

Molecular rationale of graphenepolymer interactions and the effect of solvent on graphene transfer

Amanda J. Carr

Stony Brook University

ACS Spring Meeting, March 2020

Amanda.Carr@stonybrook.edu

A. J. Carr, A. R. Head, J. A. Boscoboinik, S. R. Bhatia, M. D. Eisaman. Direct evident of graphene-induced molecular reorientation, *Advanced Materials Interfaces*, in review

Large-scale graphene transfer process for commercialization

- Successful transfer of graphene from its native copper foil to polymer films is imperative to conductive polymer film development
- Can be integrated into existing roll-to-roll processing

Graphene-polymer interactions can be tuned via polymer composition and solvent

- Both polymer composition and solvent quality impact transfer
- Probe interactions using infrared reflection absorption spectroscopy
- Connect interactions to transfer success across sample area

Probing interactions using Infrared reflection absorption spectroscopy

Graphene induces polymer rearrangement

Poly(ethylene-co-vinyl acetate)

- In all solvent cases, both C-O and C=O rearrange when we introduce graphene
- Most movement for neutral solvent case; least movement for poor solvent case
- Movement may be linked to favorable molecular orbital overlap

Graphene induces polymer rearrangement

Optical transmission of graphene/polymer films

Quantifying transfer via optical transmission

- Optical transmission measured over sample area quantifies transfer success
- Calculate probability of graphene coverage
- We observe
 - 50-85% graphene coverage for poly(ethylene-co-vinyl acetate) samples
 - 30-65% graphene coverage for polyethylene samples

Neutral solvents and oxygen polymers show best

- Raman data • corroborate optical transmission analysis
- **Optimal neutral** . solvent give best transfer results
- Better transfer to oxygen-containing polymer

Graphene-polymer interactions can be tuned via polymer composition and solvent

- Graphene transfer success largely depends on polymer chain composition where electronegative moieties are most important
- Solvent choice may affect transfer on a smaller scale

Acknowledgements

Advisors: Dr. Matthew Eisaman, Dr. Surita Bhatia

Group members: Joseph Andrade, Jan Folkson, Dr. Mohamed Boukhicha

Additional people: Dr. J. Anibal Boscoboinik, Dr. Ashley R. Head, Center for Functional Nanomaterials Staff

Funding: Brookhaven National Laboratory, Stony Brook University

Experimental Methods

Polymer	Solvent	Concentration	χ
		(mg/mL)	
Poly(ethylene-co- vinyl Acetate)	1,2,4-Trichlorobenzene	10	2.0
	Acetone	40	1.7
	Toluene	30	0.39
Polyethylene	Toluene	40	1.2
	Hexane	30	1.1
	Ethylbenzene	40	0.91

Applied heat and pressure transfer process

88% ethylene, 12% vinyl acetate

Polyethylene

Low density, linear

