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Abstract

The bacterial composition of the human fecal microbiome is influenced by many lifestyle

factors, notably diet. It is less clear, however, what role host genetics plays in dictating the

composition of bacteria living in the gut. In this study, we examined the association of

~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder popu-

lation, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals

collected in both). These individuals live and eat communally, minimizing variation due to

environmental exposures, including diet, which could potentially mask small genetic effects.

Using a GWAS approach that takes into account the relatedness between subjects, we

identified at least 8 bacterial taxa whose abundances were associated with single nucleo-

tide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For

example, we identified an association between a taxon known to affect obesity (genus

Akkermansia) and a variant near PLD1, a gene previously associated with body mass

index. Moreover, we replicate a previously reported association from a quantitative trait

locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus,

rs3747113, P = 3.13 x 10−7). Finally, based on the significance distribution of the associated

microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified

tissues in which host genetic variation may be acting to influence bacterial abundance in the

gut.

Introduction

Humans have complex interactions with the bacteria that live in and on their bodies, referred

to as the microbiota[1]. Alterations in the microbiota, particularly in the gut, have been linked

to variation in risk for obesity[2–4], celiac disease[5], Crohn’s disease[6, 7], ulcerative colitis[8–

11], gastroenteritis[12], asthma[13], and inflammatory bowel disease[14, 15]. Therefore,

understanding the factors that determine and maintain gut microbiome composition has the
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potential to unlock therapies to improve human health. Several environmental factors have

been shown to play a role in determining gut microbiome composition such as the method of

delivery at birth[16], formula vs. breast feeding as an infant[17], and diet[18–21]. One major

factor that has yet to be examined in detail is the role of host genetics.

Several groups have investigated the heritability of the gut microbiome in humans and

model organisms; however, estimates of genetic contribution to bacterial abundance vary

between studies. One early study used temperature gradient gel electrophoresis (TGGE) to

examine the similarity of the bacterial 16S rRNA genes from gut bacteria between individuals

with varying degrees of relatedness. Their findings showed TGGE profiles were increasingly

similar as the relatedness between pairs of individuals also increased[22]. Although this is con-

sistent with a heritable component to the microbiome, genetic effects are confounded by simi-

larity in environment, as related individuals likely shared environments throughout their lives

to a greater extent than unrelated individuals. Another study estimated microbiome heritability

using 16S rRNA gene sequencing in twin pairs and parent-offspring trios by examining related-

ness using a pairwise distance measurement of microbial composition[3]. Although micro-

biome composition was more similar between twins than between parent-offspring pairs or

unrelated individuals, the microbiome of monozygotic twins was not more similar than that of

dizygotic twins, arguing against a strong genetic component to microbiome composition. This

study was, however, small (~20–30 twin pairs in each category) and only examined broad mea-

sures of the microbiome composition rather than individual bacterial abundances. More

recently, a study on the heritability of common gut bacteria in>400 twin pairs suggested host

genetics plays a role in determining gut microbiome composition in humans, with some bacte-

rial taxa having heritability estimates as high as 0.39[23].

While evidence for host genetics influencing the gut microbiota is gaining traction, we still

lack an understanding of what genes or genetic variants in the human genome might poten-

tially influence bacterial profiles. Many studies have focused on candidate genes, where either

natural variation segregating in humans[24–26] or gene knockout models in mice[27–29] were

associated with differences in the microbiome. However, only one study to date has performed

a genome-wide scan for variants associated with bacterial abundance in the gut: Benson et al.

[30] identified 18 quantitative trait loci (QTL) associated with various bacterial taxa in the gut

using advanced intercrossed mouse lines. This study demonstrates the utility of genome-wide

approaches, however, no such study has been reported in humans.

To address this gap, we examined the fecal microbiome from the Hutterites, a religious iso-

late living in North America. Importantly, members of this population live and eat on large

communal farms, called colonies, limiting inter-individual variation in environmental expo-

sures that might mask genetic effects on microbiome composition. In particular, meals are pre-

pared and eaten in a communal kitchen and dining room, respectively. Previous work in this

population examined temporal differences between winter and summer gut microbiomes[18].

Here, we examined the same individuals for sex, age, and genetic effects on microbiome com-

position using both the winter data (n = 93) and summer data (n = 91), separately. In addition,

we considered a composite microbiome (“seasons combined”), where the relative abundances

of bacterial taxa sampled in winter and summer are averaged for any individual where stool

was available from both seasons (n = 127; see Materials and Methods). While the abundance of

only one bacterial taxa correlated with age (genus Bifidobacterium), at least four bacterial taxa

in each season were differentially abundant by sex. In addition, we identified at least eight bac-

terial taxa in each season that are associated with at least one single nucleotide polymorphism

(SNP) at a genome-wide significance level. Finally, we identified pathways and candidate tis-

sues where host genetic variation may be acting to influence bacterial abundance in the gut.
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Materials and Methods

Ethics statement

The protocol was approved by the University of Chicago IRB (protocol 10-416-B). Written

informed consent was obtained from all adult participants and the parents of minors. In addi-

tion, written assent was obtained from minor participants.

Accession Numbers

The data for the 16S rRNA amplicon sequencing, genotypes, GWAS results, and metadata

have been deposited in dbGaP under accession numbers phs000680 and phs000185.

Microbial data collection

Stool collection, DNA extraction, 16S rRNA gene sequencing, and classification were per-

formed as described previously[18]. Briefly, stool samples were collected during two seasons

(winter and the following summer). Sequences were classified using a Naïve-Bayesian classifier

as implemented in mothur[31]. In our previous study of seasonal differences in microbiome

composition, individuals were excluded if they took antibiotics within 6 months of either the

summer or winter sampling date. For this study, in which seasons were considered individu-

ally, samples were excluded if the individual had taken antibiotics within the previous 6 months

the sampling date for each within season analysis. Additional samples were excluded for indi-

viduals without genotyping data. After exclusions, samples for 93 individuals in winter (60

females and 33 males), 91 individuals in summer (57 females and 34 males), and 127 individu-

als in the combined sample (79 females and 48 males) remained. For all analyses, sequencing

reads were randomly subsampled to a maximum depth of 2 million reads per technical repli-

cate and technical replicates were combined, resulting in approximately 4 million reads per

individual per season. Taxon abundances were standardized to the total number of reads sub-

sampled to generate relative abundance measures.

Genotype data

Genotyping in 1415 Hutterite individuals (including the 127 individuals considered in this

study) was performed using either the Affymetrix 500k Array Set, the Genome-Wide Human

SNP Array 5.0, or the Genome-Wide Human SNP Array 6.0 as part of a long-term research

program studying the genetic basis of complex phenotypes in the Hutterites[32–35]. Genotypes

for the Affymetrix 500k array set were called using BRLMM (http://media.affymetrix.com/

support/technical/whitepapers/brlmm_whitepaper.pdf) and genotypes for the Genome-Wide

Human SNP Array 5.0 and 6.0 were called using Birdseed[36]. SNPs were initially quality fil-

tered using the following criteria across 1415 individuals: minor allele frequency� 5%, call

rates� 95%, Hardy-Weinberg equilibrium P-values� 0.001, and fewer than 5 Mendelian

errors across all individuals. 271,365 SNPs that were on all three platforms remained after qual-

ity control filtering and re-annotation to the human genome version 19 (hg19, dbSNP135).

Bacterial data pre-processing

Individual seasons. The following bacterial data processing was done separately for sam-

ples collected in the winter and in the summer. Because there would be limited power to detect

associations in rare members of the microbiota, we first eliminated from subsequent analyses

bacterial taxa that did not have at least one read in at least 75% of individuals (number of bacte-

rial taxa remaining: winter = 7 phyla, 15 classes, 26 orders, 45 families, and 80 genera. sum-

mer = 7 phyla, 15 classes, 21 orders, 38 families, and 71 genera). Next, taxon data was fit to a
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standard normal distribution across individuals by quantile normalization using the R function

qqnorm[37]. Finally, to limit the burden of multiple testing, we removed any taxon that was

highly correlated (Pearson correlation� 0.9) with either a taxon at a lower taxonomic level

(the taxon at the higher level was removed) or at the same level (the taxon listed first alphabeti-

cally was removed). The pairs of highly correlated bacterial taxa are shown in S1 Table. The

final dataset for winter consisted of 116 bacterial taxa: 3 phyla, 3 classes, 8 orders, 22 families,

and 80 genera. The final dataset for summer consisted of 104 bacterial taxa: 3 phyla, 3 classes, 8

orders, 19 families, and 71 genera.

Combining seasons, with normalization. Our previous work revealed broad, temporal

differences in gut bacterial abundance between winter and summer in this population[18].

However, having the largest possible sample increases power in genetic association studies,

which is critical given the number of tests performed. To this end, we normalized bacterial

taxon abundance in each season separately before combining data from the two seasons and

included only common taxa that had at least one read in 75% of individuals in both seasons (7

phyla, 15 classes, 21 orders, 38 families, and 70 genera). Specifically, within each season, taxon

data was fit to a standard normal distribution across individuals by quantile normalization

using the R function qqnorm[37]. Normalized bacterial taxon abundances were then averaged

for any individuals who were sampled in both seasons. To further limit the burden of multiple

testing, we removed bacterial taxa that were highly correlated, as described above. The final

dataset consisted of 102 bacterial taxa: 3 phyla, 3 classes, 7 orders, 19 families, and 70 genera.

To ensure that seasonal effects were accounted for, principal component analysis was per-

formed on all genera level classifications in the final, normalized data set using prcomp in R;

season was not correlated with any of the top 10 principal components in this final dataset (S1

Fig). We refer to this dataset as the “seasons combined” from hereon in.

Bacterial correlations with age and sex

Correlations of individual bacterial taxa to age and sex were performed using linear mixed

models that corrected for the relatedness between individuals, as implemented in GEMMA

(v0.94)[38]. First, relevant covariates were regressed out of normalized bacterial abundances

(sex and colony/date of collection for examining taxa correlations with age; and age and col-

ony/date of collection for examining taxa correlations with sex). Samples were collected from

five colonies on separate days; therefore, colony and date of collection are confounded. With

this understanding, we refer to ‘date of collection’ rather than ‘colony/date of collection’

throughout the manuscript. Linear models were run using GEMMA specifying the–notsnp

option. Relatedness matrices were calculated using identity by descent from genotype data[39].

Significance was assessed using a likelihood ratio test and multiple testing corrections were

done using q-values (S5 and S6 Tables)[40].

Diversity metrics

All bacterial taxa present at the genus level in each sample were used to calculate alpha diversity

metrics (richness, Shannon diversity, and evenness), without quantile normalization applied to

relative abundances and no taxa eliminated due to rarity. Diversity metrics were calculated

using the vegan package in R[41].

Chip heritability of gut bacteria

Relevant covariates (age, sex, and date of collection) were regressed from each bacterial taxon

within each seasonal analysis. “Chip heritability” (or percent variance explained, PVE, S2

Genome-Wide Association Studies of the Human Gut Microbiota
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Table) was calculated for the residuals of each taxon using GEMMA v0.94[38]. PVE is consid-

ered non-zero if the standard error measurements do not intersect zero.

Bacterial associations to host genetic variation

Prior to association testing, age, sex and date of collection were regressed from normalized bac-

terial taxon relative abundance data. GEMMA (v0.94) was used to perform GWAS on the

residuals, including the relatedness matrices as described above to account for inter-individual

relatedness. SNPs were eliminated if their minor allele frequency was lower than 10% in the

individuals tested. A total of 211,319 SNPs in the winter analysis, 210,924 SNPs in the summer

analysis, and 212,153 SNPs in the “seasons combined” analysis were examined. Both a conser-

vative Bonferroni corrected P-value threshold and less conservative q-value thresholds (0.2 and

0.1) were considered to correct for multiple testing within each genome-wide association study

[40].

The number of bacterial taxa within each season that had both non-zero “chip heritability”

and at least one genome-wide significant association were examined. To determine the signifi-

cance of this overlap within each season, “chip heritability” estimates were permuted across

bacterial taxa and the overlap of taxa that had both non-zero permuted “chip heritability” and

at least one genome-wide significant SNP association was calculated, generating a null distribu-

tion of the number of overlaps expected by chance. An empirical P-value was calculated by

dividing the number of overlaps equal to or greater than the observed number of overlaps for

that season by the number of permutations (10,000) in the null distribution.

Functional annotation enrichment

It is unclear in what tissues genetic variation might be acting in the human body to influence

bacterial abundance in the gut. To investigate this, for each bacterial taxon that either had a

genome-wide significant association through GWAS or non-zero “chip heritability”, we exam-

ined the enrichment of GWAS SNPs in DNase hypersensitivity (DHS) peaks for 16 tissues. In

the human genome, DHS peaks mark areas of accessible chromatin, which is assumed to typi-

cally participate in gene regulatory functions. Many of these accessible regulatory regions of

the human genome are cell-type or temporally specific[42]. Therefore, candidate cell-types

where genetic variation may be acting to influence an ultimate phenotype can be determined

by examining the enrichment of strongly associated GWAS SNPs in open chromatin across tis-

sues. Maurano et al.[43] demonstrated the utility of this approach, identifying immune cells as

the candidate cell types for Crohn’s Disease and multiple sclerosis and heart cells for QRS dura-

tion. In this study, we took this approach to identify candidate tissue types where host genetic

variation may be acting to determine bacterial abundance in the gut.

DNase-I hypersensitivity data fromMaurano et al.[43] was downloaded in bed format from

http://www.uwencode.org/proj/Science_Maurano_Humbert_et_al/ on February 12th, 2014.

The 349 available cell lines were clustered into 16 tissue classifications by calculating Euclidean

distances for DNase peaks between all pairs of lines (S3 Table). DHS peaks for these tissues

were determined by taking the intersection of all DHS peaks over all cell lines classified as that

tissue in the previous step using intersectBed[44]. Overlaps between the genotyped Hutterite

SNPs included in this study and each DHS peak for each tissue were determined using

intersectBed.

We performed the following analysis for each of our bacterial abundance GWAS where

either i) at least one SNP met suggestive genome-wide significance, or ii) there was non-zero

“chip heritability” for that taxon (number of taxa examined in winter = 23, summer = 22, “sea-

sons combined” = 18). For increasingly significant P-value thresholds, we examined the

Genome-Wide Association Studies of the Human Gut Microbiota
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enrichment of SNPs identified in our GWAS (P-values at or below the given threshold) in DHS

peaks from each of 16 tissues, compared to the genome-wide distribution of all tested SNPs

located within DHS peaks of the same tissue. The enrichment of SNPs in DHS peaks per tissue

(called “enrichments” in the remainder of this section) were calculated as described in Maur-

ano et al., with the exception that the following P-value thresholds were examined for each bac-

terial abundance GWAS only if at least 50 SNPs had P-values at or below the cutoff: 1.0, 0.5,

0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005 (S1 File). Significance of

enrichment was assessed for each tissue for the smallest P-value bin size per bacterial taxa

abundance GWAS by comparing the actual tissue enrichment observed to the distribution of

tissue enrichments observed in permuted GWAS data. Specifically, normalized bacterial abun-

dances were randomly assigned to individuals 10,000 times for each seasonal analysis. GWAS

was performed for each of these permutations and the enrichment of top GWAS associations

in DHS peaks was calculated for each tissue in each permutation, generating a null distribution

of enrichments per tissue. The number of SNPs falling into the most significant P-value bin

with at least 50 SNPs varied by GWAS. For each comparison, the number of SNPs in the small-

est bin was matched in the permutations to the number of top SNPs in the smallest P-value bin

from the actual GWAS. For example, if the actual GWAS for taxa “A” contained 63 SNPs in

the smallest P-value bin, then the top 63 SNPs were chosen to calculate enrichment in each per-

mutation. An empirical P-value was calculated by dividing the number of enrichments in the

null distribution that were equal to or larger than the actual enrichment value by the total num-

ber of permutations (10,000) for each tissue (S4 Table). Note that reported P-values are not

corrected for multiple testing.

Gene set enrichment analysis (GSEA)

GSEA was performed for any bacterial abundance GWAS with at least one significantly associ-

ated SNP using the R package postgwas[45]. Each tested SNP was assigned to the closest gene

using Ensembl release 75 and any SNP further than 10kb from a gene was eliminated from

analysis. An aggregate gene-wise P-value was calculated using the function gene2p

(method = SpD) in postgwas by taking into account the dependency structure between SNPs.

Gene ontology enrichment analyses were performed using the gwasGOenrich function with

the following parameters: ontologies for cellular components, molecular function, and biologi-

cal process were examined (ontology = “CC”, “MF”, or “BP”), pruneTermsBySize = 8,

pkgname.GO = “org.Hs.eg.db”, and topGOalgorithm = “classic”. Correction for multiple test-

ing was accomplished using q-values.

Yatsunenko et al. data comparison

16S rRNA amplicon data from Yatsunenko et al.[46] was downloaded fromMG-RAST on 12/

14/2012 and pre-processed as described previously (base quality trimming to classification)

using the same procedures as for the Hutterite samples to ensure data comparability[18]. Simi-

lar normalization and filtering steps were used to process classified reads from the Yatsunenko

populations: bacterial taxa that were detected in fewer than 75% of individuals per population

were eliminated and the remaining bacterial taxa relative abundances were fit to a standard

normal distribution across individuals using qqnorm in R. Sex effects were examined using a

linear model (lm in R) for the USA and Venezuelan populations (the Malawi sample consisted

of all females). Q-values were calculated within each population to control for multiple testing,

with q� 0.05 chosen as the significance threshold. Hypergeometric tests were performed to

determine whether there was significant overlap in the taxa showing differential abundance by

sex in each pair of populations.

Genome-Wide Association Studies of the Human Gut Microbiota
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Results

Correlations of relative taxa abundance with age and sex

In a previous study of these individuals, we examined the relationship of microbiome alpha

diversity to age and sex. While a significant association between diversity and sex was not

observed in either winter or summer, diversity was significantly inversely correlated with age

during the winter months (P< 0.01)[18]. Here, we sought to identify individual bacterial taxa

whose relative abundances were correlated with sex or age in the three seasonal analyses (win-

ter, summer, or “seasons combined”). At a q-value cutoff� 0.05, the abundance of only one

bacterial taxon was significantly inversely correlated with age in the winter samples (genus Bifi-

dobacterium, Fig 1, Table 1, S5 Table). Members of Bifidobacterium have previously been

shown to decrease in abundance with age in the gut[47, 48].

In contrast, many bacterial taxa showed sex specific abundance patterns (4/116 –winter, 5/

104 –summer, 18/102 –“seasons combined”, Fig 1, Table 1, S6 Table). Moreover, bacterial taxa

with sex-specific abundance patterns in multiple seasons tend to show the same direction of

sex-specific effects, demonstrating that these are likely consistent sex differences over time (S2

Fig).

Estimates of chip heritability

To examine the role that common host genetic variation might play in determining microbial

abundance in the gut, we examined “chip heritability”. This measurement, often referred to as

Fig 1. Bacterial abundance correlations with age and sex. A) Q-Q plot for correlations of 116 common bacterial taxa with age in samples collected in
winter. Gray shading represents the 95% confidence interval of the null. The point circled in orange is genus Bifidobacterium. B) Abundance of genus
Bifidobacterium is inversely correlated with age in samples collected during the winter (** q� 0.01). C) Q-Q plot for correlations of 116 common bacterial
taxa with sex in samples collected in winter. The point circled in orange represents genus Scardovia. D) Genus Scardovia was significantly more abundant in
females (n = 60) than in males (n = 33) in winter (** q� 0.01).

doi:10.1371/journal.pone.0140301.g001

Genome-Wide Association Studies of the Human Gut Microbiota
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the proportion of variance explained (PVE), is the maximum amount of the variance in a phe-

notype that can be explained by the genetic variation interrogated in a GWAS framework[49].

This method has proven successful in studies addressing questions of missing heritability for

traits such as height[49], working memory performance[50], and liver enzyme levels[51].

We calculated PVE for each bacterial taxon using ~200k SNPs, as implemented in GEMMA

(see Materials and Methods). Approximately 10–13% of bacterial taxa in each season have

non-zero “chip heritability” estimates, suggesting that a portion of the microbiome is heritable

(winter: 14/116 taxa, summer: 10/104 taxa, “seasons combined”: 13/102 taxa; Fig 2, S2 Table,

S3 Fig). The standard errors of “chip heritability” estimates are very large, so we have not

drawn conclusions about the actual heritability estimate or compared estimates between taxa

due to the uncertainty in the measurement, but conservatively consider estimates whose error

bars do not intersect zero as showing evidence of heritability.

In addition to bacterial relative abundance, we examined the “chip heritability” for three

alpha diversity metrics. Diversity measures were calculated at the genus level (richness—S,

Shannon diversity—H, and evenness—J) and included all classified bacterial genera (see Mate-

rials and Methods). There was no evidence of “chip heritability” for any diversity metric in

summer; however, evenness in the “seasons combined” analysis (“chip heritability”:

J = 0.58 ± 0.32) and both evenness and Shannon diversity in winter (“chip heritability”:

J = 0.56 ± 0.22, H = 0.52 ± 0.22) have non-zero estimates (S2 Table).

Genome-wide association studies (GWAS)

To determine if specific variants in the human genome are associated with microbial abun-

dance in the gut, we employed a classic GWAS approach for quantitative trait mapping. A

large number of SNP-taxon associations were tested (~100 bacterial taxa + 3 diversity metrics

per season x 3 seasons x ~200k SNPs per GWAS), which sets a study-wise Bonferroni corrected

P-value threshold at 7.0 x 10−10. Given our sample size (~100 individuals per season), only

associations with very large effect sizes would be expected to pass this significance threshold.

Unsurprisingly, no variants passed this threshold in any of our analyses; therefore, we consider

the individual SNP/taxon associations identified in these studies to be suggestive and requiring

further replication.

Given this caveat, we identified genome-wide significant associations after correcting for

multiple testing within each bacterial abundance GWAS individually, either by Bonferroni cor-

rection or by q-value (considering significance thresholds at both q� 0.1 and q� 0.2 cutoffs).

Table 1. Number of bacterial taxa that vary by sex or age in each season. The total number of taxa whose relative abundances were significantly corre-
lated with age or sex at various q-value cutoffs are listed. Total number of taxa tested per season is indicated in the bottom row (total). In the text, we discuss
the number of significantly correlated taxa in each season with a q-value threshold of� 0.05. The abundances of few bacterial taxa appear to vary consis-
tently with age; however, the abundances of many bacterial taxa are correlated with sex in this population.

age sex

q-value cutoff winter summer combined winter summer combined

0.001 0 0 0 0 0 3

0.01 1 0 0 2 1 8

0.05a 1 0 0 4 5 18

0.1 1 1 2 16 19 24

0.2 4 5 2 19 30 49

Total examined 116 104 102 116 104 102

a Confidence threshold chosen for significance

doi:10.1371/journal.pone.0140301.t001
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Limiting the correction for multiple testing to the number of tests done within an individual

GWAS is similar to the typical correction applied to GWAS with human disease (where the

correction factor is determined by the parameters of a GWAS for a specific disease, not across

GWAS in studies that consider multiple phenotypes[52–55]).

At least one bacterial taxon per season was significantly associated with at least one SNP (at

a Bonferroni significance threshold), and the abundances of at least eight bacterial taxa are

associated with at least one SNP at q-values less than or equal to 0.2 (Table 2, S7 Table, Fig 3).

There were no significant associations with alpha diversity metrics in any of the analyses.

We compared the results of our genome-wide association analyses to the “chip heritability”

estimates for each bacterial taxon and identified bacterial taxa that have both significant “chip

heritability” and at least one suggestive genome-wide significant association (winter: 6 taxa,

summer: 2 taxa, “seasons combined”: 3 taxa, Fig 2, see Materials and Methods). Overall, taxa

with non-zero “chip heritability” for a given season were significantly enriched for having at

Fig 2. “Chip heritability” for 102 bacterial taxa tested in the “seasons combined” analysis. Each point
represents the estimated percent variance explained (PVE, or “chip heritability”) for the joint effect of all
genotypes analyzed in the GWAS for bacterial abundance during the “seasons combined” analyses. Bars
indicate standard error measurements around the estimate. A number of bacterial taxa showed non-zero
PVE estimates (listed in order from highest to lowest PVE) with error bars that do not intersect zero, indicating
that cumulative common genetic variation can explain some portion of the variation in bacterial abundance
observed between individuals. Bacterial taxa that also had at least one nominally significant genetic
association at a genome-wide association level are labeled in purple, with the level of significance indicated
(q� 0.2 or q� 0.1).

doi:10.1371/journal.pone.0140301.g002

Table 2. Number of bacterial taxa with at least one SNP association reaching suggestive significance per season. For each season, the total number
of bacterial taxa examined and number of single-nucleotide polymorphisms (SNPs) tested are listed. The number of taxa for which at least one SNP was
associated with abundance at either a Bonferroni corrected P-value cutoff or a q-value cutoff of 0.1 or 0.2 are listed. The total number of taxa for which at least
one associated SNP fell below q-value� 0.2 or a Bonferroni threshold are listed under “total significant”.

Total Thresholds of significance

Season Bacterial taxa SNPs Bonferroni q � 0.1 q � 0.2 Total significant

Winter 116 211,319 2 8 15 15

Summer 104 210,924 1 6 14 14

Combined 102 212,153 1 2 8 8

doi:10.1371/journal.pone.0140301.t002
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least one genome-wide significant SNP association using the winter microbiome data (permu-

tation P< 0.01), were slightly enriched for significant associations in the analysis of data from

both seasons (P = 0.07), but were not enriched for genome-wide associations in the summer

microbiome data (P = 0.4, S4 Fig).

Gene set enrichment analysis (GSEA)

In order to gain insight into the type of host pathways and functions that might influence bac-

terial abundance in the gut, we performed gene set enrichment analysis (GSEA) on all GWAS

Fig 3. GWAS of genus Akkermansia relative abundance. A) Manhattan plot of GWAS results for the normalized relative abundance of genus
Akkermansia from the “seasons combined” analysis. Each point represents a tested SNP, displayed by chromosomal position (x-axis). The y-axis shows–
log10(P-value) for each SNP. SNPs significantly associated with normalized Akkermansia relative abundance (q� 0.2) are shown in purple on chromosome
3. B) Q-Q plot for P-values from the GWAS of the relative abundance of genus Akkermansia. The majority of SNPs lie along the null line, demonstrating the
test statistics did not appear to be inflated (due to population stratification, for example). Five SNPs (all in linkage disequilibrium (LD) on chromosome 3) were
significantly associated with Akkermansia abundance. The point circled in orange was the most highly associated SNP (rs4894707). C) Normalized
Akkermansia abundance, segregated by genotype class at rs4894707 on chromosome 3. Only two genotype classes are represented at this SNP
(MAF = 0.185 and Hardy-Weinberg P-value = 0.007 in a larger sample of 1,415 Hutterites that includes the individuals in this study). This SNP lies in a UTR
region of the gene PLD1, which as been implicated in obesity studies in African American populations[56].

doi:10.1371/journal.pone.0140301.g003
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with at least one genome-wide significant association in our study (S2 File, see Materials and

Methods). For most bacterial GWAS, we do not observe enrichment of any gene ontology

(GO) categories given the distribution of P-values of SNPs located in or near annotated genes

in the genome (within 10kb). However, for several bacterial GWAS (winter: 4 taxa, summer: 10

taxa, “seasons combined”: 6 taxa), GSEA resulted in significant enrichments for biological pro-

cesses one might expect to be interacting with the microbiome (q� 0.2). For example, GSEA

revealed enrichments of genes categorized under immune processes (summer: genus Sporaceti-

genium) and metabolic processes (winter: order Burkholderiales; summer: genus Sporacetigen-

ium; “seasons combined”: genusMegasphaera), as well as in pathways that generate ribosomal

components (summer: genus Anaerostipes; “seasons combined”: genus Anaerofilum) and act

in multi-organism process and communication (“seasons combined”: genus Anaerostipes).

Finally, enrichment in olfactory receptor pathways was observed for a number of taxa (winter:

family Succinivibrionaceae; summer: genus Bifidobacterium, order Rhizobiales; “seasons com-

bined”: genus Anaerofilum, genus Faecalibacterium). One caveat to note is that olfactory recep-

tor genes tend to be clustered in the genome, which can lead to spurious enrichment in gene

ontology tests.

Identification of candidate tissues

Our GWAS revealed a number of candidate variants that potentially influence gut microbiome

composition; however, we lack an understanding of the relevant tissues in which these variants

act. We sought to provide insight into this question by intersecting our GWAS results with

DNase hypersensitivity (DHS) data, following the approach of Maurano et al.[43]. Cell types

identified through their analysis were deemed “pathogenic cell types”; here we will refer to

them simply as candidate tissues because the unknown relationships of our GWAS results to

disease.

We performed this candidate tissue identification analysis for each of our GWAS of bacte-

rial abundance when either i) at least one SNP met suggestive genome-wide significance, or ii)

there was non-zero “chip heritability” for that taxon (number of taxa examined in winter = 23,

summer = 22, “seasons combined” = 18). When considering all bacterial taxa that met our

inclusion criteria from either the winter or summer data sets, we do not observe more candi-

date tissues identified at nominal significance than we would expect by chance (S5 Fig). In con-

trast, for taxa meeting our inclusion criteria from the “seasons combined” analysis, we

observed more candidate tissues of nominal significance than would be expected by chance;

therefore we only considered results from the “seasons combined” analysis further.

For five bacterial taxa we are able to identify at least one candidate tissue (out of 18 total

taxa that met inclusion criteria from “seasons combined” analyses). Endothelial tissues were

identified for genus Akkermansia and muscle tissues for genus Dolosigranulum. Both intestine

and stomach tissues were identified as potential candidates for genus Faecalibacterium. Family

Neisseriaceae and family Pasteurellaceae both have a large number of tissues identified as can-

didates (Fig 4, S6 Fig).

Discussion

The role of host genetics in gut microbiome composition

In this study, we examined the role of host genetics in determining gut microbiome composi-

tion in an isolated, communally living population: the Hutterites. We first explored non-

genetic effects of age and sex, and demonstrated that at least four bacterial taxa show sex spe-

cific patterns of abundance in each season. We further demonstrated that at least 13 bacterial

taxa show evidence of heritability in each season and ultimately identified at least eight
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bacterial taxa in each season whose abundances were significantly associated with genetic vari-

ation in the human genome. Finally, we examined host tissue types in which genetic variation

may be acting to influence gut microbial composition.

Although no human replication cohorts are published, we replicated a previously reported

association from a quantitative trait locus (QTL) mapping study of microbial abundance in the

gut of advanced intercross mouse strains[30]. In that study, genus Lactococcus showed strong

evidence of association (LOD score = 8) with markers on mouse chromosome 10. In our study,

genus Lactococcus also showed evidence of genetic association in the summer (rs3747113,

P = 3.13 x 10−7). Interestingly, the associated variant in the Hutterites is located in the syntenic

linkage interval observed in the mouse QTL study, providing evidence of replication of this

association across species. The size of the linkage interval in Benson et al. spans tens of mega-

bases of the mouse genome, however, and finer mapping is needed to confirm replication.

One of the more biologically interesting results of our study was the identification of SNPs

that were associated with abundance levels of genus Akkermansia (Fig 3). These SNPs lie

within intronic and untranslated regions (UTR) of the gene PLD1, which is thought to play a

Fig 4. Identification of candidate tissues. At increasingly significant P-value thresholds, variants identified through GWASwere enriched in DNase
hypersensitivity peaks in a tissue-specific manner. A) For genus Akkermansia, low P-value GWAS SNPs were significantly enriched in DHS peaks in
endothelial cell types (red), but not in DHS peaks of the 15 other tissues examined (gray). The x-axis shows the P-value threshold bins examined and y-axis
represents fold enrichment for SNPs overlapping DHS peaks in that bin compared to genome-wide for that tissue type. Both the abundance of genus
Akkermansia and endothelial barrier function have been associated with obesity, providing a mechanistic hypothesis that can be further investigated. B) For
genus Akkermansia, the significance of enrichment of GWAS SNPs overlapping DHS peaks in endothelial tissue in the lowest P-value bin (P� 0.0005) was
determined by GWAS permutation (P� 0.05, see Materials and Methods). The distribution of permuted GWAS SNP enrichments in DHS peaks of
endothelial tissue is displayed as a boxplot with actual enrichment plotted as red star. C) For genus Faecalibacterium, low P-value GWAS SNPs are
significantly enriched in DHS peaks of both intestine (orange) and stomach (pink) tissues (P� 0.05). D) For genus Faecalibacterium, the significance of
enrichment of GWAS SNPS overlapping DHS peaks of both intestine and stomach tissues in the lowest P-value bin (P� 0.0005) was determined by GWAS
permutation (intestine P� 0.01, stomach P� 0.05, see Materials and Methods). Members of Faecalibacterium are some of the most common species in the
gut and are known to be associated with dysbiosis in patients with irritable bowel syndrome. The distribution of permuted enrichments for each identified
candidate tissue is displayed as a boxplot with actual enrichment plotted as an orange (intestine) and pink (stomach) star.

doi:10.1371/journal.pone.0140301.g004
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role in signal transduction and subcellular trafficking[57–59]. This gene was implicated in a

previous GWAS of body mass index (BMI) in African Americans, because a SNP associated

with BMI is located near the gene[56]. In addition, increased abundance of Akkermansia muci-

niphila was recently shown to be protective against developing obesity in mice[60]. These cor-

relations between a bacterial taxon, genetic variation, and BMI possibly suggest a mechanism

for how genetic variation in or near this gene acts to influence obesity. Further support for this

mechanism was provided by the de novo candidate tissue identification in which SNPs with

low P-values from the genus Akkermansia GWAS were significantly enriched in DHS peaks of

endothelial cell types (Fig 4). Endothelial barrier function is thought to be important in obesity.

For example, in swine fed with a high-fat diet to promote obesity, endothelial barriers became

more permeable early during weight gain[61]. In addition, endothelial permeability is regulated

by the immune system[62–64], and there are strong links between alterations in the immune

system with obesity[65–67]. We did not observe associations between BMI and the relative

abundance of genus Akkermansia in the Hutterite sample (P = 0.51); but BMI was measured

on these individuals 3–5 years prior to microbiome sampling. Further investigation is needed

to validate this intriguing hypothesis by confirming the relationship of Akkermansia to PLD1

and obesity, ideally within a set of samples where microbiome and obesity measures are col-

lected concurrently.

Host cell types and pathways implicated from GWAS results

In addition to examining human variation that met statistical thresholds at a genome-wide sig-

nificance level, gene-set enrichment analysis revealed a number of human cellular pathways

that might be an important interface between the host and the microbiome. In particular, olfac-

tory receptor activity was significant in GSEA for five taxon GWAS (winter: family Succinivi-

brionaceae; summer: genus Bifidobacterium, order Rhizobiales; combined: genus Anaerofilum,

genus Faecalibacterium). It has already been demonstrated that olfactory receptors form an

interface between the host and the gut microbiota. In mice, an olfactory receptor expressed in

the kidneys responds to metabolites produced by gut bacteria, and this process aids in regulat-

ing blood pressure systemically via renin production[68]. It is possible that additional olfactory

receptors in other tissues may also recognize compounds produced by the microbiota and act

as a way for the host to regulate either host physiology or the microbiome in response to the

gut environment. These results demonstrate that host genetic variation may exert control over

microbial abundance through a variety of mechanisms, such as through immune system inter-

action, metabolism, energy availability, and potentially olfactory receptor activity.

Genetic variation in identified pathways could be acting in a number of host tissues to influ-

ence bacterial composition in the gut, either directly (for example, hormones produced in the

brain influence bacteria in the gut[69]) or indirectly (for example, microbial byproducts pro-

cessed by the liver[70]). For the genus Faecalibacterium, both stomach and intestines are iden-

tified as candidate tissues where host genetic variation may be acting to influence bacterial

abundance (Fig 4). F. prausnitzii, a species of Faecalibacterium, is one of the most common gut

bacteria in adults and has been well characterized[71]. This bacterium lives along the mucus

interface in the gut[72] and is known to affect expression of host mucus glycans[73]. High lev-

els of F. prauznitzii are thought to be protective against ulcerative colitis[74], Crohn’s disease

[75–77], and celiac disease[78]. Given the roles that members of this taxon play in gut health, it

is interesting to observe DHS peaks in stomach and intestinal tissues are significantly enriched

for the most strongly associated GWAS variants. Considered together, these results provide

insight into how host genetic variation may be acting to influence bacterial abundance in the

gut.
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The role of sex in gut microbiome composition

In addition to examining the role of host genetics in determining gut microbiome composition,

we also identified bacterial taxa that are differentially abundant by sex. In the Hutterites, at

least four bacterial taxa differ in abundance between the sexes each season, including genus

Scardovia, genus Gordonibacter, genus Anaerotruncus, and phylum Proteobacteria. These

abundance differences are directionally consistent across season and there are a number of

hypotheses for these observations. One potential explaination is that inherent biological differ-

ences between the sexes (for instance hormone levels) could drive the observed bacterial abun-

dance differences. Alternatively, the division of labor could drive sex specific differences

between men and women in Hutterite society[79]. For example, Hutterite men typically work

in the income-generating jobs, which vary by colony. Younger men might work in the fields,

barns, or machine shops, while older men take on positions of leadership in the colonies. In

contrast, Hutterite women perform family, domestic, and food preparation jobs, including

cooking, cleaning, gardening, and sewing. It is possible that men and women are exposed to

different environmental microbes due to differences in their daily activities. A similar notion

was suggested previously in a study of Hadza hunter-gatherers, where sex differences in the rel-

ative abundances of three taxa of the gut microbiome were observed[80]. The authors attrib-

uted those differences to the division of labor between men and women in that society (men

tend to forage further from camp and for different food sources than women, who remain near

to camp to stay with the children).

To further investigate these two hypotheses, we examined whether sex is associated with

bacterial abundances in additional populations, including individuals from the USA and Vene-

zuela, using the data produced by Yatsunenko et al.[46] (see Materials and Methods). If under-

lying physiological differences between the sexes leads to varied bacterial compositions, we

might expect to observe sexual dimorphism in the abundance of the same bacterial taxa across

different geographies and cultures. While 14 bacterial taxa showed significant differential

abundance by sex in the Yatsunenko USA population, none were significantly differentially

abundant after multiple testing corrections in the Venezuelan populations (S8 Table, S7 Fig).

Additionally, there was no overlap between the taxa identified as differentially abundant by sex

in the Hutterites or in the Yatsunenko USA population (S9 Table). Given the differences in

microbial exposures and in the uniformity of the environments within the Yatsunenko and

Hutterite populations, it is unclear whether sex differences in the microbiome are due to bio-

logical or cultural factors, or a combination of both.

In our previous study of seasonal effects on the gut microbiome in the Hutterites[18], we

did not observe differences in alpha diversity metrics (Shannon diversity, species richness, or

species evenness) between men and women in either winter or summer. Conversely, when we

considered individual bacterial taxon abundances we observed many sex differences in this

population. These results highlight an important phenomenon that should be considered in

microbiome studies: trends observed in broad summary statistics, such as diversity, are not

always observed at individual taxon levels and vice versa.

Limitations and conclusions

Although the results of our study indicate that host genetics plays a role in determining gut

microbiome composition, there are important limitations. The first is the relatively small size

of our sample (n� 100 individuals in each season). For many GWAS of common diseases, the

sample sizes necessary to detect significant associations are thousands to tens of thousands of

individuals. We proposed that the relatively uniform environment that the Hutterites are

exposed to, in particular their communal diet, would reduce variation due to non-genetic
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factors and increase our power to detect genetic associations. While this may be true, it is clear

that much larger sample sizes will be needed to ensure sufficient power to detect association

with the high multiple testing burden and for narrowing the confidence intervals on heritability

estimates. A second limitation is that published replication cohorts are not currently available

for these traits in humans and we are unable to confirm any associations we detect in indepen-

dent human samples.

Despite these limitations, we do replicate a previously observed bacterial abundance QTL in

mouse[30]. Additionally, the candidate tissue identification analysis provided additional vali-

dation of our results, as we would not expect any kind of enrichment if our results were all spu-

rious. Finally, several lines of evidence point towards a relationship of genus Akkermansia, in

particular, to host genetics, including genome-wide significant GWAS hits (Fig 3), endothelial

cell type enrichments for the top associations (Fig 4), and biological plausibility[56, 60]. Given

the medical importance of this genus[60, 81], further work should be performed to confirm

this relationship and further explore how host genetics might influence this taxon.

This study is one of the first to explore host genetic influences on gut microbiome composi-

tion on a genome-wide scale in humans. We identified bacterial taxa that show sex specific pat-

terns of abundance in the Hutterites, although it is unclear whether biological or cultural

factors are driving these patterns. We identified at least 10 bacterial taxa in each season that

appear to be heritable, by examining “chip heritability”. At least seven bacterial taxa in each

season are associated with variation in the human genome at a genome-wide significance level

when considering the number of SNP tested within each GWAS. Gene set enrichment analysis

demonstrated that the SNPs identified in these GWAS likely function through a variety of dif-

ferent mechanisms in the body including immune function, metabolism, and energy regula-

tion. Finally, candidate tissues where host genetic variation might act to influence microbial

abundance in the gut were identified. This work offers a first glimpse into the role human

genetics plays in maintaining gut microbiome composition.

Supporting Information

S1 Fig. Principal components analysis (PCA) of “seasons combined” analysis. PCA was per-

formed on all individuals (genus level data) after combining data that had been normalized

within season first. Quantile normalization within each season separately before combining

data eliminates seasonal differences along the top 10 principal components (PCs 1 and 2 plot-

ted here, linear model P> 0.05).

(TIFF)

S2 Fig. Bacterial taxa that show correlations with sex in at least two seasons examined. Each

of these bacterial taxa shows differential abundance by sex in at least two seasons examined.

For most bacterial taxa, the direction of association stays constant between males and females

regardless of season, pointing to consistent variation of bacterial abundance between the sexes.

Significance: q� 0.05 = �, q� 0.01 = ��, q� 0.001 = ���, ns = not significant). Bacterial taxa

include A) genus Clostridium, B) genus Collinsella, C) genus Gordonibacter, D) genusMitsuo-

kella, E) genus Scardovia, F) order Burkholderiales, G) phylum TM7.

(TIFF)

S3 Fig. “Chip heritability” across season. “Chip heritability” (or Percent Variance Explained,

PVE, circle) along with the standard error around the estimate (gray bars) is shown for the bac-

terial taxa observed in all three seasonal analyses. Bacterial taxa are ordered by the PVE in the

“seasons combined” analysis. Filled circles indicate taxa that had at least one genome-wide sig-

nificant SNP association in that season (either q� 0.2 or Bonferroni corrected). Open circles
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indicate taxa that did not have any SNPs associated with their abundance in that season after

correcting for multiple tests genome-wide.

(TIFF)

S4 Fig. Overlap of bacterial taxa showing evidence of heritability and GWAS signals. The

number of overlaps between bacterial taxa showing heritability (from “chip heritability” esti-

mation) and bacterial taxa with at least one genome-wide significant association from GWAS

is shown for each season with the colored, dashed line. A null distribution of overlaps expected

by chance given the number of bacterial taxa showing heritability and showing a GWAS hit

was calculated by permuting which bacterial taxa were labeled as heritable 1000 times. An

empirical p-value was calculated by dividing the number of overlaps observed in the permuta-

tions greater than the actual overlap by the total number of permutations (1000). This was

done for each season: A) winter, B) summer, and C) “seasons combined”.

(TIFF)

S5 Fig. Distribution of p-values from candidate tissue identification analyses. P-values were

calculated via permutation for each tissue for each bacterial taxon that had either non-zero

“chip heritability” or at least one genome-wide significant SNP. The number of expected asso-

ciations with a P� 0.05 is indicated with the red line on each plot. As can be seen from the his-

tograms, most tissues do not show enrichment for low GWAS p-value SNPs in DHS peaks

(large excess around P = 1). For winter (A) and summer (B), there are not more associations at

P� 0.05 than we would expect by chance. However, in the “seasons combined” analysis (C),

there is a slight excess of P-values� 0.05, indicating significant associations exist in this analy-

sis (although many false positives likely exist as well). Therefore, candidate tissue analysis for

winter and summer were not considered further.

(TIFF)

S6 Fig. Additional candidate tissues identified in “seasons combined” analysis. A, C, and E)

GWAS variants with increasingly low P-values (x-axis in (A), (C), and (E)) are enriched (y-

axis) in DNase Hypersensitivity Sites (DHS) for various tissues, compared to the genome-wide

distribution of GWAS SNPs falling in DHS peaks for that tissue. Identified tissues are listed in

the top left corner for each bacterial taxon examined (color matches lines on plot and order is

the same as order in the y-dimension in the lowest P-value bin). Any tissue not listed (drawn in

the thin, gray line) did not have significant enrichment in the lowest P-value bin. B, D, and F)

Boxplots (gray) indicate the null distribution of enrichments of SNPs in the lowest GWAS P-

value bin in DHS peaks for the given tissues calculated from GWAS permutations from (A),

(C), and (E), respectively. The actual enrichment of SNPs in the lowest GWAS P-value bin

overlapping DHS peaks for each tissue is indicated by the colored star. All enrichments shown

have a P� 0.05. A & B) family Neisseriaceae, C & D) family Pasteurellaceae, and E & F) genus

Dolosigranulum.

(TIFF)

S7 Fig. Distribution of p-values for sex correlations in Yatsunenko populations. A and C)

Histograms of the P-values for bacterial taxa correlated with sex in the USA (A) and Venezue-

lan (C) populations. B and D) Quantile-quantile plots (Q-Q plots) of the -log10(P-values) for

sex correlation testing in the USA (B) and Venezuelan (D) populations. In the USA, there is an

excess of low P-values, indicating many bacterial taxa show differential abundance by sex.

(TIFF)

S1 File. GWAS SNP enrichments in tissue DHS. This file directory contains three folders,

one for each seasonal analysis (winter, summer, “seasons combined”). Within each folder there
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is one text file per bacteria tested. Each text file contains 17 rows and variable numbers of col-

umns. Each row represents one tissue type as determined by clustering analysis of DHS peaks

(along with a header). Each column represents a GWAS p-value threshold examined. The min-

imum threshold chosen for each bacterium contains at least 50 SNPs. Entries are the enrich-

ment of GWAS SNPs under that threshold compared to genome-wide for that tissue type.

(ZIP)

S2 File. Gene set enrichment analysis (GSEA) results. This folder contains GSEA results for

all that had at least one genome-wide significant hit (either after Bonferroni correction or

q< 0.2). It contains three folders (one per seasonal analysis–winter, summer, “seasons com-

bined”). Each folder contains three files per bacterial taxa tested (categories from GO: BP

—"biological process", CC—"cellular compartment", MF—"molecular function"). Only GO cat-

egories with a q< 0.2 were examined. If a file contains only header information, there were no

significant enrichments.

(ZIP)

S1 Table. Taxa filtered out during QC. This table contains the list of bacteria that were

trimmed due to high correlation with another bacterium for the "winter", "summer", and "sea-

sons combined" analyses.

(XLSX)

S2 Table. "Chip heritability" for each bacterial taxon. This table contains proportion of vari-

ance explained (PVE) estimates ("chip" heritability) for the "winter", "summer", and "seasons

combined" analyses and reported by GEMMA.

(XLSX)

S3 Table. Tissue classification for enrichment analysis. This table lists the DNase Hypersen-

sitivity Site (DHS) sample names fromMaurano et al. and the tissue it was classified as using

the clustering procedure described in the methods.

(XLSX)

S4 Table. Candidate tissue p-values. This table contains P-values representing the significance

of enrichment of GWAS SNPs overlapping DHS peaks in each of the 16 tissues examined in

the lowest GWAS p-value bin tested for each bacterial taxon.

(XLSX)

S5 Table. Associations of bacterial taxa to age. This table contains tables of P-values and q-

values for age correlations done in GEMMA for the "winter", "summer", and "seasons com-

bined" analyses.

(XLSX)

S6 Table. Correlations of bacterial taxa to sex. This table contains tables of P-values and q-

values for sex correlations done in GEMMA for the "winter", "summer", and "seasons com-

bined" analyses.

(XLSX)

S7 Table. Top GWAS hits. This table contains all SNPs that met a genome-wide significance

threshold either with a P-value after Bonferroni correction or with a q-value< = 0.2.

(XLSX)

S8 Table. Associations of bacterial taxa to sex in Yatsunenko populations. This table con-

tains tables of P-values and q-values for the sex associations (linear model, see methods) for

the USA and Venezuelan individuals from Yatsunenko et al. A q-value< = 0.05 was
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considered significantly differentially abundant between the sexes.

(XLSX)

S9 Table. Overlap of differentially abundant bacterial taxa by sex in the Hutterite and Yat-

sunenko populations. This table lists the number of bacterial taxa that showed evidence of

being differentially abundant by sex in all three Hutterite seasons examined (winter, summer,

and “seasons combined”) and two of the Yatsunenko populations (USA and Venezuela). Only

the taxa identified as common in both populations examined were considered. The significance

of the overlap in bacterial taxa identified in each population is listed (see methods).
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