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Abstract

Most engineering applications estimate the deformation induced by loads by using the
linear elasticity theory. The discretization process starts with the equilibrium equation and
then develops a displacement formulation that employs the Hooke’s law. Problems of
practical interest encompass designing of large structures, buildings, subsurface deforma-
tion, etc. These applications require determining stresses to compare them with a given
failure criteria. One often tackles this way a design or material strength type of problems.
For instance, Geomechanics applications in the oil and gas industry assess the induced
stresses changes that hydrocarbon production or the injection of fluids, i.e., artificial lift, in
a reservoir produce in the surrounding rock mass. These studies often include reservoir
compaction and subsidence that pose harmful and costly effects such as in wells casing,
cap-rock stability, faults reactivation, and environmental issues as well. Estimating these
stress-induced changes and their consequences require accurate elasticity simulations that
are usually carried out through finite element (FE) simulations. Geomechanics implies that
the flow in porous media simulation must be coupled with mechanics, which causes a
substantial increase in CPU time and memory requirements.

Keywords: elasticity, single-phase flow, geomechanics, Dirichlet-Neumann, mortar
methods, continuous Galerkin

1. Introduction

This chapter presents a continuous Galerkin FE formulation for linear isotropic elasticity. It

covers in detail how to derive such formulation beginning with the equilibrium equation and

the virtual work statement. It also discretizes the continuity equation for slightly compressible

single-phase flow to show how to couple different physics with elasticity. It discusses several

coupling approaches such as the monolithic and iterative ones, i.e., loosely coupled. This

chapter also mentions the affinity of the poroelastic case with the thermoelastic one. It thus

also includes thermoelasticity in the treatment herein. It shows concrete numerical examples
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covering two- and three-dimensional problems of practical interest in thermo-poroelasticity.

The sample problems employ triangular, quadrilateral, and hexahedral meshes and include

comments about implementing boundary conditions (BCS). An introduction to domain

decomposition ideas such as iterative coupling by the BCS, i.e., Dirichlet-Neumann domain

decomposition and mortar methods for non-matching interfaces is included.

The treatment herein demonstrates that the continuous Galerkin formulation for linear isotro-

pic elasticity is the foundation to develop codes for mechanics. Indeed, after discretizing linear

elasticity is straightforward to extend the implementation to nonlinear mechanics such as rate-

independent plasticity. It thus provides some comments about such extension. Applications of

practical interest show that industrial size problems will require domain decomposition tech-

niques to handle such simulations in a timely fashion. Unquestionably, domain decomposition

techniques can exploit current parallel machines architectures which brings high-performance

computing into the picture. For instance, recently the author showed that the Dirichlet-

Neumann scheme could handle problems at the reservoir field-level as well as the mortar

method decoupled by this last one. Its current results are backed up by papers published in

peer-reviewed journals and conferences thus this book chapter summarizes that effort.

2. Mathematical model for thermo-poroelasticity

This section discusses the governing equations for linear homogeneous isotropic thermo-

poroelasticity and their FE formulation. It skips details for the sake of brevity thus a more

detailed treatment can be found in [1–4]. The mathematical formulation considers a bounded

domainΩ⊂R
n, n ¼ 2, 3 and its boundary is Γ ¼ ∂Ω, and a time interval of interest �0,ℑ½. Let T h

be a non-degenerate, quasi-uniform conforming partition ofΩ composed of triangles or quadri-

laterals for two-dimensional problems, and hexahedra or tetrahedra for three-dimensional prob-

lems. For instance, Gai [5] thesis showed that deformable porous media, i.e., the reservoir matrix,

the single-phase flow model equation derives from the continuity equation, i.e., a mass balance

statement, for slightly incompressible single-phase flow and Darcy’s law which yields:

∂f∗

∂t
þ ∇ � �

1

μ
K ∇p� rg∇zð Þ

� �

¼ q, (1)

where the equation’s parameters are f∗, a model specific porosity, K represents the absolute

permeability tensor. The dynamic viscosity is μ, while r is the fluid density, as well as g, is the

gravity acceleration constant, p is the fluid pressure, and q represents sources and sinks. This

latter notation is standard in fluid mechanics and reservoir simulation. Finally, the algorithmic

porosity f∗ is defined by:

f∗ ¼ f0 þ α � ∇ � u� ε
0
v

� �

þ
1

M
p� p0
� �

, (2)

where the additional parameters are accordingly α which is the Biot’s constant, u represents the

displacement vector, while ε0v is the initial volumetric strain. Herein M is the Biot’s modulus [6],
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while f0 and p0 define for a reference or initial state. The common BCS for the pressure equation

imply Neumann or no-flow namely:

∇p � bn ¼ 0 on Γ, (3)

one should also consider an initial or reference pressure distribution in the whole domain.

Sources and sinks simulate injector and producer wells, respectively. Herein bn is the outer

unitary normal vector as usual. For the mechanics part, one begins from the equilibrium

equation for a quasi-steady process, i.e., Newton second law, which means that one discards

the acceleration term:

�∇ � σ ¼ f in Ω ; Γ ¼ Γ
u
D ∪ Γ

u
N

u ¼ 0 on Γ
u
D

t ¼ σ � bn on Γ
u
N

(4)

where σ is the stress tensor, f corresponds to the vector of body forces, such as gravity and

electromagnetic effects, for instance. One can decompose BCS in Dirichlet type, i.e., Γu
D, and

Neumann type BCS, i.e., Γu
N , where the external tractions are known or prescribed. Hooke’s

law combined with Biot’s poroelastic theory defines σ by the following expression:

σ ¼ C : ε � α p� p0
� �

þ 3Kβ T � T0
� �� �

δ ; C ¼ λδ⊗ δ þ 2GI, (5)

where T ¼ T x; tð Þ is the temperature, C is the elastic moduli, β corresponds to the coefficient of

thermal dilatation while K is the bulk modulus. The Kronecker delta becomes δ while λ, and G,

are the Lamé constants, and I represents the fourth-order identity tensor. The strain tensor ε is

given by:

ε ¼ ∇
su ¼

1

2
∇uþ ∇uð ÞT
h i

: (6)

One can derive a weak form by substituting Eq. (2) into Eq. (1) and then multiplying by a test

function v∈H1
0 Ωð Þ and integrating over Ω and using the Gauss-divergence theorem, this

yields:

ð

Ω

1

M

∂p

∂t
vþ αv∇ � _u þ

1

μ
K � ∇p ∇vð ÞT

� �
� dx ¼

ð

Ω

q � vdxþ

ð

Ω

rg

μ
K � ∇z ∇vð ÞT

� �
dxþ

ð

∂Ω
p

N

v
1

μ
K ∇p� rg∇zð Þ � bnTds:

(7)

A weak form for the equilibrium Eq. (4) can be derived in a similar way, by testing against a

given virtual displacement, χ. One arrives at:
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ð

Ω

∇χ
� 	T

: σdΩ ¼

ð

∂Ω
u
N

χT � tdsþ

ð

Ω

χT � f dΩ (8)

where t ¼ σ � bn are the tractions applied as Neumann BCS. This is the well-known virtual work

statement. The FE space can be taken as a finite-dimensional subspace of the continuous Sobolev

spaces [7], thus:

Ck T hð Þ ¼ v∈ L2 Ωð Þ : ∀e∈ T h; vje ∈Pk eð Þ

 �

(9)

where Pk eð Þ represents the space of polynomials of total degree less than or equal to k, Ck T hð Þ is

called test functions that are continuous along the given element’s edges. Let one represents

the primary variables in the element e, i.e. displacements and pressure, as nodal values

multiplied by shape or interpolation functions [8]:

phe xð Þ ¼ Π
eð ÞT � pe ; uhe xð Þ ¼ Ψ

e � ue (10)

where Πe and Ψ
e are matrices of shape functions given by:

Πi
e ¼ ψi

e xð Þ

Ψij
e ¼

ψk
e xð Þ if j ¼ j

0 otherwise

(

j ¼ nDOF � k� 1ð Þ þ i ; k ¼ 1…nn

(11)

here nn is the number of nodes in the given element, i ¼ 1…nn j ¼ 1…nn � n and nDOF is the

number of degrees of freedom which equals the space dimension, n. Now the engineering

strain bε is defined by:

bε ¼ B � ue ; B ¼ D �Ψe (12)

where D
nð Þ
, n ¼ 2, 3 is defined as:

DT

2ð Þ
¼

∂x 0 ∂y

0 ∂y ∂x

� 
; DT

3ð Þ
¼

∂x 0 0 ∂y ∂z 0

0 ∂y 0 ∂x 0 ∂z

0 0 ∂z 0 ∂x ∂y

2

64

3

75: (13)

Finally substituting the generalized Hooke’s law Eq. (5) into Eq. (8) and using Eq. (7) leads to

the FE model for linear isotropic poroelasticity, thus:

0 0

QT S

" #
d

dt

u

p

( )

þ
K �Q

0 H

" #
u

p

( )

¼
f u

f p

( )

: (14)

One can obtain the loose coupling approach in different ways. Eq. (15) shows one possible

choice, where one solves the displacements first by taking the pressures from the previous time

step. Next, one updates the pressures by using the newest displacements:
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K � ukþ1 ¼ f u þQ pk � p0
� 	

S0 � pkþ1 ¼ S00 � pk þ f p � Δt�QT ukþ1 � uk
� �

S0 ¼ S þ θ � Δt �H

S00 ¼ S � 1� θð Þ � Δt �H,

(15)

where expressions for the matrices are provided in Eq. (16) and θ is the implicitness factor that

lies between 0 and 1, while Δt represents the time-step size. One can define an iterative

coupling scheme in different ways, but they all derive from the loose coupling scheme with

incorporating an internal iteration to update lagged quantities. For further details please refer

to [4]. Also notice that for thermal stresses, one can derive an equivalent pressure drop, after

Eq. (5), that renders Eq. (15) unchanged.

S ¼

ð

Ω

1

M
Π �ΠTdx ; Q ¼

ð

Ω

BTαω nð Þ �Πdx

K ¼

ð

Ω

BTC Bdx ; f u ¼

ð

∂Ω
u
N

t �ΨTdsþ

ð

Ω

Ψ
T f � dx

H ¼

ð

Ω

1

μ
K∇Π � ∇Πð ÞTdx ; ω 2ð Þ ¼ 1; 1; 0ð ÞT ; ω 3ð Þ ¼ 1; 1; 1; 0; 0; 0ð ÞT

f p ¼

ð

∂Ω
p

N

1

μ
K∇p � n

� �

�Πdsþ

ð

Ω

Π
Tq � dxþ

ð

Ω

rg

μ
K � ∇Π ∇zð ÞT

� �

dx:

(16)

This section completes with a comment about the Continuous Galerkin (CG) formulation for

the pressure (1). It is well-known that the formulation that was presented above for flow it is

not locally mass conservative, and thus the resulting fluxes are not continuous across the

element edges. But it is also true that accurate flow simulations require the latter, especially

for multi-phase flow, though. Nevertheless, one can utilize post-processing techniques to

recover locally conservative mass fluxes [2]. This chapter, though, for convenience has

restricted its focus to CG methods for flow but has realized that the coupled formulation may

be modified to consider mixed FE methods and finite volumes for flow as well as changing CG

by post-processing. The author already showed for the simple flow cases reported herein that

CG yields to physical pressure fields that can be employed for geomechanics purposes. The

precise numerical comparison among CG and Discontinuous Galerkin (DG) solutions was

performed in [2] to demonstrate that CG can compute pressures accurately.

3. Nonlinear heat transfer equation

The transient nonlinear heat conduction in a given body is as follows [9–11]:

Linear Thermo-Poroelasticity and Geomechanics
http://dx.doi.org/10.5772/intechopen.71873

227



rCp
∂T

∂t
¼ ∇ � κ∇Tð Þ þQT on Ω��0,ℑ½,

T ¼ g on Γ
T
D��0,ℑ½,

n � κ∇Tð Þ ¼ h on Γ
T
N��0,ℑ�,

T x; 0ð Þ ¼ T0 xð Þ∀x∈Ω:

(17)

In (17), Cp is the heat capacity to constant pressure and κ ¼ κ Tð Þ is the thermal conductivity.

QT represents heat sources. Neumann BCS imply heat transfer via Fourier’s law: adiabatic or

no-flux BCS; h ¼ 0 of most domain boundaries.

One can derive a FE formulation for model problem (17) by multiplying by a test function and

integrate by parts and applying the Gauss-divergence theorem to arrive at the following

bilinear form:

m T; vð Þ þ k T; vð Þ � q QT ; vð Þ � f h; vð Þ ¼ 0, (18)

where the functions are:

m T; vð Þ ¼

ð

Ω
e

vrCp∂tT � dx,

k T; vð Þ ¼

ð

Ω
e

κ ∇Tð ÞT � ∇v � dx,

q QT ; vð Þ ¼

ð

Ω
e

v �QT � dx ; f h; vð Þ ¼

ð

Γ
e
h

v � h � ds:

(19)

Time discretization renders the local residual for the element e:

R � M � T ℓð Þ � T mð Þ
� 	

þ Δt � K � T
� 	 mþθð Þ

� Δt � q mþθð Þ � Δt � f mþθð Þ ¼ 0,
(20)

where the linear operator �ð Þ mþθð Þ � 1� θð Þ �ð Þ t¼t mð Þð Þ þ θ �ð Þ t¼t ℓð Þð Þ, ℓ ¼ mþ 1ð Þ, M K are the

mass and stiffness matrix respectively. Thus the Jacobian is given by:

J ¼
∂R

∂T ℓð Þ
¼ M þ

∂

∂T ℓð Þ
K � T

� 	 t ℓð Þð Þ
(21)

this equation renders once again:

J ¼ M þ Δt � K þ δK
� 	

(22)

if one assumes that κ Tð Þ ¼ a � T þ bð Þ; a, b∈R, then:
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δK ¼
X

p

∂Kip

∂T
ℓð Þ
j

� T ℓð Þ
p , (23)

where the variation term is given by:

∂Kip

∂T
ℓð Þ
j

¼

ð

Ω
e

aψj ∇ψi

� �T
� ∇ψp � dx: (24)

One often employs the Newton-Raphson algorithm to solve the linearized system of equations

in every time step, namely, J � ΔT ℓð Þ ¼ �R. One can utilize the same continuous FE space that

where described in Section 2. The reader may refer to [11] for a full treatment.

4. Domain decomposition methods

Domain Decomposition Methods (DDM) encompass highly efficient algorithms to obtain

solutions of large-scale discrete problems on parallel super-computers. They mainly consist of

partitioning the domain into various subdomains and then getting the global solution through

the resolution of the subdomain problems [12, 13] often in an iterative fashion. These methods

can be seen as an iterative coupling by the internal and thus unknown BCS. There is a broad

literature covering these approaches, and that is why this chapter, therefore, presents a short

introduction for the sake of completeness. The recommended references include Bjorstad and

Widlund [14], Bramble et al. and Marini and Quarteroni [15], who considered the Dirichlet-

Neumann (DN) DDM and Neumann-Neumann.

Let L be an abstract linear differential operator, such as the Laplace operator, for instance. The

DN-DDM scheme implies solving a series of problems in the proper sequence that requires a

coloring tool (see Figure 1). Let the Dirichlet subdomains be colored in white while the

Neumann subdomains are in black. Notice that the interface between subdomains is denoted

by Γ. After one provides the initial guess on the primary variables on Γ, i.e., γk must be given,

then one can solve the problem on the white subdomains (Dirichlet problems), which corre-

sponds to step 1 in Eq. (25).

1Þ

Lu1
kþ1 ¼ f in Ω1

u1
kþ1 ¼ 0 on ∂Ω1 ∩ ∂Ω

u1
kþ1 ¼ γk on Γ

8

>

>

>

<

>

>

>

:

2Þ

Lu2
kþ1 ¼ f in Ω2

u2
kþ1 ¼ 0 on ∂Ω2 ∩ ∂Ω

∂nu2
kþ1 ¼ κkþ1 on Γ

8

>

>

<

>

>

:

(25)

Let the primary variable be called “displacements” and their gradient “tractions,” i.e., normal

derivative in the boundary. Then, the tractions on the interface Γ must be computed after first

solving step 1 on the white subdomains. They are then passed through communication to

solve the second step on the black subdomains, i.e., Neumann subdomains. On this latter, since

the tractions are known on Γ, one can solve for unknown displacements to provide feedback

Linear Thermo-Poroelasticity and Geomechanics
http://dx.doi.org/10.5772/intechopen.71873

229



on the next iteration level. Both displacements and tractions are often over-relaxed to improve

the convergence rate. The given relaxation parameters, referred in Eq. (26) as θD and θN, must

lie between 0 and 1:

κ kþ1ð Þ ¼ �θN � ∂nu1
kþ1 þ 1� θN

� �

� ∂nu2
k

� �

on Γ

γ kþ1ð Þ ¼ θD � u2
kþ1 þ 1� θD

� �

� u1
k

� �

on Γ:

(26)

It happens that this approach requires at least a two-entry coloring tool or even more, i.e., there

may be subdomains with mixed interfaces, colored as gray [12]. There is a lack of parallelism

in the sense that black subdomains must wait for the white ones to communicate their trac-

tions. An initial guess for tractions should be prescribed to mitigate this issue, but this latter is

not feasible in most cases. A straightforward way to obtain an initial estimate for the multiplier

γk is by computing the so-called coarse-run that implies solving the same problem in a coarser

mesh and interpolating over Γ by using the smaller’s problem FE space. The reader may refer

to the literature [16, 17] for further reading and proof of convergence and also revise [2] for a

more detailed description that includes implementation details, which this chapter omits for

the sake of brevity.

5. The mortar FE method (MFEM)

The primary goal here is to extend MFEM to glue curved interfaces such as the one shown in

Figure 2whereMFEM treats non-matching interfaces. The section first introduces a brief descrip-

tion of non-uniform rational B-Splines curves and surfaces (NURBS) in [2, 3, 18]. The reader is

Figure 1. It depicts the DNDDM.
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referred to those references that cover the topics of computational geometry, in particular how to

build these NURBS entities. Let MFEM be described for linear isotropic elasticity regarding

bilinear forms, a and ϒ defined in Eq. (27) below [2, 3],

a u; v
� 	

¼

ð

Ω

ε vð ÞT � C � ε uð Þdx ; l vð Þ ¼

ð

∂Ω
N

tT � vdsþ

ð

Ω

f T � vdx

ϒ u;Φ

� 	

¼

ð

Γ

u½ �T � Φds ; u½ � ¼ u 1ð Þ � u 2ð Þ
� 	

(27)

where ϒ stands for the gluing condition among subdomain interfaces and the jump u½ � on the

displacements is required to vanish in an integral or “weak” sense, thus:

a uh; vh
� �

þ ϒ vh;Λhð Þ ¼ l vhð Þ

ϒ uh;Φh

� �

¼ 0

(

(28)

the parameters in Eq. (28) are as follows: Φh represents the mortar space while vh corresponds

to the weighting space and Λh is the Lagrange multiplier space, i.e., the linear combination of

mortar functions, often polynomial functions, and Lagrange multiplier degrees of freedom. Let

T h
M
be a conforming partition of the so-called parametric space, Ω, whose image serves as the

mortar’s geometrical entity, i.e., curve or surface, composed of line-segments (n ¼ 2Þ or quad-

rilaterals (n ¼ 3). One takes the mortar space as a finite-dimensional subspace of the continu-

ous Sobolev spaces, that is:

Figure 2. Ω1 is in the top, Ω2 is in the bottom, and the interface Γ is the bold curve.
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Ck T h
M

� 	

¼ Φ∈L2 Ω
� �

: ∀eM ∈ T h
M

;ΦjeM ∈Pk eM
� �

n o

(29)

herein Pk eM
� �

stands for the space of polynomials of total degree less than or equal to k while

Ck T h
M

� 	

represents test functions that are continuous along the edges of eM.

One can write in a matrix or algebraic form, Eq. (28) as:

k 1ð Þ
h i

0½ � ϒ
1ð Þ

� �T

0½ � k 2ð Þ
h i

� ϒ
2ð Þ

� �T

ϒ
1ð Þ

� �

� ϒ
2ð Þ

� �

0½ �

2

6

6

6

4

3

7

7

7

5

�

u 1ð Þ

u 2ð Þ

Λ

2

6

4

3

7

5
¼

l 1ð Þ

l 2ð Þ

0

2

6

4

3

7

5
� (30)

The equation above corresponds to the so-called “saddle-point problem (SPP).” Notice that

subdomains are only connected using the Lagrange multiplier Λ if they happen to be known (it

is well-known that for elasticity, the multipliers are the unknown tractions on the interface), then

one can decouple the system in Eq. (30) and then one just needs to perform subdomain solves.

For the SPP (30), one may match displacements or tractions in the interface. The Dirichlet-

Neumann scheme that the section presents is only a particular case of the most general Robin-

Robin domain decomposition scheme [2, 3]. The rectangular matrices ϒ
ið Þ

� �

, i ¼ 1…2, are denoted

as projectors since they permit to map to and from the given mortar space [2, 3].

The following line integral defines the projector, for 2-D problems, as:

ϒ
kð Þ
ij ¼

ð

Ω

w
kð Þ
j ξð ÞΦi ξð Þ � dξC ξð Þk kdξ (31)

where w
kð Þ
j represents the global non-mortar side interpolation functions and Φi are the mortar

space basis functions, while dξCk k is the length of the tangent vector associated to the B-Spline

or NURBS curve. Similarly, 3-D problems imply:

ϒ
kð Þ
ij ¼

ðð

Ω

w
kð Þ
j ξ
� �

Φi ξ
� �

� ∂ξS ξ
� �

� ∂ηS ξ
� ��

�

�

�dξdη (32)

where ∂ξS � ∂ηS
�

�

�

� is the norm of the surface’s normal vector. Particular quadrature rules to

compute these integrals must be developed. The reader should refer to [3] for a detailed

explanation including the proper algorithm in pseudo-code.

6. Numerical examples

The author implemented these FE models in the Integrated Parallel Finite Element Analysis

program (IPFA) that is a C++ application whose main characteristics are described in [2, 12].

IPFA employs standard continuous Lagrange polynomials as shape functions for the space
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discretization in each subdomain, Pk eð Þ, as well as mortar space Pk eM
� �

. It also utilizes piece-

wise linear polynomials for the space discretizations in all examples herein that were run on a

MacBook Pro laptop equipped with an Intel(R) Quad-Core(TM) i7-4870HQ CPU @ 2.5 GHz

and 16 GB of RAM. The author chose this laptop for the sake of convenience, in particular, the

availability of debugging tools free of charge, such as the Microsoft Visual Studio Community.

Aside, one can achieve some level of parallelism due to the multi-core technology.

6.1. Example 1: Two-dimensional steady state single-phase flow

The example is a manufactured problem where the solution is a priori chosen. Then, one sub-

stitutes the given pressure field in the governing partial differential equation to obtain the source

term, i.e., loading, that reproduces the input field. The problem in strong form looks like:

�∇ � K∇p
� 	

¼ f in Ω ; p ¼ p0 on ΓD ¼ Γ, (33)

where the domain of interest corresponds to the unitary square and Dirichlet BCS are enforced.

The input pressure field is given by:

p x; yð Þ ¼ xy � x� 1ð Þ � y� 1ð Þ � exp � x2 þ y2
� �� �

; K ¼ I: (34)

Figure 3 shows the pressure field that corresponds to the problem 6.1 whose discretization

encompasses three subdomains: two of them (the top and bottom ones) consist of triangular

meshes while the one in the middle was discretized by a regular Cartesian quadrilateral mesh.

The top-left corner of the figure shows the mesh that is employed.

The pressure field is on the right-top corner, and its horizontal derivative is in the bottom-left

corner, while the discrepancy between the numerical and exact solutions, i.e., the absolute

Figure 3. The MFEM solution to problem 6.1.
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error, was rendered in the right-bottom corner. Table 1 represents the number of elements and

points of each mesh from top to bottom. The mortars as geometrical entities correspond to two

B-Splines interpolants (NURBS with all weights equal 1) that were constructed by interpolat-

ing a sinusoidal wave as the figure shows (see [3] for details). Thirty-two quadratic mortar

elements per curve were utilized to glue these three subdomains. A direct frontal solver was

used to solve the global SPP in Eq. (30) [3]. The results that are summarized on Figure 3 are in

good agreement with the analytical solution. The absolute error against the correct answer is

also displayed. The discrepancy is of the order of 10�4. Notice that besides the example only

matched the displacements on the interface, a good accordance is also obtained for the hori-

zontal derivative.

Whether or not one utilizes the SPP approach, the local problems are completely disconnected.

This fact can be exploited to reduce the computational time significantly. Indeed, these sub

problems can be handled in separate threads using a shared memory approach, i.e., multi-

threading assembling. A convergence analysis was also performed, by successively running

refined meshes [3] and by keeping a refinement ratio of 2:1 between subdomains. The exercise

used a piecewise quadratic mortar space where the number of mortar elements equals the

number of coarse edges in the non-mortar sides. It tackled meshes of size 8, 16, 32, 64, 128 and

256 respectively. Figure 4 displays the resulting convergence rate in a log� log plot. The slope

of the least-squares straight line is 1.44143, where the coefficient of determination is R2
¼ 84%.

Points Elements Kind of mesh

980 1814 Triangular

1560 1472 Quadrilateral

4090 7858 Triangular

Table 1. Meshes for example 6.1.
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Figure 4. Snapshots showing the evolution of the DN-DDM applied to problem 6.1.
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This slope agrees with the theory that predicts a rate of O h3=2
� 	

[2, 3]. However, the resulting

slope is slightly lower because of numerical errors, such as quadrature and linear system

solving errors.

Finally, Figure 5 shows pressure snapshots that represent four different Dirichlet-Neumann

iteration levels evolving from left-to-right and top-to-bottom. The fact that no initial guess for

pressure was provided explains the mismatch in the first snapshot. That is why one needs to

eliminate discrepancies by running the process to match up those subdomains, i.e., the traction

residual in the interface must vanish, which for this case occurs in just a handful of iterations.

The stop criterion precisely involves the residual in the tractions in the interface that is required

to fall below the given tolerance. For this particular problem, the iterative process spent six

iterations to achieve a residual lower than 10�6 [3].

6.2. Example 2: Coupled flow and mechanics

This example analyzes a coupled flow and mechanics simulation in a reconstructed reservoir

(RS) model with different meshes for the flow and mechanics physics [18]. The author pro-

posed such a reconstruction workflow in [18] which permits this latter feature by computing a

projection operator to mapping pressures from the original flow mesh into the so-called

reference mechanics mesh. Toward that end, the example employs the slightly compressible

flow formulation loosely combined with the mechanics model as shown in Eq. (15). The

objective is to show a realistic field level RS compaction and subsidence coupled computation.

The goal is thus working three different cases for the mechanics part in which one only

changes the resolution of the reconstructed mechanics mesh in the pay-zone while preserving

the mechanical properties constant as well as the geometry, BCS, and the depletion scenario.

The exercise admits the actual static properties as being in the pay-zone such as porosity f and

permeability for the isotropic case Kx ¼ Kz ¼ Ky as shown in Figure 6, whose depiction is three

Figure 5. The numerical L2 convergence rate for problem 6.1.
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times exaggerated in the z�direction. The numerical values are assumed to be as follows:

the fluid viscosity is 0.01325 cp and the total compressibility is ct ¼ 1:4� 10�5 Psi�1 (M�1 ¼

f � ct). This example does not incorporate gravity loading for both flow and mechanics.

Table 2 compiles the mesh dimensions in every direction. The example also contemplates

Nz ¼ 10,Nu ¼ 5,No ¼ 7,Nc ¼ 5 (mesh patches on the corners and No and Nu stand for over-

and under-burden respectively). The table also displays the number of elements, ne, degrees of

freedom (DOF) and timing data for all three cases. The example considers 30 vertical producer

wells as revealed in Figure 6. The initial condition encompasses a constant pressure of 10,000

Psi in the whole pay-zone while the pressure in the producer wells is set at 5000 Psi. This

assumption resembles a depletion scenario. BCS correspond to no-flow on all RS faces for the

pressure equation, while Figure 7 depicts BCS for mechanics that are the typical traction free

surface on the top and far-field on all remainder planes. Notice that the far-field BCS implies

that the displacement in the perpendicular direction to the given plane is zero. The example

also assumes a zero initial displacement field.

Figure 8 displays the mechanics mesh. The second case on Table 2 corresponds to a layered RS

with Young’s modulus Eu ¼ 3� 104, Ep ¼ 1� 104, Eo ¼ 2� 104 Psi½ � , while Poisson’s ratio,

v ¼ 0:25, is constant in the whole domain. In Figures 8 through 10 the graphs are 6 times

exaggerated in the z�direction for better visualization. The subscript letters symbolize the

Case # Description Nx Ny ne DOF Assembling time

One 1/4 of RS 35 13 15,960 51,830 0 min, 19 s 75 ms

Two 1/2 of RS 70 26 48,279 159,120 0 min, 59 s 89 ms

Three 1/1 of RS 140 49 156,408 506,160 3 min, 14 s 89 ms

Table 2: Mesh sizes and simulations in example 6.2.

Figure 6. The reservoir’s permeability Ky.
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under-burden, pay-zone and over-burden levels respectively. The goal is representing a more

realistic geomechanics model with stiffer surroundings around the RS.

Figure 9 pictures snapshots with the evolution of the vertical displacement uz m½ � and the

RS pressure. A compaction dome naturally grows just above the area where the most significant

pressure-drop happens. The pattern of deformation is the typical scenario where a compaction-

dome rests on the top (blue color) while a build-up occurs in the bottom of the RS (rendered in

red color). The deformation caused by the pressure-drop is localized because this reservoir does

not entirely drain but is still a compelling case for coupled flow and mechanics.

Figure 10 renders pressure-drop snapshots at 10 years of production. Each picture draws the

original RS mesh and the reference mechanic’s mesh for all cases that Table 2 covered, from

top-to-bottom and left-to-right. Notice that the action of the projection operator improves with

the refinement of the reference mechanics mesh as one should expect. The monotone pressure

behavior, which does not drastically change across neighboring elements in the original RS

mesh, may explain this improvement. Though, some items remain red-colored because they

are inactive. That happens due to the interpolation error that tends to smooth out the RS

topology. Perhaps it is not clear in the picture, but the reference mechanics mesh’s layers (since
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Figure 7. The BCS for the mechanics problem in the x� z plane (the pay-zone is highlighted in red).

Figure 8. The hexahedral mesh generated for 2nd case in Table 2.
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the thickness distribution in the z�direction is not uniform but instead graded toward the

edge) are not evenly-spaced which tells why these inactive spots appear.

Finally, Table 3 reviews results for the minimum and maximum vertical displacements uz for all

cases considered above. Notice that the differences between them are less than 3% for uz min and

8% for uz max, which proves the consistency of the projection operator. The shape of the compac-

tion dome and the subsidence profile are alike as well. Notice that this is the case for linear

isotropic elasticity. For non-linear elasticity or rate-independent plasticity probably onemay expect

more significant differences, though. The table also displays timing data, which reveals how the

computational burden grows with the mesh refinement (see also the time spent to assemble the

stiffness matrix in the last column of Table 2). Figure 11 zooms out the snapshot corresponding at

Figure 9. Snapshots at 10 and 20 years of evolution showing the vertical-displacement field uz , the pay-zone displays

pressure.

Figure 10. Snapshots showing pressure-drop [Psi] evolution at 10 years.
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40 years to reveal the subsidence in the surface. The plot is exaggerated several times. It also

exposes the subsidence profile on the surface in the centerline of the mechanics mesh in the most

extended direction. The differences between the three cases are minimal; it seems that the profile

does converge toward amesh independent solution, which is not far from the last row on the table.

The above-coupled flow and geomechanics computation, which used the reconstructed model,

confirmed that the procedure is quite useful to tackle realistic reservoir compaction and

subsidence simulations [18].

6.3. Example 3: Nonlinear heat transfer: arch problem

The example addresses the interesting problem that has been investigated by several resear-

chers [9, 10]. Its distinctive features are the two re-entrant corners. Near sharp corners, there

may be singularities in the solution, which cause the spatial derivatives of the solution to

become unbounded. The material properties are constant density and specific heat, and a

linear isotropic thermal conductivity,

r ¼ 1:0kg=m3; Cp ¼ 1:0
W � s

kg� ∘K
; κ ¼ 1þ

T

1000 ∘K

� �

W

m� ∘K
: (35)

Figure 12 shows the domain and the mesh. The BCS are of Dirichlet type on the left- (T ¼ 103)

and right-most (T ¼ 0) sides, and insulation on all other sides: n � κ∇Tð Þ ¼ 0. The triangular

Case # uz min uz max Runtime

One �6.652 2.693 4 min, 34 s 23 ms

Two �6.511 2.961 7 min, 53 s 84 ms

Three �6.469 2.752 23 min, 42 s 18 ms

Table 3. Simulations performed in example 6.2.

Figure 11. Subsidence profiles after 40 years of evolution.
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mesh consists of 7985 points and 15,539 elements. The domain lengths are 1 m�0.5 m. The

initial temperature distribution was taken to be [9]:

T x; y; t∗ð Þ ¼ 103erfc
x

2
ffiffiffiffiffiffiffi

κt∗
p

� �˚

K, (36)

which is the short-time linear solution at a time t∗ for a plane semi-infinite medium. In the

analysis, it is assumed κ ¼ 1 and t∗ ¼ 0:0005s in the calculation of the initial conditions.

Figure 13 shows temperature field snapshots for different times increasing from top to bottom.

The example simulates 0.1 s with a fully implicit approach. It is observed that a heating front

quickly travels from left to right as expected due to the temperature gradient. The temperature

scale in the color maps is from 0 to 1000�K. As a qualitative benchmark, the temperature

profile reported by Winget and Hughes [9] accords very well with the results herein.

The example finalizes with a simple loosely coupled thermal and mechanics computation. It

takes the temperature variation that the arch problem experiences as driving force for the

mechanical problem. It assumes linear isotropic elasticity with E ¼ 30 Ksi and ν ¼ 0:3 and the

coefficient of thermal dilatation β ¼ 1 � 10�5K�1 and the bulk modulus. The bottommost edges

are clamped while the remainders are traction free. The right column in Figure 13 includes

three snapshots that depict the mean stress. Dilatation grows from the upper-right corner

Figure 12. The mesh for the arch-problem.

Figure 13. Temperature, Th, (left) and mean stress, Sm, snapshots (right).
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while compression appears from the upper-left corner, which are clearly observed in the

results. The figure depicts the magnitude of the induced thermal stresses. The reader should

refer to [10] for further details about this thermo-elasticity example.

7. Concluding remarks

This chapter introduced how to estimate stress-induced changes using elasticity simulations

that are often performed through FE computations. It thus presented a formulation for linear

thermo-poroelasticity. It covered the nonlinear energy equation as well. It also implemented a

comprehensive MFEM on curved interfaces where the classical DN-DDM was employed to

decouple the global SPP for elasticity, and steady single-phase flow. The coupled flow and

geomechanics computation that utilizes the reconstructed model showed that this workflow is

valuable to tackle realistic reservoir compaction and subsidence simulations. The research

presented herein unfolds new prospects to further parallel codes for reservoir simulation

coupled with geomechanics.
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