Cross-Coupling of Amides by N–C Activation

25 March, 2020

ACS Spring 2020 National Meeting Paper no. ORGN 593

Prof. Michal Szostak

Department of Chemistry, Rutgers University

Email: michal.szostak@rutgers.edu http://chemistry.rutgers.edu/szostak/

New Metal-Catalyzed Methods for Carbon-Carbon Bond Construction

Chemistry of Amide Bonds: N–C Activation

C–H Activation using Sustainable Metals

Carbocatalysis by Engineered Carbon Surface

Iron-catalyzed cross-coupling (ACIE 2018, 57, 11116; GC 2017, 19, 5361; ChemCatChem 2019, 11, 5733)

Amide Bonds Fundamental functional group of synthetic and biological significance

Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science; Wiley-VCH: New York, 2003.

Synthetic and biological importance of amides

Lodish, H. Molecular Cell Biology; Freeman: New York, 2008. Pattabiraman, V. R.; Bode, J. W. *Nature* **2011**, *480*, 471. Amide-based polymers: Marchildon, K. *Macromol. React. Eng.* **2011**, *5*, 22.

Electrophilic Reactivity of Amide Bonds Activation of inert N–C bonds in amides

Reactivity of carboxylic acid derivatives: nucleophilic addition

General reactivity pathways in nucleophilic addition to amides

Amides: until 2015 completely unexplored in transition metal catalysis: low reactivity due to $n_N \rightarrow \pi^*_{CO}$ conjugation

Electrophilic Reactivity of Amide Bonds Activation of inert N–C bonds in amides

Reactivity of carboxylic acid derivatives: nucleophilic addition

Synthetic fibers and plastics Kevlar and Nylon 66 represent polyamide monomers

Kwolek, S.; Mera, H.; Takata, T. High-Performance Fibers In Ullmann's Encyclopedia of Industrial Chemistry; Wiley, 2002.

Amides: until 2015 completely unexplored in transition metal catalysis: low reactivity due to $n_N \rightarrow \pi^*_{CO}$ conjugation

General Strategy for Amide N–C Bond Activation Exploiting amide bond ground-state-destabilization

Three-pronged approach to highly chemoselective amide bond activation

1. New catalytic **transformations** of amides by N–C activation

2. New classes of amides that partake in cross-coupling manifolds

3. Mechanistic understanding of amide bond distortion at the fundamental level

Hypothesis: due to unique geometric features amides can participate in highly tunable reaction manifolds unavailable to other functions by selective N–C metal insertion

General Strategy for Amide N–C Bond Activation Exploiting amide bond ground-state-destabilization

■ Our group: New strategies for activation of amide N–C bonds via ground-state destabilization

Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science; Wiley-VCH: New York, 2003.

Previously elusive transition metal catalyzed mode of reactivity of inert amide N-C bonds of biological importance

Since 2015, in total >10 distinct previously unknown reactions of amides via catalytic transformations

General Strategy for Amide N–C Bond Activation Bridged lactams as models for N–C cross-coupling

Bridged lactams as models for disrupting amidic resonance: amino-ketone reactivity of amides

Reviews on bridged lactams: Szostak, M.; Aubé, J. *Chem. Rev.* **2013**, *113*, 5701. Hall, H. K., Jr.; El-Shekeil, A. *Chem. Rev.* **1983**, *83*, 549. Yamada, S. *Rev. Heteroat. Chem.* **1999**, *19*, 203. Classic computational studies on bridged lactams: Greenberg, A. JACS **1993**, *115*, 6951; JACS **1996**, *118*, 8658.

Activation of amide bonds by switchable N-/O-coordination

Szostak, R.; Aubé, J.; Szostak, M. *Chem. Commun.* **2015**, *51*, 6395. Full account: Szostak, R.; Aubé, J.; Szostak, M. *J. Org. Chem.* **2015**, 80, 7905. For structures of N-alkylated twisted amides, see: Hu, F.; Lalancette, R.; Szostak, M. *Angew. Chem. Int. Ed.* **2016**, *55*, 5062.

General Strategy for Amide N–C Bond Activation Bridged lactams as models for N–C cross-coupling

Model one-carbon bridged lactams used to predict N-/O-coordination aptitude: amide distortion: $(\tau + \chi_N) = 20^\circ$ to 150°

■ Additive Winkler-Dunitz distortion paramter and excellent △PA vs. geometry correlation

Szostak, R.; Aubé, J.; Szostak, M. *Chem. Commun.* **2015**, *51*, 6395. Full account: Szostak, R.; Aubé, J.; Szostak, M. *J. Org. Chem.* **2015**, 80, 7905.

■ Suzuki-Miyaura cross-coupling of amides by ground-state distortion

■ first results in Oct 2014

Meng, G.; Szostak, M. Org. Lett. **2015**, *17*, 4364. Meng, G.; Szostak, M. New talent issue, Org. Biomol. Chem. **2016**, *14*, 5690.

■ High chemoselectivity of N-glutarimide amides in catalytic N–C activation

electronic activation <5%

OMe

R , N I R' sulfonamides

<5%

R, N, R' Boc carbamates

<5%

Suzuki-Miyaura cross-coupling of amides by ground-state distortion: broad substrate scope with bench-stable amides

RT cross-coupling is also possible (93% yield)

Meng, G.; Szostak, M. Org. Lett. **2015**, *17*, 4364. Meng, G.; Szostak, M. New talent issue, Org. Biomol. Chem. **2016**, *14*, 5690.

Amide bond cross-coupling in 2015: *concurrent independent reports*

Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.

Pd-catalyzed Suzuki cross-coupling of amides

■ Negishi cross-coupling of amides by N–C bond activation at room temperature

Shi, S.; Szostak, M. Chem. Eur. J. 2016, 22, 10420. For acyl-alkyl Negishi cross-coupling, see: Simmons, B. J.; Weires, N. A.; Dander, J. E.; Garg, N. K. ACS Catal. 2016, 6, 3176.

■ Decarbonylative Heck cross-coupling of amides by N–C bond activation

Meng, G.; Szostak, M. Angew. Chem. Int. Ed. 2015, 54, 14518.

■ Decarbonylative Suzuki biaryl cross-coupling of amides by N–C bond activation

the bench-stable Ni-catalyst system shows high selectivity for aryl vs. acyl cross-coupling

Shi, S.; Meng, G.; Szostak, M. Angew. Chem. Int. Ed. 2016, 55, 6959.

alkyl- and vinyl-transfer also proceed in high yields

Meng, G.; Szostak, M. Org. Lett. 2016, 18, 796.

General Strategy for Amide N–C Bond Activation Structural investigation of amide bond non-planarity

Perpendicular distortion of N-glutarimide amides: evidence for ground-state destabilization

Pace, V.; Holzer, W.; Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. Chem. Eur. J. 2016, 22, 14494.

General Strategy for Amide N–C Bond Activation Structural investigation of amide bond non-planarity

Conformational flexibility of N-Boc and N-Ts amides: acyclic twisted amides

low $E_{rot} \Rightarrow R/Boc: 6.2-7.2 \text{ kcal/mol}; R/Ts 8.0-9.7 \text{ kcal/mol}$

Amide bond distortion in N-Boc and N-Ts amides: acyclic twisted amides

Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, M. J. Org. Chem. 2016, 81, 8091.

General Strategy for Amide N–C Bond Activation Reversible twisting of primary amides

General Strategy for Amide N–C Bond Activation N-acylsaccharins as selective acyl-transfer reagents

■ Suzuki cross-coupling by selective N–C bond cleavage in N-acylsaccharins

Amide distortion in N-acylsaccharins: another class of acyclic twisted amides

Liu, C.; Meng, G.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2016, 18, 4194.

General Strategy for Amide N–C Bond Activation N-acylsaccharins as selective aryl-transfer reagents

■ Decarbonylative Heck cross-coupling by selective N–C bond cleavage in N-acylsaccharins

General Strategy for Amide N–C Bond Activation Decarbonylative and Acyl Cross-Coupling of Common N-Acyclic Amides

Liu, C.; Li, G.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. ACS Catal. 2018, 8, 9131.

General Strategy for Amide N–C Bond Activation Activation of 1 ° benzamides

New mode of activation with ubiquitous 1° amides

Decarbonylative coupling: Meng, G.; Szostak, M. ACS Catal. 2017, 7, 7251. Acyl coupling: Meng, G.; Shi, S.; Szostak, M. ACS Catal. 2016, 6, 7335.

General Strategy for Amide N–C Bond Activation Development of general catalytic systems

■ Pd-NHCs as general catalysts for Suzuki cross-coupling of amides by N–C bond activation

Lei, P.; Meng, G.; Szostak, M. ACS Catal. 2017, 7, 1960.

General Strategy for Amide N–C Bond Activation Development of general catalytic systems

General Strategy for Amide N–C Bond Activation Development of general catalytic systems

Pd-NHC catalysis:

Meng, G.; Lei, P.; Szostak, M. *Org. Lett.* **2017**, *19*, 2158. Ni-catalyzed transamidation: Garg et al. *Nat. Commun.* **2016**, *7*, 11554.

(*t*-Bu-indenyl)Pd(IPr)(CI): Chem. Sci. 2017, 8, 6525. Acyl Buchwald-Hartwig: Chem. Commun. 2017, 53, 10584. Ester cross-coupling: Organometallics 2017, 36, 3784. [Pd(μ-OH)Cl(IPr)]₂: Adv. Synth. Catal. 2018, 360, 1538.

RT cross-coupling: Org. Lett. 2017, 19, 6510. Mechanism: ChemCatChem 2018, 10, 3096. B-Alkyl cross-coupling: Org. Lett. 2018, 20, 6789. Pd(NHC)(acac)Cl: Org. Lett. 2019, 21, 3304.

Selected decarbonylative cross-couplings: Phosphorylation: Angew. Chem. Int. Ed. 2017, 56, 12718. Thioetherification: Chem. Commun. 2018, 54, 2130. Cyanation: Org. Lett. 2017, 19, 3095. Borylation: ACS Omega 2019, 4, 4901.

Amide N-C Bond Activation

Metal-Free Transformations of Amides by Ground-State Destabilization Nature Commun. **2018**, 9, 4165. JACS **2019**, *141*, 11161. Org. Lett. **2018**, *20*, 5622. Chem. Eur. J. **2020**, 26, 611. Synthesis **2020**, *52*, 1060.

Cross-Coupling of Carboxylic Acid Derivatives

■ Amide Directed C-H Arylation

Angew. Chem. Int. Ed. **2018**, 57, 16721. ChemSusChem **2019**, 12, 2983. Org. Lett. **2019**, 21, 9256. Chem. Sci. **2019**, 10, 5736. iScience **2019**, 19, 749.

Classic Bridged Lactams as Models for

Amide Bond Destabilization

Chem. Sci. **2017**, *8*, 3204. *ACS Catal.* **2017**, *7*, 5721. *ACS Catal.* **2016**, *6*, 4755.

Org. Lett. **2017**, *19*, 2386. *ACS Catal.* **2020**, *10*, 737. *Angew. Chem. Int. Ed.* **2016**, *55*, 5062. *Special Issue: Molecules* **2019**, *24*, 274. General Strategy for Amide N–C Bond Activation Metal-free transformations of amides by nucleophilic addition

■ Metal-free transamidation of secondary amides at room temperature

Liu, Y.; Shi, S.; Achtenhagen, M.; Liu, R.; Szostak, M. Org. Lett. 2017, 19, 1614. Friedel-Crafts: Chem. Commun. 2016, 52, 6841. Synthesis of anhydrides: Org. Biomol. Chem. 2017, 15, 1780. Transamidation of N-acyl-glutarimides: Org. Biomol. Chem. 2018, 16, 1322. Application in polymer synthesis (free-radical polymerization, polyacrylamides): Hillmyer, ACS Macro Lett. 2018, 7, 122. General, additive-free procedure: Rahman, M. M.; Li, G.; Szostak, M. J. Org. Chem. 2019, 84, 12091.

Selective Activation of Amide and Ester Bonds Metal-free amidation with non-nucleophilic amines

■ Transition-metal-free transamidation with non-nucleophilic amines at room temperature

Unactivated amides and esters: Li, G.; Ji, C. L.; Hong, X.; Szostak, M. J. Am. Chem. Soc. 2019, 141, 11161.

General Strategy for Amide N–C Bond Activation Metal-free esterification of amides by nucleophilic addition

■ Transition-metal-free esterification of secondary amides at room temperature

For metal-catalyzed esterification, see: Garg, Houk et al. *Nature* **2015**, *524*, 79.

General Strategy for Amide N–C Bond Activation Metal-free acylation of organometallics with amides by nucleophilic addition

Li, G.; Szostak, M. Chem. Eur. J. 2020, 26, 611.

For a review of transition-metal-free amide bond N-C activation, see: Li, G.; Szostak, M. *Chem. Rec.* **2020**, DOI: 10.1002/tcr.201900072. For a review on transamidations, see: Li, G.; Szostak, M. *Synthesis* **2020**, in press.

Highlight: Zhao, Q.; Szostak, M. ChemSusChem 2019, 12, 2983.

Reduction: Liu, C.; Qin, Z. X.; Ji, C. L.; Hong, X.; Szostak, M. Chem. Sci. 2019, 10, 5736.

FG groups tolerated: MeO, CF₃, CI, CN, CO₂Me, COMe, CHO, NMe₂, OH, OTs, NAc, OCOR, OCF₃, heterocycles

Phosphorylation: Liu, C.; Ji, C. L.; Zhou, T.; Hong, X.; Szostak, M. Org. Lett. 2019, 21, 9256. For phosphorylation of amides, see: Liu, C.; Szostak, M. Angew. Chem. Int. Ed. 2017, 56, 12718.

■ Decarbonylative (-CO) Suzuki Cross-Coupling of Ubiquitous Carboxylic Acids

Liu, C.; Li, C. L.; Qin, Z. X.; Hong, X.; Szostak, M. *iScience* **2019**, *19*, 749, DOI: *10.1016/j.isci.2019.08.021*. **Ni-catalyzed decarbonylative Suzuki of acyl fluorides:** Malapit, C. A.; Bour, J. R.; Brigham, C. E.; Sanford, M. S. *Nature* **2018**, *563*, 100. **Decarboxylative (-CO₂) biaryl coupling of carboxylic acids:** Gooßen, L. J.; Deng, G.; Levy, L. M. *Science* **2006**, *313*, 662. General Strategy for Amide N–C Bond Activation Traditional electrophiles in acyl- and aryl cross-coupling

Acyl electrophiles

Aryl electrophiles

Mechanistic pathways generating acyl-metal and aryl-metal intermediates by amide N-C bond cleavage

Amide aryl N–C cross-coupling

Advantages of amides in cross-coupling manifolds by selective N-C bond cleavage

prevalence in biomolecules, polymers, functional materials

bench-stability, ease of synthesis, typically solids

2-point reactivity control by N-substituents

Progress by Garg, Zou, Shi, Zeng, Maiti, Rueping, Molander, Han, Stanley, Hong and others

Ni catalysis in N-C activation: Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413. N-Acyl-glutarimides: Meng, G.; Szostak, M. EJOC 2018, 20-21, 2352. Pd-NHC catalysis: Shi, Nolan, Szostak, Acc. Chem. Res. 2018, 51, 2589. Decarbonylative coupling: Liu, C.; Szostak, M. Org. Biomol. Chem. 2018, 16, 7998. Acyl coupling: Buchspies, Szostak, Catalysts 2019, 9, 53. Control by N-pyramidalization: Liu, C.; Achtenhagen, M.; Szostak, M. Org. Lett. 2016, 18, 2375.

Reviews on N-C activation: Meng, G.; Shi, S.; Szostak, M. Synlett 2016, 2530. Liu, C.; Szostak, M. Chem. Eur. J. 2017, 23, 7157. General review: Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864.

Acknowledgements

Daniel Pyle

■ Jin Zhang

Pengcheng Gao

Tongliang Zhou

Jonelson Dessin

Niccole Rodriguez

Nevssa Deriphonse

Aleksandra Olszowy

NCN 2014/15/D

Mohamed Moussa

Iron catalysis

Elwira Bisz

/ST5/02731

Jonathan Buchspies

Md. Mahbubur Rahman

- Shicheng Shi
- Guangrong Meng
- Chengwei Liu
- Peng Lei
- Marcel Achtenhagen
- Syed Huq
- Yongmei Liu
- Mina Hanna
- Manshi Patel
- Marco Ashamalla
- Ricky Diao
- Yuki Osumi
- Pradeep Nareddy
- Feng Hu
- Guangchen Li
- Qun Zhao
- Qinqin Xia
- Kostyantyn Bloshko
- Ivan Cruz

Funding

UTGERS

- Chemistry Department, Office of the Dean, FASN
- Chancellor's Seed Grant Program
- Rutgers Centers for Global Advancement (GAIA)
- Oak Ridge Associated Universities (ORAU)
- Rutgers Research Council ACS PRF (DNI-55549)
- National Science Foundation (CAREER CHE-1650766)
- The National Institutes of Health (R35GM133326)

Newark College of Arts and Sciences University College – Newark

Collaboration

- Mehulkumar Patel
- Feixiang Luo
- Carol Flach
- Prof. Richard Mendelsohn
- Prof. Eric Garfunkel
- Prof. Huixin He
- Prof. Roger Lalancette
- Prof. Frank Jordan
- Prof. Roman Szostak
- Prof. Vittorio Pace
- Prof. Wolfgang Holzer
- Prof. Steven Nolan
- Prof. Albert Poater
- Prof. Xin Hong

