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Abstract

Development in the field of bio-mechatronics has provided diverse ways to 
mimic and improve the function of human limbs. Without an elbow joint, the hand 
remains stiff because all the muscles tension passes through this joint. Advanced 
myoelectric prosthetic devices are limited due to the lack of appropriate signal 
sources on residual amputee muscles and insufficient real-time control. Neural-
machine interfaces (NMI) are representing a recent approach to develop effective 
applications. In this research study, an NMI is designed that presents real-time sig-
nal processing for command generation. The human brain hemodynamic responses 
are, therefore, translated into control commands for people suffering from trans-
humeral amputation. A novel and first of its kind scheme is proposed which utilizes 
functional near-infrared spectroscopy (fNIRS) to generate the control commands 
for a three-degree-of-freedom (DOF) prosthetic arm. The time window for fNIRS 
signals was set to 1 second. The average accuracy was found to be 82% which is a 
state-of-the-art result for such a technique. The accuracy ranged from 65 to 85% 
subject-wise. The data were trained and tested on both artificial neural network 
(ANN) and linear discriminant analysis (LDA). Eight out of 10 motions were cor-
rectly predicted in real time by both classifiers.

Keywords: functional near-infrared spectroscopy (fNIRS), real-time signal 
processing, upper-limb prosthesis, transhumeral amputees, artificial neural 
network, linear discriminant analysis

1. Introduction

Amputation is taken from the Latin terminology “amputare” meaning to cut out. 
It is a removal of a limb due to medical reasons such as diseases and accidents. After 
this, an artificial device (prosthetics) is provided to fulfill all the desired needs. A 
prosthesis is an artificial device that replaces a missing body part that may be lost 
due to any traumatic accidents or medical reasons.

In the nineteenth century, hooks and wooden limbs were used as a replacement 
to fulfill the supporting needs to overcome support as well as the psychological 
effects experienced during the time. Prosthetic arm is a biomedical device consist-
ing of links and joints in an open or closed system, which is also a combination of 
electronics. Thus, there is a need for a specified prosthetic which would help in 
fulfilling the requirements of the patient.
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Prosthetics also come under different categories concerning the patient’s 
demand and desirable need. Table 1 lists the type of amputation and their respec-
tive prosthesis type.

Controlling a prosthetic arm could be done in several ways. Some of them are by 
using Invasive Methods, which reflects a process in which an instrument is intro-
duced in the human body. In such a process, electrodes are implanted inside the 
body, which would receive and implement the process. The other referred to as the 
non-invasive method. A non-invasion process does not introduce instruments into 
the body but uses the surface information to get its details and the desired output 
that is to be determined.

In the previous studies, various strategies have been practiced to monitor muscle 
activations all through activities, as reported by Lobo Prat et al. [1] To carry out a 
valuation of muscular contraction, sonomyography (SMG), mechanomyography 
(MMG) [2, 3], miokinemetric (MK), and electric impedance estimations are classi-
cally applied. Though muscular intentions and/or contraction are often determined 
using electromyography (EMG) and near-infrared spectroscopy (NIRS) [4], it 
allows continuous monitoring of the muscle during motor actions or rehabilitative 
movements. Further practices, such as ultrasonography [5] and lactate sampling, 
offer only a representation of the muscular status at the moment of the study, and 
not an effective trace in time.

Optical brain imaging is a frequently applied methodology in human-machine 
interaction technically acknowledged as functional near-infrared spectroscopy 
(fNIRS). It allows them to monitor the quantification of the relative changes in 
concentration of oxygenated and deoxygenated hemoglobin in tissue blood based 
on artificial diffuse spectroscopy. Functional neuroimaging suggests a non-invasive 
method of indirect as well as direct monitoring of brain activity. The hardware 
involved is portable hence making it easy to carry out experiments in any environ-
ment. fNIRS is a non-invasive brain imaging method including the quantification 
of chromophore concentration determined from the measurement of near-infrared 
(NIR) light attenuation or time-based changes [6]. It exploits the optical window in 
which the fundamental elements found in the human body typically cause no hin-
drance to infrared light of small wavelength range that is 700–900 nm. In addition 
to that, oxygenated hemoglobin (Hb) and deoxygenated-hemoglobin (deoxy-Hb) 
are strong absorbers of light which are the key components to translate the brain 
response [7]. The peculiarity in the absorption bands of deoxy-Hb and oxy-Hb 
permit the estimation of near changes in hemoglobin concentration by methods 
of estimating light attenuation at a couple of known wavelengths [8]. The reason 
behind choosing more than one wavelength is to take care of the isosbestic point 
that occurs at around 810 nm. At this value of light wavelength both the absorbing 
coefficients are indistinguishable [9].

Via the improved Beer-Lambert law [10], relative concentration is evaluated 
concerning the entire length covered by the light photon [11, 12]. Now, for an 

Types of amputation Types of prosthesis

Shoulder disarticulation From shoulder below the elbow

Transhumeral Above elbow

Transradial Below elbow

Transcarpal Below elbow

Table 1. 
Types of upper-limb amputation and respective prosthesis type.
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incident ray of light an emitter and to detect that reflected light, a detector is posi-
tioned. The distance between them is also defined. Hence, a state of brain hemody-
namic is captured. The raw light concentrations that are further transformed into 
hemodynamic responses by the implementation of renowned Beer-Lambert Law 
and further utilized for feature extraction and classification. The extracted light 
intensity patterns can be viewed in Figure 1.

Several research institutions have undertaken the design and construction of 
robotic arms. These structures diverge depending upon the proposed utilization of 
the human hand. Diverse knowledge of actuation approaches has been considered 
and implemented. Earlier design approaches have focused on the mechanical 
problems of the construction and operation of the prosthetic devices. Most of these 
hardware devices are controlled via methods that are not natural, such as using 
the contraction of muscles of the opposite arm. This research attempts to lay the 
foundation for a scheme that can offer functionality similar to the human arm, with 
an intuitive technique of control.

A search carried out using Web of Science engine, to review work done in this 
area along with the gap identification, revealed no work done so far in this field 
of study.

2. Materials and methods

The human arm is capable of performing seven basic motions associated with 
joints in the human arm. To account for transhumeral amputation, three of the 
main arm motions are considered i.e. one elbow and two motions affiliated with 
the wrist joint. These motions comprise wrist extension (WE), elbow flexion (EF), 
wrist supination (WS), wrist flexion (WF), elbow extension (EE), and wrist prona-
tion (WP).

This section elaborates on the data acquisition of the defined motions. These 
motions were captured using The NIRsport manufactured by NIRx Technologies. 
It is an accessible, segmental, and robust functional near-infrared spectroscopy 
(fNIRS) machine that measures hemodynamic responses generated by neuro-
activation of the inside brain via oxy-, deoxy-, and total hemoglobin variations in 
the cerebral cortex.

The updated version, NIRsport-2 proposes a host prepared to implement 
advancements and units to meet the requirements of wide-ranging cognitive 

Figure 1. 
Raw fNIRS light intensity.
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neuroscience applications. The major advantage of this device is that it is designed 
to work in a rugged environment and also this device is portable. This feature aids in 
the development of a wearable and portable system.

2.1 Sample

A total of 15 healthy subjects were engaged who were reported to be right-
hand dominant males having a mean age of 30 with a standard deviation of 4. 
Righthanders had been pursued to confine any dissimilarities in the hemodynamic 
responses because of the hemispheric domination difference [13]. All participants 
were chosen wisely as no one of the selected subjects had engaged in any prior study 
associated with brain signal acquisition experiments. None was accounted for to 
have a past filled with any mental, neurological, or visual affliction. Every one of 
them had an ordinary vision, and all signed and agreed to a composed consent after 
being briefed in detail regarding the test procedure. Three amputee subjects also 
participated in the study. Their demographics are given in Table 2.

Trials employing fNIRS were permitted by the Air University Human Research 
Ethics Committee (HREC). These research experiments were held regarding ethical 
standards dictated by the world medical association in the recent declaration of 
Helsinki [14].

The generic methodology can be seen in Figure 2.

2.2 fNIRS data acquisition

2.2.1 Preparation

The specially designed fNIRS headset i.e. Easycap by NIRx technologies  
follows the international standard of source-detector separations i.e. 3 cm [15–24]. 
After the subject wears the cap, the optodes are calibrated. The result of this calibra-
tion can be analyzed as in Figure 3. The faulty setting is shown in Figure 3(b). 
The boxes represent optodes. The color bar indicates if the optodes are in contact 
with the scalp or not and hence the colors are assigned. The white color depicts no 
connection between scalp and optodes. The red color indicated that the connection 
between the scalp and optode is critical, i.e. it needs to be adjusted. Sometimes 
hair comes as a hindrance and just by plugging the optode again in the cap would 
help establish a better connection. If the issue is not resolved by then, a clinical 
gel (EASYCAP Supervisc, high-viscosity electrolyte-gel) is used to make sure no 
hair absorbed the light. The gel is rated healthy and is safe to use with optodes. The 
yellow color indicates that the connection is acceptable. The signals can be acquired. 
In this scenario, the machine conditions are calibrated by the machine itself. The 
machine adds a gain factor to the optodes where the connection is acceptable and it 

Patient ID A1 A2 A3

Gender Male Male Male

Age 23 32 42

Amputated side Right Left Right

Residual length (cm) 14 18 10

Time of amputation (months) 7 24 145

Table 2. 
Demographic characteristics of amputed subjects.
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is saved in conditions file which is used in signal processing later. The green color 
shows that the optodes are perfectly placed on the head surface and an excellent 
connection is established for data acquisition. It can be analyzed in Figure 3(a).

2.2.2 Acquisition

When the optodes are aligned, signal acquisition is started. The test strategy was 
segmented into training and testing. The subjects were asked to complete six tasks 
that were identified by fNIRS.

A comfortable chair was set up roughly 100 cm away from the subjects so that 
the motion cues are visible to them while the screen backlight does not interfere 
with the optical sensors [25–38]. This environment was set up for signal extraction. 
The Easycap was prepared in advance to minimize the time consumption during the 
optode placement process. Yet some of the detectors/sources had to be optimized 
during the calibration process by fixing hair via gel. The session commenced with 
an undeveloped span of 30 seconds to create a reference point. Later the screen 
indicated the participants to perform one of six definite tasks the training was 

Figure 2. 
Generic methodology.

Figure 3. 
Visual representation of optode settings. The perfect setting is illustrated in (a) meanwhile the faulty optode 
settings are shown in (b). The color bar on the right side represents the signal quality class.
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additionally divided into two parts. In the first part, all the tasks were recorded 
sequentially, i.e. the sequence of the tasks was pre-defined. In the second stage, the 
subjects were demanded to perform similar motions but with random intentions. 
All these six tasks were logged by fNIRS. Each task comprised of 10-second trials 
separated by a 20-second rest session. Particulars about the experimental model are 
given below in Figure 4.

The acquired data was then processed and is briefly illustrated in the coming 
section.

3. Data analysis

3.1 Pre-processing

This section explores and explains the signal processing which includes signal 
pre-processing, optode selection criteria, statistical feature computation, and the 
signal classification method to generate a control command for the control of a 
3-DOF prosthetic arm designed for transhumeral amputees.

Functional near-infrared spectroscopy is the raw light intensity values recorded 
during a change in oxygenation and de-oxygenation of the blood in the human 
brain. With the help of dual-tip optodes, this concentration is recorded with two 
different wavelengths i.e. 760 and 850 nm. In the nirsLAB environment, the data 
is further processed. nirsLAB is the signal processing software that comes with the 
machine. nirsLAB is fully aware of the specifications and conditions applied during 
signal acquisition, hence the best choice for signal processing. The unwanted data is 
truncated along with unusual spikes or discontinuities that occurred during acqui-
sition. It is then filtered to compute the hemodynamic states. These hemodynamic 
states are now utilized to extract the features.

As soon as the light intensities are acquired, they are fed to nirsLAB where first 
the time of stimulus is defined which in our case is 10 seconds as per the designed 
experimental paradigm. The data is further marked according to the conditions i.e. 
motion and rest.

Figure 5 represents the raw fNIRS data of both wavelengths i.e. 760 and 850 nm. 
It is evident that the amplitude for both data sets is different as the concentra-
tion of hemodynamic response is varying from healthy to the amputated subject. 
This is because of the absence of an arm. As the brain generates these signals, the 
unwanted responses die due to the absence of neuron carrier in the brain. The 
connection of arm and brain is cut because there is nothing present at the receiving 
end. Further, the discontinuities are removed along with the spikes if there exists 
any. The data is then fed for filtration. nirsLAB provides the commonly practiced 
filters for fNIRS data. Band-pass filter was implemented to smooth the acquired 
light intensities. The filtered and raw data at both the wavelengths are illustrated 
below in Figure 6.

Figure 4. 
Experimental model for signal acquisition.
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nirsLAB makes use of firls and filtfilt MATLAB® commands to filter the data. 
firls returns the parameters of a linear-phase filter, while filtfilt applies the filter 
parameters into the data. The latter is set to work as finite impulse response (FIR). 
The roll-off defines the width of the transition frequency band, i.e. how steep the 
transition between frequencies which are cut and frequencies which are passed for 
each of the upper and lower limits of frequency. The width of the transition band is 
calculated as Eqs. (1) and (2):

 
−

= +Upper limit 1
2

Roll off
 (1)

 
−

= −Lower limit 1
2

Roll off
 (2)

This noise-free and minimum artifact data are then used to find the hemody-
namic states by using the modified Beer-Lambert Law [10, 39–41].

This light intensity raw data is then used to compute the hemodynamic response 
of the brain. The hemodynamic changes computed offline in nirsLAB are based on 
the modified Beer-Lambert law for scattering media, as mentioned above. While 
in nirsLAB the operator can modify all input parameters of the Beer-Lambert law 

Figure 5. 
The first chunk of fNIRS data according to the defined experimental paradigm is illustrated. The initial and 
final rest is truncated. (a) fNIRS signals of healthy subjects and (b) fNIRS signals acquired from amputee 
subject.
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(absorption coefficients and inter-optode distance), in NIRStar®, these are fixed, 
as they are calculated real-time. More precisely, the values for real-time ΔHbO and 
ΔHb computation are as follows:

Absorption coefficients are 3.843707 and 1.4865865 for 760 nm, deoxy and oxy, 
respectively, and for 850 nm, 1.798643 and 2.526391 deoxy and oxy, respectively.

The default inter-optode distance is set to 3.0 cm and the absorption coefficient 
unit is millimole per liter per centimeter (1/cm)/(mmol/L).

Figure 6. 
(a) The filtered data for both wavelengths after filtering can be seen in this illustration. Band-pass filter has 
range of 0.01–0.2 Hz. The roll-off was set to 15 as a default value. (b) The same signal is smoothed and as it 
is a large time-series, (c) a chunk of signal for a closer look is illustrated which is for the first 5 seconds of the 
activity during the task.
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Mathematically, it is defined as Eq. (3)

 ( ) ( ) ( ) ( )A  . c. d.DPF  g∆ λ = ∆ λ +λε λ  (3)

where the variables can be defined as A: light reduction, or ∆A(λ): changes in 
light reduction at a given wavelength (λ); ε(λ): loss of the chromophore at a certain 
wavelength (λ); ∆c: changes observed in the chromophore absorption; d: distance 
between source and detector; DPF(λ): differential path length factor (DPF) for a 
certain wavelength (λ); g(λ): the scattering of the light wave at a certain wavelength 
(λ), where g is annulled since it is presumed to be insignificant when only light 
attenuation (as in continuous-wave NIRS) is considered [20, 36, 42–47].

The differential path length factor (DPF) is a dimensionless modification factor 
that takes care of the increase in the optical path length that is produced by the scat-
tering of light in organic tissue. The product of DPF and source-detector separation 
evaluates the “true” path length that the light has traveled inside the biological 
tissue cell [37, 38, 48, 49]. For NIRx technologies, this value is set constant for 
wavelengths 7.25/6.38 for 760/850 nm respectively.

3.2 Feature extraction

The mathematical representation of statistical features extracted during the 
study is given as follows.

Signal mean (SM) was computed as Eq. (4)

 
=

= ∑
N

i
i 1

1
X

N
SM  (4)

where N denotes the length of the data points within a segment and Xi repre-
sents the signal values.

Signal peak (SP) is defined by the change in signals amplitude among two 
adjacent segments which surpass a predefined threshold to reduce noise. It is given 
by Eq. (5)

 ( )+
=

= −∑
N

i i 1
i 1

f X XSP  (5)

where N represents the samples while Xi and Xi+1 represent the successive 
peaks in the signal. These features are extracted and fed to the classifier to predict 
the motion.

4. Classification process

The statistical features extracted from the data sample are then fed to the classifier. 
Classifying methods are employed to predict the motion intention. To comprehensively 
evaluate the performance of features, the two widely used classifiers in pattern recog-
nition were implemented, namely, linear discriminant analysis (LDA) and artificial 
neural network (ANN). A generic yet comprehensive process is illustrated in Figure 7.
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4.1 Linear discriminant analysis

Fisher’s discriminant analysis or linear discriminant analysis is a method used 
to dimensionally contract samples of two or more classes to separate them, linearly. 
This classification method projects all the samples on an imaginary line which is use-
ful for data classification. To cater for the word linear, it suggests that the classifier 
will dimension the given samples to represent the class information. It characterizes 
the resulting combinations to reduce the number of arbitrary samples by tracing a set 
of values in a distinct form. It anticipates the sample information so that each class is 
isolated without any problem. It decreases intraclass variance and increases the inter-
class mean. By doing this, unlike data samples become segmented from each other 
and their set point shrinks together so that they cannot be mixed with other classes.

LDA is commonly used for pattern classification in offline and online systems. 
This technique projects all the data points on a line in such a way that each data sample 
that corresponds to a class is separated effectively. It decreases the intra-class variance 
and increases the inter-class mean. By doing this, different classes become separated 
from each other, and their data points get closer together so that they cannot be mixed 
with other classes. LDA works by maximizing the Fisher’s criterion given in Eq. (6)

 ( ) =
t

B

t
w

v S v
J v

v S v
 (6)

Between classes scatter matrix S_B is defined as in Eq. (7)

 ( )( )
i

c
t

B i i i

x

S n µ µ µ µ= − −∑  (7)

where ni represents several samples that belong to class i, the class scatter matrix 
Sw is defined as in Eq. (8)

 
( )
( )( )

i i k

c c
t

w i k i k i

x x x Class i

S S x µ x µ
∈

= = − −∑ ∑ ∑  (8)

Figure 7. 
A generic classification process.
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A generalized eigenvector problem can be represented as Eq. (9)

 B wS v = S vλ  (9)

The optimal v is the eigenvector corresponding to the largest eigenvalue can be 
written represented as in Eq. (10) provided that Sw is nonsingular.

 ( )1

W iS µ µv
−= −  (10)

The classifier results were validated using the cross-validation scheme. The 
number of folds/layers was set to 10. It means that the entire data was mixed ran-
domly into 10 groups, out of which nine took part to train the classifier while one 
remains untouched for testing purposes. This process was repeated 10 times until all 
groups were tested against each other.

As an initial measure, the attributes of the dataset which need to be classified 
or dimensionally contracted will lead to the choice of applying this method as a 
classifier or a dimensionality reduction algorithm to play out any desired task. The 
primary thought of Fisher’s analysis is fundamentally to isolate sample classes lin-
early moving them to an alternate feature-space. In this way, if the considered data 
set is linearly distinguishable, just using the algorithm as a classifier will yield better 
results. In any case, if the dataset is not truly distinct the classifier will attempt to 
sort out this dataset in another space. Yet despite every measure, the classes sample 
data may overlap due to the non-linear characteristic present in the sampled dataset. 
For this situation, there emerges a need to utilize another grouping model to man-
age nonlinearities governing the dataset. Hence, a neural network that comprise of 
hidden layers is also implemented. As for the neural network, raw data is used as 
input rather than featured data. This will give a broader idea of how to predict any 
output based on the input that have non-linear characteristic.

4.2 Artificial neural network (ANN)

ANN utilizes multiple neuron layers to map data from one distribution to 
another for better and optimized classification. A technique called backpropaga-
tion helps ANN to learn the relationship between input and output class label. The 
neural network toolbox provided by MATLAB® was utilized to train the classifier. 
First, network topology and an activation function were defined and then weights 
were randomized. The model uses all training data to approximate the error of the 
predicted output as compared to the actual output. Then it uses the error to adjust 
the weights so that it could be minimized for the next training data and this process 
was repeated until the error was minimized. For this network we employed Relu as 
the activation function; the weights were initialized using the Xavier distribution, 
the network utilized the Adam optimizer function for gradient descent. We used 
60% of data for training, and 20% for testing and validation each. A confusion 
matrix was generated afterward, which had a class number corresponding to each 
arm motion. The number of hidden layers was specified i.e. 10, and system training 
was initiated. Ten neurons were present in each of the intermediate hidden layer. 
The number of neurons in output or last layer was set to be 6, which is equal to the 
number of elements in the target vector.

After classifying the information, their real-time testing was performed to 
ensure the behavior of both classifying techniques. But bear in mind that both of 
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these classifiers have different parameters and methodologies. They are not com-
pared with each other here but they are implemented to grasp a comprehensive idea 
of how these different brain hemodynamic intentions can be evaluated. LDA and 
ANN were both applied separately and the outcomes are discussed in next section.

5. Results and discussions

In research, the neural-machine interfaces can have a control foundation of 
either a single modality or via hybrid activity. This present study dwells on captur-
ing hemodynamic responses from the human brain and generating the control com-
mand that can be translated to activate a prosthetic arm for transhumeral amputees. 
The results found by this particular research are discussed as follows.

These hemodynamic states are mapped using nirsLAB in Figure 8. The color bar 
represents the concentration of oxygenation.

5.1 Channel selection

The changes in oxygenated hemoglobin ΔHbO for all 20 channels and six activi-
ties of subject 6 are demonstrated in Figure 9. All of the optodes were not capturing 
the true concentration changes while brain activity was performed by the subject. 
Nevertheless, it was observed that similar channels were active when identical 
motions were executed while signal acquisition.

The channel outputs in Figure 8 serve to highlight the need for choosing good 
channels for recognizing true brain activities. According to our channel choice 
standard, signal averaging was used. It is understandable by human brain studies 
that when the right side of the human body is in motion, the left hemisphere of 

Figure 8. 
The color bar represents the concentration of oxygenation. Brain activity is shown in (a) the illustration 
represents condition 1 i.e. motion. It can be seen that the motor region is “hot” when compared to the color 
bar. It depicts motion state whereas the (b) shows that the brain is undergoing significantly low or minimal 
hemodynamic changes hence the “cool” values depicting the condition 2 i.e. rest. The red and yellow dots seen in 
the motor cortex region are representations of optodes and they were positioned according to the international 
system.
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the human brain is activated. As in our case, the subjects were asked to move their 
right hand, it is obvious that the hemodynamic patterns occurring in the right 
hemisphere are merely noise. It can be seen in Figure 8 that all the channels of 
right hemisphere i.e. channels 1–10 do not show significant activity and later they 
were discarded while classification. The left side of the motor cortex was however 
active and the channels from 11 to 20 were used to extract the statistical features 
which took part in the classification. Features were computed spatially which 
allowed the overall brain activity on the left side of the motor cortex region of the 
human brain.

Window sizing of diverse spans has been utilized in several studies for the 
detection of fNIRS features [50, 51]. It is intended to minimize the window size 
to generate a fast response for real-time applications. So, the time spans of 0–0.5, 
0–1, and 0–2 second windows were selected. These split seconds were employed for 
investigation of hemodynamic features to secure the best window size that will aid 
in decreased calculation time.

5.2 Classification accuracy

The stated performance outcomes were statistically evaluated based on the 
number of correctly predicted samples while the activity was completed during the 
period of 0–10 seconds. These actions were assessed by MATLAB® implementing 
the 10-fold cross-validation course. Student’s t-test was performed to establish the 
statistical significance of the obtained results. The confidence interval was set to 
95% (p < 0.05). The quantitative comparison between healthy subjects and ampu-
tees was not possible due to a limited number of amputees. The computed p-value 
was 0.0337 considering a 95% confidence interval. The classification accuracies of 
the subjects are shown in Figure 10.

A confusion matrix is illustrated in Table 3 where it is evident that the wrist 
pronation and supination cause the most confusion. From time to time the subject 
executes the actions and sometimes put a break to them. In so doing the muscle 
intention power descend below the threshold and is not detected, and subsequently 
tagged as uncounted or undetected.

In common practices, in addition to muscular fatigue, mental fatigue could 
likewise show up. This would affect the unwavering quality of the fNIRS signal. 
Frequent use of nicotine substances involving tea or coffee and weak eyesight are 

Figure 9. 
Optode-wise hemodynamic status visualization.
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accounted for in such reliability. The motion prediction accuracy of an individual 
can be changed under the influence of such conditions.

5.3 Control command generation

After the results from the classifier are returned, they are translated into a con-
trol command. The motions are assigned abbreviations identical as used in Section 
2. They are listed here as in Table 4.

While testing, the machine responds as the variables illustrated in Table 4 that 
are assigned to each class motion. The controllers further single-out one definitive 
motion which can be analyzed while testing the data.

These control commands can be further translated to motor action via a control-
ler such as Arduino, Raspberry Pi, Odroid, etc. as the program routine is written in 
a language supported by all these controllers. A three degree of freedom device can 
be actuated using this neural-machine interface scheme.

To eliminate the channel selection part, manufacturers are working on bundled 
optodes. Using these bundled optodes will not only eliminate the channel selection 

Output class 1 2 3 4 5 6

Target class

1 5010

100.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2 0

0.0%

4978

99.3%

12

0.3%

0

0.0%

0

0.0%

0

0.0%

3 0

0.0%

0

0.0%

3648

73%

720

14.4%

0

0.0%

0

0.0%

4 0

0.0%

20

0.4%

630

12.6%

3617

72.1%

0

0.0%

0

0.0%

5 0

0.0%

0

0.0%

0

0.0%

0

0.0%

5001

99.8%

0

0.0%

6 0

0.0%

0

0.0%

0

0.0%

23

0.5%

9

0.2%

4978

99.3%

Table 3. 
Confusion matrix of motion prediction.

Figure 10. 
A representation of subject-wise accuracies. Healthy subjects are presented as S1–S15 whereas amputees are 
labeled A1–A3. All concerning classifying technique as LDA and ANN.
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complications but it will also help in physical attributes as the whole head will not 
be covered. It will be easy to wear the head cap because of a smaller number of 
optodes and wires going around.

Also, using a different feature set may aid in the increase in accuracy. Rather 
than extracting three or four features, only one optimal feature can be evaluated. 
Hybridization of bio-signals can be done using advanced probability models 
or neural networks can be trained and implemented to hybridize different 
modalities.

6. Conclusion

fNIRS signals were acquired using the NIRSport machine developed by NIRx 
technology. These signals were recorded for six motions i.e. elbow extension (EE), 
elbow flexion (EF), wrist supination (WS), wrist pronation (WP), wrist extension 
(WE) and wrist flexion (WF) and were further analyzed. Mean and peak feature 
was extracted from the hemodynamic response of the brain. Also, minimum 
values were extracted for channel selection. The hemodynamic responses acquired 
from the brain were trained and tested by two widely used classifiers in pattern 
recognition i.e. LDA and ANN. The highest value of accuracy for an individual 
subject was recorded at 85% which is not yet achieved with six control commands 
employed by fNIRS. Both the classifiers were also active for real-time analysis. As 
a result of such high value of training accuracy, 8 out of 10 motions were cor-
rectly predicted in real-time setting. Possible extension of this work could be to 
hybridize these fNIRS signals together with another signal modality to not only 
increase the accuracy but also the number of control commands. Arm movement 
pattern for different age groups can be further explored. The number of amputed 
subjects could be increased to acquire data which will aid in better understanding 
of hemodynamic behavior of human brain and how it can be used to predict the 
arm motions.
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Motion Notation

Extension of elbow EE

Flexion of elbow EF

Pronation of wrist WP

Supination of wrist WS

Flexion of wrist WF

Table 4. 
Class labels.
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