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1. Introduction

Functional Electrical Stimulation (FES) is a technique of eliciting controlled neural activation
through the application of low levels of electrical current. FES was initially referred to as
Functional Electrotherapy by Liberson [1] and it was not until 1967 that the term Functional
Electrical Stimulation was established by Moe and Post [2]. In 1965 Offner patented a system
used to treat foot drop with the title "Electrical stimulation of muscle deprived of nervous
control with a view of providing muscular contraction and producing a functionally useful
moment" [3]. Another term often used equally to FES is Functional Neuromusclular Stimula‐
tion (FNS or FNMS).

The first commercially available FES devices treated foot drop in hemiplegic patients by
stimulating the peroneal nerve during gait. In this case, a switch, located in the heel end of a
user's shoe, would activate a stimulator worn by the user.

Structural discontinuity in the spinal cord after injury results in a disruption in the impulse
conduction resulting in loss of various bodily functions depending upon the level of injury.
The initial goal of FES technology was to provide greater mobility to the patients after SCI.
However, with the advances in biomedical engineering within the last 2 decades, FES is no
more limited to locomotion alone. Therefore, the definition of FES has changed considerably
and is now considered to be the technique of applying safe levels of electric current to stimulate
various organs of the body rendered disabled due to SCI. Electrical stimulation in the form of
functional electrical stimulation (FES) can help facilitate and improve limb mobility along with
other body functions lost due to injury e.g. sexual, bladder or bowel functions.
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2. Mechanism of FES operation

Both nerves and muscle fibres respond to electric current. However, for practical purposes FES
is mostly used to directly stimulate nerve fibres, as a much lower amount of current is required
to generate an action potential in a nerve than the one required for muscular depolarisation.

The main component of a FES system is the microprocessor-based electronic stimulator which
determines when and how the stimulation is provided, with channels for delivery of individual
pulses through a set of electrodes connected to the neuromuscular system. The microprocessor
contains programs for sitting, standing, walking etc. It serves to generate a train of impulses
that grossly imitate the neural triggers that would have normally passed through the spinal
cord to the appropriate peripheral nerves below spinal cord lesion for these different programs.
These stimuli thus trigger action potentials in the peripheral nerves which in turn activate
muscle contractions in the associated muscles fibers [11]. When properly applied, the energy
transfer is both safe and efficient. Low levels of current can be safely injected to neural tissue
with a minimal but biologically acceptable response. Furthermore, the energy amplification is
substantial, since a small stimulus can generate a considerable action. For example, an electrical
stimulus of a few milliwatts generates as much as a hundred newton-meters of torque in the
lower limb.

It is proven nowadays that FES exersice is improving cardiovascular fitness, and decreasing
the risk of diabetes, as well as reducing osteoporosis [12, 54-59]. FES exercise and weight
bearing also reduce the risk of pressure sores by improving tissue oxygen levels, increasing
muscle bulk, and altering seated pressure distribution [12]

Another use of electrical signals is to use afferent signals from intact structures whose
communication links with other body systems have been destroyed or diminished by an injury
or disease to provide feedback to guide motor activity.

It is conceptually possible, therefore, to obtain "artificial" control with electrical stimulation
over virtually all structures which rely upon neural communication for their activation. This
encompasses virtually all of the critical motor and sensory pathways involved in paralysis of
the central nervous system.

The frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse
pattern, program duration, program frequency, and muscle groups activated are parameters
taken into account. Frequency refers to the pulses produced per second during stimulation
and is stated in units of Hertz (Hz, e.g., 40 Hz=40 pulses per second). The frequencies of
electrical stimulation used can vary widely depending on the goals of the task or intervention,
but most clinical regimens use 20-50Hz patterns for optimal results [20]. In order to avoid
fatigue or discomfort, constant low frequency stimulation is typically used, which produces a
smooth contraction at low force levels. In a study comparing several different frequencies and
stimulation patterns, frequencies under 16Hz were not sufficient to elicit a strong enough
contraction to allow the quadriceps to extend to a target of 40º. Commercial stimulators provide
many different waveforms and pulse settings capable of producing contractions at therapeutic
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levels. The source should be flexible to generate complex electrical waveforms, such as
triangular or quasitrapezoidal waveforms [60].

The numbers of channels, which can range from one to several, govern the sophistication
required for complex outputs like FES assisted standing. The programmable microprocessor
activates the various channels sequentially or in unison to synchronize the complex output of
the stimulator. Electrodes provide the interface between the electrical stimulator and the
nervous system. Various types of electrodes have been developed and are available ranging
from non-invasive surface electrodes to invasive implantable ones. Implantable electrodes
provide more specific and selective stimulation to the desired muscle group than the surface
electrodes. The feedback control of the FES system can be either open-looped or closed-looped.
Open-looped control is used for simple tasks such as for muscle strengthening alone, and
requires a constant electrical output from the stimulator. In a closed-looped system, the
parameters for electrical stimulation are constantly modified by a computer via feedback
information on muscle force and joint position thus stimulating various muscle groups
simultaneously leading to a combination of muscular contraction needed for a complex
sophisticated functional activity such as walking.

3. Standing and walking

The efforts to develop a suitable human functional stimulator which can achieve synergistic
activity of various muscles accelerated in the late 1980s and early 1990s. In 1987, Davis
proposed the development of a FES system based on multi-cochlear implant technology to
restore function in paraplegic patients [9]. Kralj proposed the use of FES for restoring standing
and walking in spinal cord injured (SCI) patients [4]. Other parallel studies at that time also
concluded that FES assisted walking is feasible in patients with incomplete SCI even with
severe motor loss [7, 10]. In all lower limb applications the general method for restoration of
standing is the application of electrical stimulation to the quadriceps. The restoration and/or
improvement of gait has typically involved the stimulation of two sites. These have been the
quadriceps, during the stance phase of gait and the peroneal nerve, producing a patterned
flexion response during the swing phase of the ipsilateral limb [6]. FES has greater potential
for functional use in incomplete spinal cord injury (ISCI) patients due to the preservation of
some motor and sensory function [7,8]. Paraplegic patients using FES for ambulation still
require the use of walker or other orthotic devices for stabilising the ankle, knees and hips.
Several gait programs for the ISCI subjects have been established. Applications of FES can be
divided into two classes: (A) neuroprostheses for use as permanent assistive devices, and (B)
FES to facilitate exercise and be used in temporary therapeutic interventions to improve
voluntary function. This latter class of applications has been termed functional electrical
therapy (FET). Therapeutic applications include cardiovascular conditioning and the preven‐
tion of muscular atrophy through exercise. Functional applications assist with vital body
functions lost due to SCI. The FES devices were initially designed in an attempt to provide
assistance with standing or walking, provided the paraplegic patient had adequate upper body
motor control and strength [13,32].
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The use of these FES devices designed to permit or improve ambulation is not simple or
without risks. Paraplegic patients require extensive training to build muscle strength in the
upper body in order to achieve FES assisted ambulation. The amount of energy spent with FES
walking is almost twice than that for normal walking, although the achievable speed is slower
than that of normal walking [18,19]. The risk of injury with FES assisted ambulation is more
likely to be higher due to fatigue of the stimulated muscle causing an increase incidence of fall
and fractures. These factors limit the true functional utilisation of these systems. Another major
practical problem associated with the current FES locomotive models is mainly related to
feedback control. In spite of these associated limitations for everyday mobility in daily life,
there are potential functional, medical and psychological benefits of FES assisted standing and
walking. These devices can help increase their level of independence by providing some
assistance with standing while transferring from the wheelchair to a car, climbing a few steps
or reaching for a higher object.

3.1. Non-invasive FES systems

Parastep I is a FDA approved FES system for short distance ambulation that uses a walker
support for balance [14,15]. The Parastep is a non-invasive system and consists of the following
components:

• a microcomputer controlled neuromuscular stimulation unit

• a battery

• a unit for pre-testing main system operation and electrode cables

• surface applied skin electrodes

• power and electrode cables

• a control and stability walker with finger activated control switches.

Figure 1. Advertisement of the Parastep System
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The system provides stimulation output to 12 surface electrodes that are attached to the skin
at appropriate placements. These stimulation pulses trigger action potentials in the intact
peripheral nerves to generate muscle contraction. Another noninvasive, transcutaneous FES
system is the six-channel stimulator from the Ljubljana University but it was not commercial‐
ized and not FDA approved. In opposite the Parastep system received FDA approval in 1994
is nowadays widely available. It has been evaluated for its ambulation performance and
medical/psychological effects.[14,16,17]. Factors considered to be a candidate for ambulation
with the Parastep system include the presence of neurologically stable and complete SCI, level
of injury (preferably between T4 and T12), patient motivation, degree of spasticity, muscle
contractile response to electrical stimulation, cardio-respiratory capacity, and musculoskeletal
integrity.

3.2. Implanted FES systems

Current technology using surface and percutaneous electrodes has distinct disadvantages.
Systems using percutaneous electrodes are prone to infection if poorly maintained, and
systems using surface electrodes make donning and doffing difficult. Moreover, as the number
of channels increases, surface electrodes become impractical and inconvenient, making them
generally best suited for short-term therapeutic applications. In addition, selectively activating
individual muscles deep to the skin (such as the hip flexors) with surface stimulation or
obtaining repeatable stimulated responses from day to day is difficult or impossible. Neural
prostheses or Neuroprosthetics are implantable devices which use electrical current that can
substitute a motor, sensory or cognitive modality that might have been damaged as a result
of an injury or a disease. Familiar examples include cochlear implants and cardiac pacemakers.
The Freehand system was the first motor-system neuroprosthesis to receive marketing
approval. These devices have been safely and effectively installed worldwide in the upper
limbs in patients with cervical SCI to provide active handgrasp after paralysis without major
complications. External system components included a custom rechargeable wearable external
control unit, command hand switch, transmitting coil, charger, and clinical programming
station.

Fully implanted pacemaker-like systems offer numerous advantages over surface and
percutaneous stimulation for long-term clinical use, including improved convenience,
cosmesis, reliability, and repeatability. In these systems, muscle or nerve-based electrodes are
installed surgically and connected to an implanted stimulation device, so no material crosses
the skin.

FES systems using implanted intramuscular electrodes with percutaneous leads have provid‐
ed up to 48 channels of stimulation for improved stability and forward progression and finer
control of movement during walking. Multichannel implanted FES systems for walking after
motor complete paraplegia have provided a swing-through and reciprocal gait [29,30]. They
reduced donning time and improved day-to-day repeatability compared with surface FES
systems and eliminated site care of percutaneous systems.
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3.3. Hybrid FES-Orthosis ambulation systems

A variety of mechanical orthoses have been designed and tested for lower-limb function after
SCI. The reciprocal gait orthosis (RGOs) stabilize ankles, knees, hips, and trunk to provide
upright posture and couple hip flexion with contralateral hip extension to facilitate walking.
The long leg braces only fix the ankle and knee joints to provide stability and prevent collapse.
In some configurations, the addition of a pelvic band provides extra stability. Most orthoses
provide good postural stability, especially when the hip joints are reciprocally coupled to
prevent bilateral hip flexion. With all mechanical braces, upper-body strength is required for

Figure 2. Cleveland FES Standing/Transfer System.
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standing up and for forward progression during walking. Clinical reviews also indicate that
brace users are consistently unable to achieve significant functional ambulation without some
sort of pelvic control and that adequate hip flexion is an essential component of walking with
braces. In conclusion only few individuals with paraplegia choose to use their orthosis for
activities other than therapeutic exercise [34].

First in 1973, a hybrid actuator was described for orthotic systems in which the anatomical
joint could be controlled internally by means of FES or externally by means of a hypothetical
three-state joint actuator incorporated onto an exoskeletal brace [33]. This work initiated the
field of hybrid orthotics and, specifically, defined the concept of a hybrid neuroprosthesis
(HNP), in which FES is combined with external mechanical components.

Hybrid neuroprosthesis (HNP) potentially can combine the best features of mechanical bracing
and FES into new systems for walking after SCI that offer more advantages than the individual
components acting alone. The exoskeletal mechanical components of hybrid systems have
been generally passive devices to minimize size, weight, and energy consumption, while the
FES component serves as an active mechanism for limb propulsion.

Surface and intramuscular FES systems have been combined with a conventional trunk-hip-
knee-ankle-foot orthosis (THKAFO) for reciprocal gait in individuals with complete thoracic
level SCI. The addition of FES to the glutei for example during stance when individuals used
lower-limb bracing reduced crutch forces [51,52] and provided forward propulsion by driving
the stance leg into extension. Users with paraplegia (complete T4-T12 SCI) required 70 percent
of their maximum upper-limb aerobic capacity when walking with an RGO alone, while
walking with an RGO combined with FES required 32 percent of the upper-limb and 25 percent
of the lower-limb aerobic capacity, effectively shifting the metabolic burden from the muscles
of the arms, shoulders and trunk to the large, otherwise paralyzed, muscles of the legs [53].

The RGO Generation II is a reciprocating gait orthosis combined with FES which was devel‐
oped by Louisiana State University Medical Center and Durr-Fillauer Medical, Inc. It employs
concurrent electrostimulation of the rectus femoris and hamstrings to assist in rising and
balancing and a ratchet-type latching device to improve safety and stability in standing.
Alternating stimulation of the rectus femoris and contralateral hamstrings are used for
locomotion [42].

In summary, an HNP combining bracing and FES has been shown to significantly improve
walking distance and reduce energy consumption. A reciprocal coupling of the hips provides
good trunk stability, and flexion-to-extension coupling ratios favoring flexion improve step
length and energy cost. Unlocking the orthotic knee joints during the swing phase of gait
improves foot-to-floor clearance and reduces energy cost, while locking them during stance
postpones muscle fatigue from stimulation.

3.4. Hybrid FES – External Powered Orthosis Ambulation systems

To date only a few ambulatory external powered exoskeletons have been built. An ambulatory
system named HAL that combines a powered exoskeleton with a customized walker was
designed at the Sogang University [43-45]. A walker ensures complete balance and reduces
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the weight of the device by housing the battery, DC motors, and control unit, with cables
transmitting power to the joints.

ReWalk developed by Argo Medical Technologies Ltd. enables paraplegics, with the aid of
crutches for balance, to stand up, sit

down, walk about including slopes, and even climb stairs.[46]. ReWalk features servomotors
located at the hip and knee joints, rechargeable batteries, and a wrist remote control that
commands the type of desired motion. Since ambulatory exoskeletons are meant to be used
by paraplegics and people with severely impaired locomotion capabilities, two crucial
problems must be considered – ensuring full balance and determining the intention of the
motion of the user. To overcome these problems, external balancing aids have been considered
– crutches, canes, or walkers are used to ensured balance, whereas joysticks or keypads are
used to command the desired motion.

In 2010 Berkeley Bionics unveiled eLEGS, which stands for "Exoskeleton Lower Extremity Gait
System". eLEGS is another hydraulically powered exoskeleton system, and allows paraplegics
to stand and walk with crutches or a walker. In 2011 eLEGS was renamed Ekso. Ekso weighs
20 kg, it has a maximum speed of 3.2 km/h and a battery life of 6 hour [47].

Figure 3. “eLegs” exoskeleton by Berkeley Bionics

A new promising exoskeleton named Indego is seeking for FDA approval in 2015 developed
in Vanderbilt University [49,50].

All of these devices can be coupled with FES. Compared to using FES alone, the powered
exoskeleton provides joint motions that are otherwise difficult to achieve consistently (e.g. hip
flexion). Even for motions that can be achieved using FES, the exoskeleton ensures that the
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joint trajectories stay consistent in the presence of time-varying muscle behavior, providing
consistent and repeatable gait. Compared to using a powered exoskeleton alone, the addition
of FES reduces electrical power consumption while providing additional joint torques. Certain
therapeutic effects of the use of FES have been studied. The medical advantages of short
distance ambulation include increased blood flow to lower limbs, increase in lower limb
muscle mass, reduced spasticity, lower heart rate at sub peak work intensities and beneficial
effects on digestion, bowel and bladder. Psychological benefits achieved through FES assisted
walking such as the associated increase in self esteem and reduction in depression are all well
documented. Most of the studies conducted which have evaluated the role of FES assisted
walking have a very small sample size and a short follow up time [48,51].

4. Bladder, bowel and sexual function

Other functional applications of FES which help to restore useful functions and thus improve
the quality of life include bladder and bowel voiding and electro-ejaculation. Voluntary control
of bowel and bladder function is either lost or considerably impaired depending upon the level
and severity of SCI and can lead to multiple complications. The Vocare bladder system
(Finetech-Brindley bladder system) is a surgically implantable sacral anterior root stimulator
that allows individuals with complete spinal cord injury to urinate on demand [60].

Figure 4. The Finetech-Brindley Bladder Control System

Secondary use of the device is to aid in bowel evacuation. It was approved by FDA in 1998. It
consists of an external controller and transmitter and an implantable receiver-stimulator and
electrodes. This system is operated by radio frequency signals transmitted to electrodes placed
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on the sacral spinal nerves (S2-S4) and leads to bladder/large bowel and urethral/ anal
sphincter contraction. At the time of implantation, a posterior rhizotomy through laminectomy
at sacral level is performed to abolish the uninhibited reflex bladder contractions. This
eliminates the reflex incontinence caused by the activation of the sensory reflex pathway.
However it also causes a loss of perineal sensations and reflex erection and ejaculation if
present. Patient selection criteria for Vocare implantation include neurologically stable and
clinically complete supra-sacral SCI and intact parasympathetic innervation to detrusor
musculature. The major disadvantage of this system is the need for major surgery for implan‐
tation and posterior rhizotomy. However, this device offers an improved quality of life, social
ease, as well as a reduction and prevention of urinary tract infections and their associated
complication (61,62,65li) Another added benefit of this system is enhanced bowel evacuation
with most patients reporting a reduction in the time required for bowel evacuation along with
a reduction in constipation and faecal impaction. A slower stimulation time sequence is
required for defeacation than for micturation. Approximately 60% of men can also produce
penile erection using this device. Electroejaculation is one of the several techniques now
available to harvest viable sperm for the purposes of artificial insemination or in vitro
fertilization. An electric probe is inserted into the rectum near the prostate to stimulate the
nerves and contract the pelvis muscles, causing ejaculation [63,64]. The ejaculate is collected
from the urethra and prepared for use in artificial insemination. Caution need to be taken in
men with SCI who have a history of autonomic dysreflexia as electroejaculation can cause a
significant increase in blood pressure and heart rate.

4.1. FES cycling and rowing

A safe and economic alternative to FES-induced gait training is the employment of FES
synchronized to the cycling movement, which entails a coordinated activation of the lower
limb muscles, approximating the cyclic movements of locomotion. In contrast to FES standing
and walking systems, an FES-cycling system uses stimulator cycling software to control
sequential stimulation of the large leg-actuating muscles of paralyzed leg muscles to produce
cyclical leg motion. Currently, FES cycling exercise (FESCE) is often used in rehabilitation
therapy. There are a number of subsequent investigations reporting physiological adaptations
after regular cycling exercise training, which demonstrated that cycling exercise increases
muscle strength and endurance and bone density [66-71] suppresses spasticity [72,73],
improves cardiopulmonary function, and provides many other physiological and psycholog‐
ical benefits for subjects with an SCI [74-78]. Typically, the quadriceps,hamstrings, and gluteus
groups are activated in an appropriate sequence which is out of phase bilaterally to maintain
a forward driving torque. The level of stimulation applied to the muscles (which, in turn,
determines the amount of torque and cadence produced at the pedals) is controlled by the
stimulation software. The advantage of FES-cycling over FES-walking and standing exercise
is that individuals with paralysis can perform the exercise, and it can also enhance an indi‐
vidual’s suitability for FES standing and walking. Presently, there are many commercial FES
cycling ergometers available, such as the BerkelBike (BerkelBike BV, AV's-Hertogenbosch, the
Netherlands), Ergys and Regys (Therapeutic Alliances, Fairborn, Ohio, USA), and Motomed
(Reck, Betzenweiler, Germany).
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In general, FES cycling ergometers can be divided into two major types, mobile and stationary
types. The mobile type, a locomotion device, focuses on muscle training as well as giving some
mobility to subjects whose muscles can still be excited. Several research groups have developed
a mobile cycling system using standard or recumbent tricycles for SCI subjects. Usually, the
mobile type of cycling ergometer is an open-loop system, which is not only a rehabilitation
modality but also a recreational activity.

Figure 5. The”RehaBike”by Hasomed (outdoor bike)

The stationary type of cycling ergometer is usually used for aerobic exercise training in subjects
with an SCI to condition their muscle strength and enhance cardiopulmonary function.

Figure 6. “RehaMove” FES System coupled with Motomed stationary bike
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The time course and training frequency are major factors that determine the therapeutic effects
of cycling exercise. It is commonly recommended that subjects with an SCI receive at least 2-3
times per week and 30 min per time in a cycling rehabilitation program. In addition, it was
reported that detraining from cycling exercise can soon induce a quick reversal of physical
fitness within 1 week. The selection of electrical stimulation parameters is also an important
issue considered in FESCE studies. Commonly, the FES cycling stimulation current is delivered
to the large paralyzed leg muscles via surface electrodes. The stimulation output can either be
regulated current or regulated voltage, which depends on the control design of the FES cycling
stimulator. Commonly, the stimulation frequency is selected in the range of 10~50 Hz.
However, a relatively higher stimulation frequency (> 50 Hz) can produce higher forces and
therefore higher power for pedaling the ergometer compared to lower stimulation frequencies
(10~50 Hz). But higher stimulation frequencies may rapidly result in ATP depletion at
neuromuscular junctions and cause muscle fatigue.

In conclusion FES cycling plays an important role for each individual. It enables – in addition
to the described beneficial physiological effects – the implementation of a physical activity and
thereby, in terms of an improved participation, leads to a better quality of live.
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