition on a cubic. Let C be a nonsingular cubic. For any two points P , Q ∈ C ,

there is a unique line L such that L•C = P +Q +R, for some R ∈ C . (If P = Q, L is

the tangent to C at P ). Define ϕ : C ×C → C by setting ϕ(P,Q) = R. This ϕ is like an

addition on C , but there is no identity. To remedy this, choose a point O on C . Then

define an addition ⊕ on C as follows: P ⊕Q =ϕ(O,ϕ(P,Q)).

Proposition 4. C , with the operation ⊕, forms an abelian group, with the point O

being the identity.

O

P

Q

R
S

S′

U
U ′

T ′ = T ′′

Proof. Only the associativity is difficult: Suppose P,Q,R ∈ C . Let L1•C = P +Q +S′,
M1•C =O +S′+S, L2•C = S +R +T ′.
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Let M2•C =Q+R+U ′, L3•C =O+U ′+U , M3•C = P +U +T ′′. Since (P ⊕Q)⊕R =
ϕ(O,T ′), and P ⊕ (Q ⊕R) =ϕ(O,T ′′), it suffices to show that T ′ = T ′′.

Let C ′ = L1L2L3, C ′′ = M1M2M3, and apply Proposition 3.

Problems

5.31. If in Pascal’s Theorem we let some adjacent vertices coincide (the side being a

tangent), we get many new theorems:

(a) State and sketch what happens if P1 = P2, P3 = P4, P5 = P6.

(b) Let P1 = P2, the other four distinct.

(c) From (b) deduce a rule for constructing the tangent to a given conic at a given

point, using only a straight-edge.

5.32. Suppose the intersections of the opposite sides of a hexagon lie on a straight

line. Show that the vertices lie on a conic.

5.33. Let C be an irreducible cubic, L a line such that L•C = P1+P2+P3, Pi distinct.

Let Li be the tangent line to C at Pi : Li •C = 2Pi+Qi for some Qi . Show that Q1,Q2,Q3

lie on a line. (L2 is a conic!)

5.34. Show that a line through two flexes on a cubic passes through a third flex.

5.35. Let C be any irreducible cubic, or any cubic without multiple components,

C ◦ the set of simple points of C , O ∈ C ◦. Show that the same definition as in the

nonsingular case makes C ◦ into an abelian group.

5.36. Let C be an irreducible cubic, O a simple point on C giving rise to the addition

⊕ on the set C ◦ of simple points. Suppose another O′ gives rise to an addition ⊕′. Let

Q = ϕ(O,O′), and define α : (C ,O,⊕) → (C ,O′,⊕′) by α(P ) = ϕ(Q,P ). Show that α is

a group isomorphism. So the structure of the group is independent of the choice of

O.

5.37. In Proposition 4, suppose O is a flex on C . (a) Show that the flexes form a

subgroup of C ; as an abelian group, this subgroup is isomorphic to Z/(3)×Z/(3).

(b) Show that the flexes are exactly the elements of order three in the group. (i.e.,

exactly those elements P such that P ⊕ P ⊕ P = O). (c) Show that a point P is of

order two in the group if and only if the tangent to C at P passes through O. (d) Let

C = Y 2Z −X (X −Z )(X −λZ ), λ 6= 0,1, O = [0 : 1 : 0]. Find the points of order two. (e)

Show that the points of order two on a nonsingular cubic form a group isomorphic

to Z/(2)×Z/(2). (f) Let C be a nonsingular cubic, P ∈C . How many lines through P

are tangent to C at some point Q 6= P? (The answer depends on whether P is a flex.)

5.38. Let C be a nonsingular cubic given by the equation Y 2Z = X 3+aX 2Z+bX Z 2+
c Z 3, O = [0 : 1 : 0]. Let Pi = [xi : yi : 1], i = 1,2,3, and suppose P1 ⊕P2 = P3. If x1 6= x2,

let λ = (y1 − y2)/(x1 − x2); if P1 = P2 and y1 6= 0, let λ = (3x2
1 + 2ax1 +b)/(2y1). Let

µ= yi −λxi , i = 1,2. Show that x3 =λ2−a−x1−x2, and y3 =−λx3−µ. This gives an

explicit method for calculating in the group.

5.39. (a) Let C = Y 2Z − X 3 − 4X Z 2, O = [0 : 1 : 0], A = [0 : 0 : 1], B = [2 : 4 : 1], and

C = [2 : −4 : 1]. Show that {0, A,B ,C } form a subgroup of C that is cyclic of order 4.
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(b) Let C = Y 2Z −X 3−43X Z 2−166Z 3. Let O = [0 : 1 : 0], P = [3 : 8 : 1]. Show that P is

an element of order 7 in C .

5.40. Let k0 be a subfield of k. If V is an affine variety, V ⊂ An(k), a point P =
(a1, . . . , an) ∈ V is rational over k0, if each ai ∈ k0. If V ⊂ Pn(k) is projective, a point

P ∈ V is rational over k0 if for some homogeneous coordinates (a1, . . . , an+1) for P ,

each ai ∈ k0.

A curve F of degree d is said to be emphrational over k0 if the corresponding

point in Pd(d+3)/2 is rational over k0.

Suppose a nonsingular cubic C is rational over k0. Let C (k0) be the set of points

of C that are rational over k0. (a) If P , Q ∈ C (k0), show that ϕ(P,Q) is in C (k0). (b)

If O ∈ C (k0), show that C (k0) forms a subgroup of C . (If k0 = Q, k = C, this has

important applications to number theory.)

5.41. Let C be a nonsingular cubic, O a flex on C . Let P1, . . . ,P3m ∈ C . Show that

P1⊕·· ·⊕P3m =O if and only if there is a curve F of degree m such that F •C =
∑3m

i=1
Pi .

(Hint: Use induction on m. Let L•C = P1+P2+Q, L′•C = P3+P4+R, L′′•C =Q+R+S,

and apply induction to S,P5, . . . ,P3m ; use Noether’s Theorem.)

5.42. Let C be a nonsingular cubic, F,F ′ curves of degree m such that F •C =
∑3m

i=1
Pi ,

F ′•C =
∑3m−1

i=1
Pi +Q. Show that P3m =Q.

5.43. For which points P on a nonsingular cubic C does there exist a nonsingular

conic that intersects C only at P?
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Chapter 6

Varieties, Morphisms, and
Rational Maps

This chapter begins the study of intrinsic properties of a variety — properties

that do not depend on its embedding in affine or projective spaces (or products

of these). Making this transition from extrinsic to intrinsic geometry has not been

easy historically; the abstract language required demands some fortitude from the

reader.

6.1 The Zariski Topology

One of the purposes of considering a topology on a set is to be able to restrict

attention to a “neighborhood” of a point in the set. Often this means simply that

we throw away a set (not containing the point) on which something we don’t like

happens. For example, if z is a rational function on a variety V , and z is defined at

P ∈V , there should be a neighborhood of P where z is a function — we must throw

away the pole set of z. We want to be able to discard an algebraic subset from an

affine or projective variety, and still think of what is left as some kind of variety.

We first recall some notions from topology. A topology on a set X is a collection

of subsets of X , called the open subsets of X , satisfying:

(1) X and the empty set ; are open.

(2) The union of any family of open subsets of X is open.

(3) The intersection of any finite number of open sets is open.

A topological space is a set X together with a topology on X . A set C in X is

closed if X rC is open. If Y ⊂ X , any open set of X that contains Y will be called

a neighborhood of Y . (Sometimes any set containing an open set containing Y is

called a neighborhood of Y , but we will consider only open neighborhoods.)

If Y is a subset of a topological space X , the induced topology on Y is defined

as follows: a set W ⊂ Y is open in Y if there is an open subset U of X such that

W = Y ∩U .

67



68 CHAPTER 6. VARIETIES, MORPHISMS, AND RATIONAL MAPS

For any subset Y of a topological space X , the closure of Y in X is the intersection

of all closed subsets of X that contain Y . The set Y is said to be dense in X if X is the

closure of Y in X ; equivalently, for every nonempty open subset U of X , U ∩Y 6= ;.

If X and X ′ are topological spaces, a mapping f : X ′ → X is called continuous

if for every open set U of X , f −1(U ) = {x ∈ X ′ | f (x) ∈ U } is an open subset of X ′;
equivalently, for every closed subset C of X , f −1(C ) is closed in X ′. If, in addition, f

is one-to-one and onto X , and f −1 is continuous, f is said to be homeomorphism.

Let X = Pn1 × ·· ·×Pnr ×Am . The Zariski topology on X is defined as follows: a

set U ⊂ X is open if X rU is an algebraic subset of X . That this is a topology follows

from the properties of algebraic sets proved in Chapter 1 (see also §4.4). Any subset

V of X is given the induced topology. In particular, if V is a variety in X , a subset of

V is closed if and only if it is algebraic.

If X = A1 or P1, the proper closed subsets of X are just the finite subsets. If

X =A2 or P2, proper closed subsets are finite unions of points and curves.

Note that for any two nonempty open sets U1,U2 in a variety V , U1 ∩U2 6= ; (for

otherwise V = (V rU1)∪ (V rU2) would be reducible). So if P and Q are distinct

points of V , there are never disjoint neighborhoods containing them. And every

nonempty open subset of a variety V is dense in V .

Problems

6.1.∗ Let Z ⊂ Y ⊂ X , X a topological space. Give Y the induced topology. Show that

the topology induced by Y on Z is the same as that induced by X on Z .

6.2.∗ (a) Let X be a topological space, X =
⋃

α∈A Uα, Uα open in X . Show that a

subset W of X is closed if and only if each W ∩Uα is closed (in the induced topology)

in Uα. (b) Suppose similarly Y =
⋃

α∈A Vα, Vα open in Y , and suppose f : X → Y

is a mapping such that f (Uα) ⊂ Vα. Show that f is continuous if and only if the

restriction of f to each Uα is a continuous mapping from Uα to Vα.

6.3.∗ (a) Let V be an affine variety, f ∈ Γ(V ). Considering f as a mapping from V

to k = A1, show that f is continuous. (b) Show that any polynomial map of affine

varieties is continuous.

6.4.∗ Let Ui ⊂ Pn , ϕi : An →Ui as in Chapter 4. Give Ui the topology induced from

Pn . (a) Show that ϕi is a homeomorphism. (b) Show that a set W ⊂ Pn is closed if

and only if each ϕ−1
i

(W ) is closed in An , i = 1, . . . ,n +1. (c) Show that if V ⊂An is an

affine variety, then the projective closure V ∗ of V is the closure of ϕn+1(V ) in Pn .

6.5. Any infinite subset of a plane curve V is dense in V . Any one-to-one mapping

from one irreducible plane curve onto another is a homeomorphism.

6.6.∗ Let X be a topological space, f : X → An a mapping. Then f is continuous if

and only if for each hypersurface V =V (F ) of An , f −1(V ) is closed in X . A mapping

f : X → k =A1 is continuous if and only if f −1(λ) is closed for any λ ∈ k.

6.7.∗ Let V be an affine variety, f ∈ Γ(V ). (a)] Show that V ( f ) = {P ∈V | f (P ) = 0} is a

closed subset of V , and V ( f ) 6=V unless f = 0. (b) Suppose U is a dense subset of V

and f (P ) = 0 for all P ∈U . Then f = 0.
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6.8.∗ Let U be an open subset of a variety V , z ∈ k(V ). Suppose z ∈ OP (V ) for all

P ∈ U . Show that Uz = {P ∈ U | z(P ) 6= 0} is open, and that the mapping from U to

k =A1 defined by P 7→ z(P ) is continuous.

6.2 Varieties

Let V be a nonempty irreducible algebraic set in Pn1 ×·· ·×Am . Any open subset

X of V will be called a variety. It is given the topology induced from V ; this topology

is called the Zariski topology on X .

We define k(X ) = k(V ) to be the field of rational functions on X , and if P ∈ X , we

define OP (X ) to be OP (V ), the local ring of X at P .

If U is an open subset of X , then U is also open in V , so U is also a variety. We

say that U is an open subvariety of X .

If Y is a closed subset of X , we say that Y is irreducible if Y is not the union of

two proper closed subsets. Then Y is then also a variety, for if Y is the closure of Y

in V , it is easy to verify that Y is irreducible in V and that Y = Y ∩X , so Y is open in

Y (see Problem 6.10). Such a Y is called a closed subvariety of X .

Let X be a variety, U a nonempty open subset of X . We define Γ(U ,OX ), or sim-

ply Γ(U ), to be the set of rational functions on X that are defined at each P ∈ U :

Γ(U ) =
⋂

P∈U OP (X ). The ring Γ(U ) is a subring of k(X ), and if U ′ ⊂U , then Γ(U ′) ⊃
Γ(U ). Note that if U = X is an affine variety, then Γ(X ) is the coordinate ring of X

(Proposition 2 of §2.4), so this notation is consistent.

If z ∈ Γ(U ), z determines a k-valued function on U : for if P ∈U , z ∈ OP (X ), and

z(P ) is well-defined. Let F (U ,k) be the ring of all k-valued functions on U . The map

that associates a function to each z ∈ Γ(U ) is a ring homomorphism from Γ(U ) into

F (U ,k). As in §2.1 we want to identify Γ(U ) with its image in F (U ,k), so that we

may consider Γ(U ) as a ring of functions on U . For this we need the map from Γ(U )

to F (U ,k) to be one-to-one, i.e.,

Proposition 1. Let U be an open subset of a variety X . Suppose z ∈ Γ(U ), and z(P ) = 0

for all P ∈U . Then z = 0.

Proof. Note first that we may replace U by any nonempty open subset U ′ of U , since

Γ(U ) ⊂ Γ(U ′).

If X ⊂Pn ×·· ·×Am , we may replace X by its closure, so assume X is closed. Then

if X ∩(Ui1 ×Ui2 ×·· ·×Am) 6= ;, we may replace X and U by the corresponding affine

variety ϕ−1(X ) and the open set ϕ−1(U ) in An ×·· ·×Am , where ϕ : An ×·· ·×Am →
Ui1 ×·· ·×Am is as in Problem 4.26.

Thus we may assume U is open in an affine variety X ⊂ AN . Write z = f /g ,

f , g ∈ Γ(X ). Replacing U by {P ∈U | g (P ) 6= 0}, we may assume g (P ) 6= 0 for all P ∈U

(Problem 6.8). Then f (P ) = 0 for all P ∈U , so f = 0 (Problem 6.7), and z = 0.

Problems

6.9. Let X =A2r{(0,0)}, an open subvariety ofA2. Show thatΓ(X ) = Γ(A2) = k[X ,Y ].
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6.10.∗ Let U be an open subvariety of a variety X , Y a closed subvariety of U . Let Z

be the closure of Y in X . Show that

(a) Z is a closed subvariety of X .

(b) Y is an open subvariety of Z .

6.11. (a) Show that every family of closed subsets of a variety has a minimal mem-

ber. (b) Show that if a variety is a union of a collection of open subsets, it is a union

of a finite number of theses subsets. (All varieties are “quasi-compact”.)

6.12.∗ Let X be a variety, z ∈ k(X ). Show that the pole set of z is closed. If z ∈OP (X ),

there is a neighborhood U of z such that z ∈ Γ(U ); so OP (X ) is the union of all Γ(U ),

where U runs through all neighborhoods of P .

6.3 Morphisms of Varieties

If ϕ : X → Y is any mapping between sets, composition with ϕ gives a homomor-

phism of rings ϕ̃ : F (Y ,k) →F (X ,k); i.e., ϕ̃( f ) = f ◦ϕ.

Let X and Y be varieties. A morphism from X to Y is a mapping ϕ : X → Y such

that

(1) ϕ is continuous;

(2) For every open set U of Y , if f ∈ Γ(U ,OY ), then ϕ̃( f ) = f ◦ϕ is inΓ(ϕ−1(U ),OX ).

An isomorphism of X with Y is a one-to-one morphism ϕ from X onto Y such

that ϕ−1 is a morphism.

A variety that is isomorphic to a closed subvariety of some An (resp. Pn) is called

an affine variety (resp. a projective variety). When we write “X ⊂ An is an affine

variety”, we mean that X is a closed subvariety of An (as in Chapter 2), while if we

say only “X is an affine variety” we mean that X is a variety in the general sense of

Section 2, but that there exists an isomorphism of X with a closed subvariety of some

An . A similar nomenclature is used for projective varieties.

Proposition 2. Let X and Y be affine varieties. There is a natural one-to-one corre-

spondence between morphisms ϕ : X → Y and homomorphisms ϕ̃ : Γ(Y ) → Γ(X ). If

X ⊂ An , Y ⊂ Am , a morphism from X to Y is the same thing as a polynomial map

from X to Y .

Proof. We may assume X ⊂An , Y ⊂Am are closed subvarieties of affine spaces. The

proposition follows from the following facts: (i) a polynomial map is a morphism; (ii)

a morphism ϕ induces a homomorphism ϕ̃ : Γ(Y ) → Γ(X ); (iii) any ϕ̃ : Γ(Y ) → Γ(X )

is induced by a unique polynomial map from X to Y (Proposition 1 of §2.2); and (iv)

all these operations are compatible. The details are left to the reader.

Proposition 3. Let V be a closed subvariety of Pn , ϕi : An → Ui ⊂ Pn as in Chapter

4, Section 1. Then Vi = ϕ−1
i

(V ) is a closed subvariety of An , and ϕi restricts to an

isomorphism of Vi with V ∩Ui . A projective variety is a union of a finite number of

open affine varieties.

Proof. The proof, together with the natural generalization to multispace (see Prob-

lem 4.26), is left to the reader.
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Proposition 4. Any closed subvariety of Pn1 × ·· · ×Pnr is a projective variety. Any

variety is isomorphic to an open subvariety of a projective variety.

Proof. The second statement follows from the first, since Pn1 ×·· ·×Pnr ×Am is iso-

morphic to an open subvariety of Pn1 ×·· ·×Pnr ×Pm . By induction, it is enough to

prove that Pn ×Pm is a projective variety.

In Problem 4.28, we defined the Segre imbedding S : Pn ×Pm →Pn+m+nm , which

mapped Pn ×Pm one-to-one onto a projective variety V . We use the notations of

that problem.

It suffices to show that the restriction of S to U0×U0 →V ∩U00 is an isomorphism.

These are affine varieties, so it is enough to show that the induced map on coordi-

nate rings is an isomorphism. We identify Γ(U0 ×U0) with k[X1, . . . , Xn ,Y1, . . . ,Ym],

and Γ(V ∩U00) may be identified with k[T10, . . . ,Tnm]/({T j k −T j 0T0k | j ,k > 0}). The

homomorphism from k[X1, . . . , Xn ,Y1, . . . ,Ym] to this ring that takes Xi to the residue

of Ti 0, Y j to that of T0 j , is easily checked to be an isomorphism. Since this isomor-

phism is the one induced by S−1, the proof is complete.

Note. It is possible to define more general varieties than those we have considered

here. If this were done, the varieties we have defined would be called the “quasi-

projective” varieties.

A closed subvariety of an affine variety is also an affine variety. What is more

surprising is that an open subvariety of an affine variety may also be affine.

Proposition 5. Let V be an affine variety, and let f ∈ Γ(V ), f 6= 0. Let V f = {P ∈ V |
f (P ) 6= 0}, an open subvariety of V . Then

(1) Γ(V f ) = Γ(V )[1/ f ] = {a/ f n ∈ k(V ) | a ∈ Γ(V ),n ∈Z}.

(2) V f is an affine variety.

Proof. We may assume V ⊂ An ; let I = I (V ), so Γ(V ) = k[X1, . . . , Xn]/I . Choose F ∈
k[X1, . . . , Xn] whose I -residue F is f .

(1): Let z ∈ Γ(V f ). The pole set of z is V (J ), where J = {G ∈ k[X1, . . . , Xn] | Gz ∈
Γ(V )} (proof of Proposition 2 of §2.4). Since V (J ) ⊂ V (F ), F N ∈ J for some N , by the

Nullstellensatz. Then f N z = a ∈ Γ(V ), so z = a/ f N ∈ Γ(V )[1/ f ]. The other inclusion

is obvious.

(2): We must “push the zeros of F off to infinity” (compare with the proof of the

Nullstellensatz). Let I ′ be the ideal in k[X1, . . . , Xn+1] generated by I and by Xn+1F−1,

V ′ =V (I ′) ⊂An+1.

Letα : k[X1, . . . , Xn+1] → Γ(V f ) be defined by lettingα(Xi ) = X i if i ≤ n, α(Xn+1) =
1/ f . Then α is onto by (1), and it is left to the reader to check that Ker(α) = I ′. (See

Problem 6.13.) In particular, I ′ is prime, so V ′ is a variety, and α induces an isomor-

phism α : Γ(V ′) → Γ(V f ).

The projection (X1, . . . , Xn+1) 7→ (X1, . . . , Xn) fromAn+1 toAn induces a morphism

ϕ : V ′ → V f (Problem 6.16). This ϕ is one-to-one and onto, and ϕ̃ = (α)−1. If W is

closed in V , defined by the vanishing of polynomials Gβ(X1, . . . , Xn+1), then ϕ(W ) is

closed in V f , defined by polynomials F N Gβ(X1, . . . , Xn ,1/F ), with N ≥ deg(Gβ); from

this it follows that ϕ−1 is continuous. We leave it to the reader to complete the proof

that ϕ−1 is a morphism, and hence ϕ is an isomorphism.
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Corollary. Let X be a variety, U a neighborhood of a point P in X . Then there is a

neighborhood V of P, V ⊂U , such that V is an affine variety.

Proof. If X is open in a projective variety X ′ ⊂ Pn , and P ∈Ui , we may replace X by

X ′∩Ui , U by U ∩Ui . So we may assume X ⊂An is affine.

Since X rU is an algebraic subset of An , there is a polynomial F ∈ k[X1, . . . , Xn]

such that F (P ) 6= 0, and F (Q) = 0 for all Q ∈ X rU (Problem 1.17). Let f be the image

of F in Γ(X ). Then P ∈ X f ⊂U , and X f is affine by the proposition.

Problems

6.13.∗ Let R be a domain with quotient field K , f 6= 0 in R. Let R[1/ f ] = {a/ f n |
a ∈ R,n ∈ Z}, a subring of K . (a) Show that if ϕ : R → S is any ring homomorphism

such that ϕ( f ) is a unit in S, then ϕ extends uniquely to a ring homomorphism from

R[1/ f ] to S. (b) Show that the ring homomorphism from R[X ]/(X f − 1) to R[1/ f ]

that takes X to 1/ f is an isomorphism.

6.14.∗ Let X ,Y be varieties, f : X → Y a mapping. Let X =
⋃

αUα, Y =
⋃

αVα, with

Uα,Vα open subvarieties, and suppose f (Uα) ⊂ Vα for all α. (a) Show that f is a

morphism if and only if each restriction fα : Uα →Vα of f is a morphism. (b) If each

Uα, Vα is affine, f is a morphism if and only if each f̃ (Γ(Vα)) ⊂ Γ(Uα).

6.15.∗ (a) If Y is an open or closed subvariety of X , the inclusion i : Y → X is a mor-

phism. (b) The composition of morphisms is a morphism.

6.16.∗ Let f : X → Y be a morphism of varieties, X ′ ⊂ X , Y ′ ⊂ Y subvarieties (open

or closed). Assume f (X ′) ⊂ Y ′. Then the restriction of f to X ′ is a morphism from

X ′ to Y ′. (Use Problems 6.14 and 2.9.)

6.17. (a) Show that A2 r {(0,0)} is not an affine variety (see Problem 6.9). (b) The

union of two open affine subvarieties of a variety may not be affine.

6.18. Show that the natural map π from An+1 r {(0, . . . ,0)} to Pn is a morphism of

varieties, and that a subset U of Pn is open if and only if π−1(U ) is open.

6.19.∗ Let X be a variety, f ∈ Γ(X ). Let ϕ : X →A1 be the mapping defined by ϕ(P ) =
f (P ) for P ∈ X . (a) Show that for λ ∈ k, ϕ−1(λ) is the pole set of z = 1/( f −λ). (b)

Show that ϕ is a morphism of varieties.

6.20.∗ Let A = Pn1 ×·· ·×An , B = Pm1 ×·· ·×Am . Let y ∈ B , V a closed subvariety of

A. Show that V × {y} = {(x, y) ∈ A×B | x ∈V } is a closed subvariety of A×B , and that

the map V →V × {y} taking x to (x, y) is an isomorphism.

6.21. Any variety is the union of a finite number of open affine subvarieties.

6.22.∗ Let X be a projective variety in Pn , and let H be a hyperplane in Pn that

doesn’t contain X . (a) Show that X r (H ∩X ) is isomorphic to an affine variety X∗ ⊂
An . (b) If L is the linear form defining H , and l is its image in Γh(X ) = k[x1, . . . , xn+1],

then Γ(X∗) may be identified with k[x1/l , . . . , xn+1/l ]. (Hint: Change coordinates so

L = Xn+1.)

6.23.∗ Let P , Q ∈ X , X a variety. Show that there is an affine open set V on X that

contains P and Q. (Hint: See the proof of the Corollary to Proposition 5, and use
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Problem 1.17(c).)

6.24.∗ Let X be a variety, P,Q two distinct points of X . Show that there is an f ∈ k(X )

that is defined at P and at Q, with f (P ) = 0, f (Q) 6= 0 (Problems 6.23, 1.17). So f ∈
mP (X ), 1/ f ∈OQ (X ). The local rings OP (X ), as P varies in X , are distinct.

6.25.∗ Show that [x1 : . . . : xn] 7→ [x1 : . . . : xn : 0] gives an isomorphism of Pn−1 with

H∞ ⊂ Pn . If a variety V in Pn is contained in H∞, V is isomorphic to a variety in

Pn−1. Any projective variety is isomorphic to a closed subvariety V ⊂ Pn (for some

n) such that V is not contained in any hyperplane in Pn .

6.4 Products and Graphs

Let A =Pn1 ×·· ·×An , B =Pm1 ×·· ·×Am be mixed spaces, as in Chapter 4, Section

4. Then A ×B = Pn1 × ·· · ×Pm1 × ·· · ×An+m is also a mixed space. If Ui 1 × ·· · ×An

and U j 1 × ·· · ×Am are the usual affine open subvarieties that cover A and B , then

Ui 1 ×·· ·×An+m are affine open subvarieties that cover A×B .

Proposition 6. Let V ⊂ A, W ⊂ B be closed subvarieties. Then V ×W is a closed

subvariety of A×B.

Proof. The only difficulty is in showing that V ×W is irreducible. Suppose V ×W =
Z1∪Z2, Zi closed in A×B . Let Ui = {y ∈W |V ×{y} 6⊂ Zi }. Since V ×{y} is irreducible

(Problem 6.20), U1 ∩U2 =;. It suffices to show that each Ui is open, for then, since

W is a variety, one of the Ui (say U1) must be empty, and then V ×W ⊂ Z1, as desired.

Let Fα(X ,Y ) be the “multiforms” defining Z1. If y ∈ U1, then for some α and

some x ∈V , Fα(x, y) 6= 0. Let Gα(Y ) = Fα(x,Y ). Then {y ′ ∈W |Gα(y ′) 6= 0} is an open

neighborhood of y in U1. A set that contains a neighborhood of each of its points is

open, so U1 (and likewise U2) is open.

If X and Y are any varieties, say X is open in V ⊂ A, Y open in W ⊂ B , V ,W, A,B

as above. Then X ×Y is open in V ×W , so X ×Y is a variety. Note that the product

of two affine varieties is an affine variety, and the product of two projective varieties

is a projective variety.

Proposition 7. (1) The projections pr1 : X ×Y → X and pr2 : X ×Y → Y are mor-

phisms.

(2) If f : Z → X , g : Z → Y are morphisms, then ( f , g ) : Z → X × Y defined by

( f , g )(z) = ( f (z), g (z)) is a morphism.

(3) If f : X ′ → X , g : Y ′ → Y are morphisms, then f × g : X ′×Y ′ → X ×Y defined

by ( f × g )(x ′, y ′) = ( f (x ′), g (y ′)) is a morphism.

(4) The diagonal ∆X = {(x, y) ∈ X × X | y = x} is a closed subvariety of X × X , and

the diagonal map δX : X →∆X defined by δX (x) = (x, x) is an isomorphism.

Proof. (1) is left to the reader.

(2): We may reduce first to the case where X = A, Y = B (Problem 6.16). Since

being a morphism is local (Problem 6.14), we may cover A and B by the open affine

spaces Ui 1 × ·· · ×Ar . This reduces it to the case where X = An , Y = Am . We may
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also assume Z is affine, since Z is a union of open affine subvarieties. But this case

is trivial, since the product of polynomial maps is certainly a polynomial map.

(3): Apply (2) to the morphism ( f ◦pr1, g ◦pr2).

(4): The diagonal in Pn ×Pn is clearly an algebraic subset, so ∆X is closed in any

X (Proposition 4 of §6.3). The restriction of pr1 : X ×X → X is inverse to δX , so δX is

an isomorphism.

Corollary. If f , g : X → Y are morphisms of varieties, then {x ∈ X | f (x) = g (x)} is

closed in X . If f and g agree on a dense set of X , then f = g .

Proof. {x | f (x) = g (x)} = ( f , g )−1(∆Y ).

If f : X → Y is a morphism of varieties, the graph of f , G( f ), is defined to be

{(x, y) ∈ X ×Y | y = f (x)}.

Proposition 8. G( f ) is a closed subvariety of X ×Y . The projection of X ×Y onto X

restricts to an isomorphism of G( f ) with X .

Proof. We have G( f ) = ( f ×i )−1(∆Y ), i = identity on Y . Now ( j , f ) : X → X ×Y , where

j = identity on X , maps X onto G( f ), and this is inverse to the projection.

Problems

6.26.∗ (a) Let f : X → Y be a morphism of varieties such that f (X ) is dense in Y .

Show that the homomorphism f̃ : Γ(Y ) → Γ(X ) is one-to-one. (b) If X and Y are

affine, show that f (X ) is dense in Y if and only if f̃ : Γ(Y ) → Γ(X ) is one-to-one. Is

this true if Y is not affine?

6.27. Let U , V be open subvarieties of a variety X . (a) Show that U ∩V is isomorphic

to (U×V )∩∆X . (b) If U and V are affine, show that U∩V is affine. (Compare Problem

6.17.)

6.28. Let d ≥ 1, N = (d+1)(d+2)
2

, and let M1, . . . , MN be the monomials of degree d in

X ,Y , Z (in some order). Let T1, . . . ,TN be homogeneous coordinates for PN−1. Let

V = V
(∑N

i=1 Mi (X ,Y , Z )Ti

)
⊂ P2 ×PN−1, and let π : V → PN−1 be the restriction of

the projection map. (a) Show that V is an irreducible closed subvariety of P2×PN−1,

and π is a morphism. (b) For each t = (t1, . . . , tN ) ∈PN−1, let Ct be the corresponding

curve (§5.2). Show that π−1(t ) =Ct × {t }.

We may thus think of π : V →PN−1 as a “universal family” of curves of degree d .

Every curve appears as a fibre π−1(t ) over some t ∈PN−1.

6.29. Let V be a variety, and suppose V is also a group, i.e., there are mappings

ϕ : V ×V → V (multiplication or addition), and ψ : V → V (inverse) satisfying the

group axioms. If ϕ and ψ are morphisms, V is said to be an algebraic group. Show

that each of the following is an algebraic group:

(a) A1 = k, with the usual addition on k; this group is often denoted Ga .

(b) A1 r {(0)} = k r {(0)}, with the usual multiplication on k: this is denoted Gm .

(c) An(k) with addition: likewise Mn(k) = {n by n matrices} under addition may

be identified with An2
(k).
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(d) GLn(k) = {invertible n ×n matrices} is an affine open subvariety of Mn(k),

and a group under multiplication.

(e) C a nonsingular plane cubic, O ∈ C , ⊕ the resulting addition (see Problem

5.38).

6.30. (a) Let C =V (Y 2Z −X 3) be a cubic with a cusp, C ◦ =C r {[0 : 0 : 1]} the simple

points, a group with O = [0 : 1 : 0]. Show that the map ϕ : Ga → C ◦ given by ϕ(t ) =
[t : 1 : t 3] is an isomorphism of algebraic groups. (b) Let C =V (X 3 +Y 3 −X Y Z ) be a

cubic with a node, C ◦ =C r {[0 : 0 : 1]}, O = [1 : 1 : 0]. Show that ϕ : Gm →C ◦ defined

by ϕ(t ) = [t : t 2 : 1− t 3] is an isomorphism of algebraic groups.

6.5 Algebraic Function Fields and Dimension of Vari-
eties

Let K be a finitely generated field extension of k. The transcendence degree of K

over k, written tr. degk K is defined to be the smallest integer n such that for some

x1, . . . , xn ∈ K , K is algebraic over k(x1, . . . , xn). We say then that K is an algebraic

function field in n variables over k.

Proposition 9. Let K be an algebraic function field in one variable over k, and let

x ∈ K , x 6∈ k. Then

(1) K is algebraic over k(x).

(2) (char(k) = 0) There is an element y ∈ K such that K = k(x, y).

(3) If R is a domain with quotient field K , k ⊂ R, and p is a prime ideal in R,

0 6= p 6= R, then the natural homomorphism from k to R/p is an isomorphism.

Proof. (1) Take any t ∈ K so that K is algebraic over k(t ). Since x is algebraic over

k(t ), there is a polynomial F ∈ k[T, X ] such that F (t , x) = 0 (clear denominators if

necessary). Since x is not algebraic over k (Problem 1.48), T must appear in F , so

t is algebraic over k(x). Then k(x, t ) is algebraic over k(x) (Problem 1.50), so K is

algebraic over k(x) (Problem 1.46).

(2) Since char(k(x)) = 0, this is an immediate consequence of the “Theorem of

the Primitive Element.” We have outlined a proof of this algebraic fact in Problem

6.31 below.

(3) Suppose there is an x ∈ R whose residue x in R/p is not in k, and let y ∈ p, y 6=
0. Choose F =

∑
ai (X )Y i ∈ k[X ,Y ] so that F (x, y) = 0. If we choose F of lowest pos-

sible degree, then a0(X ) 6= 0. But then a0(x) ∈ P , so a0(x) = 0. But x is not algebraic

over k (Problem 1.48), so there is no such x.

If X is a variety, k(X ) is a finitely generated extension of k. Define the dimen-

sion of X , dim(X ), to be tr. degk k(X ). A variety of dimension one is called a curve, of

dimension two a surface, etc. Part (5) of the next proposition shows that, for subvari-

eties of A2 or P2, this definition agrees with the one given in Chapters 3 and 5. Note,

however, that a “curve” is assumed to be a variety, while a “plane curve” is allowed

to have several (even multiple) components.

Proposition 10. (1) If U is an open subvariety of X , then dimU = dim X .
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(2) If V ∗ is the projective closure of an affine variety V , then dimV = dimV ∗.

(3) A variety has dimension zero if and only if it is a point.

(4) Every proper closed subvariety of a curve is a point.

(5) A closed subvariety of A2 (resp. P2) has dimension one if and only if it is an

affine (resp. projective) plane curve.

Proof. (1) and (2) follow from the fact that the varieties have the same function

fields.

(3): Suppose dimV = 0. We may suppose V is affine by (1) and (2). Then k(V ) is

algebraic over k, so k(V ) = k, so Γ(V ) = k. Then Problem 2.4 gives the result.

(4): Again we may assume V is affine. If W is a closed subvariety of V , let R =
Γ(V ), p the prime ideal of R corresponding to W ; then Γ(W ) = R/Pp (Problem 2.3).

Apply Proposition 9 (3).

(5): Assume V ⊂A2. Since k(V ) = k(x, y), dimV must be 0,1, or 2. So V is either

a point, a plane curve V (F ), or V =A2 (§1.6). If F (x, y) = 0, tr. degk k(x, y) ≤ 1. Then

the result follows from (3) and (4). Use (2) if V ⊂P2.

Problems

6.31.∗ (Theorem of the Primitive Element) Let K be a field of a characteristic zero, L

a finite (algebraic) extension of K . Then there is a z ∈ L such that L = K (z).

Outline of Proof. Step (i): Suppose L = K (x, y). Let F and G be monic irreducible

polynomials in K [T ] such that F (x) = 0, G(y) = 0. Let L′ be a field in which F =∏n
i=1

(T−xi ), G =
∏m

j=1
(T−yi ), x = x1, y = y1, L′ ⊃ L (see Problems 1.52, 1.53). Choose

λ 6= 0 in K so that λx + y 6= λxi + y j for all i 6= 1, j 6= 1. Let z = λx + y , K ′ = K (z). Set

H(T ) = G(z −λT ) ∈ K ′[T ]. Then H(x) = 0, H(xi ) 6= 0 if i > 0. Therefore (H ,F ) =
(T −x) ∈ K ′[T ]. Then x ∈ K ′, so y ∈ K ′, so L = K ′.

Step (ii): If L = K (x1, . . . , xn), use induction on n to find λ1, . . . ,λn ∈ k such that

L = K (
∑
λi xi ).

6.32.∗ Let L = K (x1, . . . , xn) as in Problem 6.31. Suppose k ⊂ K is an algebraically

closed subfield, and V $An(k) is an algebraic set. Show that L = K (
∑
λi xi ) for some

(λ1, . . . ,λn) ∈An rV .

6.33. The notion of transcendence degree is analogous to the idea of the dimension

of a vector space. If k ⊂ K , we say that x1, . . . , xn ∈ K are algebraically independent

if there is no nonzero polynomial F ∈ k[X1, . . . , Xn] such that F (x1, . . . , xn) = 0. By

methods entirely analogous to those for bases of vector spaces, one can prove:

(a) Let x1, . . . , xn ∈ K , K a finitely generated extension of k. Then x1, . . . , xn is a

minimal set such that K is algebraic over k(x1, . . . , xn) if and only if x1, . . . , xn is a

maximal set of algebraically independent elements of K . Such {x1, . . . , xn} is called a

transcendence basis of K over k.

(b) Any algebraically independent set may be completed to a transcendence ba-

sis. Any set {x1, . . . , xn} such that K is algebraic over k(x1, . . . , xn) contains a tran-

scendence basis.

(c) tr. degk K is the number of elements in any transcendence basis of K over k.
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6.34. Show that dimAn = dimPn = n.

6.35. Let Y be a closed subvariety of a variety X . Then dimY ≤ dim X , with equality

if and only if Y = X .

6.36. Let K = k(x1, . . . , xn) be a function field in r variables over k. (a) Show that

there is an affine variety V ⊂An with k(V ) = K . (b) Show that we may find V ⊂Ar+1

with k(V ) = K , r = dimV . (Assume char(k) = 0 if you wish.)

6.6 Rational Maps

Let X , Y be varieties. Two morphisms fi : Ui → Y from open subvarieties Ui of

X to Y are said to be equivalent if their restrictions to U1 ∩U2 are the same. Since

U1∩U2 is dense in X , each fi is determined by its restriction to U1∩U2 (Corollary to

Proposition 7 in §6.4). An equivalence class of such morphisms is called a rational

map from X to Y .

The domain of a rational map is the union of all open subvarieties Uα of X such

that some fα : Uα → Y belongs to the equivalence class of the rational map. If U is

the domain of a rational map, the mapping f : U → Y defined by f|Uα = fα is a mor-

phism belonging to the equivalence class of the map; every equivalent morphism is

a restriction of f . Thus a rational map from X to Y may also be defined as a mor-

phism f from an open subvariety U of X to Y such that f cannot be extended to a

morphism from any larger open subset of X to Y . For any point P in the domain of

f , the value f (P ) is well-defined in k.

A rational map from X to Y is said to be dominating if f (U ) is dense in Y , where

f : U → Y is any morphism representing the map (it is easy to see that this is inde-

pendent of U ).

If A and B are local rings, and A is a subring of B , we say that B dominates A if

the maximal ideal of B contains the maximal ideal of A.

Proposition 11. (1) Let F be a dominating rational map from X to Y . Let U ⊂ X , V ⊂
Y be affine open sets, f : U →V a morphism that represents F . Then the induced map

f̃ : Γ(V ) → Γ(U ) is one-to-one, so f̃ extends to a one-to-one homomorphism from

k(Y ) = k(V ) into k(X ) = k(U ). This homomorphism is independent of the choice of

f , and is denoted by F̃ .

(2) If P belongs to the domain of F , and F (P ) =Q, then OP (X ) dominates F̃ (OQ (Y )).

Conversely, if P ∈ X , Q ∈ Y , and OP (X ) dominates F̃ (OQ (Y )), then P belongs to the do-

main of F , and F (P ) =Q.

(3) Any homomorphism from k(Y ) into k(X ) is induced by a unique dominating

rational map from X to Y .

Proof. (1) is left to the reader (Problem 6.26), as is the first part of (2).

If OP (X ) dominates F̃ (OQ (Y )), take affine neighborhoods V of P , W of Q. Let

Γ(W ) = k[y1, . . . , yn]. Then F̃ (yi ) = ai /bi , ai ,bi ∈ Γ(V ), and bi (P ) 6= 0. If we let b =
b1 · · ·bn , then F̃ (Γ(W )) ⊂ Γ(Vb) (Proposition 5 of §6.3) so F̃ : Γ(W ) → Γ(Vb) is induced

by a unique morphism f : Vb →W (Proposition 2 of §6.3). If g ∈ Γ(W ) vanishes at Q,

then F̃ (g ) vanishes at P , from which it follows easily f (P ) =Q.
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(3) We may assume X and Y are affine. Then, as in (2), if ϕ : k(Y ) → k(X ),

ϕ(Γ(Y )) ⊂ Γ(Xb) for some b ∈ Γ(X ), so ϕ is induced by a morphism f : Xb → Y .

Therefore f (Xb) is dense in Y since f̃ is one-to-one (Problem 6.26).

A rational map F from X to Y is said to be birational if there are open sets U ⊂ X ,

V ⊂ Y , and an isomorphism f : U → V that represents F . We say that X and Y

are birationally equivalent if there is a birational map from X to Y (This is easily

seen to be an equivalence relation). A variety is birationally equivalent to any open

subvariety of itself. The varieties An and Pn are birationally equivalent.

Proposition 12. Two varieties are birationally equivalent if and only if their function

fields are isomorphic.

Proof. Since k(U ) = k(X ) for any open subvariety U of X , birationally equivalent

varieties have isomorphic function fields.

Conversely, suppose ϕ : k(X ) → k(Y ) is an isomorphism. We may assume X and

Y are affine. Then ϕ(Γ(X )) ⊂ Γ(Yb) for some b ∈ Γ(Y ), and ϕ−1(Γ(Y )) ⊂ Γ(Xd ) for

some d ∈ Γ(X ), as in the proof of Proposition 11. Then ϕ restricts to an isomorphism

of Γ((Xd )ϕ−1(b)) onto Γ((Yb)ϕ(d)), so (Xd )ϕ−1(b) is isomorphic to (Yb)ϕ(d), as desired.

Corollary. Every curve is birationally equivalent to a plane curve.

Proof. If V is a curve, k(V ) = k(x, y) for some x, y ∈ k(V ) (Proposition 9 (2) of §6.5).

Let I be the kernel of the natural homomorphism from k[X ,Y ] onto k[x, y] ⊂ k(V ).

Then I is prime, so V ′ =V (I ) ⊂A2 is a variety. Since Γ(V ′) = k[X ,Y ]/I is isomorphic

to k[x, y], it follows that k(V ′) is isomorphic to k(x, y) = k(V ). So dimV ′ = 1, and

V ′ is a plane curve (Proposition 10 (5) of §6.5). (See Appendix A for the case when

char(k) = p.)

A variety is said to be rational if it is birationally equivalent toAn (orPn) for some

n.

Problems

6.37. Let C = V (X 2 +Y 2 − Z 2) ⊂ P2. For each t ∈ k, let Lt be the line between P0 =
[−1 : 0 : 1] and Pt = [0 : t : 1]. (Sketch this.) (a) If t 6= ±1, show that Lt •C = P0 +Qt ,

where Qt = [1− t 2 : 2t : 1+ t 2]. (b) Show that the map ϕ : A1 r{±1} →C taking t to Qt

extends to an isomorphism of P1 with C . (c) Any irreducible conic in P2 is rational;

in fact, a conic is isomorphic to P1. (d) Give a prescription for finding all integer

solutions (x, y, z) to the Pythagorean equation X 2 +Y 2 = Z 2.

6.38. An irreducible cubic with a multiple point is rational (Problems 6.30, 5.10,

5.11).

6.39. Pn×Pm is birationally equivalent to Pn+m . Show that P1×P1 is not isomorphic

to P2. (Hint: P1×P1 has closed subvarieties of dimension one that do not intersect.)

6.40. If there is a dominating rational map from X to Y , then dim(Y ) ≤ dim(X ).



6.6. RATIONAL MAPS 79

6.41. Every n-dimensional variety is birationally equivalent to a hypersurface in

An+1 (or Pn+1).

6.42. Suppose X , Y varieties, P ∈ X , Q ∈ Y , with OP (X ) isomorphic (over k) to

OQ (Y ). Then there are neighborhoods U of P on X , V of Q on Y , such that U is

isomorphic to V . This is another justification for the assertion that properties of X

near P should be determined by the local ring OP (X ).

6.43.∗ Let C be a projective curve, P ∈C . Then there is a birational morphism f : C →
C ′, C ′ a projective plane curve, such that f −1( f (P )) = {P }. We outline a proof:

(a) We can assume: C ⊂ Pn+1 Let T, X1, . . . , Xn , Z be coordinates for Pn+1; Then

C ∩V (T ) is finite; C ∩V (T, Z ) =;; P = [0 : . . . : 0 : 1]; and k(C ) is algebraic over k(u),

where u = T /Z ∈ k(C ).

(b) For each λ= (λ1, . . . ,λn) ∈ kn , let ϕλ : C →P2 be defined by the formula ϕ([t :

x1 : . . . : xn : z]) = [t :
∑
λi xi : z]. Then ϕλ is a well-defined morphism, and ϕλ(P ) =

[0 : 0 : 1]. Let C ′ be the closure of ϕλ(C ).

(c) The variable λ can be chosen so ϕλ is a birational morphism from C to C ′,
and ϕ−1

λ
([0 : 0 : 1]) = {P }. (Use Problem 6.32 and the fact that C ∩V (T ) is finite).

6.44. Let V =V (X 2−Y 3,Y 2−Z 3) ⊂A3, f : A1 →V as in Problem 2.13. (a) Show that

f is birational, so V is a rational curve. (b) Show that there is no neighborhood of

(0,0,0) on V that is isomorphic to an open subvariety of a plane curve. (See Problem

3.14.)

6.45.∗ Let C , C ′ be curves, F a rational map from C ′ to C . Prove: (a) Either F is

dominating, or F is constant (i.e., for some P ∈ C , F (Q) = P , all Q ∈ C ′). (b) If F is

dominating, then k(C ′) is a finite algebraic extension of F̃ (k(C )).

6.46. Let k(P1) = k(T ), T = X /Y (Problem 4.8). For any variety V , and f ∈ k(V ),

f 6∈ k, the subfield k( f ) generated by f is naturally isomorphic to k(T ). Thus a non-

constant f ∈ k(V ) corresponds a homomorphism from k(T ) to k(V ), and hence to

the a dominating rational map from V to P1. The corresponding map is usually de-

noted also by f . If this rational map is a morphism, show that the pole set of f is

f −1([1 : 0]).

6.47. (The dual curve) Let F be an irreducible projective plane curve of degree n >
1. Let Γh(F ) = k[X ,Y , Z ]/(F ) = k[x, y, z], and let u, v, w ∈ Γh(F ) be the residues of

FX ,FY ,FZ , respectively. Define α : k[U ,V ,W ] → Γh(F ) by setting α(U ) = u, α(V ) = v ,

α(W ) = w . Let I be the kernel of α. (a) Show that I is a homogeneous prime ideal

in k[U ,V ,W ], so V (I ) is a closed subvariety of P2. (b) Show that for any simple point

P on F , [FX (P ) : FY (P ) : FZ (P )] is in V (I ), so V (I ) contains the points corresponding

to tangent lines to F at simple points. (c) If V (I ) ⊂ {[a : b : c]}, use Euler’s Theorem

to show that F divides aX + bY + c Z , which is impossible. Conclude that V (I ) is

a curve. It is called the dual curve of F . (d) Show that the dual curve is the only

irreducible curve containing all the points of (b). (See Walker’s “Algebraic Curves”

for more about dual curves when char(k) = 0.)
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Chapter 7

Resolution of Singularities

7.1 Rational Maps of Curves

A point P on an arbitrary curve C is called a simple point if OP (C ) is a discrete

valuation ring. If C is a plane curve, this agrees with our original definition (The-

orem1 of §3.2). We let ordC
P , or ordP denote the order function on k(C ) defined by

OP (C ). The curve C is said to be nonsingular if every point on C is simple.

Let K be a field containing k. We say that a local ring A is a local ring of K if A

is a subring of K , K is the quotient field of A, and A contains k. For example, if V is

any variety, P ∈ V , then OP (V ) is a local ring of k(V ). Similarly, a discrete valuation

ring of K is a DVR that is a local ring of K .

Theorem 1. Let C be a projective curve, K = k(C ). Suppose L is a field containing K ,

and R is a discrete valuation ring of L. Assume that R 6⊃ K . Then there is a unique

point P ∈C such that R dominates OP (C ).

Proof. Uniqueness: If R dominates OP (C ) and OQ (C ), choose f ∈mP (C ), 1/ f ∈OQ (C )

(Problem 6.24). Then ord( f ) > 0 and ord(1/ f ) ≥ 0, a contradiction.

Existence: We may assume C is a closed subvariety of Pn , and that C ∩Ui 6= ;,

i = 1, . . . ,n+1 (Problem 6.25). Then in Γh(C ) = k[X1, . . . , Xn+1]/I (C ) = k[x1, . . . , xn+1],

each xi 6= 0. Let N = maxi , j ord(xi /x j ). Assume that ord(x j /xn+1) = N for some j

(changing coordinates if necessary). Then for all i ,

ord(xi /xn+1) = ord((x j /xn+1)(xi /x j )) = N −ord(x j /xi ) ≥ 0.

If C∗ is the affine curve corresponding to C∩Un+1, then Γ(C∗) may be identified with

k[x1/xn+1, . . . , xn/xn+1], so R ⊃ Γ(C∗).

Let m be the maximal ideal of R, J = m∩Γ(C∗). Then J is a prime ideal, so J

corresponds to a closed subvariety W of C∗ (Problem 2.2). If W = C∗, then J = 0,

and every nonzero element of Γ(C∗) is a unit in R; but then K ⊂ R, which is contrary

to our assumption. So W = {P } is a point (Proposition 10 of §6.5). It is then easy to

check that R dominates OP (C∗) =OP (C ).

81
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Corollary 1. Let f be a rational map from a curve C ′ to a projective curve C . Then the

domain of f includes every simple point of C ′. If C ′ is nonsingular, f is a morphism.

Proof. If F is not dominating, it is constant (Problem 6.45), and hence its domain is

all of C ′. So we may assume F̃ imbeds K = k(C ) as a subfield of L = k(C ′). Let P be

a simple point of C ′, R = OP (C ′). By Proposition 11 of §6.5 and the above Theorem

1, it is enough to show that R 6⊃ K . Suppose K ⊂ R ⊂ L; then L is a finite algebraic

extension of K (Problem 6.45), so R is a field (Problem 1.50). But a DVR is not a

field.

Corollary 2. If C is a projective curve, C ′ a nonsingular curve, then there is a natural

one-to-one correspondence between dominant morphisms f : C ′ →C and homomor-

phisms f̃ : k(C ) → k(C ′).

Corollary 3. Two nonsingular projective curves are isomorphic if and only if their

function fields are isomorphic.

Corollary 4. Let C be a nonsingular projective curve, K = k(C ). Then there is a nat-

ural one-to-one correspondence between the points of C and the discrete valuation

rings of K . If P ∈C , OP (C ) is the corresponding DVR.

Proof. Each OP (C ) is certainly a DVR of K . If R is any such DVR, then R dominates

a unique OP (C ). Since R and OP (C ) are both DVR’s of K , it follows that R = OP (C )

(Problem 2.26).

Let C , K be as in Corollary 4. Let X be the set of all discrete valuation rings of K

over k. Give a topology to X as follows: a nonempty set U of X is open if X rU is

finite. Then the correspondence P 7→OP (C ) from C to X is a homeomorphism. And

if U is open in C , Γ(U ,OC ) =
⋂

P∈U OP (C ), so all the rings of functions on C may be re-

covered from X . Since X is determined by K alone, this means that C is determined

up to isomorphism by K alone (proving Corollary 3 again). In Chevalley’s “Algebraic

Functions of One Variable”, the reader may find a treatment of these functions fields

that avoids the concept of a curve entirely.

Problem

7.1. Show that any curve has only a finite number of multiple points.

7.2 Blowing up a Point in A2

To “resolve the singularities” of a projective curve C means to construct a non-

singular projective curve X and a birational morphism f : X → C . A rough idea of

the procedure we will follow is this:

If C ⊂ P2, and P is a multiple point on C , we will remove the point P from P2

and replace it by a projective line L. The points of L will correspond to the tangent

directions at P . This can be done in such a way that the resulting “blown up” plane



7.2. BLOWING UP A POINT IN A2 83

B = (P2 r {P })∪L is still a variety, and, in fact, a variety covered by open sets iso-

morphic to A2. The curve C will be birationally equivalent to a curve C ′ on B , with

C ′ r (C ′ ∩L) isomorphic to C r {P }; but C ′ will have “better” multiple points on L

than C has at P .

In this section we blow up a point in the affine plane, replacing it by an affine line

L. In this case the equations are quite simple, and easy to relate to the geometry. In

the following two sections we consider projective situations; the equations become

more involved, but we will see that, locally, everything looks like what is done in this

section. Throughout, many mappings between varieties will be defined by explicit

formulas; we will leave it to the reader to verify that they are morphisms, using the

general techniques of Chapter 6.

Let P = (0,0) ∈A2. Let U = {(x, y) ∈A2 | x 6= 0}. Define a morphism f : U →A1 = k

by f (x, y) = y/x. Let G ⊂U ×A1 ⊂A2 ×A1 =A3 be the graph of f , so G = {(x, y, z) ∈
A3 | y = xz, x 6= 0}.

Let B = {(x, y, z) ∈ A3 | y = xz}. Since Y − X Z is irreducible, B is a variety. Let

π : B →A2 be the restriction of the projection from A3 to A2: π(x, y, z) = (x, y). Then

π(B) =U ∪ {P }. Let L = π−1(P ) = {(0,0, z) | z ∈ k}. Since π−1(U ) =G , π restricts to an

isomorphism of π−1(U ) onto U . We see that B is the closure of G in A3, G is an open

subvariety of B , while L is a closed subvariety of B .

For k = C, the real part of this can be visualized in R3. The next figure is an

attempt. The curve C =V (Y 2−X 2(X +1)) is sketched. It appears that if we remove P

from C , take π−1(C r{P }), and take the closure of this in B , we arrive at a nonsingular

curve C ′ with two points lying over the double point of C — we have “resolved the

singularity”.

If we take the side view of B , (projecting B onto the (x, z)-plane) we see that B is

isomorphic to an affine plane, and that C ′ becomes a parabola.

Let ϕ : A2 → B be defined by ϕ(x, z) = (x, xz, z). This ϕ is an isomorphism of

A2 onto B (projection to (x, z)-plane gives the inverse). Let ψ = π ◦ϕ : A2 → A2;

ψ(x, z) = (x, xz). Let E =ψ−1(P ) =ϕ−1(L) = {(x, z) ∈A2 | x = 0}. Then ψ : A2 rE →U

is an isomorphism; ψ is a birational morphism of the plane to itself.
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Let C 6= V (X ) be a curve in A2. Write C0 = C ∩U , an open subvariety of C ; let

C ′
0 =ψ−1(C0), and let C ′ be the closure of C ′

0 in A2. Let f : C ′ →C be the restriction

of ψ to C ′. Then f is a birational morphism of C ′ to C . By means of f̃ we may identify

k(C ) = k(x, y) with k(C ′) = k(x, z); y = xz.

(1). Let C =V (F ), F = Fr +Fr+1+·· ·+Fn , Fi a form of degree i in k[X ,Y ], r = mP (C ),

n = deg(C ). Then C ′ =V (F ′), where F ′ = Fr (1, Z )+X Fr+1(1, Z )+·· ·+X n−r Fn(1, Z ).

Proof. F (X , X Z ) = X r Fr (1, Z )+ X r+1Fr+1(1, Z )+ ·· · = X r F ′. Since Fr (1, Z ) 6= 0, X

doesn’t divide F ′.
If F ′ = G H , then F = X r G(X ,Y /X )H(X ,Y /X ) would be reducible. Thus F ′ is

irreducible, and since V (F ′) ⊃C ′
0, V (F ′) =C ′.

Assumption. X is not tangent to C at P . By multiplying F by a constant, we may

assume that Fr =
∏s

i=1
(Y −αi X )ri , where Y −αi X are the tangents to F at P .

(2). With F as above, f −1(P ) = {P1, . . . ,Ps }. where Pi = (0,αi ), and

mPi
(C ′) ≤ I (Pi ,C ′∩E) = ri .

If P is an ordinary multiple point on C , then each Pi is a simple point on C ′, and

ordC ′

Pi
(x) = 1.

Proof. f −1(P ) =C ′∩E = {(0,α) | Fr (1,α) = 0}. And

mPi
(C ′) ≤ I (Pi ,F ′∩X ) = I (Pi ,

s∏

i=1

(Z −αi )ri ∩X ) = ri

by properties of the intersection number.
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(3). There is an affine neighborhood W of P on C such that W ′ = f −1(W ) is an

affine open subvariety on C ′, f (W ′) = W , Γ(W ′) is module finite over Γ(W ), and

xr−1
Γ(W ′) ⊂ Γ(W ).

Proof. Let F =
∑

i+ j≥r ai j X i Y j . Let H =
∑

j≥r a0 j Y j−r , and let h be the image of

H in Γ(C ). Since H(0,0) = 1, W = Ch is an affine neighborhood of P in C . Then

W ′ = f −1(W ) =C ′
h

is also an affine open subvariety of C ′.

To prove the last two claims it suffices to find an equation zr +b1zr−1+·· ·+br = 0,

bi ∈ Γ(W ). In fact, Γ(W ′) = Γ(W )[z], so it will follow that 1, z, . . . , zr−1 generate Γ(W ′)
as a module over Γ(W ) (see Proposition 3 of §1.9); and xr−1zi ∈ Γ(W ) if i ≤ r −1.

To find the equation, notice that

F ′(x, z) =
∑

ai j xi+ j−r z j =
∑

ai j y i+ j−r zr−i ,

so we have an equation zr + b1zr−1 + ·· · + br = 0, where bi = (
∑

j ai j y i+ j−r )/h for

i < r , and br =
∑

i≥r, j ai j xi−r y j /h.

Remarks. (1) We can take the neighborhoods W and W ′ arbitrarily small; i.e., if

P ∈U , U ′ ⊃ {P1, . . . ,Ps } are any open sets on C and C ′, we may take W ⊂U , W ′ ⊂U ′.
Starting with W as in (3), we may choose g ∈ Γ(W ) such that g (P ) 6= 0, but g (Q) =
0 for all Q ∈ (W rU )∪ f (W ′ rU ′) (Problem 1.17). Then Wg , W ′

g are the required

neighborhoods.

(2) By taking a linear change of coordinates if necessary, we may also assume

that W includes any finite set of points on C we wish. For the points on the Y -axis

can be moved into W by a change of coordinates (X ,Y ) 7→ (X +αY ,Y ). And the zeros

of H can be moved by (X ,Y ) 7→ (X ,Y +βX ).

Problems

7.2. (a) For each of the curves F in §3.1, find F ′; show that F ′ is nonsingular in the

first five examples, but not in the sixth. (b) Let F = Y 2−X 5. What is F ′? What is (F ′)′?
What must be done to resolve the singularity of the curve Y 2 = X 2n+1?

7.3. Let F be any plane curve with no multiple components. Generalize the results

of this section to F .

7.4.∗ Suppose P is an ordinary multiple point on C , f −1(P ) = {P1, . . . ,Pr }. With the

notation of Step (2), show that FY =
∑

i

∏
j 6=i (Y −α j X )+ (Fr+1)Y + . . . , so FY (x, y) =

xr−1(
∑

j 6=i (z −α j )+x + . . . ). Conclude that ordC ′

Pi
(FY (x, y)) = r −1 for i = 1, . . . ,r .

7.5.∗ Let P be an ordinary multiple point on C , f −1(P ) = {P1, . . . ,Pr }, Li = Y −αi X

the tangent line corresponding to Pi = (0,αi ). Let G be a plane curve with image g

in Γ(C ) ⊂ Γ(C ′). (a) Show that ordC ′

Pi
(g ) ≥ mP (G), with equality if Li is not tangent to

G at P . (b) If s ≤ r , and ordC ′

Ri
(g ) ≥ s for each i = 1, . . . ,r , show that mP (G) ≥ s. (Hint:

How many tangents would G have otherwise?)

7.6. If P is an ordinary cusp on C , show that f −1(P ) = {P1}, where P1 is a simple

point on C ′.
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7.3 Blowing up Points in P2

Let P1, . . . ,Pt ∈P2. We are going to blow up all of these points, replacing each by

a projective line. We assume for simplicity that Pi = [ai 1 : ai 2 : 1], leaving the reader

to make the necessary changes if Pi 6∈U3.

Let U =P2 r {P1, . . . ,Pt }. Define morphisms fi : U →P1 by the formula

fi [x1 : x2 : x3] = [x1 −ai 1x3 : x2 −ai 2x3].

Let f = ( f1, . . . , ft ) : U →P1 ×·· ·×P1 (t times) be the product (Proposition 7 of §6.4),

and let G ⊂U ×P1 ×·· ·×P1 be the graph of f .

Let X1, X2, X3 be homogeneous coordinates for P2, Yi 1,Yi 2 homogeneous coor-

dinates for the i th copy of P1. Let

B =V ({Yi 1(X2 −ai 2X3)−Yi 2(X1 −ai 1X3 | i = 1, . . . , t }) ⊂P2 ×P1 ×·· ·×P1.

Then B ⊃G , and we will soon see that B is the closure of G in P2 ×·· ·×P1, so B is a

variety. Let π : B →P2 be the restriction of the projection from P2×·· ·×P1 to P2. Let

Ei =π−1(Pi ).

(1). Ei = {Pi }× { f1(Pi )}×·· ·×P1 ×·· ·× { ft (Pi )}, where P1 appears in the i th place. So

each Ei is canonically isomorphic to P1.

(2). B r
⋃t

i=1
Ei = B ∩ (U ×P1 × ·· · ×P1) = G , so π restricts to an isomorphism of

B r
⋃t

i=1
Ei with U .

(3). If T is any projective change of coordinates of P2, with T (Pi ) = P ′
i
, and

f ′
i

: P2r{P ′
1, . . . ,P ′

t } →P1 are defined using P ′
i

instead of the Pi , then there are unique

projective changes of coordinates Ti of P1 such that Ti ◦ fi = f ′
i
◦T (see Problem 7.7

below). If f ′ = ( f ′
i

, . . . , f ′
t ), then (T1×·· ·×Tt )◦ f = f ′ ◦T , and T ×T1×·· ·×Tt maps G ,

B and Ei isomorphically onto the corresponding G ′, B ′ and E ′
i

constructed from f ′.

(4). If Ti is a projective change of coordinates of P1 (for one i ), then there is a pro-

jective change of coordinates T of P2 such that T (Pi ) = Pi and fi ◦T = Ti ◦ fi (see

Problem 7.8 below).

(5). We want to study π in a neighborhood of a point Q in some Ei . We may assume

i = 1, and by (3) and (4) we may assume that P1 = [0 : 0 : 1], and that Q corresponds

to [λ : 1] ∈P1, λ ∈ k (even λ= 0 if desired).

Let ϕ3 : A2 → U3 ⊂ P2 be the usual morphism: ϕ3(x, y) = [x : y : 1]. Let V =
U3 r {P2, . . . ,Pt }, W = ϕ−1

3 (V ). Let ψ : A2 → A2 be as in Section 2: ψ(x, z) = (x, xz);

and let W ′ =ψ−1(W ).

Define ϕ : W ′ →P2 ×P1 ×·· ·×P1 by setting

ϕ(x, z) = [x : xz : 1]× [1 : z]× f2([x : xz : 1])×·· ·× ft ([x : xz : 1]).

Then ϕ is a morphism, and π◦ϕ = ϕ3 ◦ψ. Let V ′ = ϕ(W ′) = B r (
⋃

i>1 Ei ∪V (X3)∪
V (Y12)). This V ′ is a neighborhood of Q on B .

(6). B is the closure of G in P2 × ·· · ×P1, and hence B is a variety. For if S is any

closed set in P2 ×·· ·×P1 that contains G , then ϕ−1(S) is closed in W ′ and contains
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ϕ−1(G) = W ′ r V (X ). Since W ′ r V (X ) is open in W ′, it is dense, so ϕ−1(S) = W ′.
Therefore Q ∈ S, and since Q was an arbitrary point of B rG , S ⊃ B .

(7). The morphism from P2 × ·· · ×P1 r V (X3Y12) to A2 taking [x1 : x2 : x3]× [y11 :

y12]× ·· · to [x1/x3 : y11/y12], when restricted to V ′, is the inverse morphism to ϕ.

Thus we have the following diagram:

A2 ⊃W ′
≈
ϕ

//

ψ

�� ��

V ′ ⊂ B

π

����

A2 ⊃W
ϕ3

≈
// V ⊂P2

Locally, π : B →P2 looks just like the map ψ : A2 →A2 of Section 2.

(8). Let C be an irreducible curve in P2. Let C0 =C ∩U , C ′
0 =π−1(C0) ⊂G , and let C ′

be the closure of C ′
0 in B . then π restricts to a birational morphism f : C ′ →C , which

is an isomorphism from C ′
0 to C0. By (7) we know that, locally, f looks just like the

corresponding affine map of Section 2.

Proposition 1. Let C be an irreducible projective plane curve, and suppose all the

multiple points of C are ordinary. Then there is a nonsingular projective curve C ′ and

a birational morphism f from C ′ onto C .

Proof. Let P1, . . . ,Pt be the multiple points of C , and apply the above process. Step

(2) of Section 2, together with (8) above, guarantees that C ′ is nonsingular.

Problems

7.7.∗ Suppose P1 = [0 : 0 : 1], P ′
1 = [a11 : a12 : 1], and

T = (aX +bY +a11z, c X +dY +a12Z , e X + f Y +Z ).

Show that T1 = ((a−a11e)X +(b−a11 f )Y , (c−a12e)X +(d−a12 f )Y ) satisfies T1◦ f1 =
f ′

1 ◦T . Use this to prove Step (3) above.

7.8.∗ Let P1 = [0 : 0 : 1], T1 = (aX +bY , c X +dY ). Show that T = (aX +bY ,c X +dY , Z )

satisfies f1 ◦T = T1 ◦ f1. Use this to prove Step (4).

7.9. Let C = V (X 4 +Y 4 − X Y Z 2). Write down equations for a nonsingular curve X

in some PN that is birationally equivalent to C . (Use the Segre imbedding.)

7.4 Quadratic Transformations

A disadvantage of the procedure in Section 7.3 is that the new curve C ′, although

having better singularities than C , is no longer a plane curve. The facts we have

learned about plane curves don’t apply to C ′, and it is difficult to repeat the process

to C ′, getting a better curve C ′′. (The latter can be done, but it requires more tech-

nique than we have developed here.) If we want C ′ to be a plane curve, we must
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allow it acquire some new singularities. These new singularities can be taken to be

ordinary multiple points, while the old singularities of C become better on C ′.
Let P = [0 : 0 : 1], P ′ = [0 : 1 : 0], P ′′ = [1 : 0 : 0] in P2; call these three points the

fundamental points. Let L = V (Z ), L′ = V (Y ), L′′ = V (X ); call these the exceptional

lines. Note that the lines L′ and L′′ intersect in P , and L is the line through P ′ and

P ′′. Let U =P2 rV (X Y Z ).

Define Q : P2 r {P,P ′,P ′′} → P2 by the formula Q([x : y : z] = [y z : xz : x y]. This

Q is a morphism from P2 r {P,P ′,P ′′} onto U ∪ {P,P ′,P ′′}. And Q−1(P ) = L − {P ′,P ′′}.

(By the symmetry of Q, it is enough to write one such equality; the results for the

other fundamental points and exceptional lines are then clear — and we usually

omit writing them.)

If [x : y : z] ∈ U , then Q(Q([x : y : z])) = [xzx y : y zx y : y zxz] = [x : y : z]. So Q

maps U one-to-one onto itself, and Q =Q−1 on U , so Q is an isomorphism of U with

itself. In particular, Q is a birational map of P2 with itself. It is called the standard

quadratic transformation, or sometimes the standard Cremona transformation (a

Cremona transformation is any birational map of P2 with itself).

Let C be an irreducible curve in P2. Assume C is not an exceptional line. Then

C ∩U is open in C , and closed in U . Therefore Q−1(C ∩U ) = Q(C ∩U ) is a closed

curve in U . Let C ′ be the closure of Q−1(C ∩U ) in P2. Then Q restricts to a birational

morphism from C ′r{P,P ′,P ′′} to C . Note that (C ′)′ =C , since Q ◦Q is the identity on

U .

Let F ∈ k[X ,Y , Z ] be the equation of C , n = deg(F ). Let F Q = F (Y Z , X Z , X Y ),

called the algebraic transform of F . So F Q is a form of degree 2n.

(1). If mP (C ) = r , then Z r is the largest power of Z that divides F Q .

Proof. Write F = Fr (X ,Y )Z n−r +·· ·+Fn(X ,Y ), Fi a form of degree i (Problem 5.5).

Then

F Q = Fr (Y Z , X Z )(X Y )n−r +·· · = Z r (Fr (Y , X )(X Y )n−r +Z Fr+1(Y , X )(X Y )n−r−1+·· · ),

from which the result follows.

Let mP (C ) = r , mP ′ (C ) = r ′, mP ′′ (C ) = r ′′. Then F Q = Z r Y r ′ X r ′′F ′, where X , Y ,

and Z do not divide F ′. This F ′ is called the proper transform of F .

(2). deg(F ′) = 2n − r − r ′− r ′′, (F ′)′ = F , F ′ is irreducible, and V (F ′) =C ′.

Proof. From (F Q )Q = (X Y Z )nF , it follows that F ′ is irreducible and (F ′)′ = F . Since

V (F ′) ⊃Q−1(C ∩U ), V (F ′) must be C ′.

(3). mP (F ′) = n − r ′− r ′′. (Similarly for P ′ and P ′′.)

Proof. F ′ =
∑n−r

i=0
Fr+i (Y , X )X n−r−r ′′−i Y n−r−r ′−i Z i , so the leading form of F ′ at P =

[0 : 0 : 1] is Fn(Y , X )X −r ′′Y −r ′ .

Let us say that C is in good position if no exceptional line is tangent to C at a

fundamental point.

(4). If C is in good position, so is C ′.



7.4. QUADRATIC TRANSFORMATIONS 89

Proof. The line L is tangent to C ′ at P ′ if and only if I (P ′,F ′∩ Z ) > mP ′ (C ′). Equiv-

alently, I (P ′,Fr (Y , X )X n−r−r ′′Y n−r−r ′ ∩ Z ) > n − r − r ′′, or I (P ′,Fr (Y , X ) ∩ Z ) > 0, or

Fr (1,0) = 0. But if Y is not tangent to F at P , then Fr (1,0) 6= 0. By symmetry, the same

holds for the other lines and points.

Assume that C is in good position, and that P ∈C . Let C0 = (C ∩U )∪{P }, a neigh-

borhood of P on C . Let C ′
0 = C ′ rV (X Y ). Let f : C ′

0 → C0 be the restriction of Q to

C ′
0.

Let F∗ = F (X ,Y ,1),C∗ =V (F∗) ⊂A2. Define (F∗)′ = F (X , X Z ,1)X −r , C ′
∗ =V (F ′

∗) ⊂
A2 and f∗ : C ′

∗ →C∗ by f∗(x, z) = (x, xz), all as in Section 2.

(5). There is a neighborhood W of (0,0) in C∗, and there are isomorphisms ϕ : W →
C0 and ϕ′ : W ′ = f −1

∗ (W ) →C ′
0 such that ϕ f∗ = f ϕ′, i.e., the following diagram com-

mutes:

C ′
∗ ⊃W ′

≈
ϕ′

//

f∗

�� ��

C ′
0 ⊂C ′

f

��

C∗ ⊃W
ϕ

≈
// C0 ⊂C

Proof. Take W = (C∗ rV (X Y ))∪ {(0,0)}; ϕ(x, y) = [x : y : 1], and ϕ′(x, z) = [z : 1 : xz].

The inverse of ϕ′ is given by [x : y : z] 7→ (z/x, x/y). We leave the rest to the reader.

(6). If C is in good position, and P1, . . . ,Ps are the non-fundamental points on C ′∩L,

then mPi
(C ′) ≤ I (Pi ,C ′∩L), and

∑s
i=1

I (Pi ,C ′∩Z ) = r .

Proof. As in the proof of (4),
∑

I (Pi ,F ′∩Z ) =
∑

I (Pi ,Fr (Y , X )∩Z ) = r .

Remark. If P 6∈ C , the same argument shows that there are no non-fundamental

points on C ′∩L.

Example. (See Problem 7.10)

X

Y

Z X Z

Y
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Let us say that C is in excellent position if C is in good position, and, in addition, L

intersects C (transversally) in n distinct non-fundamental points, and L′ and L′′ each

intersect C (transversally) in n−r distinct non-fundamental points. (This condition

is no longer symmetric in P,P ′,P ′′.)

(7). If C is in excellent position, then C ′ has the following multiple points:

(a) Those on C ′∩U correspond to multiple points on C ∩U , the correspondence

preserving multiplicity and ordinary multiple points.

(b) P,P ′ and P ′′ are ordinary multiple points on C ′ with multiplicities n, n − r ,

and n − r respectively.

(c) There are no non-fundamental points on C ′∩L′ or on C ′∩L′′. Let P1, . . . ,Ps be

the non-fundamental points on C ′∩L. Then mPi
(C ′) ≤ I (Pi ,C ′∩L) and

∑
I (Pi ,C ′∩

L) = r .

Proof. (a) follows from the fact that C ′∩U and C ∩U are isomorphic, and from The-

orem 2 of §3.2 and Problem 3.24. (c) follows from (6), and (b) follows by applying (6)

to the curves C ′ and (C ′)′ =C (observing by (4) that C ′ is in good position).

For any irreducible projective plane curve C of degree n, with multiple points of

multiplicity rP = mP (C ), let

g∗(C ) =
(n −1)(n −2)

2
−

∑ rP (rP −1)

2
.

We know that g∗(C ) is a nonnegative integer. (Theorem 2 of §5.4).

(8). If C is in excellent position, then g∗(C ′) = g∗(C ) −
∑s

i=1
ri (ri−1)

2
, where ri =

mPi
(C ′), and P1, . . . ,Ps are the non-fundamental points on C ′∩L.

Proof. A calculation, using (2) and (7).

The special notation used in (1)–(8) regarding fundamental points and excep-

tional lines has served its purpose; from now on P , P ′, etc. may be any points, L, L′,
etc. any lines.

Lemma 1. (char(k) = 0) Let F be an irreducible projective plane curve, P a point of F .

Then there is a projective change of coordinates T such that F T is in excellent position,

and T ([0 : 0 : 1]) = P.

Proof. Let deg(F ) = n, mP (F ) = r . By Problem 4.16, it is enough to find lines L, L′, L′′

such that L′•C = r P+P ′
r+1+·· ·+P ′

n , L′′•C = r P+P ′′
r+1+·· ·+P ′′

n , and L•C = P1+·· ·+Pn ,

with all these points distinct; then there is a change of coordinates T with LT = Z ,

L′T = Y , L′′T = X . The existence of such lines follows from Problem 5.26 (Take L′, L′′

first, then L).

If T is any projective change of coordinates, Q ◦T is called a quadratic trans-

formation, and (F T )′ is called a quadratic transformation of F . If F T is in excellent

position, and T ([0 : 0 : 1]) = P , we say that the quadratic transformation is centered

at P . If F = F1, F2, . . . , Fm = G are curves, and each Fi is a quadratic transforma-

tion of Fi−1, we say that F is transformed into G by a finite sequence of quadratic

transformations.
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Theorem 2. By a finite sequence of quadratic transformations, any irreducible pro-

jective plane curve may be transformed into a curve whose only singularities are or-

dinary multiple points.

Proof. Take successive quadratic transformations, centering each one at a non-

ordinary multiple point.

From (7) and (8) we see that at each step, either C ′ has one less non-ordinary

multiple point than C , or g∗(C ′) = g∗(C )−
∑ ri (ri−1)

2
< g∗(C ). If the original curve C

has N non-ordinary multiple points, we reach the desired curve after at most N +
g∗(C ) steps. (See the Appendix for a proof in characteristic p.)

Problems

7.10. Let F = 8X 3Y +8X 3Z +4X 2Y Z −10X Y 3 −10X Y 2Z −3Y 3Z . Show that F is in

good position, and that F ′ = 8Y 2Z +8Y 3+4X Y 2−10X 2Z −10X 2Y −3X 3. Show that

F and F ′ have singularities as in the example sketched, and find the multiple points

of F and F ′.

7.11. Find a change of coordinates T so that (Y 2Z − X 3)T is in excellent position,

and T ([0 : 0 : 1]) = [0 : 0 : 1]. Calculate the quadratic transformation.

7.12. Find a quadratic transformation of Y 2Z 2−X 4−Y 4 with only ordinary multiple

points. Do the same with Y 4 +Z 4 −2X 2(Y −Z )2.

7.13.∗ (a) Show that in the lemma, we may choose T in such a way that for a given

finite set S of points of F , with P 6∈ S, T −1(S)∩V (X Y Z ) = ;. Then there is a neigh-

borhood of S on F that is isomorphic to an open set on (F T )′. (b) If S is a finite set

of simple points on a plane curve F , there is a curve F ′ with only ordinary multiple

points, and a neighborhood U of S on F , and an open set U ′ on F ′ consisting entirely

of simple points, such that U is isomorphic to U ′.

7.14.∗ (a) What happens to the degree, and to g∗(F ), when a quadratic transforma-

tion is centered at: (i) an ordinary multiple point; (ii) a simple point; (iii) a point

not on F ? (b) Show that the curve F ′ of Problem 7.13(b) may be assumed to have

arbitrarily large degree.

7.15. Let F = F1, . . . ,Fm be a sequence of quadratic transformations of F , such that

Fm has only ordinary multiple points. Let Pi 1,Pi 2, . . . be the points on Fi introduced,

as in (7) (c), in going from Fi−1 to Fi . (These are called “neighboring singularities”;

see Walker’s “Algebraic Curves”, Chap. III, §7.6, §7.7). If n = deg(F ), show that

(n −1)(n −2) ≥
∑

P∈F

mP (F )(mP (F )−1)+
∑

i>1, j

mPi j
(Fi )(mPi j

(Fi )−1).

7.16. (a) Show that everything in this section, including Theorem2, goes through for

any plane curve with no multiple components. (b) If F and G are two curves with

no common components, and no multiple components, apply (a) to the curve FG .

Deduce that there are sequences of quadratic transformations F = F1, . . . , FS = F ′

and G =G1, . . . , Gs =G ′, where F ′ and G ′ have only ordinary multiple points, and no
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tangents in common at points of intersection. Show that

deg(F )deg(G) =
∑

mP (F )mP (G)+
∑

i>1, j

mPi j
(Fi )mPi j

(Gi ),

where the Pi j are the neighboring singularities of FG , determined as in Problem

7.15.

7.5 Nonsingular Models of Curves

Theorem 3. Let C be a projective curve. Then there is a nonsingular projective curve

X and a birational morphism f from X onto C . If f ′ : X ′ →C is another, then there is

a unique isomorphism g : X → X ′ such that f ′g = f .

Proof. The uniqueness follows from Corollary 2 of §7.1. For the existence, the Corol-

lary in §6.6 says C is birationally equivalent to a plane curve. By Theorem 2 of §7.4,

this plane curve can be taken to have only ordinary multiple points as singularities,

and Proposition 1 of §7.3 replaces this curve by a nonsingular curve X . That the

birational map from X to C is a morphism follows from Corollary 1 of §7.1.

If C is a plane curve, the fact that f maps X onto C follows from the construction

of X from C ; indeed, if P ∈ C , we may find C ′ with ordinary multiple points so that

the rational map from C ′ to C is defined at some point P ′ and maps P ′ to P (see

Problem 7.13); and the map from X to C ′ is onto (Proposition 1 of §7.3).

If C ⊂ Pn , and P ∈ C , choose a morphism g : C → C1 from C to a plane curve

C1 such that {P } = g−1(g (P )) (Problem 6.43). Then if g f (x) = g (P ), it follows that

f (x) = P .

Corollary. There is a natural one-to-one correspondence between nonsingular pro-

jective curves X and algebraic function fields in one variable K over k: K = k(X ). If X

and X ′ are two such curves, dominant morphisms from X ′ to X correspond to homo-

morphisms from k(X ) into k(X ′).

We will see later that a dominant morphism between projective curves must be

surjective (Problem 8.18).

Let C be any projective curve, f : X → C as in Theorem 3. We say that X is the

nonsingular model of C , or of K = k(C ). We identify k(X ) with K by means of f̃ .

The points Q of X are in one-to-one correspondence with the discrete valuation

rings OQ (X ) of K (Corollary 4 of §7.1). Then f (Q) = P exactly when OQ (X ) dominates

OP (C ). The points of X will be called places of C , or of K . A place Q is centered at P if

f (Q) = P .

Lemma 2. Let C be a projective plane curve, P ∈C . Then there is an affine neighbor-

hood U of P such that:

(1) f −1(U ) =U ′ is an affine open subvariety of X .

(2) Γ(U ′) is module-finite over Γ(U ).

(3) For some 0 6= t ∈ Γ(U ), tΓ(U ′) ⊂ Γ(U ).

(4) The vector space Γ(U ′)/Γ(U ) is finite dimensional over k.
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The neighborhood U may be taken to exclude any finite set S of points in C , if P 6∈ S.

Proof. We will choose successive quadratic transformations C = C1, . . . , Cn so that

Cn has only ordinary multiple points, and open affine sets Wi ⊂Ci , so that (i) P ∈W1

and S ∩W1 = ;; (ii) the birational map from Ci+1 to Ci is represented by a mor-

phism fi : Wi+1 → Wi ; (iii) fi : Wi+1 → Wi satisfies all the conditions of Section 2,

Step (3). These quadratic transformations and neighborhoods are chosen induc-

tively. At each stage it may be necessary to shrink the previous neighborhoods; the

remarks in Section 2, together with Problem 7.13, show that there is no difficulty in

doing this.

Likewise let fn : X →Cn be the nonsingular model of Cn (Proposition 1 of §7.3),

and let Wn+1 = f −1
n (Wn) (shrinking again if necessary); this time Section 3, Step (7)

guarantees that the same conditions hold.

Let U =W1, U ′ =Wn+1. That Γ(U ′) is module-finite over Γ(U ) follows from Prob-

lem 1.45. Suppose Γ(U ′) =
∑m

i=1
Γ(U )zi . Since Γ(U ) and Γ(U ′) have the same quo-

tient field, there is a t ∈ Γ(U ) with t zi ∈ Γ(U ), t 6= 0. This t satisfies (3).

Define ϕ : Γ(U ′)/Γ(U ) → Γ(U )/(t ) by ϕ(z) = t z. Since ϕ is a one-to-one k-linear

map, it is enough to show thatΓ(U )/(t ) is finite-dimensional. Since t has only finitely

many zeros in U , this follows from Corollary 4 to the Nullstellensatz in §1.7.

Notation. Let f : X → C as above Q ∈ X , f (Q) = P ∈ C . Suppose C is a plane curve.

For any plane curve G (possibly reducible), form G∗ ∈OP (P2) as in Chapter 5, Section

1; let g be the image of G∗ in OP (C ) ⊂ k(C ) = k(X ). Define ordQ (G) to be ordQ (g ). As

usual, this is independent of the choice of G∗.

Proposition 2. Let C be an irreducible projective plane curve, P ∈ C , f : X → C as

above. Let G be a (possibly reducible) plane curve. Then I (P,C∩G) =
∑

Q∈ f −1(P ) ordQ (G).

Proof. Let g be the image of G∗ in OP (C ). Choose U as in Lemma 2, and so small that

g is a unit in all OP ′ (C ), P ′ ∈U , P ′ 6= P . Then I (P,C ∩G) = dimk (OP (P2)/(F∗,G∗)) =
dimk (OP (C )/(g )) (Problem 2.44) = dimk (Γ(U )/(g )) (Corollary 1 of §2.9). Let V =
Γ(U ), V ′ = Γ(U ′), and let T : V →V ′ be defined by T (z) = g z. Since V ′/V is finite di-

mensional, Problem 2.53 applies: dimV /T (V ) = dimV ′/T (V ′), so dimk (Γ(U )/(g )) =
dim(Γ(U ′)/(g )). By Corollary 1 of §2.9 again,

dimΓ(U ′)/(g ) =
∑

Q∈ f −1(P )

dim(OQ (X )/(g )) =
∑

ordQ (g ),

as desired (see Problem 2.50).

Lemma 3. Suppose P is an ordinary multiple point on C of multiplicity r . Let f −1(P ) =
{P1, . . . ,Pr }. If z ∈ k(C ), and ordPi

(z) ≥ r −1, then z ∈OP (C ).

Proof. Take a small neighborhood U of P so that z ∈ OP ′ (C ) for all P ′ ∈ U , P ′ 6= P

(The pole set is an algebraic subset, hence finite), and so that f : U ′ = f −1(U ) →U

looks like Section 2 Step (3). By Step (2) of Section 2, we know that ordPi
(x) = 1.

Therefore zx1−r ∈ Γ(U ′). But xr−1
Γ(U ′) ⊂ Γ(U ), so z = xr−1(zx1−r ) ∈ Γ(U ) ⊂ OP (C ),

as desired.
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Proposition 3. Let F be an irreducible projective plane curve, P an ordinary multiple

point of multiplicity r on F . Let P1, . . . ,Pr be the places centered at P. Let G , H be plane

curves, possibly reducible. Then Noether’s conditions are satisfied at P (with respect

to F,G , H) if ordPi
(H) ≥ ordPi

(G)+ r −1 for i = 1, . . . ,r .

Proof. H∗ ∈ (F∗,G∗) ⊂ OP (P2) is equivalent with H∗ ∈ (G∗) ⊂ OP (F ), or with z =
H∗/G∗ ∈OP (F ). Applying Lemma 3 to z gives the result.

Problems

7.17. (a) Show that for any irreducible curve C (projective or not) there is a nonsin-

gular curve X and a birational morphism f from X onto C . What conditions on X

will make it unique? (b) Let f : X →C as in (a), and let C ◦ be the set of simple points

of C . Show that the restriction of f to f −1(C ◦) gives an isomorphism of f −1(C ◦) with

C ◦.

7.18. Show that for any place P of a curve C , and choice t of uniformizing parameter

for OP (X ), there is a homomorphism ϕ : k(X ) → k((T )) taking t to T (see Problem

2.32). Show how to recover the place from ϕ. (In many treatments of curves, a place

is defined to be a suitable equivalence class of “power series expansions”.)

7.19.∗ Let f : X →C as above, C a projective plane curve. Suppose P is an ordinary

multiple point of multiplicity r on C , Q1, . . . ,Qr the places on X centered at P . Let

G be any projective plane curve, and let s ≤ r . Show that mP (G) ≥ s if and only if

ordQi
(G) ≥ s for i = 1, . . . ,r . (See Problem 7.5.)

7.20. Let R be a domain with quotient field K . The integral closure R ′ of R is {z ∈ k |
z is integral over R}. Prove:

(a) If R is a DVR, then R ′ = R.

(b) If R ′
α = Rα, then (

⋂
Rα)′ = (

⋂
Rα).

(c) With f : X →C as in Lemma 2, show that Γ( f −1(U )) = Γ(U )′ for all open sets

U of C . This gives another algebraic characterization of X .

7.21.∗ Let X be a nonsingular projective curve, P1, . . . ,Ps ∈ X . (a) Show that there is

projective plane curve C with only ordinary multiple points, and a birational mor-

phism f : X →C such that f (Pi ) is simple on C for each i . (Hint: if f (Pi ) is multiple,

do a quadratic transform centered at f (Pi ).) (b) For any m1, . . . ,mr ∈ Z, show that

there is a z ∈ k(X ) such that ordPi
(z) = mi (Problem 5.15). (c) Show that the curve C

of Part (a) may be found with arbitrarily large degree (Problem 7.14).

7.22. Let P be a node on an irreducible plane curve F , and let L1,L2 be the tangents

to F at P . F is called a simple node if I (P,Li ∩F ) = 3 for i = 1,2. Let H be the Hessian

of F . (a) If P is a simple node on F , show that I (P,F ∩ H) = 6. (Hint: We may take

P = [0 : 0 : 1], F∗ = x y + ·· · , and use Proposition 2 to show that all monomials of

degree ≥ 4 may be ignored — see Problem 5.23). (b) If P is an ordinary cusp on

F , show that I (P,F ∩H) = 8 (see Problem 7.6). (c) Use (a) and (b) to show that every

cubic has one, three, or nine flexes; then Problem 5.24 gives another proof that every

cubic is projectively equivalent to one of the type Y 2Z = cubic in X and Z . (d) If the
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curve F has degree n, and i flexes (all ordinary), and δ simple nodes, and k cusps,

and no other singularities, then

i +6δ+8k = 3n(n −2).

This is one of “Plücker’s formulas” (see Walker’s “Algebraic Curves” for the others).
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Chapter 8

Riemann-Roch Theorem

Throughout this chapter, C will be an irreducible projective curve, f : X →C the

birational morphism from the nonsingular model X onto C , K = k(C ) = k(X ) the

function field, as in Chapter 7, Section 5. The points P ∈C will be identified with the

places of K ; ordP denotes the corresponding order function on K .

8.1 Divisors

A divisor on X is a formal sum D =
∑

P∈X nP P , nP ∈ Z, and nP = 0 for all but a

finite number of P . The divisors on X form an abelian group — it is the free abelian

group on the set X (Chapter 2, Section 11).

The degree of a divisor is the sum of its coefficients: deg(
∑

nP P ) =
∑

nP . Clearly

deg(D +D ′) = deg(D)+deg(D ′). A divisor D =
∑

nP P is said to be effective (or posi-

tive) if each nP ≥ 0, and we write
∑

nP P ≥
∑

mP P if each nP ≥ mP .

Suppose C is a plane curve of degree n, and G is a plane curve not containing C as

a component. Define the divisor of G, div(G), to be
∑

P∈X ordP (G)P , where ordP (G)

is defined as in Chapter 7, Section 5. By Proposition 2 of §7.5,
∑

P∈X ordP (G) =∑
Q∈C I (Q,C ∩G). By Bézout’s theorem, div(G) is a divisor of degree mn, where m

is the degree of G . Note that div(G) contains more information than the intersection

cycle G•C .

For any nonzero z ∈ K , define the divisor of z, div(z), to be
∑

P∈X ordP (z)P . Since

z has only a finite number of poles and zeros (Problem 4.17), div(z) is a well-defined

divisor. If we let (z)0 =
∑

ordP (z)>0 ordP (z)P , the divisor of zeros of z, and (z)∞ =∑
ordP (z)<0−ordP (z)P , the divisor of poles of z, then div(z) = (z)0 − (z)∞. Note that

div(zz ′) = div(z)+div(z ′), and div(z−1) =−div(z).

Proposition 1. For any nonzero z ∈ K , div(z) is a divisor of degree zero. A rational

function has the same number of zeros as poles, if they are counted properly.

Proof. Take C to be a plane curve of degree n. Let z = g /h, g ,h forms of the same

degree in Γh(C ); say g ,h are residues of forms G , H of degree m in k[X ,Y , Z ]. Then

div(z) = div(G)−div(H), and we have seen that div(G) and div(H) have same degree

mn.

97
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Corollary 1. Let 0 6= z ∈ K . Then the following are equivalent: (i) div(z) ≥ 0; (ii) z ∈ k;

(iii) div(z) = 0.

Proof. If div(z) ≥ 0, z ∈ OP (X ) for all P ∈ X . If z(P0) = λ0 for some P0, then div(z −
λ0) ≥ 0 and deg(div(z −λ0)) > 0, a contradiction, unless z −λ0 = 0, i.e., z ∈ k.

Corollary 2. Let z, z ′ ∈ K , both nonzero. Then div(z) = div(z ′) if and only if z ′ = λz

for some λ ∈ k.

Two divisors D,D ′ are said to be linearly equivalent if D ′ = D +div(z) for some

z ∈ K , in which case we write D ′ ≡ D .

Proposition 2. (1) The relation ≡ is an equivalence relation.

(2) D ≡ 0 if and only if D = div(z), z ∈ K .

(3) If D ≡ D ′, then deg(D) = deg(D ′).

(4) If D ≡ D ′, and D1 ≡ D ′
1, then D +D1 ≡ D ′+D ′

1.

(5) Let C be a plane curve. Then D ≡ D ′ if and only if there are two curves G ,G ′ of

the same degree with D +div(G) = D ′+div(G ′).

Proof. (1)–(4) are left to the reader. For (5) it suffices to write z =G/G ′, since div(z) =
div(G)−div(G ′) in this case.

The criterion proved in Chapter 7, Section 5 for Noether’s conditions to hold

translates nicely into the language of divisors:

Assume C is a plane curve with only ordinary multiple points. For each Q ∈ X , let

rQ = m f (Q)(C ). Define the divisor E =
∑

Q∈X (rQ −1)Q. This E is effective; its degree

is
∑

mP (C )(mP (C )−1). Any plane curve G such that div(G) ≥ E is called an adjoint

of C . From Problem 7.19 it follows that a curve G is an adjoint to C if and only if

mP (G) ≥ mP (C )−1 for every (multiple) point P ∈C . If C is nonsingular, every curve

is an adjoint.

RESIDUE THEOREM. Let C ,E be as above. Suppose D and D ′ are effective divisors

on X , with D ′ ≡ D. Suppose G is an adjoint of degree m such that div(G) = D +E + A,

for some effective divisor A. Then there is an adjoint G ′ of degree m such that div(G ′) =
D ′+E + A.

Proof. Let H , H ′ be curves of the same degree such that D +div(H) = D ′+div(H ′).

Then div(G H) = div(H ′)+D ′ +E + A ≥ div(H ′)+E . Let F be the form defining C .

Applying the criterion of Proposition 3 of §7.5 to F , H ′, and G H , we see that Noether’s

conditions are satisfied at all P ∈C . By Noether’s theorem, G H = F ′F+G ′H ′ for some

F ′,G ′, where deg(G ′) = m. Then div(G ′) = div(G H)−div(H ′) = D ′+E+A, as desired.

Problems

8.1. Let X =C =P1, k(X ) = k(t ), where t = X1/X2, X1, X2 homogeneous coordinates

on P1. (a) Calculate div(t ). (b) Calculate div( f /g ), f , g relatively prime in k[t ]. (c)

Prove Proposition 1 directly in this case.
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8.2. Let X = C = V (Y 2Z − X (X − Z )(X −λZ )) ⊂ P2, λ ∈ k, λ 6= 0,1. Let x = X /Z ,

y = Y /Z ∈ K ; K = k(x, y). Calculate div(x) and div(y).

8.3. Let C = X be a nonsingular cubic. (a) Let P , Q ∈ C . Show that P ≡ Q if and

only if P = Q. (Hint: Lines are adjoints of degree 1.) (b) Let P,Q,R,S ∈ C . Show that

P+Q ≡ R+S if and only if the line through P and Q intersects the line through R and

S in a point on C (if P =Q use the tangent line). (c) Let P0 be a fixed point on C , thus

defining an addition ⊕ on C (Chapter 5, Section 6). Show that P ⊕Q = R if and only

if P +Q = R +P0. Use this to give another proof of Proposition 4 of §5.6.

8.4. Let C be a cubic with a node. Show that for any two simple points P,Q on C ,

P ≡Q.

8.5. Let C be a nonsingular quartic, P1,P2,P3 ∈C . Let D = P1 +P2 +P3. Let L and L′

be lines such that L.•C = P1 +P2 +P4 +P5, L′•C = P1 +P3 +P6 +P7. Suppose these

seven points are distinct. Show that D is not linearly equivalent to any other effective

divisor. (Hint: Apply the residue theorem to the conic LL′.) Investigate in a similar

way other divisors of small degree on quartics with various types of multiple points.

8.6. Let D(X ) be the group of divisors on X , D0(X ) the subgroup consisting of divi-

sors of degree zero, and P (X ) the subgroup of D0(X ) consisting of divisors of ratio-

nal functions. Let C0(X ) = D0(X )/P (X ) be the quotient group. It is the divisor class

group on X . (a) If X = P1, then C0(X ) = 0. (b) Let X = C be a nonsingular cubic.

Pick P0 ∈C , defining ⊕ on C . Show that the map from C to C0(X ) that sends P to the

residue class of the divisor P −P0 is an isomorphism from (C ,⊕) onto C0(X ).

8.7. When do two curves G , H have the same divisor (C and X are fixed)?

8.2 The Vector Spaces L(D)

Let D =
∑

nP P be a divisor on X . Each D picks out a finite number of points, and

assigns integers to them. We want to determine when there is a rational function

with poles only at the chosen points, and with poles no “worse” than order nP at P ;

if so, how many such functions are there?

Define L(D) to be { f ∈ K | ordP ( f ) ≥−nP for all P ∈ X }, where D =
∑

nP P . Thus a

rational function f belongs to L(D) if div( f )+D ≥ 0, or if f = 0. L(D) forms a vector

space over k. Denote the dimension of L(D) by l (D); the next proposition shows that

l (D) is finite.

Proposition 3. (1) If D ≤ D ′, then L(D) ⊂ L(D ′), and

dimk (L(D ′)/L(D)) ≤ deg(D ′−D).

(2) L(0) = k; L(D) = 0 if deg(D) < 0.

(3) L(D) is finite dimensional for all D. If deg(D) ≥ 0, then l (D) ≤ deg(D)+1.

(4) If D ≡ D ′, then l (D) = l (D ′).

Proof. (1): D ′ = D +P1 +·· ·+Ps , and L(D) ⊂ L(D +P1) ⊂ ·· · ⊂ L(D +P1 +·· ·+Ps ), so

it suffices to show that dim(L(D +P )/L(D)) ≤ 1 (Problem 2.49). To prove this, let t

be a uniformizing parameter in OP (X ), and let r = nP be the coefficient of P in D .
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Define ϕ : L(D +P ) → k by letting ϕ( f ) = (t r+1 f )(P ); since ordP ( f ) ≥ −r −1, this is

well-defined; ϕ is a linear map, and Ker(ϕ) = L(D), so ϕ induces a one-to-one linear

map ϕ : L(D +P )/L(D) → k, which gives the result.

(2): This follows from Corollary 1 and Proposition 2 (3) of §8.1.

(3): If deg(D) = n ≥ 0, choose P ∈ X , and let D ′ = D − (n +1)P . Then L(D ′) = 0,

and by (1), dim(L(D)/L(D ′)) ≤ n +1, so l (D) ≤ n +1.

(4): Suppose D ′ = D+div(g ). Define ψ : L(D) → L(D ′) by setting ψ( f ) = f g . Since

ψ is an isomorphism of vector spaces, l (D) = l (D ′).

More generally, for any subset S of X , and any divisor D =
∑

nP P on X , define

degS (D) =
∑

P∈S nP , and LS (D) = { f ∈ K | ordP ( f ) ≥−nP for all P ∈ S}.

Lemma 1. If D ≤ D ′, then LS (D) ⊂ LS (D ′). If S is finite, then dim(LS (D ′)/LS (D)) =
degS (D ′−D).

Proof. Proceeding as in Proposition 3, we assume D ′ = D +P , and define ϕ : LS (D +
P ) → k the same way. We must show that ϕ maps LS (D +P ) onto k, i.e., ϕ 6= 0, for

then ϕ is an isomorphism. Thus we need to find an f ∈ K with ordP ( f ) =−r −1, and

with ordQ ( f ) ≥−nQ for all Q ∈ S. But this is easy, since S is finite (Problem 7.21(b)).

The next proposition is an important first step in calculating the dimension l (D).

The proof (see Chevalley’s “Algebraic Functions of One Variable”, Chap. I.) involves

only the field of rational functions.

Proposition 4. Let x ∈ K , x 6∈ k. Let Z = (x)0 be the divisor of zeros of x, and let

n = [K : k(x)]. Then

(1) Z is an effective divisor of degree n.

(2) There is a constant τ such that l (r Z ) ≥ r n −τ for all r .

Proof. Let Z = (x)0 =
∑

nP P , and let m = deg(Z ). We show first that m ≤ n.

Let S = {P ∈ X | nP > 0}. Choose v1, . . . , vm ∈ LS (0) so that the residues v1, . . . , vm ∈
LS (0)/LS (−Z ) form a basis for this vector space (Lemma 1). We will show that v1, . . . , vm

are linearly independent over k(x). If not (by clearing denominators and multiply-

ing by a power of x), there would be polynomials gi = λi + xhi ∈ k[x] with λi ∈ k,∑
gi vi = 0, not all λi = 0. But then

∑
λi vi = −x

∑
hi vi ∈ LS (−Z ), so

∑
λi v i = 0, a

contradiction. So m ≤ n. Next we prove (2).

Let w1, . . . , wn be a basis of K over k(x) (Proposition 9 of §6.5). We may as-

sume that each wi satisfies an equation w
ni

i
+ai 1w

ni−1
i

+·· · = 0, ai j ∈ k[x−1] (Prob-

lem 1.54). Then ordP (ai j ) ≥ 0 if P 6∈ S. If ordP (wi ) < 0, P 6∈ S, then ordP (w
ni

i
) <

ordP (ai j w
ni− j

i
), which is impossible (Problem 2.29). It follows that for some t > 0,

div(wi )+ t Z ≥ 0, i = 1, . . . ,n. Then wi x− j ∈ L((r + t )Z ) for i = 1, . . . ,n, j = 0,1, . . . ,r .

Since the wi are independent over k(x), and 1, x−1, . . . , x−r are independent over k,

{wi x− j | i = 1, . . . ,n, j = 0, . . . ,r } are independent over k. So l ((r + t )Z ) ≥ n(r + 1).

But l ((r + t )Z ) = l (r Z )+dim(L((r + t )Z )/L(r Z )) ≤ l (r Z )+ tm by Proposition 3 (1).

Therefore l (r Z ) ≥ n(r +1)− tm = r n −τ, as desired.

Lastly, since r n −τ ≤ l (r Z ) ≤ r m +1 (Proposition 3 (3)), if we let r get large, we

see that n ≤ m.
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Corollary. The following are equivalent:

(1) C is rational.

(2) X is isomorphic to P1.

(3) There is an x ∈ K with deg((x0)) = 1.

(4) For some P ∈ X , l (P ) > 1.

Proof. (4) says that there is nonconstant x ∈ L(P ), so (x)∞ = P . Then deg((x)0) =
deg((x)∞) = 1, so [K : k(x)] = 1, i.e., K = k(x) is rational. The rest is easy (see Problem

8.1).

Problems

8.8.∗ If D ≤ D ′, then l (D ′) ≤ l (D)+deg(D ′−D), i.e., deg(D)− l (D) ≤ deg(D ′)− l (D ′).

8.9. Let X = P1, t as in Problem 8.1. Calculate L(r (t )0) explicitly, and show that

l (r (t )0) = r +1.

8.10. Let X =C be a cubic, x, y as in Problem 8.2. Let z = x−1. Show that L(r (z)0) ⊂
k[x, y], and show that l (r (z)0) = 2r if r > 0.

8.11.∗ Let D be a divisor. Show that l (D) > 0 if and only if D is linearly equivalent to

an effective divisor.

8.12. Show that deg(D) = 0 and l (D) > 0 are true if and only if D ≡ 0.

8.13.∗ Suppose l (D) > 0, and let f 6= 0, f ∈ L(D). Show that f 6∈ L(D −P ) for all but a

finite number of P . So l (D −P ) = l (D)−1 for all but a finite number of P .

8.3 Riemann’s Theorem

If D is a large divisor, L(D) should be large. Proposition 4 shows this for divisors

of a special form.

RIEMANN’S THEOREM. There is an integer g such that l (D) ≥ deg(D)+1− g for all

divisors D. The smallest such g is called the genus of X (or of K , or C ). The genus is a

nonnegative integer.

Proof. For each D , let s(D) = deg(D)+1− l (D). We want to find g so that s(D) ≤ g

for all D .

(1) s(0) = 0, so g ≥ 0 if it exists.

(2) If D ≡ D ′, then s(D) = s(D ′) (Propositions 2 and 3 of §8.2).

(3) If D ≤ D ′, then s(D) ≤ s(D ′) (Problem 8.8). Let x ∈ K , x 6∈ k, let Z = (x)0, and

let τ be the smallest integer that works for Proposition 4 (2). Since s(r Z ) ≤ τ+1 for

all r , and since r Z ≤ (r +1)Z , we deduce from (3) that

(4) s(r Z ) = τ+1 for all large r > 0. Let g = τ+1. To finish the proof, it suffices (by

(2) and (3)) to show:

(5) For any divisor D , there is a divisor D ′ ≡ D , and an integer r ≥ 0 such that D ′ ≤
r Z . To prove this, let Z =

∑
nP P , D =

∑
mP P . We want D ′ = D −div( f ), so we need

mP−ordP ( f ) ≤ r nP for all P . Let y = x−1, and let T = {P ∈ X | mP > 0 and ordP (y) ≥ 0}.
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Let f =
∏

P∈T (y−y(P ))mP . Then mP −ordP ( f ) ≤ 0 whenever ordP (y) ≥ 0. If ordP (y) <
0, then nP > 0, so a large r will take care of this.

Corollary 1. If l (D0) = deg(D0)+1− g , and D ≡ D ′ ≥ D0, then l (D) = deg(D)+1− g .

Corollary 2. If x ∈ K , x 6∈ k, then g = deg(r (x)0)− l (r (x)0)+1 for all sufficiently large

r .

Corollary 3. There is an integer N such that for all divisors D of degree > N , l (D) =
deg(D)+1− g .

Proofs. The first two corollaries were proved on the way to proving Riemann’s Theo-

rem. For the third, choose D0 such that l (D0) = deg(D0)+1−g , and let N = deg(D0)+
g . Then if deg(D) ≥ N , deg(D−D0)+1−g > 0, so by Riemann’s Theorem, l (D−D0) >
0. Then D−D0+div( f ) ≥ 0 for some f , i.e., D ≡ D+div( f ) ≥ D0, and the result follows

from Corollary 1.

Examples. (1) g = 0 if and only if C is rational. If C is rational, g = 0 by Corollary 2

and Problem 8.9 (or Proposition 5 below). Conversely, if g = 0, l (P ) > 1 for any P ∈ X ,

and the result follows from the Corollary to Proposition 4 of §8.2.

(2) (char(k) 6= 2) g = 1 if and only if C is birationally equivalent to a nonsingular

cubic.

For if X is a nonsingular cubic, the result follows from Corollary 2, Problems 8.10

and 5.24 (or Proposition 5 below). Conversely, if g = 1, then l (P ) ≥ 1 for all P . By the

Corollary of §8.2, l (P ) = 1, and by the above Corollary 1, l (r P ) = r for all r > 0.

Let 1, x be a basis for L(2P ). Then (x)∞ = 2P since if (x)∞ = P , C would be

rational. So [K : k(x)] = 2. Let 1, x, y be a basis for L(3P ). Then (y)∞ = 3P , so

y 6∈ k(x), so K = k(x, y). Since 1, x, y, x2, x y, y2 ∈ L(6P ), there is a relation of the

form ay2 + (bx + c)y = Q(x), Q a polynomial of degree ≤ 3. By calculating ordP of

both sides, we see that a 6= 0 and degQ = 3, so we may assume a = 1. Replacing y by

y+ 1
2

(bx+c), we may assume y2 =
∏3

i=1(x−αi ). If α1 =α2, then (y/(x−α1))2 = x−α3,

so x, y ∈ k(y/(x −α1)); but then X would be rational, which contradicts the first ex-

ample. So the αi are distinct.

It follows that K = k(C ), where C = V (Y 2Z −
∏3

i=1(X −αi Z )) is a nonsingular

cubic.

The usefulness of Riemann’s Theorem depends on being able to calculate the

genus of a curve. By its definition the genus depends only on the nonsingular model,

or the function field, so two birationally equivalent curves have the same genus.

Since we have a method for finding a plane curve with only ordinary multiple points

that is birationally equivalent to a given curve, the following proposition is all that

we need:

Proposition 5. Let C be a plane curve with only ordinary multiple points. Let n be

the degree of C , rP = mP (C ). Then the genus g of C is given by the formula

g =
(n −1)(n −2)

2
−

∑

P∈C

rP (rP −1)

2
.
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Proof. By the above Corollary 3, we need to find some “large” divisors D for which

we can calculate l (D). The Residue Theorem allows us to find all effective divisors

linearly equivalent to certain divisors D . These two observations lead to the calcu-

lation of g .

We may assume that the line Z = 0 intersect C in n distinct points P1, . . . ,Pn . Let

F be the form defining C .

Let E =
∑

Q∈X (rQ −1)Q, rQ = r f (Q) = m f (Q)(C ) as in Section 1. Let

Em = m
n∑

i=1

Pi −E .

So Em is a divisor of degree mn −
∑

P∈C rP (rP −1).

Let Vm = {forms G of degree m such that G is adjoint to C }. Since G is adjoint if

and only if mP (G) ≥ rP −1 for all P ∈C , we may apply Theorem 1 of §5.2 to calculate

the dimension of Vm . We find that

dimVm ≥
(m +1)(m +2)

2
−

∑ rP (rP −1)

2
,

with equality if m is large. (Note that Vm is the vector space of forms, not the projec-

tive space of curves.)

Let ϕ : Vm → L(Em) be defined by ϕ(G) = G/Z m . Then ϕ is a linear map, and

ϕ(G) = 0 if and only if G is divisible by F .

We claim that ϕ is onto. For if f ∈ L(Em), write f = R/S, with R,S forms of the

same degree. Then div(R Z m) ≥ div(S) + E . By Proposition 3 of §7.5, there is an

equation R Z m = AS +BF . So R/S = A/Z m in k(F ), and so ϕ(A) = f . (Note that

div(A) = div(R Z m)−div(S) ≥ E , so A ∈Vm .)

It follows that the following sequence of vector spaces is exact:

0 −→Wm−n
ψ
−→Vm

ϕ
−→ L(Em) −→ 0,

where Wm−n is the space of all forms of degree m−n, and ψ(H) = F H for H ∈Wm−n .

By Proposition 7of §2.10, we may calculate dimL(Em), at least for m large. It

follows that

l (Em) = deg(Em)+1−
( (n −1)(n −2)

2
−

∑ rP (rP −1)

2

)

for large m. But since deg(Em) increases as m increases, Corollary 3 of Riemann’s

Theorem applies to finish the proof.

Corollary 1. Let C be a plane curve of degree n, rP = mP (C ), P ∈C . Then

g ≤
(n −1)(n −2)

2
−

∑ rP (rP −1)

2
.

Proof. The number on the right is what we called g∗(C ) in Chapter 7, Section 4. We

saw there that g∗ decreases under quadratic transformations, so Theorem 2 of §7.4

concludes the proof.
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Corollary 2. If
∑ rP (rP−1)

2
= (n−1)(n−2)

2
, then C is rational.

Corollary 3. (a) With Em as in the proof of the proposition, any h ∈ L(Em) may be

written h = H/Z m , where H is an adjoint of degree m.

(b) deg(En−3) = 2g −2, and l (En−3) ≥ g .

Proof. This follows from the exact sequence constructed in proving the proposition.

Note that if m < n, then Vm = L(Em).

Examples. Lines and conics are rational. Nonsingular cubics have genus one. Sin-

gular cubics are rational. Since a nonsingular curve of degree n has genus (n−1)(n−2)
2

,

not every curve is birationally equivalent to a nonsingular plane curve. For example,

Y 2X Z = X 4+Y 4 has one node, so is of genus 2, and no nonsingular plane curve has

genus 2.

Problems

8.14. Calculate the genus of each of the following curves:

(a) X 2Y 2 −Z 2(X 2 +Y 2).

(b) (X 3 +Y 3)Z 2 +X 3Y 2 −X 2Y 3.

(c) The two curves of Problem 7.12.

(d) (X 2 −Z 2)2 −2Y 3Z −3Y 2Z 2.

8.15. Let D =
∑

nP P be an effective divisor, S = {P ∈ C | nP > 0}, U = X r S. Show

that L(r D) ⊂ Γ(U ,OX ) for all r ≥ 0.

8.16. Let U be any open set on X , ; 6=U 6= X . Then Γ(U ,OX ) is infinite dimensional

over k.

8.17. Let X ,Y be nonsingular projective curves, f : : X → Y a dominating mor-

phism. Prove that f (X ) = Y . (Hint: If P ∈ Y r f (X ), then f̃ (Γ(Y r {P })) ⊂ Γ(X ) = k;

apply Problem 8.16.)

8.18. Show that a morphism from a projective curve X to a curve Y is either con-

stant or surjective; if it is surjective, Y must be projective.

8.19. If f : C →V is a morphism from a projective curve to a variety V , then f (C ) is

a closed subvariety of V . (Hint: Consider C ′ = closure of f (C ) in V .)

8.20. Let C be the curve of Problem 8.14(b), and let P be a simple point on C . Show

that there is a z ∈ Γ(C r {P }) with ordP (z) ≥−12, z 6∈ k.

8.21. Let C0(X ) be the divisor class group of X . Show that C0(X ) = 0 if and only if X

is rational.

8.4 Derivations and Differentials

This section contains the algebraic background needed to study differentials on

a curve.



8.4. DERIVATIONS AND DIFFERENTIALS 105

Let R be a ring containing k, and let M be an R-module. A derivation of R into M

over k is a k-linear map D : R → M such that D(x y) = xD(y)+ yD(x) for all x, y ∈ R.

It follows that for any F ∈ k[X1, . . . , Xn] and x1, . . . , xn ∈ R,

D(F (X1, . . . , Xn)) =
n∑

i=1

FXi
(x1, . . . , xn)D(xi ).

Since all rings will contain k, we will omit the phrase “over k”.

Lemma 2. If R is a domain with quotient field K , and M is a vector space over K , then

any derivation D : R → M extends uniquely to a derivation D̃ : K → M.

Proof. If z ∈ K , and z = x/y , with x and y in R, then, since x = y z, we must have

Dx = yD̃z + zD y . So D̃(z) = y−1(Dx − zD y), which shows the uniqueness. If we

define D̃ by this formula, it is not difficult to verify that D̃ is a well-defined derivation

from K to M .

We want to define differentials of R to be elements of the form
∑

xi d yi , xi , yi ∈
R; they should behave like the differentials of calculus. This is most easily done as

follows:

For each x ∈ R let [x] be a symbol. Let F be the free R-module on the set {[x] | x ∈
R}. Let N be the submodule of F generated by the following sets of elements:

(i) {[x + y]− [x]− [y] | x, y ∈ R}

(ii) {[λx]−λ[x] | x ∈ R,λ ∈ k}

(iii) {[x y]−x[y]− y[x] | x, y ∈ R}

Let Ωk (R) = F /N be the quotient module. Let d x be the image of [x] in F /N , and let

d : R →Ωk (R) be the mapping that takes x to d x. Ωk (R) is an R-module, called the

module of differentials of R over k, and d : R →Ωk (R) is a derivation.

Lemma 3. For any R-module M, and any derivation D : R → M, there is a unique

homomorphism of R-module ϕ : Ωk (R) → M such that D(x) =ϕ(d x) for all x ∈ R.

Proof. If we define ϕ′ : F → M by ϕ′(
∑

xi [yi ]) =
∑

xi D(yi ), then ϕ′(N ) = 0, so ϕ′

induces ϕ : Ωk (R) → M .

If x1, . . . , xn ∈ R, and G ∈ k[X1, . . . , Xn], then

d(G(x1, . . . , xn)) =
n∑

i=1

GXi
(x1, . . . , xn)d xi .

It follows that if R = k[x1, . . . , xn], then Ωk (R) is generated (as an R-module) by the

differentials d x1, . . . ,d xn .

Likewise, if R is a domain with quotient field K , and z = x/y ∈ K , x, y ∈ R, then

d z = y−1d x − y−1zd y . In particular, if K = k(x1, . . . , xn), then Ωk (K ) is a vector space

of finite dimension over K , generated by d x1, . . . ,d xn .

Proposition 6. (1) Let K be an algebraic function field in one variable over k. Then

Ωk (K ) is a one-dimensional vector space over K .

(2) (char(k) = 0) If x ∈ K , x 6∈ k, then d x is a basis for Ωk (K ) over K .
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Proof. Let F ∈ k[X ,Y ] be an affine plane curve with function field K (Corollary of

§6.6). Let R = k[X ,Y ]/(F ) = k[x, y];K = k(x, y). We may assume FY 6= 0 (since

F is irreducible), so F doesn’t divide FY , i.e., FY (x, y) 6= 0. The above discussion

shows that d x and d y generate Ωk (K ) over K . But 0 = d(F (x, y)) = FX (x, y)d x +
FY (x, y)d y , so d y = ud x, where u = −FX (x, y)/FY (x, y). Therefore d x generates

Ωk (K ), so dimK (Ωk (K )) ≤ 1.

So we must show that Ωk (K ) 6= 0. By Lemmas 2 and 3, it suffices to find a nonzero

derivation D : R → M for some vector space M over K . Let M = K , and, for G ∈
k[X ,Y ], G its image in R, let D(G) =GX (x, y)−uGY (x, y), with u as in the preceding

paragraph. It is left to the reader to verify that D is a well-defined derivation, and

that D(x) = 1, so D 6= 0.

It follows (char(k) = 0) that for any f , t ∈ K , t 6∈ k, there is a unique element v ∈ K

such that d f = vd t . It is natural to write v = d f
d t

, and call v the derivative of f with

respect to t .

Proposition 7. With K as in Proposition 6, let O be a discrete valuation ring of K ,

and let t be a uniformizing parameter in O . If f ∈O , then
d f
d t

∈O .

Proof. Using the notation of the proof of Proposition 6, we may assume O = OP (F ),

P = (0,0) a simple point on F . For z ∈ K , write z ′ instead of d z
d t

, t being fixed through-

out.

Choose N large enough that ordP (x ′) ≥ −N , ordP (y ′) ≥ −N . Then if f ∈ R =
k[x, y], ordP ( f ′) ≥−N , since f ′ = fX (x, y)x ′+ fY (x, y)y ′.

If f ∈O , write f = g /h, g ,h ∈ R, h(P ) 6= 0. Then f ′ = h−2(hg ′−g h′), so ordP ( f ′) ≥
−N .

We can now complete the proof. Let f ∈ O . Write f =
∑

i<N λi t i + t N g , λi ∈ k,

g ∈ O (Problem 2.30). Then f ′ =
∑

iλi t i−1 + g N t N−1 + t N g ′. Since ordP (g ′) ≥ −N ,

each term belongs to O , so f ′ ∈O , as required.

Problems

8.22. Generalize Proposition 6 to function fields in n variables.

8.23. With O , t as in Proposition 7, let ϕ : O → k[[T ]] be the corresponding homo-

morphism (Problem 2.32). Show that, for f ∈ O , ϕ takes the derivative of f to the

“formal derivative” of ϕ( f ). Use this to give another proof of Proposition 7, and of

the fact that Ωk (K ) 6= 0 in Proposition 6.

8.5 Canonical Divisors

Let C be a projective curve, X its nonsingular model, K their function field as

before. We let Ω = Ωk (K ) be the space of differentials of K over k; elements ω ∈ Ω

may also be called differentials on X , or on C .

Let ω ∈Ω, ω 6= 0, and let P ∈ X be a place. We define the order of ω at P , ordP (ω),

as follows: Choose a uniformizing parameter t in OP (X ), write ω = f d t , f ∈ K , and
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set ordP (ω) = ordP ( f ). To see that this is well-defined, suppose u were another uni-

formizing parameter, and f d t = g du; then f /g = du
d t

∈OP (X ) by Proposition 7, and

likewise g / f ∈OP (X ), so ordP ( f ) = ordP (g ).

If 0 6=ω ∈Ω, the divisor of ω, div(ω), is defined to be
∑

P∈X ordP (ω)P . In Proposi-

tion 8 we shall show that only finitely many ordP (ω) 6= 0 for a given ω, so that div(ω)

is a well-defined divisor.

Let W = div(ω). W is called a canonical divisor. If ω′ is another nonzero dif-

ferential in Ω, then ω′ = f ω, f ∈ K , so div(ω′) = div( f )+div(ω), and div(ω′) ≡ div(ω).

Conversely if W ′ ≡W , say W ′ = div( f )+W , then W ′ = div( f ω). So the canonical divi-

sors form an equivalence class under linear equivalence. In particular, all canonical

divisors have the same degree.

Proposition 8. Assume C is a plane curve of degree n ≥ 3 with only ordinary multiple

points. Let E =
∑

Q∈X (rQ − 1)Q, as in Section 1. Let G be any plane curve of degree

n −3. Then div(G)−E is a canonical divisor. (If n = 3, div(G) = 0.)

Proof. Choose coordinates X ,Y , Z for P2 in such a way that: Z •C =
∑n

i=1
Pi , Pi dis-

tinct; [1 : 0 : 0] 6∈C ; and no tangent to C at a multiple point passes through [1 : 0 : 0].

Let x = X /Z , y = Y /Z ∈ K . Let F be the form defining C , and let fx = FX (x, y,1),

fy = FY (x, y,1). Let Em = m
∑n

i=1
Pi −E .

Let ω = d x. Since divisors of the form div(G)−E , deg(G) = n − 3, are linearly

equivalent, it suffices to show that div(ω) = En−3 +div( fy ). Since fy = FY /Z n−1, this

is the same as showing

div(d x)−div(FY ) = −2
n∑

i=1

Pi −E . (∗)

Note first that d x =−( fy / fx )d y =−(FY /FX )d y , so ordQ (d x)−ordQ (FY ) = ordQ (d y)−
ordQ (FX ) for all Q ∈ X .

Suppose Q is a place centered at Pi ∈ Z ∩C . Then y−1 = Z /Y is a uniformiz-

ing parameter in OPi
(X ), and d y = −y2d(y−1), so ordQ (d y) = −2. Since FX (Pi ) 6= 0

(Problem 5.16), both sides of (∗) have order −2 at Q.

Suppose Q is a place centered at P = [a : b : 1] ∈C . We may assume P = [0 : 0 : 1],

since d x = d(x −a), and derivatives aren’t changed by translation.

Consider the case when Y is tangent to C at P . Then P is not a multiple point (by

hypothesis), so x is a uniformizing parameter, and FY (P ) 6= 0. Therefore ordQ (d x) =
ordQ (FY ) = 0, as desired.

If Y is not tangent, then y is a uniformizing parameter at Q (Step (2) in §7.2), so

ordQ (d y) = 0, and ordQ ( fx ) = r−1
Q (Problem 7.4), as desired.

Corollary. Let W be a canonical divisor. Then deg(W ) = 2g −2 and l (W ) ≥ g .

Proof. We may assume W = En−3. Then this is Corollary 3 (b) of §8.2.

Problems

8.24. Show that if g > 0, then n ≥ 3 (notation as in Proposition 8).
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8.25. Let X = P1, K = k(t ) as in Problem 8.1. Calculate div(d t ), and show directly

that the above corollary holds when g = 0.

8.26. Show that for any X there is a curve C birationally equivalent to X satisfying

conditions of Proposition 8 (see Problem 7.21).

8.27. Let X =C , x, y as in Problem 8.2. Let ω= y−1d x. Show that div(ω) = 0.

8.28. Show that if g > 0, there are effective canonical divisors.

8.6 Riemann-Roch Theorem

This celebrated theorem finds the missing term in Riemann’s Theorem. Our

proof follows the classical proof of Brill and Noether.

RIEMANN-ROCH THEOREM. Let W be a canonical divisor on X . Then for any di-

visor D,

l (D) = deg(D)+1− g + l (W −D).

Before proving the theorem, notice that we know the theorem for divisors of large

enough degree. We can prove the general case if we can compare both sides of the

equation for D and D +P , P ∈ X ; note that deg(D +P ) = deg(D)+1, while the other

two nonconstant terms change either by 0 or 1. The heart of the proof is therefore

NOETHER’S REDUCTION LEMMA. If l (D) > 0, and l (W −D −P ) 6= l (W −D), then

l (D +P ) = l (D).

Proof. Choose C as before with ordinary multiple points, and such that P is a simple

point on C (Problem 7.21(a)), and so Z •C =
∑n

i=1
Pi , with Pi distinct, and P ∉ Z . Let

Em = m
∑

Pi −E . The terms in the statement of the lemma depend only on the linear

equivalence classes of the divisors involved, so we may assume W = En−3, and D ≥ 0

(Proposition 8 and Problem 8.11). So L(W −D) ⊂ L(En−3).

Let h ∈ L(W −D), h 6∈ L(W −D −P ). Write h = G/Z n−3, G an adjoint of degree

n −3 (Corollary 3 of §8.3). Then div(G) = D +E + A, A ≥ 0, but A 6≥ P .

Take a line L such that L.C = P +B , where B consists of n −1 simple points of C ,

all distinct from P . div(LG) = (D +P )+E + (A+B).

Now suppose f ∈ L(D +P ); let div( f )+D = D ′. We must show that f ∈ L(D), i.e.,

D ′ ≥ 0.

Since D +P ≡ D ′+P , and both these divisors are effective, the Residue Theorem

applies: There is a curve H of degree n −2 with div(H) = (D ′+P )+E + (A+B).

But B contains n−1 distinct collinear points, and H is a curve of degree n−2. By

Bézout’s Theorem, H must contain L as a component. In particular, H(P ) = 0. Since

P does not appear in E + A+B , it follows that D ′+P ≥ P , or D ′ ≥ 0, as desired.

We turn to the proof of the theorem. For each divisor D , consider the equation

l (D) = deg(D)+1− g + l (W −D). (∗)D

Case 1: l (W −D) = 0. We use induction on l (D). If l (D) = 0, applying Riemann’s’

Theorem to D and W −D gives (∗)D . If l (D) = 1, we may assume D ≥ 0. Then g ≤
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l (W ) (Corollary of §8.5), l (W ) ≤ l (W −D)+deg(D) (Problem 8.8), and deg(D) ≤ g

(Riemann’s Theorem), proving (∗)D .

If l (D) > 1, choose P so that l (D −P ) = l (D)−1 (Problem 8.13); then the Reduc-

tion Lemma implies that l (W − (D −P )) = 0, and (∗)D−P , which is true by induction,

implies (∗)D .

Case 2: l (W −D) > 0. This case can only happen if deg(D) ≤ deg(W ) = 2g − 2

(Proposition 3 (2) of §8.2). So we can pick a maximal D for which (∗)D is false, i.e.,

(∗)D+P is true for all P ∈ X . Choose P so that l (W −D −P ) = l (W −D)−1. If l (D) = 0,

applying Case 1 to the divisor W −D proves it, so we may assume l (D) > 0. Then

the Reduction Lemma gives l (D +P ) = l (D). Since (∗)D+P is true, l (D) = l (D +P ) =
deg(D +P )+1− g + l (W −D −P ) = deg(D)+1− g + l (W −D), as desired.

Corollary 1. l (W ) = g if W is a canonical divisor.

Corollary 2. If deg(D) ≥ 2g −1, then l (D) = deg(D)+1− g .

Corollary 3. If deg(D) ≥ 2g , then l (D −P ) = l (D)−1 for all P ∈ X .

Corollary 4 (Clifford’s Theorem). If l (D) > 0, and l (W −D) > 0, then

l (D) ≤
1

2
deg(D)+1.

Proofs. The first three are straight-forward applications of the theorem, using Propo-

sition 3 of §8.2. For Corollary 4, we may assume D ≥ 0, D ′ ≥ 0, D +D ′ = W . And we

may assume l (D −P ) 6= l (D) for all P , since otherwise we work with D −P and get a

better inequality.

Choose g ∈ L(D) such that g 6∈ L(D−P ) for each P ≤ D ′. Then it is easy to see that

the linear map ϕ : L(D ′)/L(0) → L(W )/L(D) defined by ϕ( f ) = f g (the bars denoting

residues) is one-to-one. Therefore l (D ′)−1 ≤ g − l (D). Applying Riemann-Roch to

D ′ concludes the proof.

The term l (W −D) may also be interpreted in terms of differentials. Let D be a

divisor. Define Ω(D) to be {ω ∈ Ω | div(ω) ≥ D}. It is a subspace of Ω (over k). Let

δ(D) = dimk Ω(D), the index of D . Differentials in Ω(0) are called differentials of the

first kind (or holomorphic differentials, if k =C).

Proposition 9. (1) δ(D) = l (W −D).

(2) There are g linearly independent differentials of the first kind on X .

(3) l (D) = deg(D)+1− g +δ(D).

Proof. Let W = div(ω). Define a linear map ϕ : L(W −D) →Ω(D) by ϕ( f ) = f ω. Then

ϕ is an isomorphism, which proves (1), and (2) and (3) follow immediately.

Problems

8.29. Let D be any divisor, P ∈ X . Then l (W − D − P ) 6= l (W − D) if and only if

l (D +P ) = l (D).
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8.30. (Reciprocity Theorem of Brill-Noether) Suppose D and D ′ are divisors, and

D +D ′ =W is a canonical divisor. Then l (D)− l (D ′) = 1
2

(deg(D)−deg(D ′)).

8.31. Let D be a divisor with deg(D) = 2g−2 and l (D) = g . Show that D is a canonical

divisor. So these properties characterize canonical divisors.

8.32. Let P1, . . . ,Pm ∈ P2, r1, . . . ,rm nonnegative integers. Let V (d ;r1P1, . . . ,rmPm)

be the projective space of curves F of degree d with mPi
(F ) ≥ ri . Suppose there is

a curve C of degree n with ordinary multiple points P1, . . . ,Pm , and mPi
(C ) = ri +1;

and suppose d ≥ n −3. Show that

dimV (d ;r1P1, . . . ,rmPm) =
d(d +3)

2
−

∑ (ri +1)ri

2
.

Compare with Theorem 1 of §5.2.

8.33. (Linear Series) Let D be a divisor, and let V be a subspace of L(D) (as a vector

space). The set of effective divisors {div( f )+D | f ∈V , f 6= 0} is called a linear series. If

f1, . . . , fr+1 is a basis for V , then the correspondence div(
∑
λi fi )+D 7→ (λ1, . . . ,λr+1)

sets up a one-to-one correspondence between the linear series and Pr . If deg(D) =
n, the series is often called a g r

n . The series is called complete if V = L(D), i.e., every

effective divisor linearly equivalent to D appears.

(a) Show that, with C ,E as in Section 1, the series {div(G)−E | G is an adjoint

of degree n not containing C } is complete. (b) Assume that there is no P in X such

that div( f )+D ≥ P for all nonzero f in V . (This can always be achieved by replacing

D by a divisor D ′ ≤ D .) For each P ∈ X , let HP = { f ∈ V | div( f ) + D ≥ P or f =
0}, a hyperplane in V . Show that the mapping P 7→ HP is a morphism ϕV from X

to the projective space P∗(V ) of hyperplanes in V . (c) A hyperplane M in P∗(V )

corresponds to a line m in V . Show that ϕ−1
V (M) is the divisor div( f )+D , where f

spans the line m. Show that ϕV (X ) is not contained in any hyperplane of P∗(V ).

(d) Conversely, if ϕ : X → Pr is any morphism whose image is not contained in any

hyperplane, show that the divisors ϕ−1(M) form a linear system on X . (Hint: If D =
ϕ−1(M0), then ϕ−1(M) = div(M/M0)+D .) (e) If V = L(D) and deg(D) ≥ 2g +1, show

that ϕV is one-to-one. (Hint: See Corollary 3.)

Linear systems are used to map curves to and embed curves in projective spaces.

8.34. Show that there are curves of every positive genus. (Hint: Consider affine

plane curves y2a(x)+b(x) = 0, where deg(a) = g , deg(b) = g +2.)

8.35. (a) Use linear systems to reprove that every curve of genus 1 is birationally

equivalent to a plane cubic. (b) Show that every curve of genus 2 is birationally

equivalent to a plane curve of degree 4 with one double point. (Hint: Use a g 3
4 .)

8.36. Let f : X → Y be a nonconstant (therefore surjective) morphism of projective

nonsingular curves, corresponding to a homomorphism f̃ of k(Y ) into k(X ). The

integer n = [k(X ) : k(Y )] is called the degree of f . If P ∈ X , f (P ) = Q, let t ∈ OQ (Y )

be a uniformizing parameter. The integer e(P ) = ordP (t ) is called the ramification

index of f at P .

(a) For each Q ∈ Y , show that
∑

f (P )=Q e(P )P is an effective divisor of degree n

(see Proposition 4 of §8.2). (b) (char(k) = 0) With t as above, show that ordP (d t ) =
e(P ) − 1. (c) (char(k) = 0) If gX (resp. gY ) is the genus of X (resp. Y ), prove the
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Hurwitz Formula

2gX −2 = (2gY −2)n +
∑

P∈X

(e(P )−1).

(d) For all but a finite number of P ∈ X , e(P ) = 1. The points P ∈ X (and f (P ) ∈ Y )

where e(P ) > 1 are called ramification points. If Y = P1 and n > 1, show that there

are always some ramification points.

If k =C, a nonsingular projective curve has a natural structure of a one-dimensional

compact complex analytic manifold, and hence a two-dimensional real analytic man-

ifold. From the Hurwitz Formula (c) with Y = P1 it is easy to prove that the genus

defined here is the same as the topological genus (the number of "handles") of this

manifold. (See Lang’s “Algebraic Functions” or my "Algebraic Topology", Part X.)

8.37. (Weierstrass Points; assume char(k) = 0) Let P be a point on a nonsingular

curve X of genus g . Let Nr = Nr (P ) = l (r P ). (a) Show that 1 = N0 ≤ N1 ≤ ·· · ≤
N2g−1 = g . So there are exactly g numbers 0 < n1 < n2 < ·· · < ng < 2g such that

there is no z ∈ k(X ) with pole only at P , and ordP (z) = −ni . These ni are called

the Weierstrass gaps, and (n1, . . . ,ng ) the gap sequence, at P . The point P is called

a Weierstrass point if the gap sequence at P is anything but (1,2, . . . , g ) that is, if∑g

i=1
(ni − i ) > 0. (b) The following are equivalent: (i) P is a Weierstrass point; (ii)

l (g P ) > 1; (iii) l (W − g P ) > 0; (iv) There is a differential ω on X with div(ω) ≥ g P .

(c) If r and s are not gaps at P , then r + s is not a gap at P . (d) If 2 is not a gap at

P , the gap sequence is (1,3, . . . ,2g −1). Such a Weierstrass point (if g > 1) is called

hyperelliptic. The curve X has a hyperelliptic Weierstrass point if and only if there

is a morphism f : X → P1 of degree 2. Such an X is called a hyperelliptic curve.

(e) An integer n is a gap at P if and only if there is a differential of the first kind ω

with ord(ω) = n −1.

8.38. (chark = 0) Fix z ∈ K , z 6∈ k. For f ∈ K , denote the derivative of f with respect

to z by f ′; let f (0) = f , f (1) = f ′, f (2) = ( f ′)′, etc. For f1, . . . , fr ∈ K , let Wz ( f1, . . . , fr ) =
det( f (i )

j
), i = 0, . . . ,r − 1, j = 1, . . . ,r (the “Wronskian”). Let ω1, . . . ,ωg be a basis of

Ω(0). Write ωi = fi d z, and let h = Wz ( f1, . . . , fg ). (a) h is independent of choice

of basis, up to multiplication by a constant. (b) If t ∈ K and ωi = ei d t , then h =
Wt (e1, . . . ,eg )(t ′)1+···+g . (c) There is a basis ω1, . . . ,ωg for Ω(0) such that ordP (ωi ) =
ni −1, where (n1, . . . ,ng ) is the gap sequence at P . (d) Show that ordP (h) =

∑
(ni −i )−

1
2

g (g +1)ordP (d z) (Hint: Let t be a uniformizing parameter at P and look at lowest

degree terms in the determinant.) (e) Prove the formula

∑

P,i

(ni (P )− i ) = (g −1)g (g +1),

so there are a finite number of Weierstrass points. Every curve of genus > 1 has

Weierstrass points.

More on canonical divisors, differentials, adjoints, and their relation to Max Noether’s

theorem and resolution of singularities, can be found in my "Adjoints and Max Noether’s

FundamentalSatz", which may be regarded as a ninth chapter to this book. It is

available on the arXiv, math.AG/0209203.
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Appendix A

Nonzero Characteristic

At several places, for simplicity, we have assumed that the characteristic of the

field k was zero. A reader with some knowledge of separable field extensions should

have little difficulty extending the results to the case where char(k) = p 6= 0. A few

remarks might be helpful.

Proposition 9 (2) of Chapter 6, Section 5 is not true as stated in characteristic p.

However, since k is algebraically closed (hence perfect), it is possible to choose x ∈ K

so that K is a finite separable extension of k(x), and then k = k(x, y) for some y ∈ K .

The same comment applies to the study of Ωk (K ) in Chapter 8. The differential d x

will be nonzero provided K is separable over k(x). From Problem 8.23 one can easily

deduce that if x is a uniformizing parameter at any point P ∈ X , then d x 6= 0.

A more serious difficulty is that encountered in Problem 5.26: Let F be an irre-

ducible projective plane curve of degree n, P ∈ P2, and r = mP (F ) ≥ 0. Let us call

the point P terrible for F if there are an infinite number of lines L through P that

intersect F in fewer than n − r distinct points other than P . Note that P can only

be terrible if p divides n − r (see Problem 5.26). The point [0 : 1 : 0] is terrible for

F = X p+1−Y p Z (see Problem 5.28). The point [1 : 0 : 0] is terrible for F = X p−Y p−1Z .

The set of lines that pass through P forms a hyperplane (i.e., a line) in the space

P2 of all lines. If P is terrible for F , the dual curve to F contains an infinite number

of points on a line (see Problem 6.47). Since the dual curve is irreducible, it must be

a line. It follows that there can be at most one terrible point for F . In particular, one

can always find lines that intersect F in n distinct points.

Lemma 1 of Chapter 7, Section 4 is false in characteristic p. It may be impossible

to perform a quadratic transformation centered at P if P is terrible. Theorem 2 of

that section is still true, however. For if P is terrible for F , p must divide n − r . Take

a quadratic transformation centered at some point Q of multiplicity m, where m = 0

or 1, and so that P is not on a fundamental line. Let F ′ be the quadratic transform

of F . Then n′ = deg(F ′) = 2n −m. Since n′− r ≡ n −m (mod p), one of the choices

m = 0,1 will insure that p doesn’t divide n−r . Then the point P ′ on F ′ corresponding

to P on F will not be terrible for F ′, and we can proceed as before.
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Appendix B

Suggestions for Further Reading

For algebraic background:

O. ZARISKI and P. SAMUEL. Commutative Algebra, Van Nostrand, Princeton, N. J.,

1958.

For more on the classical theory of plane curves:

R. WALKER. Algebraic Curves, Dover, New York, 1962.

A. SEIDENBERG. Elements of the Theory of Algebraic Curves, Addison-Wesley, 1968.

For the analytic study of curves over the field of complex numbers:

S. LANG. Algebraic Functions, W. A. Benjamin, New York, 1965.

R. GUNNING. Lectures on Riemann Surfaces, Princeton Mathematical Notes, 1966.

For a purely algebraic treatment of curves over any field:

C. CHEVALLEY. Introduction to the Theory of Algebraic Functions in One Variable,

Amer. Math. Soc., New York, 1952

For a classical treatment of general algebraic geometry:

S. LANG. Introduction to Algebraic Geometry, Interscience, New York, 1958.

A. WEIL. Foundations of Algebraic Geometry, Amer. Math. Soc., New York, 1946 and

1962.

B. L. VAN DER WAERDEN. Einführung in der algebraische Geometrie, Springer, Berlin,

1939.

For an introduction to abstract algebraic geometry:

D. MUMFORD. Introduction to Algebraic Geometry, Harvard lecture notes, 1967.

J.-P. SERRE. Faisceaux Algébriques Cohérents, Annals of Math., vol. 61, 1955, pp.

197–278.
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For other proofs of the Riemann-Roch Theorem:

J. TATE. Residues of Differentials on Curves, Annales Sci. de l’Ecole Normals Sup.

4th Ser. vol. 1, 1958, pp. 149–159.

J.-P. SERRE. Groupes Algébriques et Corps de Classes, Hermann, Paris, 1959.

For a modern treatment of multiplicity and intersection theory:

J.-P. SERRE. Algèbre Locale · Multiplicités, Springer-Verlag Berlin, Heidelberg, 1965.
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Notation

References are to page numbers.

Z, Q, R, C 1

UFD 2

PID 2

R/I 2
∂F
∂X

, FX , FXi
3

An(k), An 4

V (F ), V (S) 4, 45

I (X ) 5, 45

Rad(I ) 6

F (V ,k) 17

Γ(V ) 17, 69

ϕ̃ 18, 70

F T , I T , V T 19

k(V ) 20, 47

OP (V ) 21, 47, 69

f (P ) 21, 47, 69

mP (V ) 21, 47

DV R, or d 22

k[[X ]] 23

F∗, f ∗ 24, 53

I n 25

mP (F ) 32

ordP , ordF
P 35, 53, 93

I (P,F ∩G) 36

Pn(k), Pn 43

Ui ,ϕi : An →Ui ⊂Pn 43

H∞ 44

Vp , Ip , Va , Ia 45

Γh(V ) 46

I∗, V ∗, I∗, V∗ 48

OP (F ) 53

V (d ;r1P1, . . . ,rnPn) 56∑
nP P 61∑
nP P ≥

∑
mP P 61, 97

F •G 61

Γ(U ), Γ(U ,OX ) 69

( f , g ), f × g 73

∆X ,G( f ) 74

tr. deg 75

dim(X ) 75

g∗(C ) 90

deg(D) 97

div(G), div(z) 97

(z)0, (z)∞ 97

D ≡ D ′ 98

E 98

L(D), l (D) 99

g 101

Ωk (R) 105

d , d x 105
d f
d t

106

ordP (w), div(w), W 107

δ(D) 109
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Index

This index does not include the words defined in the sections of general algebraic

preliminaries. References are to page numbers.

adjoint, 98, 108, 110, 111

affine

n-space, 4

algebraic set, 4

change of coordinates, 19

line, 4

plane, 4

plane curve, 4, 31

variety, 17, 70

algebraic

group, 74

set, 4

transform, 88

variety, 69

Bézout’s Theorem, 57

bidegree, 50

biform, 50

bihomogeneous, 50

birational equivalence, 78

blowing up a point, 82, 83, 86

canonical divisor, 107, 108, 111

Clifford’s Theorem, 109

cone, 45

conic, 53–55, 57, 62, 78

coordinate

axes, 46

hyperplane, 46

ring, 17

cubic, 53, 55, 57, 59, 62, 64, 75, 78, 94, 99,

101, 102, 110

addition on, 63

curve, 53, 75

cusp, 40, 55, 75, 94

degree

of a curve, 31, 53

of a divisor, 97

of a morphism, 110

of a zero cycle, 61

derivation, 105

derivative, 106

differential

of the first kind, 109

on a curve, 106

dimension, 20, 47, 75

direct product, 25

discrete valuation ring, 22

divisor, 97

class group, 99

degree of, 97

effective, 97

linear equivalence of, 98

of a curve, 97

of a differential, 107

of a function, 97

dominate a local ring, 77

dominating a rational map, 77

double point, 32, 33, 40, 55, 110

dual curve, 79, 113

duality, 48

exact, 28

excellent position, 90

exceptional line, 88

flex, 36, 59, 64, 65, 94
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form, 46

function field, 20, 46, 50, 76, 82, 92, 97,

102, 105

algebraic, 75

fundamental point, 88

genus, 101, 102, 110

good position, 88

graph, 19, 74, 83, 86

Hessian, 59, 94

homogeneous

coordinate ring, 46

coordinates, 43

function field, 46

ideal, 45

Hurwitz Formula, 110

hypercusp, 41

hyperelliptic, 111

hyperplane, 4, 46

at infinity, 44, 46

hypersurface, 4, 46

ideal of an algebraic set, 5, 45

index, 109

intersect

properly, 36

transversally, 37

intersection

cycle, 61

number, 36

irreducible

algebraic set, 7, 45, 69

components, 8, 31, 45

Jacobian matrix, 34

line, 20, 31, 48, 53

at infinity, 44

linear

equivalence, 98

series, 110

subvariety, 20, 47

system, 56

local ring, 21, 36, 47

of a field, 81

of a variety at a point, 21, 69

local ring of a variety at a point, 34, 35,

41, 47, 49, 50, 79

maximal ideal of a variety at a point, 21,

47

module of differentials, 105

morphism, 70

multiple

component, 31

point, 31

multiplicity

of a component, 31

of a point, 32, 53

of a tangent, 33

multiprojective space, 50

multispace, 50

node, 33, 55, 75, 94, 99, 104

Noether’s Conditions, 61, 94

Noether’s Fundamental Theorem, 61

Noether’s Reduction Lemma, 108

Noetherian ring, 7

nonsingular

curve, 31, 81

model, 92

Nullstellensatz, 10, 46

order, 23

function, 23

of a differential, 106

of a rational function, 35

ordinary multiple point, 33, 41, 54, 62,

84, 85, 88, 90, 91, 93, 94, 98, 102,

107, 108, 110

Pappus, 62

Pascal, 62

Plücker’s formula, 95

places, 92

pole set, 21

polynomial

function, 17

map, 18

polynomial map, 68, 70, 74

power series, 24

product, 5, 50, 51
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projective

n-space, 43

algebraic set, 45

change of coordinates, 47

closure, 49

equivalence, 54

line, 44

plane, 44

variety, 45, 70

quadratic transformation, 88, 90

centered at a point, 90

quartic, 53, 55, 60, 99

radical of an ideal, 6

ramification, 110

rational function, 20, 46

rational map, 77

domain of, 77

rational over a field, 65

rational variety, 78

Reciprocity Theorem of Brill-Noether, 109

Residue Theorem, 98

Riemann’s Theorem, 101

Riemann-Roch Theorem, 108

Segre embedding, 51, 71

simple

component, 31

node, 94

point, 31, 81

subvariety, 18, 69

surface, 75

tangent

line, 31, 33, 54

space, 34

transcendence degree, 75

uniformizing parameter, 22

value of a function, 21, 46, 47, 77

variety, 69

Weierstrass point, 111

Zariski topology, 68, 69

zero-cycle, 60


