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Preface

The purpose of this book is to introduce ‘analytics’ to practicing water engineers so that they can 
incorporate the covered subjects, approaches, and detailed techniques within their daily operations, 
management, and decision-making processes. Also, undergraduate students as well as early graduate 
students who are in water and environmental systems concentration areas will be exposed to 
established analytical techniques, along with many methods that are currently considered to be new 
or emerging and maturing.

This book covers a broad spectrum of water industry analytics topics in an easy-to-follow manner. 
The overall background and context are motivated by (and directly drawn from) actual water utility 
projects that we have worked on over numerous recent years. Many chapter authors are the editor’s 
previous students and collaborators that have worked together. We strongly believe that the water 
industry should embrace and integrate data-driven fundamentals and methods into their daily 
operations and decision-making process(es) in an effort to replace more traditional and established 
‘rule-of-thumb’ and (arguably) weaker heuristic approaches – and an analytics viewpoint, approach, 
and culture is key to this industry transformation. Analytics can support numerous aspects of water 
utility planning, operations, and management, and the organization of this book naturally follows 
pace by including three principal sections – planning, operations, and management.

Water is essential for human well-being and survival, and throughout the water industry, it is 
becoming increasingly imperative that in-house analytics capability and championship be developed 
and integrated to address the current and transitional challenges we face. Again, one of our main 
contentions is that analytics will contribute substantially to future efforts aimed at providing 
innovative solutions that make the water industry more sustainable and resilient. We sincerely hope 
that this book provides a range of learning experiences that help to share and expand this view.

Juneseok Lee, Editor
Manhattan College

Jonathan Keck, Editor
Water First, LLC
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Two decades into the 21st century, the water industry landscape is going through a major transformation 
brought about by the confluence of a number of powerful forces, including: (1) exposure to an 
increasingly complex and interdependent set of regulations and standards; (2) challenges in climate, 
environmental, and socio-economic patterns and processes (including citizen expectations); and (3) 
growing computational capacities paired with the accumulation of large amounts of performance data 
(from cheaper and more distributed sensors) coinciding with the fourth industrial revolution (IR4) 
of the internet of things (IoT), and data analytics. We strongly believe that water industry needs a 
paradigm shift that is commensurate with these rapid transformations.

Recent advances in analytics have the potential to fundamentally impact water industry planning, 
operations, and maintenance processes, particularly in complex interdependent infrastructure 
systems. Advanced analytics can be used to holistically identify and address problems at the system(s) 
level. This approach is particularly desirable in the case of complex infrastructure projects with 
multiple interdependent and interacting components. Successful system identification relies on the 
availability of abundant data for training algorithms such as artificial neural networks. Understanding 
data structures and the systematic storage and classification of data, particularly in the context of 
advanced data analytics/science methods such as machine learning (ML) and artificial intelligence 
(AI), are crucial skillsets that will be in high demand.

1.1 WHAT IS ANALYTICS?

Analytics is the process by which meaningful insights are extracted from available data. While 
analysis refers to the process itself, analytics includes the science behind the analysis and all the 
steps that precede (data needs, data collection, etc.) and follow (recommendations, implications, etc.) 
the analysis. The deep insights gained through analytics are primarily used for decision support, that 
is, recommending specific policies or actions. Analytics has evolved over the years from descriptive 
(What has happened?) to diagnostic (Why did it happen?) to predictive (What could happen?) to 
prescriptive (What action could be taken to promote/preempt a particular outcome?) (Keck & Lee, 
2021). As many researchers and industry leaders have noted (see, e.g., Chastain-Howley, 2018; Karl 
and Wyatt, 2018; Lunani, 2018), the next significant paradigm shift will be towards cognitive analytics, 
which will exploit recent advances in high-performance computing (HPC) by combining AI and ML 
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2 Embracing Analytics in the Drinking Water Industry

techniques. In particular, Karl and Wyatt (2018) pointed out that industries are reviewing or using less 
than 10% of their data, often overlooking key insights and opportunities to become more efficient in 
terms of operations and management. They concluded that society would benefit from the greater use 
of analytics to transform data into systems-level and actionable intelligence.

To cope with existing and emerging problems more effectively, our 21st-century infrastructure 
and quality of life goals and challenges demand a paradigm shift towards innovative approaches. 
According to the Engineer’s Creed (first adopted by the National Society of Professional Engineers 
in June 1954), professional engineers should dedicate their professional knowledge and skill to the 
advancement and betterment of human welfare. This is, of course, especially true for water engineers 
who deal with our fundamental infrastructure, as these systems have a direct and significant impact 
on public safety, health, and welfare.

1.2 HOW CAN ANALYTICS HELP THE WATER INDUSTRY?

With sensors becoming less expensive and ubiquitous, many of the nation’s water infrastructure 
elements are now being monitored in real-time, with vast amounts of data being collected. To augment 
this data, end-to-end simulations are being developed (e.g., digital twins) that have the predictive power 
to characterize region-wide performance of various systems under rare events for which observational 
data does not exist. These extensive datasets are waiting to be mined by system condition diagnosis 
tools that can be used to prioritize, plan, and carry out mitigative actions, including repairs and 
replacements, with sustainability and resilience becoming core objectives.

Drinking water industries protect public health and improve social wellbeing by operating and 
maintaining water infrastructure to provide safe and reliable water to customers. Having a better 
understanding of causality in drinking water infrastructure systems can help utilities and the entire 
water industry address gaps in the knowledge base and identify research needs. We strongly believe 
that analytics can support many aspects of drinking water industry planning, operations, and 
management. We also believe it is imperative that water utilities have in-house analytics championship 
as well as capacity to be integrated into their daily work to face the emerging challenges in the drinking 
water industry. In this vein, analytics will contribute significantly to providing innovative solutions 
toward more sustainable and resilient water industries. Therefore, it is critical that our drinking water 
industry adopt and integrate water-centered analytics practices, culture, and perceptions in-house. 
And finally, we strongly believe that the opportunity cost of not keeping up with these new industry 
trends will be extremely high in terms of missed opportunities for better systems management and 
improved public health and safety.

1.3 EFFECTIVE UTILITY MANAGEMENT

In May of 2006, the Association of Metropolitan Water Agencies (AMWA), the American Public Works 
Association (APWA), the American Water Works Association (AWWA), the National Association 
of Clean Water Agencies (NACWA), the National Association of Water Companies (NAWC), the 
United States Environmental Protection Agency (USEPA), and the Water Environment Federation 
(WEF) all entered into a Statement of Intent to ‘formalize a collaborative effort among the signatory 
organizations in order to promote effective utility management’. These ‘Collaborating Organizations’ 
chartered the Effective Utility Management Steering Committee (Committee) to advise them on a 
future joint water utility sector management strategy applicable to water sector utilities across the 
country. The Committee found that water sector utilities across the country face numerous common 
challenges, such as rising costs and workforce complexities, and need to focus attention on these 
areas to deliver quality products and services and sustain community support. Within this context, 
the Committee identified four primary building blocks of effective water utility management, which 
would later become the basis of a future water utility sector management strategy. These foundational 
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elements are listed next, and also described in more detail below: (1) Attributes of Effectively Managed 
Water Sector Utilities; (2) Keys to Management Success; (3) Water Utility Measures, and; (4) Water 
Utility Management Resources (USEPA, 2007).

1.3.1 Foundational element #1 – attributes of effectively managed water sector utilities
The Committee identified ‘Ten Attributes of Effectively Managed Water Sector Utilities’ (Attributes) 
that provide a focused overview of where effectively managed utilities should be active, and what they 
should strive to achieve. Further, the Committee recommended that the water utility sector adopt and 
utilize these Attributes as a basis for promoting improved management within the sector. The Ten 
Attributes further detailed in Table 1.1 are as follows: (1) Product Quality; (2) Customer Satisfaction; 
(3) Employee Leadership and Development; (4) Operational Optimization; (5) Financial Viability; (6) 
Operational Resilience; (7) Community Sustainability; (8) Infrastructure Stability; (9) Stakeholder 
Understanding and Support, and; (10) Water Resource Adequacy. The Ten Attributes can be viewed 
as a continuum of management improvement opportunities, and are not listed in any particular order, 
since utility managers will determine their relative and weighted importance and applicability based 
on individual utility circumstances (USEPA, 2017).

1.3.2 Foundational element #2 – keys to management success
As a complement to the Ten Attributes, the Committee also identified five ‘Keys to Management 
Success’, which are considered to be approaches and systems that foster and continually support 
utility management success. The Committee recommended that the Keys to Management Success be 
referenced and promoted with the Attributes to enable more effective utility management within the 
sector.

1.3.2.1 Leadership
Leadership plays a critical role in effective utility management, particularly within the context of 
driving and inspiring change within an organization. In this context, the term ‘leaders’ refers to both 
individuals who champion improvement, and also to leadership teams that provide resilient, day-to-
day oversight, management continuity, and direction. Effective leadership ensures that the utility’s 
direction is understood, embraced, and followed on an ongoing basis throughout the management 
cycle.

1.3.2.2 Strategic business planning
Strategic business planning helps utilities balance and drive integration and cohesion across the 
Attributes. It involves taking a long-term view of utility goals and operations and establishing an 
explicit vision and mission that guide utility objectives, measurement efforts, investments, and 
operations.

1.3.2.3 Organizational approaches
A variety of organizational approaches can be critical to management improvement. These approaches 
include establishing a ‘participatory organizational culture’, which seeks to actively engage employees 
in improvement efforts, deploys an explicit change management process, and uses implementation 
strategies that seek early, stepwise victories to build momentum and motivation.

1.3.2.4 Measurement
A focus and emphasis on measurement is the backbone of successful continual improvement in 
management and strategic business planning. Successful measurement efforts are reasonably viewed 
on a continuum, starting with basic internal tracking.
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1.3.2.5 Continual improvement management framework
A ‘plan, do, check, act’ (PDCA) continual improvement management framework typically includes 
several components, such as conducting honest and comprehensive self-assessments, establishing 
explicit performance objectives and targets, implementing measurement activities, and responding to 
evaluations through the use of an explicit change management process (Figure 1.1).

Table 1.1 Ten attributes of effectively managed water sector utilities.

Product quality Customer satisfaction

Produces potable water, treated effluent, and process 
residuals in full compliance with regulatory and reliability 
requirements and consistent with customer, public health, 
and ecological needs

Provides reliable, responsive, and affordable 
services in line with explicit, customer-accepted 
service levels. Receives timely customer feedback 
to maintain responsiveness to customer needs and 
emergencies

Employee and leadership development Operational optimization

Recruits and retains a workforce that is competent, 
motivated, adaptive, and safe-working. Establishes a 
participatory, collaborative organization dedicated to 
continual learning and improvement. Ensures employee 
institutional knowledge is retained and improved upon over 
time. Provides a focus on and emphasizes opportunities for 
professional and leadership development and strives to create 
an integrated and well-coordinated senior leadership team

Ensures ongoing, timely, cost-effective, reliable, 
and sustainable performance improvements 
in all facets of its operations. Minimizes 
resource use, loss, and impacts from day-to-day 
operations. Maintains awareness of information 
and operational technology developments 
to anticipate and support timely adoption of 
improvements

Financial viability Operational resiliency

Understands the full life-cycle cost of the utility and 
establishes and maintains an effective balance between 
long-term debt, asset values, operations and maintenance 
expenditures, and operating revenues. Establishes 
predictable rates that are consistent with community 
expectations and acceptability, and are adequate to recover 
costs, provide for reserves, maintain support from bond 
rating agencies, and plan and invest for future needs.

Ensures utility leadership and staff work together 
to anticipate and avoid problems. Proactively 
identifies, assesses, establishes tolerance levels for, 
and effectively manages, a full range of business 
risks (including legal, regulatory, financial, 
environmental, safety, security, and natural 
disaster-related) in a proactive way consistent 
with industry trends and system reliability goals

Community sustainability Infrastructure stability

Is explicitly cognizant of and attentive to the impacts its 
decisions have on current and long-term future community 
and watershed health and welfare. Manages operations, 
infrastructure, and investments to protect, restore, and 
enhance the natural environment; efficiently use water and 
energy resources; promote economic vitality; and engender 
overall community improvement. Explicitly considers a 
variety of pollution prevention, watershed, and source 
water protection approaches as part of an overall strategy 
to maintain and enhance ecological and community 
sustainability

Understands the condition of and costs associated 
with critical infrastructure assets. Maintains 
and enhances the condition of all assets over the 
long-term at the lowest possible life-cycle cost 
and acceptable risk consistent with customer, 
com- munity, and regulator-supported service 
levels, and consistent with anticipated growth 
and system reliability goals. Assures asset repair, 
rehabilitation, and replacement efforts are 
coordinated within the community to minimize 
disruptions and other negative consequences

Stakeholder understanding and support Water resource adequacy

Engenders understanding and support from over- sight 
bodies, community and watershed interests, and regulatory 
bodies for service levels, rate structures, operating budgets, 
capital improvement programs, and risk management 
decisions. Actively involves stakeholders in the decisions 
that will affect them

Ensures water availability consistent with 
cur- rent and future customer needs through 
long-term resource supply and demand analysis, 
conservation, and public education. Explicitly 
considers its role in water availability and manages 
operations to provide for long-term aquifer and 
surface water sustainability and replenishment
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1.3.3 Foundational element #3 – water utility measures
The Committee strongly affirmed measurement as a critical element of effective utility management. 
The Committee also noted that utility measurement is complicated and needs to be done carefully in 
order to be useful. The challenges presented by performance measurement include deciding what to 
measure, identifying meaningful measures, and making sure that data is collected in such a way as to 
support meaningful analyses and comparisons. Consideration of these factors is important if the data 
are to be used to make real improvements and to communicate accurate information. Careful scrutiny 
here also helps to ensure that the resulting information is interpreted correctly.

Within this context, the Committee identified a set of high-level, illustrative example water utility 
measures related to the Ten Attributes, and recommended that, to get started on simple terms, 
these or similar utility measures become part of a first-level assessment. These preliminary example 
measures included, for instance, under Operational Optimization, the amount of distribution 
system water loss, while under Operational Resiliency, whether the utility has in place a current 
all-hazards disaster readiness response plan (yes/no?). A further example under Stakeholder 
Understanding and Support, includes whether the utility regularly consults with stakeholders 
(yes/no?). The Committee also recommended a longer-term initiative to identify a cohesive set 
of targeted, generally applicable, individual water sector utility measures. The goal would be to 
provide robust measures for individual utilities to use in gauging and improving operational and 
managerial practices and for communicating with external audiences such as boards, rate payers, 
and community leaders.

1.3.4 Foundational element #4 – water utility management resources
Based on the overall findings of the Statement of Intent Workshop, the Committee believed that water 
utilities are interested in tools that can support management progress, and that many utilities would 
benefit from a ‘helping hand’ that can guide them to useful management resources, particularly in 
the context of the Attributes. Therefore, the Committee recommended that the future sector strategy 
include a ‘resource toolbox’ linked to the Attributes and submitted a preliminary list of management 
resources that could be used as a starting point. One of the key deliverables in this regard was to 
develop a ‘primer’ to help utility managers understand the background and objectives of the initiative 
and help them use the Attributes and apply the Keys to Management Success.

Figure 1.1 Ten attributes and five management keys of effectively managed water sector utilities.
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1.4 EFFECTIVE UTILITY MANAGEMENT (EUM) AND WATER ANALYTICS

Water utilities protect public health and improve social well-being by operating and maintaining 
drinking water infrastructure to provide safe and reliable water to customers. Having a better 
understanding of causality in drinking water infrastructure systems can help utilities and the entire 
water industry address gaps in the knowledge base and identify research needs. Williams (2013) 
introduced the term ‘information engineering’ in water management – that is, the holistic application of 
information technology (IT) to the water industry via integration of data and optimization. Neemann 
et al. (2013) emphasized the importance of transforming data into information, then into knowledge 
and wisdom, which will have a large strategic impact on the utility as well as customers. The authors 
also recommended that utilities start by identifying business domains that increase insights that can 
yield high value and return on investment. A strong EUM viewpoint and orientation, combined with 
knowledge and appreciation of the power of water analytics, clearly shows that analytics has the 
potential to enhance all of the important aspects of EUM. Having stated this, a handful of domain 
areas are highlighted below in order to provide examples and illustrative detail.

1.4.1 Supply and demand management
When applying analytics to automated metering infrastructure to establish demand characterization 
and management strategies, the basic objective has been to understand the factors driving water 
demand in conjunction with conservation and sustainability goals (e.g., incentive programs), along 
with making reliable forecasts. However, this barely scratches the surface of what is possible – internal 
information about customer demand as well as data from utility commissions, state and local data 
repositories, local boards, and other stakeholders can also be used (added) to develop more robust 
local and regional models that can better predict future service levels over wider scales, thus providing 
greater insight into the hydrologic, socio-economic, and infrastructure performance dependencies 
naturally present in many of our more developed cities and regions. Relative to these regional – and 
even national or world-wide water supply questions – block-chain technology has the ability to support 
a far-reaching and secure transactional ecosystem around water rights, allocations, and transfers, and 
can even help to better illustrate ‘true’ resource quality and availability by virtue of its underlying 
distributed design and ledger transparency (The Water Network, 2020; Zuckerman, 2018). Analytics 
can also be used to shed new light on a broad spectrum of nonrevenue water issues in conjunction 
with a number of asset management and modeling applications that are explored in the following 
sections.

1.4.2 Enterprise asset management
According to the 2021 State of the Water Industry Report prepared by AWWA, aging infrastructure is 
the most critical challenge facing the water industry, followed by financing for capital improvements, 
long-term water supply availability, emergency preparedness, and a host of other concerns related to 
utility/system integrity as well as public views and outreach. Analytics can be used to improve the 
understanding of key physical processes related to water utility system integrity, including performance-
driven screening and assessment (e.g., capacity, efficiency, and level of service), failure modes and 
effects (e.g., mortality and outage consequence), operations and maintenance, risk identification and 
characterization, and capital investment allocation and prioritization. Performance management is 
particularly crucial because it encompasses every aspect of a utility’s asset management program, 
typically defined by the quantity, quality, and reliability levels achieved, along with short- and long-
term environmental standards. A strong analytics-based understanding in these areas will lead to 
better life-cycle planning, analysis, design, and operational decision-making because of improved 
business/enterprise intelligence. Given that asset management activities generally entail sizable 
amounts of transactional data (travel, works orders and repair activities, invoices, etc.), here again a 
future move to block-chain technology can (conceptually) yield many of the same data architectural 
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benefits noted above for water management (though in this case, through asset-activity tracking and 
linking, in addition to ledger transparency). This overall tracking and linking construct will also 
support improved life-cycle cost accounting, auditing, and other forms of corporate/organizational 
governance.

1.4.3 Distribution system modeling
Analytics can also support hydraulic, energy, and water quality modeling in a multitude of ways. Many 
of these ultimately link to a powerful and granular data ecosystem built upon pressure and water 
quality surveys, surface and groundwater reservoir profiling, pump tests and energy audits, district 
metering areas (DMA) and other forms of subzone monitoring, SCADA, and advanced metering 
infrastructure (AMI), and so on. with the following benefits:

• A greater ability to develop systems-level integrated views of environmental boundary conditions, 
control inputs, dynamic stresses and loading, and resulting system behavior;

• More effective planning, deployment, and implementation of pressure management, leak 
detection, and water quality monitoring programs – say through sensor placement and central 
event management (CEM) platforms;

• Improved capacity to more effectively manage system-wide energy consumption and efficiency 
(intensity), as well as water quality. Advanced analytics, when lock-stepped with robust modeling 
and optimization processes, can support ‘a new era’ relative to distribution system energy and 
water quality management systems (EWQMS);

• Improved emergency planning, response, and recovery – say through extended period simulation 
(EPS) of flow and pressure, along with source tracing and other forms of water age and quality 
forecasting;

• Better business risk assessments linked to improved estimations of likelihood of failure (LOF) 
and consequence of failure (COF). More specifically, well-calibrated hydraulic models now 
enable rich assessments of network outages, thus adding a much-needed layer of dynamic and 
operational insight to risk characterizations that have (to date) not considered the full hydraulic 
and water quality impacts of network failure;

• More robust, streamlined, and accurate processes to create, calibrate, validate, and maintain 
system models, which ultimately lead to wider application and higher confidence in modeling 
program outcomes.

In addition, real-time modeling provides a continuous baseline to facilitate operational optimization 
decisions as well as troubleshoot and reconcile problems, while SCADA data can support a more-or-
less continuous form of model calibration/validation. Juxtaposing these two considerations leads to 
the now well-known ‘digital twin’. In the short term, this can simply help utilities better characterize 
and observe assets and their performance (through formalized and programmatic linkages to asset 
management), while in the long term, the digital twin framework can be used to optimize broad and 
high-impact enterprise programs like energy and water quality management, water loss, and capital 
investment, renewal, and prioritization. Such an approach will also make it possible for decision 
makers to account for a broader set of value-engineering factors when considering topics such as long-
term capital expenditures, emergency response planning, and level-of-service definitions and metrics.

1.4.4 Long-range planning
It is beneficial to establish a formal system to analyze and optimize the underlying decision space of a 
project – the span of options that go into a utility’s long-range and enterprise-level planning portfolios 
and submittals. Doing so will increase opportunities to rationally plan, while also making the best use 
of capital and operational projects and programs. Successful long-range planning programs generally 
encompass the following:
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• Holistic knowledge and vision of resource availability, customer demands, water and energy supply 
portfolio attributes, product quality and quality control levers, operational characterizations, 
energy use, and carbon footprint considerations;

• Frameworks and programs for project planning, justifications, approval, design, and delivery;
• Asset management information that supports life-cycle cost–benefit analyses, including 

programmatic repair and replacement programs, as well as risk control;
• Financial considerations such as rate design and advanced budgets;
• Considerations of customer service and industry reputation.

Other issues to consider in long-range planning are formal regulatory criteria (including emerging 
regulations and legislation), non-regulatory criteria (which still should consider best practice and 
technology), enterprise goals and mandates, triple-bottom-line considerations, customer confidence, 
affordability, environmental considerations (including climate variation), and infrastructure and 
utility level resilience. From this starting point, there are at least five dimensions where an analytics 
viewpoint and approach can both drive, and positively affect, long-range planning outcomes:

• A resulting need for rigorous problem formulation and structure;
• Formalized and standardized goals, objectives, constraints, and analytical processes;
• Improved articulation and transparency around governing assumptions, processes, and results;
• More powerful and efficient means of confronting large decision spaces, as well as solving 

the technical and computational challenges associated with them (i.e., creating and assessing 
options – lots of them);

• An enhanced ability to perform sensitivity analyses, which produces a deeper understanding of 
underlying or embedded trade-offs, as well as a greater appreciation of the range of outcomes 
and potential impacts that accompany current and future decisions and actions.

1.4.5 Systems optimization
Modeling as previously described can be enlarged and synthesized using an analytics perspective to 
include systems-level multi-objective problem definitions that balance the cost of investment against the 
net benefits gained to establish effective prioritization models. To do this, it is first necessary to clearly 
define level of service goals, assumptions, and key performance indicators, all of which necessarily 
include a careful consideration of reliability, customer satisfaction, and other strategic variables. A 
vastly improved organizational arrangement of water utility IT systems, which can often be highly 
fragmented, can help to streamline the many disparate databases, systems, and processes involved 
in operating the water utility’s system. The important step of establishing a data-driven objective and 
constraint model, the utility’s common operating picture or framework, will first augment and then 
slowly replace various aspects of ‘ad-hoc’ and ‘rule-of-thumb’ engineering judgments that currently 
drive utility decision-making. Over time, this will allow water distribution systems to operate at 
greater levels of efficiency and with higher levels of confidence and transparency (Figure 1.2).

1.5 RECOMMENDATIONS

To create the conditions necessary for water utilities to fully implement analytics and maximize their 
associated benefits, actions in the following areas are recommended (Figure 1.3).

1.5.1 Analytics leadership
Exemplary enterprise-level analytics requires leadership, which should start at the highest levels of 
the organization, for example, board and council members, C-suite representatives, department heads, 
and directors. Analytics leadership should have, or take the form of, articulating and adopting a strong 
and explicit charter or mission statement that underscores the value of data, and the utility’s long-
term commitment to use data within the context of decision-making. In some water organizations, it 
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Figure 1.2 Water analytics and effective utility management.

Figure 1.3 Utility planning and capacity areas for water analytics within EUM.
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may even make sense to designate a chief data officer (CDO) or chief analytics officer (CAO), whose 
supervisory mandate spans engineering, information technology (IT), and operational technology 
(OT), to carry this message and array of tasks. Finally, a sustained managerial commitment to these 
charter elements and other day-to-day analytics principles should be fully evident and should permeate 
all divisions, departments, and groups within the utility.

1.5.2 Cultural importance
A second significant building block, which ultimately ties to analytics leadership, is helping people at all 
levels and functions within the utility understand the importance of data, data integrity, and the 
value/ability of being able to extract insights out of data – otherwise known as level setting on cultural 
importance. Once a cultural/organizational norm of this nature is set, other (downstream) efforts 
around capacity planning, system structure, tool and skill set choices, and so on. will become more 
congenial and efficient by virtue of this common viewpoint and frame of reference.

1.5.3 Capacity planning
A third key building block to more fully embrace an analytics culture within water utilities rests 
on planning. This view means that utilities should periodically review their ‘people, process, and 
technology’ chain to ensure that their overall suite/foundation of analytics architecture, processes, 
tools and technology, and skill sets are of sufficient bandwidth, and also properly link to mission-
centric outcomes in both current and forecasted settings (goals identification, process mapping, and 
needs assessment). This effort will ultimately identify functional areas where a stronger analytics view 
can unlock additional value, while also helping to find duplicate processes and capacities that can be 
suitably consolidated to make them more efficient, and without loss of performance. The enterprise 
analytics planning effort is also an ideal place where analytics leadership tenants can be reinforced 
and deployed in both current and go-forward settings, while also (simultaneously) maintaining a 
consistent cultural message about the importance of an analytics orientation being an integral part of 
the utility’s future.

1.5.4 Systems and structure
A fourth key building block to more fully embracing an analytics culture within water utilities rests 
on recordkeeping, appropriate systems analysis, and timely renewal of facilities. To instill confidence 
in methods used to assess risk and plan for sustainable programs, institutional structures should 
ensure data management integrity, that is, data collection, processing, interpretation, and integration, 
that establishes a coherent database. Data management standards and protocols must be set and 
maintained at all levels, including in the field, office, and laboratory, along with appropriate-cost data 
acquisition procedures. This requires regular communications across departments to improve overall 
data flow and maintain a consistent data structure and architecture. With suitable analytics protocols 
applied, accumulated data should yield valuable insights that facilitate better predictions and support 
logical decisions. Also, technical as well as non-technical staff will benefit from a better understanding 
of the overall data ecosystem and architecture, including any downstream and case-specific decision-
modeling sensitivity. Finally, network and database cyber security concerns and factors should figure 
prominently here, and right-sized mitigation responses should be thoroughly woven into any and all 
subsequent systems architecture efforts.

1.5.5 Tools and technology
Tools and technology are a fifth major building block of an analytics culture and orientation within 
water utilities. More specifically, through an analytics capacity planning and needs assessment 
exercise, utilities must determine which core tools it will be using so that it can align this array 
against current and future skill sets and training expectations, data systems and structures, hosting 
and dissemination architecture, computational power, as well as rights, permissions, owners, and 
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gatekeepers. Considerations of day-to-day as well as long-term maintenance of this toolbox and 
software stack should also figure prominently in the selection and stand-up process.

1.5.6 Professional development and collaborative research
Finally, linking back to the norm of organizational importance, in order to establish in-house analytics 
capabilities and champions, it is vitally important to provide professional development opportunities 
with regard to analytics training. Having sufficiently trained staff will help utilities more effectively 
incorporate analytics elements into their culture and operations. In particular, collaboration with 
university and laboratory researchers, regulatory representatives, and other technical and professional 
organizations (both public and private) is often rewarding, and therefore strongly recommended. 
In addition, the outreach to (and inclusion of) young professionals (YP) within a utility-analytics 
culture is also vitally important, as YPs are often ‘early adopters’ and ‘profound innovators’ within 
the overall analytics and data science realm(s), and they also constitute the next generation of water 
industry practitioners. Collectively, collaborations, such as the ones outlined here, enable industry 
representatives across a range of backgrounds and experience levels to work together to explore issues 
facing water utilities, while also improving the means with which to develop tangible and deployable 
technology (Keck & Lee, 2015).

1.6 A CLEAR FUTURE FOR ANALYTICS

Analytics can support numerous aspects of water utility planning and operations. Throughout the water 
industry it is becoming increasingly imperative that in-house analytics capability and championship 
be developed and integrated to address the current and transitional challenges we face. Analytics will 
contribute substantially to future efforts aimed at providing innovative solutions that make the water 
industry more sustainable and resilient.

1.7 ROADMAP OF THE BOOK

This book is composed of 17 chapters categorized into three sections: Planning, Operations, and 
Management. The Planning section covers Chapters 2–5, the Operations section covers Chapters 
6–12, and the Management section covers Chapters 13–17.

1.7.1 Planning section
The planning section covers the context of water demand management as well as cost-benefit analysis 
for water infrastructure. Specifically, in Chapter 2, ‘Water Demand Analysis | Regression’, Tanverakul 
discusses advanced regression analysis to explore the relationships between water demand and their 
influencing factors. Water supply and demand problems, and their solutions, are often rife with unique 
challenges involving many aspects of hydraulics, environmental science, socioeconomics, finance, 
laws and regulations, and politics. Because water is difficult and expensive to transport, available 
water sources are often relatively near their users and tied to local conditions such as local climate 
and level of treatment necessary. Modeling water demand is modeling human behavior by evaluating 
how water use is influenced by user characteristics and various external factors like weather, price, 
or other constraints. Also, future water demand estimates are key inputs in water resources planning 
and management. Ensuring a sufficient and reliable volume of water is available to meet demand is a 
core function of all water suppliers and distributors. Accurate future forecasts are critical since water 
supply availability is highly variable and water infrastructure projects, often large and expensive, are 
designed and constructed with long useful lives typically upwards of 50+ years. For these reasons, 
the ability to make accurate future water demand estimates has long-term consequences. Regression 
is a popular and well-demonstrated choice and has been chosen for this discussion because of its 
ability to produce valuable insights on water demand behavior and to provide practical results. The 
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chapter notes the challenging aspect of regression as the set-up and interpretation of which requires 
knowledge and intuition of water use, and careful consideration of the theories behind regression 
analysis.

In Chapter 3, ‘Water Demand Forecasting | Machine Learning,’ Xenochristou discusses a basic 
machine learning (ML) pipeline for water demand forecasting. ML is a subfield of artificial intelligence 
(AI), where algorithms are recognizing and assimilating patterns from data. In this chapter, we focus 
on supervised learning, a field of ML where an algorithm learns how to map an input to an output, 
given a set of examples. Each training example constitutes a sample in our dataset and includes a set 
of features (predictors/independent variables/explanatory variables), as well as one or more target 
variables (i.e., dependent variables). In water demand forecasting problems, the target variable is often 
water demand at a given temporal (e.g., daily or monthly) and spatial (e.g., at the household or city 
level) scale, while the features are variables that are suspected to influence water demand, such as air 
temperature or day of the week. ML methods have recently dominated the water demand forecasting 
literature, due to their superior accuracy compared to traditional statistical methods. This chapter 
introduces basic ML concepts and describes a ML pipeline, from data collection to deployment.

In Chapter 4, ‘Water Demand Forecasting | Time Series,’ Sanneh et al. discuss the vital role of water 
demand forecasting in many aspects of Water Distribution Systems (WDS) because it helps minimize 
cost, optimize operations, and provide strategies for water conservation. Demand forecasting also 
plays a vital role in the planning, operations, and management of physical assets for water utilities 
such as pumping stations, treatment plants, tanks, and distribution networks, which rely on future 
consumption forecasts. In this chapter, traditional time series forecasting methods such as Auto-
Regressive Moving Average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA) and 
Seasonal Auto-Regressive Integrated Moving Average (SARIMA) are introduced to forecast water 
demand using time series historical data. In addition, various ML techniques are introduced to time 
series-based water demand forecasting problems. They have the advantage of being able to forecast 
nonlinear relationships between response variables and their predictors in time series models with 
the presence of noisy data. The increasing use of smart water metering in the water sector has made 
available a great amount of data which cannot be processed with traditional methods. Therefore, the 
need to identify new data analysis techniques able to extract valuable information from available data 
and support water utilities in their decision systems has proven to be paramount. Analytics in the 
Drinking Water Industry illustrates how to improve demand side management and water distribution 
network efficiencies, which can lead to significant water savings, promote sustainable customer 
behaviors, identify peak hours of use, and facilitate water forecast demand modelling.

In Chapter 5, ‘Cost-Benefit Analysis for Water Infrastructure,’ Chaudhry discusses Cost-Benefit 
Analysis (CBA) as one of the most prominent and widely used policy evaluation and decision-making 
tools in public policy. CBA has played a key role in water infrastructure project analysis, and at the 
same time, application of CBA tools and methods in water industry have also contributed to the 
development and refinement of tools and approaches now used in CBA. This chapter gives an overview 
of the methods within CBA, with a brief outline of the history and the regulatory requirements of using 
CBA in the water industry. CBA is an economic tool for helping decision-makers assess the economic 
efficiency of a policy or a project. As this chapter shows, CBA does this by quantifying all the benefits 
and costs of the project for the relevant population. Although it seems straightforward to fill in the 
empty cells and determine the benefits and costs, a CBA is more than just net present value (NPV) for 
several reasons: First, it can be quite hard to reduce all of the impacts (costs or benefits) of a project 
to a single metric. For practical reasons an NPV will not include all important project consequences. 
However, a well-done CBA includes determination and disclosure of all project impacts, not just those 
that can be readily quantified in dollar terms. Therefore, the researcher often must make decisions 
on which impacts to include in the calculation of NPV and which to leave aside. Also, the choice of 
the discount rate to convert future benefits and costs to present values is an important choice. These 
decisions can lead to substantial impacts on the calculated NPV. It is imperative that researchers and 
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practitioners clearly disclose all assumptions and make modeling decisions transparent so that the 
audience understands the true scope of the analysis and results (including limitations).

1.7.2 Operations section
The Operations section covers diverse aspects of water utility operations. In Chapter 6, ‘Water 
Quality Analysis | Modeling and Optimization,’ Palmegiani and Lee discuss water quality modeling 
and calibration for water distribution systems. Water quality within water distribution systems is a 
highly complex, and rapidly changing issue that is driven by many factors and is difficult to intuitively 
predict. This is because it depends on many factors such as the pipe materials, system layout, incoming 
water to the system, water use patterns, corrosion levels, flowrates, and other hydraulic factors. 
Also, variations of water quality due to seasonal temperature have been previously observed. Many 
Opportunistic Premise Plumbing Pathogens (OPPPs) and complex chemical species can exist within 
a building water system, which can expose communities to waterborne diseases such as Legionnaire’s 
disease and cause outbreaks. Issues often occur as the water ages in the plumbing system. Drinking 
water is often treated with a chlorine disinfectant to prevent growth of harmful chemical and 
microbial contaminants, as well as corrosion control inhibitors to prevent metal leaching from the 
pipes. However, as the water age increases, the system experiences decay of both the disinfectant and 
the corrosion control inhibitors, allowing for contaminants and pathogens to grow inside the system 
and biofilm. It is critical to perform in-depth water quality modeling to understand the complex 
dynamics of the system.

In Chapter 7, ‘Hydraulic Analysis | Calibration and Uncertainty Analysis,’ Moradi et al. discuss 
calibration and uncertainty issues in hydraulic modeling. Today, hydraulic models play an undeniable 
facilitating role in various stages of design/development, rehabilitation, operation and management of 
urban water distribution networks. Models represent an estimate of the behavior of Water Distribution 
Networks (WDNs), not their entire reality, and this is because hydraulic models are prone to different 
sources of uncertainty. Uncertainties due to incomplete understanding of the dynamics of phenomena, 
uncertainties in the structure of models and uncertainties in data and parameters are the most 
important types of uncertainty associated with modeling WDNs. In WDNs modeling, parameters 
are unknowns (constants or non-constants) that appear in the governing equations describing the 
system dynamics, mainly as coefficients or exponents that can be spatiotemporal variable. Roughness 
coefficients of pipes, nodal demand patterns, bulk and wall reaction rate coefficient of chemicals and 
so on., are examples of parameters in WDNs modeling. Parameters may be estimated by laboratory 
tests (e.g., new pipe roughness coefficients) or by analysis of field measurements (e.g., demand patterns 
or pipe roughness coefficients for systems under operation) or by a combination of them. Calibration 
of water distribution models is a process that adjusts network parameters to minimize the differences 
between simulation results in the model and real measurements in the network. Any parameter 
calibration is prone to inaccuracy since we just have to make an estimate of the parameters. Hence, 
parameter calibration is generally accompanied by an uncertainty analysis. Uncertainty analysis is 
performed to quantify to what extent the inaccuracies of parameter estimation make the model results 
imprecise (e.g., nodal heads, velocity in pipes, concentration of chemicals etc.). Such analysis is called 
parameter ‘uncertainty quantification’ or ‘uncertainty analysis’ (UA). An important function of UA for 
operators could be awareness of the expected range of fluctuations in model results. In this chapter 
we are going to review the concepts of WDNs calibration and UA, and represent how to apply these 
concepts on practical examples.

In Chapter 8, ‘Optimal Pump Operations | Optimization,’ Moradi et al. discuss pump operations 
within the WDN using optimization concepts. Specifically, this chapter presents the framework 
and requirements for a WDN modeling with optimal pump operations/scheduling. At the end of 
the chapter, an example of EWQMS is also provided. Pumps are the beating hearts of many civil 
and industrial projects around the world, and without these critical elements, proper performance of 
many civil infrastructures such as irrigation and drainage networks, water and wastewater treatment 
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plants, sewer and storm water collection systems, urban and industrials water/oil/gas supply systems, 
and so on. could not be conceivable. The structural, geometric and mechanical features of pumps 
are designed considering a variety of hydraulic performance expected in operation. Although in the 
design stage of a pumping station taking variable demands would result in a more flexible system with 
more realistic insight into operational variation, designers classically consider the most conservative 
data to size system’s components. Operators, however, are generally more interested in managing 
the systems in a way that they have an optimum operation condition to achieve the best system 
performance (e.g., minimum energy consumption, improving water quality etc.).

Optimum operation could have different meanings based on defined objectives. For an aged WDS 
that suffers from a high rate of leakage, optimum system operation may be defined as maintaining 
pressure of the network as low as possible to minimize water loss, while meeting the minimum 
pressure requirements. For a network having a substantially high rate energy tariff over the peak 
water demand hours of the day, optimum system operation relates to setting the pumps schedule 
to have the minimum energy cost. Moreover, a multi-purpose approach may consider the optimum 
operation of network to find the trade-off among different conflicting objectives such as energy 
consumption and/or energy cost, and water quality measure. Today, challenges with key resources 
including water shortage, limitations on energy and finance, environmental pollutions and other 
aspects of sustainable development have compelled decision-takers to inevitably adopt an integrated 
approach to make better informed decisions in practice. Hence, water organizations should invest 
in novel multi-objective approaches such as EWQMS to better understand and efficiently resolve 
problems, covering different concerns associated with available resources.

In Chapter 9, ‘Hydraulic Transients | Numerical Analysis,’ Lee et al. discuss hydraulic transients 
and a modeling framework in addition to phenomena within the systems. Many water utilities have 
in-house hydraulic modeling capacities to analyze their systems in terms of planning, design, operations, 
and management. However, many of the modeling efforts are geared toward or limited to steady state 
or extended period simulations, which assume that the water is completely incompressible, and that 
pipe materials are inelastic. Clearly, the mass continuity and energy equations neglect to explain rapid 
changes that should be described by momentum equations (i.e., transient pressure waves generated 
due to sudden changes in flow). As is well known, the resulting pressure can result in pipe bursts and 
structural damage to other critical appurtenances. In addition, low flow due to transients can induce 
contamination intrusion in the systems. This chapter introduces basic theories and TSNET, so readers 
can run and see the impacts of hydraulic transients in the system.

In Chapter 10, ‘Network Partitioning,’ Di Nardo et al. discuss one of the most effective ways to 
reduce WDN complexity within the context or paradigm of ‘divide and conquer’, which exploits the 
property that complex systems can be better analyzed if they can be split into many sub-parts. This 
technique was proposed in England in the early 1980s and is now implemented in many countries. 
It consists of defining smaller water districts or sectors, defined as district meter area (DMA), 
obtained with the permanent insertion of boundary valves and flow meters along properly selected 
pipes. This can significantly improve the management, the maintenance and, specifically, the water 
balance estimation for water leakage detection, along with supporting/enhancing potential pressure 
control and emergency response strategies to reduce water losses and water security from intentional 
contaminations. This technique provides a series of interventions on the WDN that require a careful 
economic planning by the managing authority; furthermore, it envisages the use of modern monitoring 
systems (remote control, etc.) which no longer have a prohibitive cost and which, to be implemented, 
only await a new management policy. It is evident that having a network divided into smaller sub-
regions makes it easier to study and manage the system.

In Chapter 11, ‘Pipe Network Reliability Analysis | Optimization,’ Chandramouli discusses the 
linking of EPANET tool kit functions within the MATLAB Dynamic Link Library, use of a genetic 
algorithm tool in MATLAB, the concepts of fuzzy logic, as well as optimization and reliability. 
Reliability of water distribution networks is another aspect on which considerable research has been 
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carried out. Reliability of water distribution systems is concerned with the ability of the network to 
provide an adequate supply to the consumers under both normal and abnormal operating conditions. 
The chapter develops a reliability-based optimization model for design of water supply pipe networks 
in MATLAB by combining EPANET toolkit functions and the readers will be able to appreciate the 
difference between binary logic and fuzzy logic in terms of reliability achievement for the water supply 
pipe networks by working with different types of networks of water supply for their design.

In Chapter 12, ‘Resilience | WNTR,’ Chu-Ketterer et al. discuss: (1) the challenges that disasters 
pose on WDN infrastructure and how WNTR can be used to assess these challenges; (2) steps to 
install WNTR; (3) types of disasters that can be currently modeled; (4) available resilience metrics; 
and (5) tutorials. WNTR is actively being used and extended within the Water Distribution Systems 
Analysis community for a variety of topic areas. Resilience has many different definitions, but it can 
be described as the capability of an object to recover or adjust after a source of strain or change. In 
the context of drinking WDN, resilience is the ability of the system to continue delivering water in a 
damaged state or how fast the system can return to service after damage. Predicting and measuring 
resilience in WDN is helpful to prioritize strategies to improve resilience, perform cost-benefit analyses, 
measure progress, and clarify what is meant by resilience. Tools that can quantify system resilience 
are important and help improve system security and general operations even when confronted with 
natural or other disruptions. Simulation analysis can be used to evaluate and potentially improve 
response actions through failure planning exercises and to develop more effective mitigation strategies 
for the future. WNTR can also be used to run more routine modeling exercises such as fire flow 
analysis to access WDN ability to respond to everyday incidents.

1.7.3 Management section
The management section covers critical aspects of effective utility management. In Chapter 13, ‘Water 
Mains Optimal Replacement Time | Optimization,’ Lee discusses optimal replacement analysis using 
historical failure data. Asset management (AM) is defined as ‘maintaining a desired level of service 
for what you want your assets to provide at the lowest life-cycle cost. Lowest life-cycle cost refers to 
‘the best appropriate cost for rehabilitating, repairing or replacing an asset’. In a water distribution 
system, the repair/replacement cost and possible water damage cost must be balanced by the water 
utility when deciding at the time of a leak/break whether to repair or replace the system. Accelerated 
replacement refers to replacing the system well in advance of the optimal replacement time, while 
delaying replacement beyond the optimal replacement time will lead to consequences through 
neglecting repairs, which may effectively amount to the utility paying a penalty to compensate for the 
high replacement cost. To manage the integrity of water main infrastructure through its entire life-
cycle, we introduce a replacement program for water utilities in this section. This program is expected 
to ensure affordability, manage risk, and support a high level of confidence in the decisions reached.

In Chapter 14, ‘Water Mains Replacement Decision | GIS Analytics,’ Martinez Garcia discusses water 
infrastructure asset management issues using GIS. Depending on the number of served customers, large 
water utilities can manage hundreds of miles of water mains made of different materials and diameters. 
When water mains fail, utilities are affected by the loss of treated and energized water. Additionally, 
rising failure rates in distribution systems increase the capital improvement and maintenance budgets 
which likely lead to higher bills to their customers and a negative public perception. Although an 
aggressive capital program to repair or replace all affected water mains will reduce the amount of 
revenue loss, economic and financial constraints make it impossible to replace all failed water mains 
at the same time. Therefore, supporting water utilities to make informed decisions about the time and 
location to perform water mains repairs or replacements has attracted attention from researchers in 
the water industry. The tools presented in this chapter can provide valuable information about the 
spatiotemporal trend of water main failures. By applying these techniques, water utilities can save 
economic resources in avoided failures, reduced water loss and energy savings. In addition, an asset 
management program (or water mains integrity program) can help select improved materials and 
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sizing can provide other benefits to customers such as improvement in water supply reliability, overall 
system resilience, and overall levels of service.

In Chapter 15, ‘Decision Analysis | CA, CV, and AHP,’ Tanellari and Lee discuss critical decision 
analysis tools that can be used for water resources in general. First, nonmarket valuation is a method 
that is used to estimate the total willingness to pay for a good or a service that is not traded in 
the market. For goods that are traded in the market, the total willingness to pay can be easily 
estimated by the area under the demand curve. However, this is a more challenging task in the case 
of nonmarket goods. Because these goods and services are not sold in the market, the demand curve 
does not exist. Instead, the willingness to pay is either revealed through consumers’ choices or directly 
elicited through surveys. There are two broad categories of valuation methods, revealed preference 
methods and stated preference methods. Revealed preference methods are based on actual choices 
that individuals make which in turn reveal the values that they may place on the good or service 
of interest. For example, by calculating how much households spend on bottled water, filters and 
water treatment devices in a given time period, a revealed preference method may infer the value 
that households place on clean water. The cost of such treatments and devices is directly incurred by 
households and is observable through the prices they pay. Stated preference methods elicit willingness 
to pay directly from consumers through surveys. Consumers are directly or indirectly asked to state 
their willingness to pay for a good or service. In this section, we will examine two widely used stated 
preference methods, contingent valuation and conjoint analysis. In addition, the chapter covers AHP, 
which determines the preference for a decision-making unit by pair-wise comparison of attributes. 
Assessing pair-wise preferences enables the decision maker to concentrate his/her judgment on two 
elements with regards to a single property. So, in this case, the decision maker does not need to think 
of other properties or elements while comparing and deriving the final decision. We will introduce all 
steps using spreadsheet.

In Chapter 16, ‘Non-revenue water,’ Gungor Demirci and Lee discuss one of the critical management 
issues for the water utilities, namely, non-revenue- water. Around the world, more than $14 billion per 
year is lost due to water loss, and these losses are covered by paying customers. Water loss is a huge 
challenge for water utilities, which require fundamental understanding of the influencing factors. 
The Organization for Economic Co-operation and Development (OECD) found that water loss can 
be as high as 65% for developing countries. It is a challenging task to reduce the water loss even in 
highly developed countries as well. For an effective water loss reduction program, it is critical to 
have a deep understanding of the causal factors as well as why its reduction is so challenging. Many 
literatures cited environmental, managerial, physical, sociological, and technical factors. The chapter 
examples include system age, pipe length/layouts of the systems, hydraulic conditions, external 
soil characteristics/topography, traffic loading, service connection densities. The problem is solved 
using R.

In Chapter 17, ‘Performance Assessment of Water Industry | DEA,’ Gungor Demirci and Lee 
discuss water utility performance and performance measurement methodologies. A water utility’s 
efficient management practice has become more vital than ever because of the large gap between 
the available water supply and the rising demand, as well as unpredictable climate patterns due 
to changing climate. Not all water utilities are functioning at the same level of efficiency in their 
operations. In this chapter, we will develop a useful performance measurement tool and apply it to the 
individual water utility’s operations. Measurement of performance assessments for each water utility 
will identify the opportunities to improve their management deficiencies and economic performances. 
Also, the performance measurements will provide in-depth insights toward a fully efficient water 
utility. Data Envelopment Analysis (DEA) is an optimization tool for measuring efficiencies of the 
units in any organization. In addition to conventional DEA methods, we will explore two additional 
stages to examine the exogenous variables’ impacts on the individual water utility’s performance: 
double bootstrap truncated regression and Tobit regression. This chapter is based on our previous 
publications.
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All chapters are independent, so you can study based on your interests and needs. We hope you 
enjoy reading and practicing each chapter!
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LEARNING OBJECTIVES

(1) At the end of this chapter, you will be able to:
(2) Apply regression methods to forecast water demand.
(3) Discuss the practical aspects and implications of using ordinary least squares estimation in 

regression analysis.
(4) Build and run a regression model with panel data in R.
(5) Interpret linear regression results.

2.1 INTRODUCTION

Future water demand estimates are key inputs in water resources planning and management. Ensuring 
a sufficient and reliable volume of water is available to meet demand is a core function of all water 
suppliers and distributors. Meeting demand requires knowing how much water is needed now and will 
be needed in the future. Accurate future forecasts are critical since water supply availability is highly 
variable and water infrastructure projects, often large and expensive, are designed and constructed 
with long useful lives upwards of 20–50+ years. For these reasons, the ability to make accurate future 
water demand estimates has long-term consequences.

Water demand forecasts can be derived from various sources. Historical use data, where available, 
can be useful in projecting demand under certain circumstances. However, changes from differing 
housing and commercial development patterns, changing demographics, and shifting weather patterns 
will often alter water demand patterns reducing the confidence of projections based on historical use 
alone. Understanding what factors influence demand can help project future demand with greater 
+accuracy.

Water supply and demand problems, and their solutions, are often localized with unique challenges 
involving many aspects of hydraulics, environmental sciences, socioeconomics, finance, laws and 
regulations, and politics. Because water is difficult and expensive to transport (think of density/specific 
weight of water!), available water sources are most often near their users and tied to local conditions 
such as local climate and level of treatment necessary. The uniqueness of water use behavior by location 
is relevant, even critical, for forecasting water demand when determining the scope and application 
of the demand model. A demand model using residential water demand data from a city in California 
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will likely not be appropriate to use for a city in New York. Also, models of regional demand for the 
agriculture region of Iowa would not be useful to use in a heavy industrial region. Modeling water 
demand must always consider how water use volume and behavior differs by user type and location.

Modeling water demand is modeling human behavior by evaluating how water use is influenced 
by user characteristics and various external factors like weather, price, or other constraints. 
Unfortunately, for building the models, behavior is often not straightforward or linear. There may 
be user-specific characteristics that determine water demand. For example, a factory may have a set 
volume requirement for their process water and other functioning needs, or a residential home with 
a minimum amount for essential needs and additional uses of lawn irrigation. Combined with those 
factors are other variables like weather or water price that may affect the amount of water needed 
or influence the amount of discretionary use. For example, residential customers with outdoor water 
needs tend to increase water use during dry months and decrease during wet months, but may choose 
to reduce irrigation water use if requested by their utility to do so during drought periods, or a factory 
or business may change their processes if water prices rise enough. Another example can be during 
COVID-19. Overall residential demand increased (due to lifestyle changes) while commercial demand 
decreased due to lockdown. So, identifying these types of factors that impact water use is a principal 
step in setting up water demand forecast models.

This chapter discusses regression analysis as a useful method to explore the relationships between 
water demand and influencing factors. Over the previous decades, numerous studies have been 
performed measuring and modeling water demand using many different techniques (Arbués et al., 
2003; Donkor et al., 2014; Gracia-de-Rentería & Barberán, 2021). Regression is a popular and well-
demonstrated choice and has been chosen for this discussion because of its relative simplicity to 
perform with (free) software programs (e.g. R, Python, etc.), and its ability to produce valuable insights 
on water demand behavior and to provide practical results. With that said, the challenging aspect 
of regression is the set-up and interpretation which require knowledge and intuition of water use, 
and careful consideration of the theories behind regression analysis. The ease of running regression 
models can easily lead to misinterpretation!

The basics of regression are presented here and are applied to water demand forecasting with the 
objective that you will be able to perform and understand their own analysis. The theories behind 
regression can get very complicated quickly and this chapter does not touch upon every aspect. You 
are encouraged to consult other econometric sources, particularly if deviating far from the examples 
discussed herein.

The structure of the chapter begins with an introduction to regression analysis with an example 
problem, followed by discussions on model specification, model estimation, and ends with model 
interpretation.

2.2 PRINCIPLES OF REGRESSION

2.2.1 What is regression?
Regression methods can help answer how different factors affect one variable of interest. In the case 
of estimating water demand, regression methods can be used to characterize relationships between 
demand and influencing factors such as weather, demographics, pricing, and other identified factors. 
Water demand is the variable of interest, taken as the dependent variable. All other factors used 
to characterize demand are the explanatory, or independent variables. A simple linear regression 
example using residential water demand and one explanatory variable is used in the next subsection 
to introduce the regression equation.

2.2.2 Basic regression equation – water demand and lot size example
Simple linear regression deals with a single explanatory variable, and its relationship with the 
dependent variable. When estimating residential water demand, one variable that may be useful to 
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estimate demand is lot size. A larger lot size may be assumed to explain higher water use since a lot size 
is correlated with a large yard and larger yards may have increased use of irrigation water. Choosing 
appropriate variables to explain the dependent variable (i.e. water demand) is further discussed in the 
next section and is an important decision in performing a good regression analysis.

Plotting water demand data with lot size is a useful first step to check the assumption that lot 
size may assist in explaining water demand. Figure 2.1 plots all the data from a fictionalized data set 
containing household water demand (in liters per day (lpd) and household lot size (in square meters). 
It appears there is strong correlation between the demand and lot size, and on average, water demand 
is higher on larger lot sizes. Using only a visual assessment, a trend line could be drawn demonstrating 
the increasing trend.

The trend line follows the equation of a line: y = b + mx, where m represents the line slope and b is 
the y-intercept. Applying this to the example, the equation becomes:

Water demand lpd intercept lot size sq meters( ) * ,= + [ ]m  (2.1)

The slope, m, in Equation (2.1) represents how much water demand changes with a change in lot 
size. It can also be deduced that a steeper slope means a larger change in water demand from a smaller 
change in lot size. This concept is referred to as elasticity. The y-intercept has less direct meaning here 
since it would not be useful to know the water demand on lot sizes of zero.

Moving towards a more rigorous analysis to estimate a trend line is simple linear regression. The 
ordinary least squares (OLS) estimator is used to estimate the slope by minimizing the difference 
between each data point and the average of all points. Figure 2.2 illustrates this difference. This can 
be calculated by hand, but can also be done quickly with a spreadsheet like Microsoft Excel’s trend 
line feature, which was done for this fictionalized example to produce the following:

Water demand lpd lot size sq meters( ) . . * ,= + [ ]114 08 3 05  (2.2)

The interpretation of Equation (2.2) is that water demand will, on average, increase by a factor 
of 3.05 for every square meter increase in lot size. The equation is useful to determine average water 
demand patterns from house lot sizes, but there are several caveats to consider. The first being the 

Figure 2.1 Water demand versus lot size, fictionalized data example.
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equation is only adequate to determine water demand from the range of lot sizes that were used to 
develop the equation. In this case, the range of lot sizes were between 84 and 296 square meters. 
Estimating demand for a 500 square meter lot would not be appropriate. Another consideration is 
time. The data was from a single point in time. The data may be significantly different depending on 
the season or location. If this data came from a rural, dry region, it would not be appropriate for an 
urban city with high precipitation. The equation is only appropriate for locations at a certain time 
with other similar characteristics (e.g. socioeconomic status, temperature, etc.).

A serious consideration when evaluating the analysis is that lot size may not be the strongest single 
factor to estimate residential water demand. This puts the validity of the equation into question and 
should always be considered. The r-squared value is often estimated to measure the strength of the 
relationship between the two variables. For this equation, r-square (shown in Figure 2.1) was 0.28, 
meaning 28% of the variability in water demand could be explained by lot size. An r-squared value of 
1.0 would signal a perfect linear relationship. This is never observed with collected data except for a 
perfectly controlled laboratory setting. The r-squared value here could be considered adequate for the 
given data type but the relationship could still be questioned. It could be reasoned that larger lot sizes 
would have larger homes with multiple stories, more water-intensive appliances, and more occupants. 
Temperature is another possible variable that could explain higher water use in place of lot size, since 
higher water use may be expected during summer months, assuming higher temperatures require 
more water used in irrigation. Is it larger lot sizes, or perhaps higher temperature that influences 
higher water use during summer months? Higher temperatures may have a stronger relationship to 
water use in locations with houses with large yards compared to highly dense urban neighborhoods. 
Considering all these additional factors, perhaps the number of people per house, the number of 
bathrooms, or a weather variable would produce a stronger correlation with water demand. This 
process is a central challenge to the validity of regression equations.

Before moving on, looking at the generalized simple regression equation may be helpful:

Y Xi i i= + +α β ε1  (2.3)

Figure 2.2 Water demand versus lot size, observed versus estimated difference.
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where Yi is the dependent variable, αi is the intercept, β1 is the regression coefficient, Xi is the 
independent variable, and εi is the residual, or error term. This holds for individual observation, i = 1, 
…, n. The equation is the same as the line for an equation used above with the addition of ε to express 
the residuals, or the error term. The error term accounts for the differences between the predicted 
values of Y versus the actual observed values of Y. Shown in Figure 2.2, this difference is the distance 
between the predicted regression line and each observed individual data point. This difference partly 
arises because X (lot size) is not the single, perfect predictor of Y (residential water demand). Lot size 
alone cannot provide a perfect estimate of water demand. There are many other factors influencing 
demand. In this way, the error term can be thought of as the amount of variability in water demand 
(Y) that cannot be explained by lot size (X). The error term also absorbs other errors that may exist 
such as errors in how the data was measured. For the example of the lot size, questions to be asked 
would be how the data was collected; was it taken from an online repository, or was it self-reported by 
homeowners? Any of these options could have incurred mistakes/errors. invalidating some values. If 
there are significant outliers, the errors could have an impact on the regression model as well.

2.2.3 OLS assumptions
OLS has a vast decades-long precedence of being used across different disciplines. At the core of 
OLS is estimating parameters that minimize the sum of squares of distance between a predicted 
regression line and sample observations, while seemingly simple to correctly use OLS requires certain 
assumptions be met. These assumptions have a deeper theoretical and mathematical foundation, but 
the focus here will be on the practical implications of what the assumptions mean and how violating 
the assumptions can affect the model results.

2.2.3.1 Assuming linearity
The general multiple regression model, shown in Equation (2.3), has a linear form. The linear form is 
defined as each of the explanatory variables (the X’s) multiplied by a parameter (β’s) which are then 
added together with the addition of the constant term. In this form, the model is ‘linear in parameters’.

Note this is a bit different than the assumption that the relationship between an explanatory 
variable and water demand is linear. If that relationship is not linear, the variables can be transformed. 
In this manner, the linear model can fit a non-linear relationship between variables. Logs, inverses, or 
squares can be used to satisfy the linear assumption, for example, the following Equations (2.4) and 
(2.5) use non-linear transformation, but the equation is still linear:

Log( )y X X Xi t t n n it= + + + + +α β β β ε1 1 2 2 ⋯  (2.4)

Or

Log( ) logy X X Xi t t n n it= + + + + +( )α β β β ε1 1 22 ⋯  (2.5)

If the data is not linear and OLS is used without first transforming the data to achieve linearity, the 
results will not be reliable. To check for linear relationships in the model once results are produced, a 
graph of observed data versus predicted values is helpful. If linearity is not observed in the plot (45° 
line should be clear) a non-linear (e.g. log) transformation can be performed on the independent/
dependent variables. The model can then be re-estimated and checked for linearity once again.

Figure 2.3 shows a plot of the actual versus predicted values from the demand versus lot size 
example. A perfect predictive model would show all point along the 45° plotted line. Within the 
middle ranges of 150 and 200 (circled in Figure 2.3) there is good linearity. Both below and above 
this range, however, the predictions are higher and lower, respectively. Performing a transformation 
on the data and replotting can be performed to check if a better estimate of the relationship may be 
possible first, without changing other aspects of the model. Figure 2.4 shows the example data with a 
log transformation. The predicted values appear closer to the 45° line for values above 175. Below 175 
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the predicted values are all much higher than the actual observation. In this case, the transformation 
helps with the higher values but does not fully provide a solution.

2.2.3.2 Assuming independence between explanatory variables (multicollinearity)
In multiple regression, the intent is to estimate how individual variables (independent variables) help 
explain water demand changes (dependent variable). What is being estimated is the marginal one-unit 

Figure 2.3 Predicted versus actual value plot.

Figure 2.4 Log-transformation – predicted versus actual value plot.
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change in an independent variable, holding all other variables constant. For this to be most accurate, all 
independent variables must be independent of each other. If the independent variables are correlated 
with each other, it can create an incorrect model! For example, rainfall and evapotranspiration (ET) 
are both variables that could be used to estimate water demand. However, rainfall is used to estimate 
ET. In this case, it would be impossible to discuss the marginal change in ET, holding all other variables 
constant since rainfall is a factor of ET and the two variables move together.

Correlation between independent variables is referred to as multicollinearity. Possible relationships 
between the explanatory variables should be explored. If any variables are strongly related, then 
they should not be used together. If multicollinearity does exist, it can decrease the reliability of the 
estimated parameters and lead to incorrect interpretation. Multicollinearity may be a suspected cause 
if the expected sign of a regression coefficient (β) is reversed in the regression results. For example, 
high temperatures are (generally) expected to increase water demand. If temperature was used an 
explanatory variable and its coefficient was negative, it would imply that high temperatures decrease 
water demand. Since this goes against intuition, it would be important to further investigate what else 
is happening with the equation. One item to check is whether another included explanatory variables, 
likely another weather variable correlated with temperature, was affecting the temperature coefficient.

Correlation matrices between variables are useful in checking for strong correlation. One type of 
correlation matrix is discussed in Section 2.4 and shown in Figure 2.7. While plotting water demand 
with each explanatory variable is helpful to check if that single explanatory variable should be added to 
the model, plotting the explanatory variables with one another can cause multicollinearity concerns.

Variable inflation factor (VIF) is a tool used to detect multicollinearity. VIF compares the amount 
of inflation to variance from the addition of a single explanatory variable compared with the total 
model with all explanatory variables included. VIF is estimated for each explanatory variable in 
a regression model. A high VIF would mean the variable could be highly correlated with another 
explanatory variable:

VIF
R

i
i

=
−

1
1 2  

(2.6)

If multicollinearity is suspected using one of the tools above, removing one of the explanatory variables 
from the model may help. Thinking through whether an explanatory variable is important may provide 
an argument for removing or keeping a variable. Combining the variables to create a new variable 
can also be a solution or there are other methods that can be used besides OLS. Key takeaways are 
to always explore the data and understand how variables are expected to impact water demand. For 
presenting and discussing regression results, it is often good practice to include all variables that were 
removed. This can be done by presenting more than one set of results with and without variables that 
were removed.

2.2.3.3 Independent observations
The coefficients in the regression model are only estimates of the actual sample parameters. In essence, 
data is collected as a random sample of a population. The sample is used to estimate/infer population 
properties. An objective is to minimize the difference between estimated and actual parameters. 
Random sampling helps to ensure the differences are not skewed in one direction (i.e. that could cause 
errors in one direction). We want to make sure that sample estimates/inferences are representing the 
whole population.

2.2.3.4 Several assumptions dealing with error term
The error term in the model accounts for the residual, or the difference between the actual observation 
and the predicted. It is the variability of Y that is not explained by the explanatory variables. There are 
several assumptions that deal with the error term that are all concerned with checking that the model 
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is correctly designed. The assumptions involving the error term are listed below. Again, each of these 
assumptions have a deeper mathematical or theoretical underpinning in regression modeling with 
OLS estimation. The objective in this chapter is to highlight the practical aspects to verify the model 
specification and interpret results.

(1) No systematic errors. The error term, on average, should equal zero. This will ensure that the 
error in the model is random and there are not systematic errors. If there are systematic errors, 
then it can be assumed that the residuals are predictable. If the residuals are predictable then 
that means there is predictable variation that could have been captured with the model.

(2) Homoscedasticity. Errors should have the same variance across all the observed values. Constant 
variance in the errors is referred to as homoscedasticity, or having no heteroscedasticity. A 
problem with heteroscedasticity can uncover that the model is putting too much importance to 
one range of observations. When interpreting regression results, heteroscedasticity can impact 
the test for variable significance and result in an explanatory variable appearing significant 
in influencing water demand, when in reality it has no impact (see Section 2.5.2). A plot like 
the one in Figure 2.5 showing residuals versus the predicted values can be used to check for 
heteroscedasticity. When heteroscedasticity is present, a discernable pattern can be seen, such 
as the diamond shape in Figure 2.5. Another easily spotted sign of heteroscedasticity is a cone 
shape with the residuals fanning out or fanning in.

If there was no heteroscedasticity, the expectation would be what is shown in Figure 2.6, where 
no discernable pattern is seen with the plotted dots, and they appear to be roughly even around the 
zero-residual line.

Heteroscedasticity is commonly seen with small data sets with large variation or when one 
explanatory variable has a wide range of input values. A possible method to reduce heteroscedasticity 
includes transforming a suspected explanatory variable by taking the log or square root, for example.

Figure 2.5 Predicted versus residual plot.
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Changing a variable in this manner can often eliminate or reduce heteroscedasticity, and thereby 
also strengthen the model.

(3) No autocorrelation. Errors should be independent of each other, which is known as having no 
autocorrelation. Autocorrelation is often a problem with time series data, when each subsequent 
observation is correlated with the previous (see Chapter 4’s Time series analysis). Seasonal 
correlation is an example that would be solved by adding seasonal dummy variables to the 
model. This is done by including the season as an explanatory value as a number. For example, 
summer would be 1, winter would be 2, and so forth. The idea is to add an additional variable 
that accounts for the seasonal pattern. Another solution is adding a time-lagged variable to the 
regression model. A time-lagged variable would be an additional variable added to the model 
representing a lag of one time period, for example.

(4) Random error. Errors should be uncorrelated with the explanatory variables. When there is 
correlation, this is called endogeneity bias. Endogeneity is a problem because it violates the 
random error assumption because the correlation implies it is possible to predict a part of the 
error term with that explanatory variable. The result is it biases the coefficients. The cause of 
endogeneity is often due to measurement errors in the explanatory variable or omitted variables. 
Omitted variables are important factors influencing water demand that were not included in 
the model. Also, error terms should follow a normal distribution. This can be checked with 
a normal probability plot, or q-q plot for the errors. If the linearity assumption is violated, 
then error terms may not follow a normal distribution. The consequence to the results is large 
confidence intervals that are too wide or too narrow which make interpretations less reliable.

2.2.4 Panel data regression
In this section, we would like to explore more real-world datasets. Observation data is often categorized 
as time-series, cross-sectional, and panel. Time-series data consist of one data point being measured 
over time. This could be one customer’s water use measured monthly. Cross-sectional data refers 

Figure 2.6 Predicted versus residual plot – no heteroscedasticity.
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to data that represents a swatch of different measurements at a single point in time. This could be 
a single reading of average monthly water use for 20 000 customers, for example. Panel-data is the 
combination, where many readings are available over time for different entities. Figure 2.7 presents 
example data types for time-series, cross-section, and panel. Our experiences taught us that panel-data 
is the most useful for accurate water demand forecasting

The use of panel data expands the regression Equation (2.3) into:

Y Xit it it= + +α β ε1  (2.7)

where Yit is the dependent variable for individual i at time period t, α is the intercept, β1 is the regression 
coefficient, Xit is the independent variable, and εit is the residual, or error term. This holds for time 
period, t = 1, …, t and individual, i = 1, …, n.

Estimating panel data regression models can be done using different estimation methods. We will 
consider pooled, fixed, and random effects for panel data in the Estimation Section.

2.2.5 Multiple regression
Multiple regression expands on the case of one explanatory variable to include more than one variable 
to describe change in water demand. The general equation expands on Equation (2.7) and becomes:

Y X X Xit t t n n it= + + + + +α β β β ε1 1 2 2 ⋯  (2.8)

where Yit is the dependent variable, αi is the individual intercept, β1, β2, βn are the regression coefficients, 
X1t, X2t, X3t are the independent variables, and εit is the residual, or error term. This holds for time 
period, t = 1, …, t and individual, i = 1, …, n.

The estimation of the multiple regression equation quickly increases in complexity from the 
simple linear regression example. With multiple regression, the dependent variable of interest is 
being explained by more than one variable. Each of the added explanatory variables are assumed 
to be independent of each other and the dependent variable, so that the individual impact of each 
explanatory variable on the dependent variable can be estimated.

Figure 2.7 Example of data type.
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2.2.5.1 Problem 1
The provided file Regression Chapter – Ex1.xls contains monthly water demand and rainfall data for 
a period of six years. Using Excel spreadsheet, plot demand and rainfall, add a tread line (regression) 
in Excel. (Excel uses the least square estimator.) Answer the following questions:

(a) What type of data is this? Cross-sectional, time-series, panel? Are there limitations to using 
this data to estimate water demand? Explain.

(b) Is there visible correlation between the water data and weather data? Would you expect to see 
correlation between water demand and the weather data? Why or why not? What questions 
could be asked about the data to further investigate your assumptions?

(c) What other analysis could be done with these data to further evaluate the data trends?
(d) Interpret what the regression equation means. Does the weather variable help to explain water 

demand in the data?

2.2.5.2 Brief suggested solutions
(a) What type of data is this? Cross-sectional, time-series, panel? Are there limitations to using 

this data to estimate water demand? Explain.
 Data is time-series, characterized by observations over time for one entity (labeled Customer_

Group). This data is aggregated to the level of only one entity and as such, cannot account for 
differences across entities; the data only provides the water demand trend across time.

(b) Is there visible correlation between the water data and weather data? Would you expect to see 
correlation between water demand and the weather data? Why or why not? What questions 
could be asked about the data to further investigate your assumptions?

 Visually there does appear to be negative correlation between the average monthly water 
demand and total monthly rainfall. Plot is shown in the figure below. The negative correlation 
could be attributed to lower water use when there is precipitation, perhaps from reduced 
outdoor water use for plant and lawn irrigation. Further investigation into the water demand 
source may support or refute the irrigation assumption. Is the data from a rural or urban area? 
Do the houses have large lots? What are other weather conditions? Do the temperatures rise 
during the summer months?

 See Section 2.3.4 for discussion on the zero precipitation values.

(c) What other analysis could be done with these data to further evaluate the data trends?
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 Plotting the water demand over time (figure below) can visually provide seasonal trend 
information. In this example, higher demand is observed annually between July and October. 
Although the annual trend appears steady over the entire time period (2015–2020), the peak 
does appear to slightly change between the years.

(d) Interpret what the regression equation means. Does the weather variable help to explain water 
demand in the data?

 Using excel, the regression line follows the equation: water demand (lpd) = –4.54 (precipitation, 
cm) + 353.08. The r-squared value is 0.39. The negative value on the precipitation coefficient 
represents a negative impact on water demand. For every one unit increase in precipitation, 
a 4.54 decrease in liters per day is expected. The intercept for this simple regression can be 
interpreted as the average monthly water demand when there is no precipitation in the month. 
Unlike the water demand versus lot size example, the intercept value holds importance since 
the data has several demand observations with zero precipitation.

2.3 MODEL SPECIFICATION

Model specification involves deciding what explanatory variables (e.g. X1t, X2t, X3t) to include in the 
regression model. This is an iterative process and requires an understanding of what factors influence 
water use. However, specification or model structure depends on what data is readily accessible and 
of sufficient quality, time length, and number of observations.

Data availability continues to grow with new technologies making it easier and cheaper to invest, 
deploy, and collect large amounts of information. The deployment of more water meters (e.g. AMI – 
Advanced Metering Infrastructure) has provided the opportunity to measure and therefore, forecast 
use in more water sectors. Further, finer resolution data (e.g. time interval of seconds) has allowed for 
more detailed information on how water is used for specific end uses. For residential water demand 
this has translated to understanding water use by end use for particular appliances (e.g. kitchen 
sink, bath shower, etc.). More data also means more time spent on investigating the data quality and 
patterns.

In the next section, we will delve into choosing the best variables starting with fundamental 
theories of water use, method of exploring available data, and ending with common mistakes around 
misspecification/interpretation on regression models.
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2.3.1 Water use relationships
The best starting point in identifying explanatory variables is to review the question that needs to 
be answered. The objective of analysis will help shape what should be included in the regression 
model. The form of the dependent water demand variable may also change based on the intended 
analysis. For water utilities, per capita daily information by customer type may be most useful; and for 
wholesale suppliers, monthly or yearly information may be more practical.

Previous literature review studies can provide useful information and support arguments 
for choosing explanatory variables. A few review studies that can be helpful are the following: 
Worthington and Hoffman (2008), Sebri (2014) and Tanverakul and Lee (2016). Table 2.1 provides a 
list of possible factors that have been explored as possibly influencing water demand. There may be 
many more factors that could potentially impact water demand and some of the listed factors may not 
be impactful. You should give careful consideration in determining what factors make sense for the 
given objective and region.

For every factor that may influence water demand, an explanation should be given as to how 
that factor influences demand. This is important when interpreting and using the regression results 
since the model itself is easy to run with software programs and it may be tempting to add in 
all variables that may possibly affect water demand. As discussed in the next section, not being 
selective with the explanatory variables can cause problems with the model results and violate key 
model assumptions. The challenge is constructing an appropriate model and making reasonable 
and fair interpretations.

Table 2.1 Factors possibly influencing water demand.

Category Factor

Social-demographic Income

Education level

Number of adults and children in household

Level of environmental concern (e.g. water conservation, recycling, energy saving)

Utility or supplier 
controlled

Water rates

Rate structure (e.g. increasing tiered rate)

Mandatory conservation measures

Voluntary conservation measures

Metering

Detailed water use information available

Location Population growth

Population density

Neighborhood characteristics and average demographics

Environmental Temperature

Precipitation

Evapotranspiration

Droughts

House/building Lot size

Building square meters

Number of bathrooms

Number of water intensive appliances/high efficient fixtures

Age of house

User type Mix of residential, commercial, industrial, agriculture
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Thinking through potential causal relationships can aid in narrowing down the important explanatory 
variables to include in the model and check for correlation between explanatory variables. Correlation 
between explanatory variables can obscure and invalidate the impact of each individual explanatory 
variable on water demand. One example is including house size and number of bathrooms. Both of these 
variables could reasonably be used to explain household water demand. However, house size could also 
be correlated with number of bathrooms since larger houses could be expected to have more bathrooms. 
Because of this relationship, the regression equation would not be able to accurately predict the impact 
of the number of bathrooms on water demand because some of that impact could be absorbed into the 
impact from lot size. Correlation between explanatory variables is referred to as multicollinearity (as 
mentioned earlier in this chapter) and is a violation of a key assumption of regression analysis.

2.3.2 Data exploration
In this section, we will look at ways to explore and choose available data. You should be careful to not 
pick data only to fit a model and vice versa. Many common issues with data can be prevented through 
utilizing the considerations and tools further discussed below.

2.3.2.1 Data collection
A major consideration of available data is how the data is collected. Measures to avoid bias and 
correlation in data collection is ensuring that the data is representative of the entire population being 
explored. If data on the entire population is not available and a sample of demand data must be used, 
the sampled data often must be randomly collected to be representative of the entire population.

Also, there are other issues that can affect the accuracy and precision of data. Some of these 
items are the source, unsuitable method of collection, instrument measurement errors, or mistakes 
in manual data inputting into databases. Certain methods of collection, such as self-reported use 
or beliefs, carry a level of uncertainty of whether accurate answers were given, intentionally or 
unintentionally. Errors in measurement, as possible with metering for example, should be expected 
and investigated for obvious errors that can be further evaluated. Since it is practically impossible 
to accurately measure natural systems and collect flawless data on large samples, the importance is 
not to attempt to fully remove all errors, but to be aware and make appropriate interpretations by 
considering the involved uncertainties.

2.3.2.2 Data time series length
For water demand estimation, the length of available record is important to consider because of the 
longer cyclical nature of demand over monthly weather changes and annual patterns of higher and 
lower temperatures and weather event frequency changes. Other examples besides weather could be 
development growth and density patterns, or long stretches of mandatory conservation measures 
during drought periods. Having a long enough period of record will determine whether the model can 
pick up on these changes and offer predictions that will include these variations. If not possible then 
any significant events that could have impacted the analysis should be noted so any use of the results 
will be able to consider and use caution when necessary.

2.3.2.3 Data management and cleaning
A decent assumption is that raw data will always require some sort of cleaning. Documenting any 
changes to raw data is critical for model accountability. Being able to clearly describe any changes to 
model and the reasoning for doing so is necessary for a full understanding of the model results. If the 
model is ever to be reproduced or applied to different situations, these notes will be required. Note 
that many of the academic journal articles strongly recommend open access and data transparency, 
which will help increase the accuracy/transparency of analytical processes and research outcomes.

Looking through time series water data may have zeros or missed readings. This is not uncommon 
with metered data. Whether to include or exclude these readings will have implications for the model 



35Water demand analysis | regression

and interpretation. Questions to consider are whether the zeros are accurate and are representative of 
shutoffs or a missed reading (e.g. electrical/mechanical failures).

Demographic data can have errors or missing information based on collection methods. Self-reported 
data has an added layer of inaccurate information that cannot be checked often. In large data sets, the 
data input process may have added errors. Some of these mistakes can be spotted easily through data 
exploration methods but they can also go unnoticed or may sometimes be a true outlier. Noting these 
points is a good practice and deciding how to handle them can be done in later steps, if the outliers are 
making significant impacts to the data set and the results. Depending on the model objective, arguments 
to remove these outliers may be justified, but again, always should be noted as exceptions.

2.3.2.4 Descriptive statistics and visualizations
Various methods should be employed to explore the available data. Initial exploration assists in 
understanding the data patterns and helps with model estimation and interpretation. Being able to 
describe the collected data (i.e. what is the story from the data?) provides context for the model results 
and helps make important choices such as what explanatory variables should be included in the model.

Combining basic statistical and visual tools can present an overall, summary view of all information. 
These tools provide a benchmark, or gut check, to interpret model results and can provide valuable 
insight on their own. Often, interesting, and important information can be seen by initial data plots, 
basic statistics, and mapping if geographical is available (see Chapter 15 for use of GIS).

Water demand data can quickly be plotted against suspected influencing factors to determine if 
there is an observable relationship and the strength of that relationship. A simple correlation graph can 
explain a lot without much expended effort. These plots are also useful in inspecting the data for possible 
errors or outliers. One type of correlation plot is discussed in Section 2.4 and shown in Figure 2.7. Plots 
should be done for each considered explanatory variable against the water demand dependent variable.

Preparing time series plots of water demand unveils patterns and cycles that may need to be 
included in the model specification (Chapter 4 will discuss the water demand in time series and their 
forecasting). Figure 2.8 presents an example of average monthly water demand plotted over time. Any 

Figure 2.8 Average monthly water demand by group.
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large changes may require further investigation as to the cause and whether it can be captured in the 
model. Plotting multiple variables across time can also show correlation through time. A seasonal 
peak during summer months is discernable in the time series. There does not appear to be much 
variation across the years, except for a slightly noticeable decrease in the final year.

Figure 2.8 also plots water demand data from four separated neighborhood areas, identified in 
the graph as cohorts A, B, C, and D. By separating out the demand data in this manner, different use 
is observed. Cohort C appears to have significantly higher average use than Cohort A, for example. 
Looking at only the combined average line erases the differences between neighborhoods.

Since water use is often localized and may vary greatly between cities or regions, water use data 
should be explored spatially when possible. Mapping the water demand points can be useful for 
specific characteristics about location. This type of spatial clustering is a specific occurrence that 
should be included in the model. For example, if demand data is heavily concentrated in clusters in 
different neighborhoods, it may be necessary to include neighborhood indicators in the regression 
model. Figure 2.9 presents a fictionalized example of how useful information can be revealed through 
mapping. The available water demand information is concentrated in two areas on the map. One area 
appears to be in a dense, downtown location and the other in a residential area. Since these two types 
of locations often have different house characteristics, the water demand uses may be different as well.

Descriptive statistics include averages, quartiles, medians, ranges, standard deviations and any 
other statistic that may be of interest. These calculations can create a picture of the entire data set 
and can be useful in further investigating data features such as the possible neighborhood specific 
demand as identified with the time series plotting. Separating the data and running basic statistics 

Figure 2.9 Cohort example.
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helps to quantify the use variation between the neighborhoods. The table within Figure 2.8 shows the 
variation in average and number of observations between the four cohorts.

Spatial clustering or significant difference between groups in the data can be included in the 
regression model in different ways. Due to these differences, it may be useful to separate the data 
into separate models or include a grouping (or cohort) indicator in a single model as an explanatory 
variable. One way is to run separate models for each group. Another method is to add an indicator 
variable, sometimes referred to as dummies, for each cohort, or localized area. Since different locations 
or groups may have unobservable or unquantifiable characteristics affecting use, dummy variables 
work to capture the expected mean of water demand for that group relative to one group, holding all 
other variables constant. More details will be explained in Section 2.5.

2.3.3 Level of aggregation
The level of data aggregation may shape what information can be input and what we can extract from 
the model. It may be necessary to separate data and run separate models for different regions or it may 
be best to aggregate available data to use for regional or state models. Depending on the objective, it 
may be necessary to distinguish between different sectors (e.g. agriculture, residential, industrial, or 
environmental) or scale (e.g. individual household, census block, city, or state), as was evident in the 
above example of water demand by neighborhood cohorts.

2.3.4 Data range and variation
Regression methods estimate the change in one variable based on changes on other chosen variables. 
To quantify this change accurately, there must be enough change in the data set. Deciding if data 
is sufficient and appropriate can be very subjective at times and judgment and experience must be 
used.

Using the data from Example Problem 1 can help illustrate problems that can arise from lack of 
data variation. Average monthly water demand was provided along with total monthly precipitation. 
The precipitation data contained many zeros and many small values. The range of precipitation was 
zero to 23.9 cm but with an average of 4.57. Out of 72 observations, 15 (20%) were zero. Depending 
on location, zero precipitation values would be expected so they should arguably not be removed 
from the data set. If precipitation is the only explanatory variable being used, there will likely be a 
lot of variation in water demand values associated with zero precipitation. Since all the precipitation 
values are zero, the variation in those water demand values cannot be explained with a change in 
precipitation, diminishing the strength of predicative power in the model.

In the case of Example Problem 1, there was enough variation in precipitation to get a regression 
model with a decent r-squared value. The variation of water demand observations in zero precipitation 
months was low and there was sufficient variation and correlation in the other values. This may not 
always be the case and should be considered if the available data has many expected zeros or a small 
value range. Possible mitigations are adding additional or different explanatory variables, if possible. 
Transforming the data, such as taking the log of the variable, may also help if the range is small.

2.3.5 Misspecification
When important factors are left out of a regression model then the model is not clearly a ‘good or 
reliable’ model (i.e. mis-specified model). Natural systems and human behavior are both challenging 
to accurately predict. Since a model is only ever an approximation, the objective should be to get as 
close to the actual phenomena as possible. It may be helpful to remember that it will likely never be 
possible to precisely explain water demand patterns even if data for all identified influencing factors 
were available.

If we accept that most models are mis-specified in some manner, we must consider what that means 
for model interpretation and application. A thorough understanding of the system being modeled helps 
to appropriately assess and consider the limitations of the model results. The growing availability of 
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large data sets (e.g. ‘big data’) is a good example of how disciplinary expertise is critical for drawing 
appropriate conclusions. With big data it can be easy to find correlation between variables that have 
zero causality. For example, residential water demand tends to peak during the summer months, but 
so do ice-cream sales. Of course, it would not stand-up to reasoning that to reduce summer water 
demand, we should restrict ice cream sales.

It can be tempting to add in as many explanatory variables as likely to explain water demand 
accurately. However, more variables are not always better. Including all possible variables could have 
an effect that would do more harm than good. Using the above example of water demand and ice cream 
sales, we should all remember that the common refrain correlation does not mean causation. You 
should always have a reasonable argument for how each variable influences demand. There are several 
problems that occur if too many explanatory variables are included in the model without reason. One 
problem is it makes the model appear to have a stronger explanatory power than it actually does. 
Another is the increased chance of including explanatory variables that interact with other. When this 
occurs, the impact of each individual variable on the dependent variable is no longer straightforward. 
The model may over- or underestimate the impact of the related explanatory variables. On the other 
hand, omitting important variables is another problem with serious consequences. We will go over 
this important topic in the following section.

Specifying a model is an iterative process. As discussed in the next section on estimating parameters, 
running the model and testing the model may lead to further investigation of the data, the model 
set-up, and may even require reframing of the initial research question.

2.3.5.1 Problem 2
Using water demand as the dependent variable, discuss the reasoning why it was chosen (e.g. would 
like to project future water supply under changing weather patterns, or evaluate residential water use 
under drought conservation measures). What are 3–5 explanatory variables that could influence the 
chosen dependent variable? Find previous literature to support the choice of explanatory variables. 
Are there factors that could be a strong influencer on the dependent variable but would be difficult 
to find good data? For the chosen explanatory variables, are there any mechanisms or relationships, 
showing correlation, between the individual explanatory variables chosen? For the objective, what 
time period of data would be ideal? Explain your reasoning.

2.4 ESTIMATING PARAMETERS

For regression models considering only one explanatory variable, a simple line could be drawn to 
estimate the regression line. As mentioned earlier, this type of initial visual estimation can provide 
a quick snapshot of a linear relationship between two variables. However simple, this method is 
highly subjective and tends to ignore outliers. Therefore, we need a systematic method to estimate 
parameters. When multiple explanatory variables are considered, there is no simple graphical method. 
Ordinary least squared method (OLS) is a widely used for linear models that we will discuss herein. 
It can be computationally quick and simple to execute with various software programs (e.g. Excel, R, 
Python, etc.). It is great that we can easily access them, but care should be taken to understand the 
assumptions behind the method to ensure reliable results/interpretations.

2.4.1 Panel regression – pooled, fixed effects, and random effects
When working with panel data, there are three types of regression: pooled, fixed, or random effects. A 
summary of each is given in Figure 2.10. The pooled OLS estimator does not consider the panel nature 
of the data and is what was described in the first example estimating water demand using lot size. Also, 
the data used in that example is considered cross-sectional since there was only a single time period. 
If panel data is used with the pooled OLS estimator, all the data is pooled together and there would 
not be any way to track how an individual household water demand changed over time. The intercept 
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would be a constant value for all entities. The regression intercept in this case would be the average of 
all water demand for every individual over time. If one individual had a significant different demand 
pattern, pooling all the data together would ignore the variation within that one individual. Using the 
neighborhood cohort example from above, this pooled method would ignore specifics about each cohort.

In a fixed effects model, individual intercepts are estimated for each individual. In this manner, all 
unobserved characteristics about a single customer (that would not change with time) is absorbed into 
an individual-specific intercept. Fixed effects attempt to control for unmeasurable variables that are 
constant over time, but may vary between individuals. An assumption is that there are characteristics 
of each household, or group, that effect the amount of water used and for which these characteristics 
cannot be observed and added to the model as an explanatory variable. A household specific example 
could be that some houses have older service lines which may be prone to leaks leading to higher 
water use recordings. This is not something easily known so cannot be included in the model as an 
explanatory variable. Another example could be household-specific behaviors and attitudes such as 
frequency of clothes washing or bathing. These behaviors are difficult to accurately model but do 
account for household specific water use patterns. For the neighborhood cohort example this would 
be the assumption that there are specific aspects of the neighborhood that cannot be measured or 
added as an explanatory variable, but there are features, perhaps a conservation culture or a shared 
love of green lawns, that is not easily measurable or observed.

Lastly, a random effects model assumes unobserved individual-specific variables are random, 
or follow a certain probability distribution, rather than assuming there is some individual-specific 
characteristics that are correlated with the explanatory variables. Using random effects assumes there 
is no related individual specific effects. Because of this assumption and the difficulty of proving it, a 
fixed effects model is most often proposed and will be discussed herein.

2.4.2 Estimation example walk-through problem in R
In this section, a water demand regression problem will be estimated and evaluated using the R 
program. We would like to estimate a forecasting equation given household-level water utility data 
consisting of monthly residential water demand over a period of five years. The resulting regression 
equation can be used to forecast demand for short-term planning and operations of the water 
distributer. Data for this example is provided in the file: ‘Demand_Data_Ex.csv’.

Figure 2.10 Panel data regression method summary.
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To begin, let us explore the provided data. The file has already been structured in a format that is 
ready to use with popular regression packages in the software program R. R can be downloaded freely 
from The R Project for Statistical Computing website ( www.r-project.org). R Studio is an additional 
product that provides a useful editor and tools for R.

Once R Studio is downloaded, there are a few quick steps recommended for set-up. R Studio default 
layout includes the console where code can be directly run, or code can be written and saved in 
scripts. Scripts are useful to save, share, and keep a neat record of what is being done. One way a new 
R script can be opened is through File > New File > R Script (Figure 2.11). Figure 2.12 is a screenshot 
of the first lines of commands for set-up as written in an R script. The first line has been added to 
ensure a clean directory and removes data from previous sessions. This is helpful to ensure previous 
data and objects do not interfere with the current session. The second line sets a working directory 
so that all files later can be called in reference to that default location. R is case-sensitive so take note 
of command capitalization and when setting object names. The hashtag on the lines shown in Figure 
2.12 represent notes that can be added for reference and will not be executed. Each of the lines in the 
R script can be run individually with ctrl + enter.

R has default base commands but has many packages that can be installed and loaded. For this 
problem, we will load several packages. The next few command lines shown in Figure 2.13 show 
which programs to install and load for this example. Documentation on each of these packages is 
available and recommended to learn their full capabilities (e.g. Croissant et al. 2021). R programmers 
are constantly improving and writing new packages. The ones shown here are suggestions to use 
but other packages, including writing your own packages, can be used to achieve the same results 
presented in this example.

Figure 2.12 R example set-up commands.

Figure 2.11 RStudio environment – create R scripts.

http://www.r-project.org
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Importing the data file is shown in Figure 2.14. The file is being read into R and is named data. The 
lines below show several ways to explore the data file and its structure. The file has been structured 
to import as a data.frame in R as noted with the str() command. There are eight variables and 57 060 
variables. With the head() command, the column names and first few rows are shown. The Summary() 
command provides basic statistics on each of the variables. Combined, these commands present a 
quick view of the provided data. In summary, there are five years (60 months) of monthly water 

Figure 2.13 R package install and load.

Figure 2.14 R import.csv file.
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demand (lpd) for 951 individuals. For each individual, the number of household bathrooms is provided. 
Accompanying weather data includes monthly average temperature (degrees Celsius), monthly average 
rainfall (cm), and monthly average adjusted evapotranspiration (cm). The remaining column, Group, 
is an identifier categorizing the individual household as being in one of four geographic groups.

Graphing is another way to explore the data as shown in a few selected commands in Figure 2.14. 
The first is a histogram of the demand variable to check for normal distribution and to view the range 
of demand data. The next command plots all the demand data for all individuals over time.

In the next plot, only the average monthly average is plotted and is divided into the four groups. 
The next command lines show a method to check for correlation among all the variables as well as a 
method to individual check correlation between two variables (Figure 2.16).

As shown in the bottom plot in Figure 2.15, Group 3 demand is significantly higher than the other 
groups. Because of this notable difference, we will run regression models separately for the groups to 
capture this difference. For this example, we will show the regression analysis for Group 3 which can 
be replicated for the other three groups.

A pooled regression is performed first. The plm function is used in this example (Figure 2.17). 
Within this function, pooling is denoted with specifying the model and the data being called is a 
subset of the larger data file. In the first regression model, called Pooled_all, all weather variables 

Figure 2.15 R select commands and plots.
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and the number of bathrooms is used. From the results, bathroom is not significant (p-value greater 
than 0.05) so the next model, named Pooled2, is run without the bathroom variable. Temperature has 
also been removed, recalling that there was strong correlation between temperature and ET in the 
correlation matrix which violates one of the basic OLS assumptions. Results in Pooled2 show rainfall 
is not significant so another model is run with the remaining explanatory variable, ET. Regression 
results for the final pooled model are shown in Figure 2.18.

Next, a fixed effects (FE) model is estimated to account for individual-specific effects that do not 
change over time. Since bathroom is a time invariant individual specific characteristic, it would not be 
included as an explanatory variable in an FE model. If it was added to the equation shown in Figure 
2.19, a coefficient could not be estimated.

A few tests are shown next in Figure 2.20. The first tests for time-fixed effects to check if the pooled 
or fixed effects model would be most appropriate. For this example, time-fixed effects were observed 
(p-value less than 0.05 for this test), making an argument that the fixed-effects model should be used. 
The next lines are selected commands to test the model based on the OLS assumptions. The errors 
appear relatively normally distributed, and the residual variance appears mostly random.

Further interpretation of these results are discussed in the next section on interpretation.

Figure 2.16 R correlation plots.

Figure 2.17 R pooled regression.
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Figure 2.19 R fixed effects regression results.

Figure 2.18 R pooled regression results.
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2.5 INTERPRETATION

Regression methods can be employed in various ways. The example in Section 2.4.2 was centered 
on creating a forecast model. Interpreting those results will be presented next, followed by the 
presentation of a real example problem that uses regression techniques to evaluate the impact of 
metering on residential water demand.

2.5.1 Regression example – forecasting
The results from the regression analysis in Section 2.4.2 is shown in Figure 2.14. From the fixed effects 
model, the regression equation that can be used to represent and forecast average monthly water 
demand for households within the geographic Group 3 is:

Monthly Water demand lpd 791 adjusted ET (cm), .= + ×28 1

Holding everything else constant, for a 1 cm increase in adjusted ET, monthly water demand is expected 
to increase by 28.1 lpd. This is a rather simple equation that can be quickly used to provide estimates of 
water demand as it changes on a monthly level. The caveat of its simplicity is the equation provides only 
an average and would not be useful to predict individual household use. Finer resolution data of end-use 
appliances as input would be needed to build a finer resolution model for individual households.

ET was estimated to have a significant relationship with water demand but there may be other 
variables that were not evaluated but could be more meaningful to predict water demand. An example 
of this could be the price of water. Omitting water price may be relevant if large changes in price occur, 
for example, since this equation essentially assumes no changes in water price will occur. If forecast 
equations such as these are consistently used, the models should be updated as more data is collected.

2.5.2 Regression example – metering impacts
A real example problem will be discussed and evaluated in this section to walk through how regression 
methods can be used to evaluate impacts to water demand over time with changes to particular 
variables. In this example, the research question involved whether residential water demand would be 
impacted by the installation of water meters and associated volumetric pricing on previously unmetered 
residential households. This is following Tanverakul and Lee (2015). Monthly data was collected over 
10 years for 1572 residential customers; some of which underwent metering while others did not. The 
metered group was considered as a treatment group and the non-metered households were considered 
as a control group. The control group was utilized as a proxy to account for variation in water demand 
that would have occurred regardless of the meter installation. All data was collected within one 
California city with above average demand for the state. A fixed effects regression model was chosen 
to be able to account for individual household effects.

To deal with the question of pre- and post-metering time periods, three time periods were 
differentiated and added to the regression model as explanatory variables. A pre-metering period was 
distinguished, and post-metered time periods were divided into two periods, accounting for a first 
post-metered period of two billing cycles past metering and a second post-metered period including 
two later billing cycles. This was done to evaluate whether metering had a short- and longer-term 

Figure 2.20 R fixed effects regression results.
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impact to water demand. Of importance is that the time period of metering was not identical for all 
households as the metering installation program occurred over time. To account for the seasonal 
effects that could mask changes from metering, a weather variable was added to the model.

The specified regression equation was:

Monthly water demand gpd Pre-metered

P
treatment( ) ( )

(
it i= +

+

α β

β

1

2 oost-metered TimePeriod Post-metered TimePeriotreatment1 3) (+ β dd

Pre-metered Post-meteredTimePe
treatment

control

2

4 5

)

( ) (+ +β β rriod

Post-meteredTimePeriod

Evapo

control

control

1

26

7

)

( )

(

+

+

β

β ttranspiration in inches ET, )it i+ ε

This example problem uses dummy variables to identify whether the observed data is from the 
control or treatment group and what time period matches the observed data. The dummy variable 
takes on a value of either zero or one. In the way this regression equation was built, a value of one 
represents a single time period and group (either treatment or control). For example, when pre-metered 
water demand in the treatment group is wanted, that variable becomes one in the above equation and 
all other variables representing time and group are zero. The evapotranspiration variable was used to 
account and control for monthly and seasonal weather fluctuations.

The equation is estimating monthly water demand based on if a household was metered, time length 
after being metered (if metered), and ET. The assumption is water demand can be predicted based on 
these influencing factors. Using fixed effects will allow individual household effects to be controlled. 
In the above equation, the fixed effects are represented by the intercept value. An individual intercept 
value will be estimated for each household. We also tested lot sizes, number of bathrooms, and house 
age for their explanatory strength, but found they were not significant. Significance was evaluated as 
further discussed below.

The results of the regression model are shown in Table 2.2.
The estimates shown for each explanatory variable represent the impact on water demand. For the 

ET coefficient estimate of 19.4, average monthly water demand can be expected to increase by a factor 
of 19.4 gpd (73.4 lpd) with a one-unit change in ET. The rest of the estimates show the average amount 

Table 2.2 Regression results.

Estimate Standard Error t-Value Pr(>|t|)

Pre-metered treatment 721.2 37.886 25.703 <2.2 × 10−16

Post-metered treatment 510.2 34.033 14.386 <2.2 × 10−16

Second-post-metered treatment 501.2 33.900 13.733 <2.2 × 10−16

Pre-metered control 592.9 35.55 17.068 <2.2 × 10−16

Post-metered control 498.7 34.909 9.193 <2.2 × 10−16

Second-post-metered control 465.2 34.909 9.242 <2.2 × 10−16

Adjusted ET (inches) 19.4 5.847 2.155 0.03127

Total sum of squares 1 615 700 000

Residual sum of squares 1 408 900 000

R-squared 0.128

Adjusted R-squared 0.127

F-statistic 81.25

p-value 2.2 × 10−16

DF 3773
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of water demand for the given group (metered or unmetered) and in what time period (relative to the 
time of metering).

From the estimates, the difference in demand between the control and treatment groups was 
128 gpd (=721.2–592.9) (484.5 lpd), showing that the treatment group used more water on average 
than the control group. After having a meter installed and moving to volumetric pricing, the treatment 
(metered) households decreased use by 211 gpd (=721.2–510.2) (798.7 lpd) in the first post-metered 
time period and 220 gpd (721.2–501.2) (832.8 lpd) by the second time period. Accounting for the 
decrease in demand that also occurred in the control group, the decrease in demand from metering 
after six months had a 13% decrease (=((721.2–501.2) – (592.9–465.2))/721.2).

The rest of the information in the table can be used to verify the model. The final column lists 
two-tail p-values that tests whether each coefficient is different from zero. A zero coefficient would 
indicate no significant influence of the explanatory variable on water demand. It is common to set 
the significance level at less than 0.05, so if it is less than 0.05 then the explanatory variable has a 
statistically significant influence on the dependent variable. The F-statistic does something similar but 
for the entire model. If the p-value for the F-statistic is less than 0.05 then all regression coefficients 
on the explanatory variables are significant. Significance here can be thought as the values for all 
coefficients are different than zero, representing some effect.

2.5.3 Presentation of results
Presentation of the results depends much on the objective of the analysis. At a minimum, basic statistics, 
regression results, and any statistical tests to validate the regression model should be included for a 
complete picture of the regression equation and results.

Since all models are approximations, they are riddled with limitations. Including the known 
limitations as discussed through this chapter is good practice. For most water demand models, 
because water can be a local affair, acknowledging the demographics and other regional uniqueness 
is helpful to know where the results and model predictions would have the most appropriate and 
accurate application.

After the model and results have been presented, critical remaining questions are: What could 
be done in the next model? What could be improved? Are more or better quality data observations 
available? Is there a way to improve modeling or understanding of weather patterns?

2.5.3.1 Problem 3
Describe the following results from a fixed effects regression model and write the general regression 
equation. The dependent variable is average monthly demand given in liters per day. What do the 
estimates represent? How can you test if each explanatory variable is significant and are there 
recommendations for deciding to rerun the model with less or different variables? What other 
information would be helpful to determine if these results were from a properly specified model? How 
could these results be useful for policy related decisions?

  Estimate Standard Error t-Value Pr(>|t|)

Number of bathrooms 25.1 55.887 19.901 0.071

House age 0.003 102.03 11.511 0.111

Total bill price 7.59 33.900 14.444 <2.2 × 10−10

Adjusted ET (cm) 16.12 4.899 1.015 0.025

R-squared 0.09  

Adjusted R-squared 0.011  

F-statistic 101.25  

p-value 2.2 × 10−16  
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2.5.3.2 Brief suggested answer
The general regression equation is as follows:

Water demand lpd number of bathrooms

houseage year

( ) .

. ,

= ( )

+

9 1

0 003(( )+ ( )+ ( )3 39 4 89. ,$ . ,total bill price ET cm

The average monthly demand is positively influenced with the number of household bathrooms, 
the age of the house, the total household water bill, and ET values. A greater number of bathrooms, 
older houses, higher water bills, and higher ET values are expected to increase average monthly water 
demand. An increase in any of these variables will produce an expected increase in monthly average 
water demand.

Number of bathrooms, total bill price, and ET values are all significant. House age is not significant.
Holding everything else constant, for every additional bathroom, water demand in lpd is expected 

to increase, on average, by 25.1 lpd. For every dollar increase in total monthly bill price, expected 
monthly water demand will increase by 7.59 lpd. An increase in ET of 1 cm is expected to increase 
monthly water demand by 16.12 lpd.

2.6 CONCLUSION

Water resource management requires a thorough understanding of the significant factors that 
influence demand. How much water is needed by different sectors and regions is necessary for 
planning water sources supply, future capital infrastructure programs, water agreements, and 
alternative and emergency planning. Knowledge of what factors can influence demand, and for 
what sectors, can be helpful for strategizing conservation programs and other management policies. 
Regression techniques have a well-demonstrated history of being useful in estimating water demand. 
This chapter focused on some of the significant aspects of specifying a regression model, estimating, 
and interpretation. Emphasis throughout the chapter focuses on the importance of understanding 
how factors influence demand and key things to consider during model estimation and caveats 
during interpretation.

The multiple linear regression models estimated with ordinary least squares can be simply performed 
with software programs, making it an ideal choice to perform analysis. The greater challenge is building 
the regression model and appropriately interpreting results. The mathematical underpinnings of the 
models should be understood, but the OLS method and fixed effects panel regression was specifically 
reviewed here to highlight the practical use and effectiveness of these model in providing powerful 
predictions to manage critical water resources now and for future generations.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Install and run the necessary software.
(2) Perform data preprocessing.
(3) Run a basic ML model.
(4) Assess and interpret the model.
(5) Visualize findings.

3.1 INTRODUCTION

Machine learning (ML) is a subfield of artificial intelligence (AI), where algorithms are learning patterns 
from data, rather than being rigidly programmed (Radakovich et al., 2020). In this chapter, we focus on 
supervised learning, a field of ML where an algorithm learns how to map an input to an output, given a 
set of examples. Each training example constitutes a sample in our dataset and includes a set of features 
(predictors/explanatory variables), as well as one or more target variables. In water demand forecasting 
problems, the target variable is often water demand at a given temporal (e.g., daily or monthly) and spatial 
(e.g., at the household or city level) scale, while the features are variables that are suspected to influence 
water demand, such as air temperature or day of the week. ML methods have dominated the water 
demand forecasting literature (Anele et al., 2017; Antunes et al., 2018; Fiorillo et al., 2021; Menapace 
et  al., 2021; Pesantez et  al., 2020; Romano & Kapelan, 2014; Xenochristou, 2019; Xenochristou & 
Kapelan, 2020), due to their superior accuracy compared to statistical methods. In this chapter, we will 
introduce basic ML concepts and describe a ML pipeline, from data collection to deployment.

In the following, we outline a basic ML pipeline for water demand forecasting (Figure 3.1) based 
on tabular data. The first step is understanding the drivers of water demand and defining the types 
and sources of data we need to collect. Next, we need to follow the necessary preprocessing steps 
to prepare the data for modeling. The specific methods may vary depending on the project goal, 
modeling strategy, and data characteristics, but a form of data cleaning, feature engineering, feature 
selection, and data transformation is often required. Next, we choose a model for our application 
and determine the optimal set of hyperparameter values, that is model parameters that need to be 

Chapter 3

Water demand forecasting – machine 
learning



52 Embracing Analytics in the Drinking Water Industry

determined through trial and error and are not learnt during training. There are several ways to 
assess the success of the modeling strategy, including model prediction accuracy, interpretability, 
and usability. Accuracy refers to how well the model predictions match the ground truth. Model 
interpretability reflects how well we understand how the model makes decisions, while the usability 
metric incorporates all other constraints that we may need to consider, such as memory and time 
resources as well as human expertise.

The above process is not linear, as results from each part can be used to update a different step of 
the pipeline. Insights from model interpretability metrics can inform the data collection process by 
assessing which features improve model predictions, while a low accuracy may indicate that the model 
building phase and/or data inputs need to be updated. Reaching the desired outcomes will likely 
require several iterations of the above process. The final step is model deployment, which loosely 
refers to integrating the model into operations. After deployment, we need to continuously monitor 
performance and adjust all parts of the ML pipeline as needed.

In the following, we describe in detail all parts of the above process and list useful software tools. 
Finally, we present a set of practice problems that will help you understand the fundamental theory 
and build your first ML model!

3.2 DATA

3.2.1 Data collection
The most important predictor of future water demand is past water demand (Xenochristou et  al., 
2021), which in most cases is available by the water utility/company. Researchers and practitioners 
often use additional predictors, that is variables that influence water demand, available from different 
sources. There are four categories of predictors that are most frequently used in the water demand 
forecasting literature:

(1) Household and socioeconomic characteristics, such as income, occupancy rate, water price/
rate/rate structure, floor space, property type, and the presence/size of garden. Higher income 
is linked to a larger number of water-using appliances and higher outdoor consumption (Butler 
& Memon, 2006; Chang et al., 2010; Domene & Sauri, 2006). Detached houses with larger 

Figure 3.1 The ML pipeline. A simple ML pipeline consists of four interconnected parts, data collection and 
preprocessing, model building, model evaluation, and model deployment.
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floor space are also linked to higher consumption (Butler & Memon, 2006), while in a study 
by Xenochristou et al. (2021), single-occupancy households consumed almost double the daily 
amount per capita compared to properties with three or more occupants.

(2) Temporal characteristics, such as the day of the week, the season, as well as the time and the 
type of day (working day or weekend/holiday). Changes in water demand follow seasonal, 
weekly, and daily patterns. Typically, water demand is higher during the summer months, 
when water is used for outdoor activities (Cole & Stewart, 2013), as well as weekends (Parker, 
2014), when people tend to spend more time at home. In addition, water use follows a diurnal 
pattern during the day, with peak consumption during the morning (7–8 am) and evening 
(6–8 pm) hours (Kowalski & Marshallsay, 2005), when most people wake up and come back 
from work, respectively.

(3) Weather characteristics, such as air temperature, humidity, soil moisture, irradiation, sunshine 
hours, rainfall, evapotranspiration, and days without rain (Bakker et  al., 2014; Dos Santos 
& Pereira, 2014; Xenochristou et al., 2020a). Out of the weather variables appearing in the 
literature, air temperature is most strongly linked to water use (Beal & Stewart, 2014; Fiorillo 
et  al., 2021; Willis et  al., 2013; Xenochristou et  al., 2020b), while there is a much weaker 
association between water use and rainfall (Beal & Stewart, 2014; Cole & Stewart, 2013; 
Xenochristou et al., 2020a).

(4) Past water demand incorporates a lot of the above information related to weather, temporal, 
and household characteristics, as well as water use habits, which make it a valuable source of 
information. In a study by Xenochristou et al. (2020b), the authors found that the importance 
of additional predictors becomes significantly stronger when past consumption is not included 
as an explanatory factor.

There are several issues we should consider when drafting the data collection process. The effect 
of household, socio-economic, temporal, and weather predictors is often considered univariate across 
different types of customers, properties, and times of the day, the week, or the year. This means that 
the same increase of 5°C in temperature is assumed to have the same impact in properties with 
different garden sizes. In reality, the effect of that same increase in temperature on water demand can 
vary significantly among different types of properties or times of the year (Xenochristou et al., 2021). 
Therefore, it is important to consider the interactions between these variables (e.g., temperature and 
garden size) and use forecasting strategies that can capture the complicated relationships among 
those predictors.

Finally, we need to account for the cost and time required for data collection, data storage and 
transfer, and ensure the privacy of the related approaches. While the cost of collecting additional data 
may be justified in a water scarce area where high forecasting accuracy is necessary to ensure water 
availability, the same cost may not be justified in a different area with higher water availability. In 
both cases, the data collection strategy should be continuously updated based on the evaluation of the 
modeling results.

3.2.2 Data cleaning
The data cleaning step aims to reduce the number of errors, gaps, and inconsistencies in the data, as 
well as remove redundant information. Common data cleaning steps consist of addressing missing and 
erroneous measurements, identifying outliers, and removing duplicate features and samples. Incorrect 
or missing measurements can occur due to faults in data recordings (e.g., faulty water meters) or 
transmission. Pipe bursts can result in large, short-lived spikes in consumption that are relatively 
easy to identify and remove. However, smaller, ongoing leakages are likely to go undetected by water 
utilities, customers, and ML practitioners. Using nighttime demand is often a good metric of such 
leakages as water consumption over the night and early morning hours is expected to be near zero.
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On the other hand, while a pipe burst should be excluded from the dataset, days with abnormally 
high consumption due to other reasons, such as high temperatures overlapping with a weekend or 
holiday, can provide valuable information to the model. Thus, excluding outliers from the dataset 
should be handled with care.

Depending on the extent of missing or erroneous values for a certain feature or sample, we can 
choose to remove it from the dataset or impute the missing values. Simple and commonly used data 
imputation methods vary depending on the type of data. For time series of water demand, we can 
impute missing values by linear interpolation. This means that if we draw a straight line between the 
data point immediately before and immediately after the missing value, we assume that the missing 
value will fall on that straight line. Alternatively, we can impute missing values with the mean or 
median across all samples for numeric variables or with the mode for both categorical and numeric 
variables. Finally, there are specific methods and packages dedicated to missing data imputation, 
such as the missForest package in R that can be used to impute continuous and categorical data 
(Stekhoven & Buehlmann, 2012). The appropriate method for each scenario will depend on the 
dataset characteristics and level of accuracy required.

3.2.3 Feature engineering
At this step, we need to decide the level of data granularity required for our problem, as both 
prediction accuracy and feature importance are dependent on the level of temporal and spatial scale 
(Xenochristou et al., 2020a). This decision will depend on the problem objective and data availability. 
While understanding water consumption to influence customer attitudes requires water demand 
modeling at the household or micro-component level, city-level forecasts may be sufficient for planning 
infrastructure investments. Aggregating data spatially or temporally ultimately results in new features 
(e.g., from daily to weekly air temperature).

High data granularity is associated with high variability in the consumption signal, partly due 
to the inherent randomness of water use. Averaging over a longer time period and number of users 
results in a smoother signal as it averages out individual differences and random effects. Since these 
are hard to predict, prediction accuracy drops at lower aggregation levels. In a study by Xenochristou 
et  al. (2020b), the mean absolute percentage error (MAPE) of daily predictions of water demand 
increased exponentially from ∼5%, for a household group size of 200 households, to ∼17% for a group 
of five households.

Another way of forming new features is by binning categorical or numerical feature values into 
categories. For example, instead of using the exact size of the garden for each property, we may create 
groups that contain certain ranges of garden sizes (e.g., 0–10, 10–30 and >30 m2). This strategy can 
help reduce the number of classes, balance out class imbalances and increase the number of examples 
within a certain class. Another scenario where this strategy can be particularly useful is when we 
know or suspect that a feature has an effect after its value exceeds a certain threshold. An example 
would be creating a binary variable (a variable that can only take one of two values), indicating if the 
maximum air temperature exceeded 35°C, or using the daily amount of rainfall to create a new feature 
that corresponds to the number of consecutive days without rain. This would be particularly useful if 
we think that the presence of an event (e.g., whether it rained or the temperature exceeded a certain 
threshold) is what drives water demand. Finally, we can create new features using dates, as water use 
follows a seasonal, weekly, and daily pattern, thus we can use the season, month, day of the week, and 
time of day as predictors of water demand.

3.2.4 Feature selection
One caveat of ML models is that since they do not make any underlying assumptions about the 
relationship between inputs and target, but learn based on a set of examples, they are prone to 
overfitting on the training data. This means that they learn to fit the training set too well, and thus fail 
to generalize on new, unseen data (Figure 3.2).
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Feature selection aims to reduce noise by removing the features that are less likely to contain 
meaningful information. Using too many features as model predictors can increase the risk of 
overfitting, also known as the curse of dimensionality (Indyk & Motwani, 1998), particularly when the 
model does not have enough samples to learn from. For this reason, we want to remove uninformative 
or redundant features. If the number of both features and samples is too small on the other hand, the 
model may underfit on the training data. In other words, it may not have enough examples and/or 
features to learn meaningful relationships between predictors and target.

A simple feature selection approach is to filter out features that are strongly correlated and 
features with zero (or near-zero) variance. Including strongly correlated predictors that provide 
similar information can bias the model towards these predictors (e.g., house size and lawn size), 
while features that have the same value for all samples are unlikely to explain the variability in the 
target.

Another option is to filter features based on importance. The correlation between feature and 
target can provide a first indication of feature importance. However, this method does not account for 
feature interactions that can provide additional information to the model. For this reason, methods 
that use the model as part of the feature selection process are preferred. Sequential feature selection 
iteratively finds the best feature to add to the model to maximize performance, according to a scoring 
metric (e.g., by minimizing mean absolute error). Backward sequential feature selection applies the 
reverse of the above method; it iteratively removes the feature that causes the smallest reduction in 
model performance. Finally, linear models such as the Lasso algorithm (Tibshirani, 1996) that model 
linear relationships between a set of features and a target can be used for feature selection. The Lasso 
algorithm performs feature selection by applying an L1 sparsity penalty that forces many coefficients 
(the ones with the smallest effect on the cost function) to zero. By forcing a coefficient to zero, the 
corresponding feature is not used as a model predictor. Using a Lasso model as a preprocessing step 
for feature selection has the benefit of accounting for interactions between features and their influence 
on the target. However, this only applies to linear relationships between model features and target.

We can also reduce the number of predictors using dimensionality reduction methods. These 
refer to the transformation of a high dimensional space (in this case a set of features) to a lower 
dimensional space, while maintaining most of the qualities of the original feature set. Some 
techniques we use to achieve dimensionality reduction are Principal Component Analysis (PCA), 
t-distributed stochastic neighbor embedding (t-SNE), and Autoencoders. In most water demand 
forecasting studies, the number of predictors is relatively small and thus dimensionality reduction 
methods are not typically used.

Figure 3.2 Different model fitting scenarios. The dots represent the data points while the line represents the model 
fit. A model that is underfitted has not learned meaningful relationships between the input and target variables, 
while an overfitted model has learned the training set too well and is not able to generalize on unseen data.
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3.2.5 Data transformations
Different types of algorithms require different transformation steps that depend on their structure and 
assumptions. Common data transformation methods include data normalization and standardization, 
and data encodings:

• Data normalization refers to scaling predictors, often between 0 and 1. Predictors can have 
vastly different scales, such as 1000–150 000 USD for income and −20 to 40°C for temperature, 
which can cause issues during model training. Data normalization is particularly important 
for distance algorithms such as k-nearest neighbors (k-NN), algorithms that use regularization 
(such as Ridge Regression and Lasso), and algorithms that use gradient descent (such as neural 
networks).

• Data standardization is the process of transforming data to have zero mean and unit variance N 
(0, 1). It is used when an algorithm assumes the data to be normally distributed.

• Categorical data encoding is the process of turning categorical labels into numerical values. 
This is often required as most models can only use numerical inputs. The type of encoding 
that is recommended depends on the nature of the categorical data. If the categorical values 
are ordinal (e.g., garden size bins), then ordinal encoding assigns a numerical value to each 
category. For categorical data that lack this structure, one-hot-encoding transforms each class 
into a feature with a binary value for each sample in the data. For example, the property 
type could be encoded as three different features (single-family home, townhouse, and 
condominium), where the value indicates if a property belongs to the corresponding property 
type (1) or not (0).

For a visual guide of the effect of different data transformation methods, see the scikit-learn package 
guide (https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html) (Pedregosa 
et al., 2011).

3.3 MODEL BUILDING

3.3.1 Model selection
There are many types of ML models with varying levels of complexity, requirements, and use cases. 
The choice of ML model should account for many factors, such as data availability, cost, project aim, 
and vulnerability of research area.

3.3.2 Hyperparameter optimization
Hyperparameters are model parameters that are defined prior to model training. They determine 
various model characteristics such as how quickly the model learns or how much randomness is 
induced in the training process and need to be tuned for each individual dataset. The selection of the 
right set of hyperparameters is called hyperparameter optimization or hyperparameter tuning.

There are four methods commonly used for hyperparameter tuning: manual search, grid search, 
random search, and Bayesian optimization. The simplest but also the most labor-intensive way to do 
hyperparameter optimization is by manually testing model performance for different combinations 
of hyperparameter values. In grid search, we automate the process by defining a search grid for 
each hyperparameter and iteratively testing all combinations within this multi-dimensional grid, 
where each hyperparameter is one dimension. In random search, values are selected randomly from 
within the search space. Finally, in Bayesian optimization, hyperparameter combinations that have 
higher probability of resulting in higher prediction accuracy are selected. Many R packages have 
methods for hyperparameter tuning already implemented and ready to use. The caret (Kuhn, 2008) 
and h2o (h2o.ai 2020) packages in R provide the capability for grid search and random search for 
a number of algorithms and hyperparameters.

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
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3.3.3 Training, validation, and testing
Since ML models are prone to overfitting, we need to ensure that the trained model can generalize 
on new data. For this reason, we divide our data into three sets used for model training, validation, 
and testing. The training and validation sets are used for model development. Specifically, the training 
set is used to train the model, that is to learn on a set of examples, while the validation set is used 
for hyperparameter optimization (Figure 3.1). The test set provides an unbiased estimate of model 
performance on unseen data, that is data that was not used during the model development phase. 
When modeling time series, the training set should only include samples that are chronologically prior 
to the validation set. Similarly, the validation set should only include samples that are chronologically 
prior to the test set.

Cross-validation (Kohavi, 1995) is a sampling technique we can use to divide data into training 
and validation. It is used to provide a robust estimate of model performance and it is particularly 
useful when the number of samples is limited. A basic form of cross validation is based on dividing the 
dataset into k equal parts (k-fold cross-validation). At each iteration, one fold is used as the validation 
set, while the rest of the folds are used for training.

3.4 MODEL EVALUATION

3.4.1 Model accuracy
Assessing model performance depends on the problem definition, requirements, and constraints. 
In water scarce areas, where water utilities are at risk of being unable to cover demand, accurate 
predictions are essential to ensure water availability and inform decision making. In this case, 
sacrificing cost and interpretability to obtain extra accuracy is likely a worthy investment.

Accuracy metrics that are often used in the water demand forecasting literature are Mean Absolute 
Error – MAE (Antunes et al., 2018; Dos Santos & Pereira, 2014; Herrera et al., 2010; Kofinas et al., 
2014; Shabani et al., 2016), Mean Absolute Percentage Error – MAPE (Bai et al., 2014; Candelieri 
et al., 2015; Kofinas et al., 2014; Tiwari et al., 2016), Root Mean Square Error – RMSE (Dos Santos 
& Pereira, 2014; Kofinas et al., 2014; Shabani et al., 2016; Tiwari et al., 2016), and R2 coefficient of 
determination (Babel et al., 2007; Bakker et al., 2014; Dos Santos & Pereira, 2014; Haque et al., 2014; 
Kofinas et al., 2014; Shabani et al., 2016; Tiwari et al., 2016).

Each accuracy metric has advantages and disadvantages. The MAE assigns the same importance 
to larger and smaller errors, as well as positive and negative errors. It solely provides an indication 
of the overall agreement between predicted and observed values (Tiwari et al., 2016). The MAPE is 
independent of units and therefore can be used to compare results across different studies and utilities 
(Candelieri et al., 2015). The RMSE is the square root of the mean square error (MSE) and is sensitive 
to larger errors (Tiwari et al., 2016). The R2 ranges from 0 to 1 and indicates the degree of association 
between modelled and observed values (Haque et al., 2014). A wide range of accuracy metrics are 
available in the MLmetrics R package (Yan, 2016).

However, even if the model has good overall accuracy, it may fail to predict peak demands. ML 
algorithms assume that the distributions of the training set and test set are the same. Since extreme 
demand values are rare, the model is less likely to predict them. In the previous example of a water 
scarce area, accurate predictions are particularly important when a water utility may struggle to cover 
demand, that is on days and hours of peak consumption. Thus, it is important to ensure that the model 
performs well on those critical days. Improving data representation, as well as choosing the right 
model for the task and using methods that facilitate identifying rare events, can assist with improving 
model performance on days with peak demand (Xenochristou & Kapelan, 2020).

3.4.2 Model interpretability
ML model interpretability reflects the degree to which humans can understand the cause of algorithmic 
decisions (Miller, 2019). ML models can account for thousands or hundreds of thousands of features 
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and learn complex, non-linear relationships between those features and one or multiple targets. 
Understanding these relationships and how they can influence a certain prediction can enhance the 
usability of these methods by informing planning and decision making, as well as instilling confidence 
in the model’s decisions. This is particularly important in fields such as engineering and healthcare, 
where it is important to ensure that a ML model is making decisions based on true signal rather than 
data artifacts.

Interpretability methods can be model-specific when they apply only to a specific model type, 
or model-agnostic when they can be used with any model (Molnar, 2020). An example of a model-
specific method is the interpretation of weights in linear models, where the target is modeled as 
a linear combination of a set of predictors. The higher the coefficient value of each predictor, the 
higher its importance. Examples of model-agnostic methods are Permutation Feature Importance 
(Breiman, 2001), Partial Dependence Plots (PDP) (Zhao & Hastie, 2021), Accumulated Local Effects 
(ALE) plots (Apley & Zhu, 2020), and Individual Conditional Expectation (ICE) curves (Goldstein 
et al., 2015).

Permutation Feature Importance can be used with tabular data and is the reduction in predictive 
performance when a predictor is permutated. By shuffling the values of the predictor, we break the 
association with the target variable. Thus, the higher the drop in model performance, the higher the 
importance of that predictor. When using permutation feature importance, it is important to consider 
correlations between predictors, as these can lead to misleading results. If two (or more) features are 
highly correlated and therefore provide the same information to the model, removing one of them by 
permutating its values may not significantly affect the model’s performance.

PDPs and ICEs visualize the model response for a certain change in the predictor. PDPs force a 
model feature to take the whole range of its values for each data instance and calculate the model 
response each time. For example, if the predictor is air temperature and the target is water consumption 
on a given day, PDPs will vary the values of air temperature within its range of possible values, while 
all other predictors are kept constant. The final plot consists of the mean water consumption among 
all days in the dataset for the corresponding temperature value. ICEs, on the other hand, demonstrate 
the model response for each data instance. In the same example, ICEs show the range of predicted 
water consumption for each day in the data, for the whole range of temperature values. Similar to 
Permutation Feature Importance, PDPs and ICEs assume independence between predictors. If the 
predictors are not independent, these methods may create instances with unrealistic combinations of 
feature values (e.g., an air temperature value of 35°C and soil temperature of 0°C).

ALEs are a faster, non-biased alternative to PDPs. Instead of forcing a predictor to take the whole 
range of its values, they analyze the variation of the model’s response within a small window of 
the predictor’s real value. Therefore, ALEs are robust to correlations among model features. For a 
detailed overview of ML interpretability methods, see Christoph Molnar’s book on Interpretable ML 
(Molnar, 2020).

3.5 MODEL DEPLOYMENT

Deployment refers to incorporating the model as part of operations. For example, we could deploy an 
ML model for predicting water demand in real time with the aim to raise alerts for leakages or pipe 
bursts, when the prediction error is higher than a certain threshold. However, not all deployed models 
are required to run in real-time.

3.6 TOOLS AND SOFTWARE

3.6.1 Prerequisites
Working through the following examples requires installing R (R Core Team, 2019), a freely available 
programming language and software environment, and the RStudio Integrated Development 
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Environment (IDE) (RStudio Team, 2020). R offers a variety of packages that we will use in the 
following problems. Packages contain R code and reusable functions, as well as documentation that 
explains how to use them. R is available for Linux, Mac, and Windows.

3.6.2 Useful tools, packages, and APIs
In the following, we list some useful and popular R packages for ML:

• Caret: the ‘caret’ package (Classification and Regression Training) aims to simplify ML model 
training and hyperparameter tuning. It includes a variety of models as well as methods for data 
preprocessing, visualizations, and feature importance (Kuhn, 2008).

• Keras: Keras is a high-level, deep learning API (Application Modeling Interface), developed 
by Google, written on top of the Tensorflow ML platform. The ‘keras’ package provides an R 
interface for the Keras API. For more information, see https://tensorflow.rstudio.com/.

• h2o: the ‘h2o’ R package provides an R interface for the open-source AI platform h2o, built 
by the software company H2o.ai. The automl function of ‘h2o’ can automatically train and 
hyperparameter optimize several commonly used ML algorithms, as well as two stacked 
ensembles. A stacked ensemble is a combination of predictions from previously trained models. 
When training the stacked ensembles, h2o finds the best combination that minimizes prediction 
errors among (1) all previously trained models and (2) the best model (with the optimum set of 
hyperparameters) of each type.

• randomForest: ‘randomForest’ is an R package that uses Random Forests for classification and 
regression based on Breiman (2001).

• ICEbox: ICEbox (Goldstein et al., 2015) is an R package that implements ICE curves for any 
supervised ML algorithm.

• Ggplot2: ggplot2 (Wickham, 2016) is one of the most popular data visualization libraries and it 
provides functionalities for a variety of graphs.

• Plotly and Shiny: plotly (Plotly Technologies Inc., 2015) and Shiny (Chang et  al., 2019) are 
popular R libraries for making interactive graphs.

• MLmetrics: the MLmetrics package contains a variety of metrics for ML that evaluate 
classification, regression, and ranking performance (Yan, 2016).

• fpp2: The ‘fpp2’ package (Hyndman, 2020) contains a set of datasets that are used within the 
book ‘Forecasting: principles and practice’ (Hyndman & Athanasopoulos, 2018). These datasets 
can be a great resource when you are experimenting with your first forecasting models!

• dplyr: ‘dplyr’ (Wickham et  al., 2020) is a popular R package used for various types of data 
manipulation.

• iml: the ‘iml’ (interpretable machine learning) R package (Molnar et  al., 2018) contains a 
selection of machine learning model interpretability methods, including ALE plots, PDP plots, 
and ICE curves.

We will use several of these packages in the following examples.

3.7 PRACTICAL EXAMPLES

3.7.1 Installation
(1) Instructions on how to download and install R are available from CRAN (https://cran.r-

project.org/).
(2) RStudio Desktop is available to download for free under an open source license from ( www.

rstudio.com/products/rstudio/download/).

We run the following examples with R version 4.0.3, and R Studio version 1.2.5033.

https://tensorflow.rstudio.com/
https://cran.r-project.org/
https://cran.r-project.org/
http://www.rstudio.com/products/rstudio/download/
http://www.rstudio.com/products/rstudio/download/
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3.7.2 Example 1: A simple model for demand forecasting
For this example, we will use electricity consumption at the household and daily level as the target 
variable, as well as temporal (day of the week) and weather (temperature) variables as predictors. We 
will use electricity instead of water consumption as this data is readily available and easy to load 
directly from the ‘fpp2’ R package.

First, open a new R Studio window (Figure 3.3). From your R studio window, create a new R script, 
by clicking on ‘R Script’ from the drop-down menu on the top left (Figure 3.4). You can use R scripts 
(or files) to write and save code. You can save the R file you created by clicking on ‘File’ and then ‘Save 
as’ at your menu bar on a Mac. We will name the file for this example ‘Example_1.R’.

3.7.3 Installing and loading R packages
Next, you need to install the necessary R packages. You will do this only once (unless you uninstall 
them). You can install an R package by typing install.packages() and adding the package name in 
the brackets. For this example, we will install the packages ‘fpp2’, ‘randomForest’, ‘MLmetrics’, and 
‘dplyr’ (Figure 3.5).

You can execute a line of code (command) by selecting it in the source editor window and either 
clicking the run icon on the top right menu of your script, or clicking control + enter. You can comment 

Figure 3.3 R Studio interface.
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a line of code by using the # symbol at the start of the line. Commented lines are not executed when 
you run your code. You can see the results of your command in the console window.

Unlike installing, you need to reload the necessary packages every time you start a new RStudio 
session. You can load an R package by typing library() and adding the package name in the brackets. 
For this example, we will load the packages we installed above, ‘fpp2’, ‘randomForest’, ‘MLmetrics’, 
and ‘dplyr’ (Figure 3.6).

Figure 3.4 Create a new R script.

Figure 3.5 R Studio package installation.
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3.7.4 Get and preprocess the data
Load the electricity demand dataset available from the ‘fpp2’ package (Figure 3.7). This dataset 
contains daily electricity demand, temperature, and type of day (working day or holiday/weekend), 
from 1/1/2014 to 31/12/2014. You can see the first six rows of the data frame by using the head() 
function (Figure 3.7). You can write, edit, and save your code as an.R script in the source pane (top 
window, Figure 3.7) and execute it in the console (bottom window, Figure 3.7).

Figure 3.6 R Studio package loading.

Figure 3.7 Load the data from the fpp2 package. 
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Create a new data frame column called ‘date’, by defining a sequence with a start and end date 
(Figure 3.8). The elecdaily dataset in the  fpp2 package contains daily electricity demand values for 
every day in 2014.

TIP: We are going to use a Random Forest model, so we can omit some data preprocessing steps.
Create seven additional columns with demand 1–7 days prior to each day. The following for-loop will 

run the statement in brackets for seven different values of the ‘days_ahead’ variable, from 1 to 7 (Figure 
3.9). For example, demand on the 4th January 2014 (2014-01-04) was 173.8142 (‘Demand’ column), 
whereas demand on the previous day was 188.9169 (‘Demand_1_days_prior’/‘Demand’ on 2014-01-03), 
and demand 2 days prior was 188.5909 (‘Demand_2_days_prior’/‘Demand’ on 2014-01-02).

Next, create a new column from date with the day of the week (Figure 3.10).
Remove rows with missing values. You can inspect the number of rows before and after you remove 

missing values, using the nrow() function (Figure 3.11).
Define the predictors and the target. In this example, we use demand 1–7 days prior to the target day, 

as well as day of the week (Monday–Sunday) and temperature as predictors of demand (Figure 3.12).

3.7.5 Model training and testing
Divide your data chronologically into a training set (50%) and a test set (50%) (Figure 3.13). You can 
do this using the nrow() function to get the total number of samples (rows) in your dataset. You can 
get a subset of a data frame by defining the index of rows and columns you want your new data frame 
to have as:

df_new = df[start_row_index:finish_row_index, start_column_index:finish_column_index].

If either the column or row index is left blank, the new data frame will include the same rows or 
columns as the old data frame.

Figure 3.8 Create a date column.
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In this case we create df_train as a subset of df, by selecting the first 50% of the rows of the original 
dataframe (1 to 0.50*k, where k is the number of rows of the original data frame). Similarly, we create 
df_test from the remaining 50% (rows 0.5*k+1 till k). Both the training and test set contain the same 
columns as the original data frame.

TIP: Since we are not optimizing the model hyperparameters, we do not need a validation set.
Train the model on the training set and make predictions on the train and test set (Figure 3.14). 

In the randomForest() function, we determine the target variable as the ‘Demand’ column, while all 
other columns are used as predictors. After we train and save the model, we use it to make predictions 
using the predict() function.

Evaluate your predictions using the R2, RMSE, MAE, and MAPE. All metrics are available from 
the ‘MLmetrics’ package (Figure 3.15). You can compare the accuracy of the training set and the 
test set to assess how well the model is able to generalize on new, unseen data. If the accuracy of the 
training set is significantly higher than this of the test set, the model has overfitted on the training 
data. Tuning the model hyperparameters can assist with achieving the desired model fit.

Figure 3.9 Create past demand columns to use as predictors of future demand.
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Figure 3.10 Create a weekday column to use as predictor of demand.

Figure 3.11 Remove missing values.
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Figure 3.12 Define the model predictors and target variable.

Figure 3.13 Divide the data into a training set and a test set.
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3.7.6 Questions
1A) Visualize the results using the ‘ggplot2’ package. Plot the real demand on the x axis and the 
predicted demand on the y axis, and identify any patterns in the residual errors.

Solution 1A: Visualization of model predictions:
Install and load the ggplot2 package for data visualization. Define the input data (‘df_test’), x axis 

(‘Demand’ column), and y axis (‘predictions’ column). Define the color (‘brown3’), and size (‘2’) of the 
scatterplot points, the x axis (‘Recorded demand’) and y axis (‘Predicted demand’) labels, as well as 
the axis ranges (165–270). Add a straight line with slope 1 and 0 intercept (x = y) for reference (Figure 
3.16).

If the model predictions were perfect, that is if the predicted demand matched exactly the recorded 
demand, all points in Figure 3.17 would fall on the gray line (x = y). The further away the points are 
from the gray line, the higher the model residual errors.

According to Figure 3.17, the model underestimates the highest recorded demand (Figure 3.17, 
points inside the green circle) and overestimates the lowest recorded demand (Figure 3.17, points 
inside the yellow circle). This systematic bias that is known to affect ensemble-tree machine learning 
regression models is particularly important in water demand forecasting due to the importance of 

Figure 3.14 Train a Random Forest model on the training set and use it to make predictions on the training and test set.
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accurately predicting days with extreme consumption. For more information on this effect and a 
review of methods for correcting bias see Belitz & Stackelbers (2021).

Solution 1B) Use two model interpretability methods to identify the most important predictors and 
visualize the results.

TIP: Use the ‘iml’ package.
Solution 1B) Feature importance:
Install and load the ‘iml’ package for feature importance (Figure 3.18).
Define the model (‘rf.model’) and input data (‘df_train’) with the relevant columns, that is the 

ones used as model features and target, to create the predictor object (‘mod’). Compute the feature 
importance for the prediction model using the predictor object, loss metric, comparison type 
between original model error and model error after permutation (‘difference’ or ‘ratio’), and number 
of times the feature should be permutated – the higher the number of repetitions, the more stable 
the outcome.

Figure 3.15 Calculate four evaluation metrics, R2, RMSE, MAE, and MAPE for the training and test set.
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Figure 3.19 depicts feature importance as a measure of MAE (loss = ‘mae’). Specifically, it shows 
how many times the MAE increases (compare = ‘ratio’) if we permutate each one of the model features. 
Since this calculation is unstable, this process is repeated multiple times (n.repetitions = 20).

As mentioned earlier, permutating the values of a feature breaks the association between feature 
and target. The higher the predictive value of a feature, the higher the resulting increase in MAE, when 
the feature is not used as a predictor. In this case, demand 1 day prior, temperature, and demand 7 

Figure 3.16 Code for solution 1A–Visualize data with the ggplot2 package.

Figure 3.17 Solution 1A–Visualize predicted demand (y axis) vs recorded demand (x axis).
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days prior are the most important predictors of demand. Demand on the previous day is an important 
predictor (MAE increases by ~2.7 times if demand 1 day prior is not included as a model predictor) 
due to autocorrelation between demand values, while demand 7 days prior carries the information 
of past demand on the same day of the week. The bar in Figure 3.19 shows the 5% and 95% quantile 
of importance values from all repetitions while the point shows the median importance. For more 
details see the documentation of the ‘iml’ R package (Molnar et al., 2018) or the Interpretable ML 
book (Molnar, 2020).

Figure 3.19 Solution 1B–Plot the feature importance as a measure of MAE. The x axis shows how many times the 
MAE increases if we permutate each model feature (y axis).

 

Figure 3.18 Code for solution 1B–Use the iml package to assess the permutation feature importance.
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3.7.7 PDP and ICE plots
Use the ‘iml’ R package to visualize a combined PDP and ICE plot (method = ‘pdp + ice’) for temperature 
(feature = ‘Temperature’) (Figure 3.20). Since demand predictions can vary for the same temperature, 
for different days or different customers, it can be difficult to compare ICE curves. For this reason, 
we centered the plot at 10 (center.at = 10), which means that the ICE curves show the difference in 
predicted demand for temperatures that are higher than 10°C for each day in the training data. The 
average of the ICE lines is a PDP plot.

According to Figure 3.21, demand remains relatively unaffected until temperature reaches values 
higher than 30°C. After this point, demand grows nearly exponentially (∼50 GW increase in demand 
for a 12°C increase in temperature, from 30 to 42°C).

Figure 3.20 Code for solution 1B–Use the iml package to create the PDP and ICE plots.

Figure 3.21 Solution 1B–Plot the ICE (black) and PDP (yellow) plots, centered around 10.
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3.8 CONCLUSION

In this chapter, we covered the basics of a machine learning pipeline, from data collection and 
preprocessing to model training, and testing, and finally evaluation and visualization of findings. 
We outlined common techniques as well as common problems when building a machine learning 
pipeline. Even though these may vary depending on your dataset, aims, and problem constraints, this 
should be an iterative process that is constantly being checked, optimized, and updated. Ultimately, 
being confident in the accuracy of your predictions and at the same time understanding and sanity 
checking your results are important steps to building confidence in your model.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Apply ARIMA/SARIMA to forecast water demand in time-series data.
(2) Discuss the practical aspects and implications of using Machine Learning to water demand in 

time-series data.
(3) Build and run time series data using machinear learning techniques (MATLAB and Python).
(4) Interpret modeling results.

4.1 INTRODUCTION

Water demand forecasting is crucial in many aspects of Water Distribution Systems (WDS) because 
it helps minimize cost, optimize operations, and provide strategies for water conservation (Kofinas 
et al., 2014). It plays a vital role in the planning, operations, and management of physical assets for 
water utilities such as pumping stations, treatment plants, tanks, and distribution networks, which 
rely on future consumption forecasts (Arandia et  al., 2015; Billings & Jones, 2008). For instance, 
water utilities need short-term water demand forecasting in order to provide a more stable urban 
freshwater supply that will be used in a timely manner ‘by adjusting water supply to actual demand 
and consumption’ (Kofinas et al., 2014).

Traditional time series forecasting methods such as Auto-Regressive Moving Average (ARMA), 
Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated 
Moving Average (SARIMA) have been used for decades to forecast water demand using time series 
historical data. Redondo et al. (2018) used ARIMA models to make operational analysis in a drinking 
water treatment plant by analyzing how the water quality is affected by rainfall. The results showed 
that the ARIMA models were more accurate for analyzing the water treatment operations using a 
weekly timescale compared to a daily timescale ‘due to significant daily variations in the control 
parameters of water quality in the plant’ (Redondo et  al., 2018). Lee and Chae (2016) developed 
seasonal ARIMA models to make hourly water demand forecasting for micro water grids (Lee & Chae, 
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2016). Arandia et al. (2015) forecasted short-term water demand using SARIMA models to make both 
offline and online forecasts. The offline forecasts were made using the most recent historical data to 
‘re-estimate the models’ while the online forecasts were made by combining the SARIMA models 
(state-space form) with data assimilation by applying a Kalman Filter (KF) to update the models 
efficiently (Arandia et al., 2015).

In the past decade, artificial intelligence (AI) had a rapidly growing presence in many applications, 
including the water sector. Machine learning (ML) techniques are an artificial intelligence approach 
that has drawn serious attention in water-demand forecasting. Machine learning techniques have 
the advantage of being able to forecast nonlinear relationships between response variables and their 
predictors in time series models with the presence of noisy data. The increasing use of smart water 
metering in the water sector has made available a great amount of data which cannot be processed 
with traditional methods (Cominola et al., 2015). Therefore, the need has emerged to identify new 
data analysis techniques able to extract valuable information from available data and support water 
utilities in their decision systems. Analytics in the Drinking Water Industry support improvements in 
demand side management and water distribution network efficiencies, lead significant water savings, 
promote customers’ sustainable behaviours, identify peak hours of use, and facilitate water forecast 
demand modelling (Monks et al., 2019).

In this context, machine learning techniques (MLT) represent the key to many challenges. In the 
literature, especially in the last five years, various MLT for water demand analysis and forecasting 
have been proposed showing how they can also be applied in the water sector (Pesantez et al., 2020; 
Rahim et al., 2020; Villarin & Rodriguez-Galiano, 2019; Xenochristou et al., 2018).

4.2 TIME SERIES DATA ANALYSIS

A time series, consisting of a sequence of numerical observations recorded successively in time, has 
an intrinsic feature of dependence between adjacent observations, which is analyzed using time series 
analysis (Box et al., 2016). ARIMA and SARIMA models utilize historical time series data and consist 
of a three-step iterative process: identification, estimation, and diagnostics checking (Box et al., 2016).

4.2.1 ARIMA model
An ARIMA model is denoted as ARIMA(p,d,q) and is expressed using the mathematical formulations 
given in Equations (4.1)–(4.4) (Lee & Chae, 2016):
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where ∅ = autoregressive or damping parameter; θ = moving average parameter; µ = mean value of 
the process; εt = forecast error at time t, in which εt is assumed to follow a normal (0, σ) distribution, 
σ = standard deviation of the process (Lee & Chae, 2016). Equation (4.1) defines an autoregressive 
process of order p, AR(p), ‘which predicts values from previous values’; Equation (4.2) defines a 
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moving average process of order q, MA(q), ‘which accounts for previous random trends’; Equation 
(4.3) defines an autoregressive moving average process of order (p,q), ARMA(p,q); and Equation (4.4) 
defines an autoregressive integrated moving average process of order (p,q) differenced by order d, 
ARIMA(p,d,q) (Lee & Chae, 2016).

4.2.2 SARIMA model
A SARIMA or seasonal ARIMA model is obtained when an ARIMA model has a seasonal component 
(periodic pattern). It is denoted as ARIMA(p,d,q)x(P,D,Q)s and is expressed using Equation (4.5) 
(Arandia et al., 2015):
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where Equations (4.6)–(4.11) give the seasonal autoregressive polynomial, seasonal moving average 
polynomial, ordinary (non-seasonal) autoregressive (AR) polynomial, and the ordinary (non-seasonal) 
moving average (MA) polynomial respectively; B is the backshift operator as defined in Equation (4.11); 
P is the seasonal AR polynomial order, Q is the seasonal MA polynomial order, p is the non-seasonal 
AR polynomial order, q is the non-seasonal MA polynomial order, D is the seasonal differencing order, 
d is the non-seasonal differencing order, s is the seasonal period, Yt is the water demand time series, 
µ = mean value of the process; εt = forecast error at time t, in which εt is assumed to follow a normal 
(0, σ) distribution, and σ = standard deviation of the process.

4.2.3 Creating ARIMA/SARIMA models using econometric toolbox
This example shows how to use MATLAB’s Econometric Modeler App to create ARIMA and SARIMA 
models for time series analysis using the following 36-months hypothetical water demand data, with 
each time step corresponding to one month:

[266.0, 145.9, 183.1, 119.3, 180.3, 168.5, 231.8, 224.5, 192.8, 122.9, 336.5, 185.9, 194.3, 149.5, 
210.1, 273.3, 191.4, 287.0, 226.0, 303.6, 289.9, 421.6, 264.5, 342.3, 339.7, 440.4, 315.9, 439.3, 
401.3, 437.4, 575.5, 407.6, 682.0, 475.3, 581.3, 646.9]

You can download the Econometrics toolbox in MATLAB by clicking on Apps → Get More Apps 
→ and then search for ‘Econometrics Toolbox’ in the Add-On Explorer Search bar. You can run the 
example by using the following procedures:

Step 1. Save the water demand data as an excel file with each data value in a row so that you have 
one column of data (you can write the ‘water demand’ header in column A and row 1 and the 
data values in column A from rows 2 to 37. Import it to MATLAB’s workspace by clicking on 
Home → Import Data.
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Step 2. Open the Econometric Modeler app and click on Import → Import from Workspace to 
import and load the water demand time series data.

Step 3. The time series is plotted automatically and is shown in Figure 4.1. From the time series plot, 
the presence of a linear trend and seasonality (cyclic pattern) is evident, which means that the 
time series is non-stationary. Box–Jenkins models can only be applied to stationary time series, 
therefore, the nonstationary time series needs to be differenced to make it stationary.

Step 4. Click on the time series tab in the data browser (see Figure 4.2) and click on the time series 
variable that was just loaded. You can right-click to rename the variable ‘Water Demand.’

Step 5. Click on ‘ACF’ and ‘PACF’ in the plots tab (see Figure 4.3) to plot the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) of the time series as shown in Figures 4.4 
and 4.5 respectively. ACF, which ‘gives the correlation of time-series data with its previous time-
series data,’ and PACF, which ‘correlates the time-series with its own lagged values separated 
by certain time units,’ are analytical tools that are used to assess the ‘reliability of time-series 
analysis’ (ArunKumar et al., 2021).

 The presence of a trend can also be noticed by looking at the ACF plot, which is indicated by 
continuing large autocorrelations even after several lags (NCSS). The first five lags in the ACF 
plot shown in Figure 4.4 are significant, which indicates the presence of a trend.

Step 6. Click on ‘difference’ in the econometric modeler tab to perform a first order non-seasonal 
difference operation (d = 1) to remove the trend. A new differenced time series shown in 
Figure 4.6 was created with ‘Diff’ automatically added next to the variable name, for example 
WaterDemandDiff. It is clear that there is no trend present anymore, however, if trend was still 
present, a second order difference operation (d = 2) would have been applied by clicking on 
‘WaterDemandDiff’ and clicking on ‘difference’ to get a new time series with the variable name 
‘WaterDemandDiffDiff’ – the two ‘Diff’ words after the name of the variable means that the time 
series was differenced twice (d = 2).

Figure 4.1 Time series plot of water demand.
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Step 7. Click on ‘WaterDemandDiff’ in the time series tab, and then click on ‘ACF’ and ‘PACF’ to 
plot the autocorrelation function and partial autocorrelation function respectively of the first 
order differenced time series, which are shown in Figures 4.7 and 4.8. From the ACF plot, the 
autocorrelations attenuate quickly, which means that there is no more trend, and a suitable 
value of d has been attained (d = 1) (Kofinas et al., 2014). We will refer back to the ACF and 
PACF plots of ‘WaterDemandDiff’ in Step 9.

Step 8. The value of p and q are found from the PACF and ACF respectively of the appropriately 
differenced time series (Kofinas et al., 2014). We have an AR model if the partial autocorrelations 
of the appropriately differenced time series cut off after a small number of lags, where the value 
of p is the last lag with a large value, and we have an MA model if the autocorrelations of the 
appropriately differenced time series cut off after a small number of lags, where the value of q is 
the last lag with a large value (NCSS). However, if the partial autocorrelation or autocorrelation 
plots of the appropriately differenced time series do not cut off, that means that we either have a 
mixed ARIMA model with p and q values greater than zero, or that we have an AR model with 
p = 0 when only the partial autocorrelation plot does not cut off, or that we have a MA model 
with q = 0 when only the autocorrelation plot does not cut off. If both partial autocorrelation and 
autocorrelation plots of the appropriately differenced time series do not cut off, we have a mixed 
ARIMA model with positive p and q values that can be estimated by using trial and error until 
the autocorrelations are minimal (NCSS).

Figure 4.2 Data browser.

Figure 4.3 Plots tab.
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Figure 4.4 Sample autocorrelation function of WaterDemand.

Figure 4.5 Sample partial autocorrelation function of WaterDemand.
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Figure 4.6 Time series plot of WaterDemandDiff.

Figure 4.7 Sample autocorrelation function of WaterDemandDiff.
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Step 9. By looking at the ACF plot of ‘WaterDemandDiff’ in Figure 4.7, the autocorrelation cuts 
off shortly after lag 2, therefore q can be chosen as 2. Similarly, by looking at the PACF plot of 
‘WaterDemandDiff’ in Figure 4.8, the partial autocorrelation cuts off shortly after lag 1, therefore 
p can be chosen as 1. Therefore, we could fit the water demand time series data to an ARIMA 
(11,2) model where p = 1, d = 1, and q = 2 and then check if the model is a good fit.

Step 10. Click on ‘WaterDemandDiff’ in the time series tab and then click on the econometric modeler tab. 
Click on ARIMA and enter the degree of integration or d as 1, autoregressive order or p as 1, moving 
average order or q as 2, and then click on ‘Estimate’ to create the ARIMA model as shown in Figure 4.9.

 The created model is put under the models tab and has the variable name ‘ARIMA_WaterDemandDiff.’ 
A model summary as shown in Figure 4.10 is automatically created and it features the model fit 
plot to compare the differenced time series and the ARIMA model, the estimated ARIMA model 
parameters and their associated standard errors and p-values, the residual plot, and the goodness 
of fit using Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to assess 
the model reliability. The p-values for the constant, AR and MA parameters are used to determine 
whether the terms in the model are statistically significant by comparing them to the level of 
significance, α, which is usually taken as 0.05 – a parameter is considered statistically significant 
if its p-value is less than or equal to α = 0.05. AIC and BIC are analytical tools that are used to 
assess the quality or reliability of time-series models by determining ‘how well a model explains the 
relationships between the variables’ – the lower AIC and BIC values are, the more a model is ‘likely 
to be considered as a true model’ (ArunKumar et al., 2021).

Step 11. As mentioned earlier, the water demand time series had both trend and seasonality, and 
the trend was removed after it was differenced with d = 1 to get ‘WaterDemandDiff.’ Now, the 
seasonality will be removed, and the time series will be fitted to a SARIMA model. Click on 
‘WaterDemandDiff’ in the time series tab and enter ‘12’ next to ‘Seasonal’ since the water 
demand data is monthly, and then click on ‘Seasonal’ to perform a seasonal difference (D = 1) to 
remove the seasonality (see Figure 4.11).

 A new seasonal differenced time series with the name ‘WaterDemandDiffSeasonalDiff’ shown in 
Figure 4.12 was created with ‘SeasonalDiff’ automatically added to the name ‘WaterDemandDiff.’

Figure 4.8 Sample partial autocorrelation function of WaterDemandDiff.
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Figure 4.9 ARIMA model parameters.

Figure 4.10 Summary results for ARIMA_WaterDemandDiff.
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Step 12. We now have most of the terms for the seasonal ARIMA model or ARIMA(p,d,q) × (P,D,Q)
s. The non-seasonal (p,d,q) terms of the model were found previously (p = 1, d = 1, and q = 2), 
s = 12, D = 1, and we can try P = 0 and Q = 1. Therefore, we could fit the water demand time series 
data to an ARIMA (11,2) × (01,1)12 model and then check if the model is a good fit.

Figure 4.11 Performing seasonal difference.

Figure 4.12 Time series plot of WaterDemandDiffSeasonalDiff.
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Step 13. Click on ‘WaterDemandDiffSeasonalDiff’ in the time series tab and then click on the 
econometric modeler tab. Click on the arrow next to ARIMA to show all of the available models 
and then click on SARIMA and enter the non-seasonal degree of integration or d as 1, non-
seasonal degree autoregressive order or p as 1, non-seasonal degree moving average order or 
q as 2, seasonal period or s as 12, seasonal degree autoregressive order or P as 0, seasonal 
degree moving average order or Q as 1, and then click on ‘Estimate’ to create the SARIMA 
model as shown in Figure 4.13. Normally, you should click on the checkbox next to ‘Include 
Seasonal Difference’ to include the seasonal difference term, however, checking that box for this 
example causes an error since the water demand data size is small – we will include the seasonal 
difference term manually when we do the forecast in the next section.

Step 14. The created model is put under the models tab and has the variable name ‘SARIMA_
WaterDemandDiffSeasonalDiff.’ The automatically created model summary is shown in Figure 
4.14. The AIC and BIC of the ARIMA (11,2) × (01,1)12 model are 286.9 and 293.1 respectively, 
which are about half of the values for the ARIMA (11,2) model, which has an AIC of 408.7 and 
BIC of 416.2. Therefore, the SARIMA model has a better fit than the ARIMA model for this 
monthly water demand data, which makes it more reliable.

Step 15. Click on the econometrics modeler tab and then click on ‘ARIMA_WaterDemandDiff’ in the 
model tab followed by ‘Export’ → ‘General Function’ to generate a MATLAB code for creating 
the selected ARIMA model. A new MATLAB file with the model code will be automatically 
opened. Go back to the Econometric Modeler app and do same for the SARIMA model: click 
on ‘SARIMA_WaterDemandDiffSeasonalDiff’ in the model tab followed by ‘Export’ → ‘General 

Figure 4.13 SARIMA model parameters.
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Function’ to generate a MATLAB code for creating the selected SARIMA model. Save the two 
MATLAB files since we will use them in the forecasting section.

Step 16. Click on ‘Export’ → ‘Generate Report’ to generate a report summarizing the results of 
what we did using the econometrics modeler app. The report can be either in pdf, docx, or html 
format, and you can click on the check box next to the name of the time series or models that 
that you would like to include in the report (see Figure 4.15).

Figure 4.14 Summary results for SARIMA_WaterDemandDiffSeasonalDiff.

Figure 4.15 Generating a report.



87Water demand forecasting | time series data

4.2.4 Forecasting
MATLAB’s forecast function uses an observed time series as a presample data (to initialize the 
forecasts) and a fitted regression model such as an ARIMA or SARIMA model to generate minimum 
mean square error (MMSE) forecasts denoted in Equation (4.12):

ˆ ( , )y E y H Xt t t t+ + +=1 1 1|  (4.12)

where Ht is the history of the process up to time t and Xt+1 is the exogenous covariate series up to time 
t + 1 (Mathworks, 2021a).

Equation (4.13) shows an s-step ahead forecast mean square error (MSE) corresponding to the 
MMSE forecasts (Mathworks, 2021b):
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The performance of ARIMA and SARIMA models can be evaluated using either the MSE or the 
root mean squared errors (RMSE) given in Equation (4.14):
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where Yt is the forecasted observation, Yo is the actual observation, and n is the number of observations. 
The ARIMA and SARIMA models obtained in the example were used respectively to make a 12-months 
future forecast using the following procedures given in the two MATLAB codes:

ARIMA FORECAST MATLAB CODE:

% Forecast ARIMA Model
% This example shows how to forecast an ARIMA (11,2) model for a
% hypothetical water demand data using MATLAB’s forecast function.

% Step 1: Load the water demand data and prepare it for analysis.

[∼, ∼, data] = xlsread(‘C:\Users\User\Documents\ waterdemand.xlsx’); % change this to your file location
data = data(:,1); % corresponds to the 1st column in the excel file (column A)
data = data(2:37); % corresponds to the data range from row 2 to 37 in the excel file
data = [data{:}];
data = data’;
y = data;
T = length(y);

% Step 2: Estimate an ARIMA (11,2) model for the water demand time series
% data.

Mdl = arima(‘Constant’,NaN,‘ARLags’,1,‘D’,1,‘MALags’,1:2,‘Distribution’,‘Gaussian’); % the ARIMA model 
function on the right hand side of the equal to sign was copied directly from the model estimate equation 
given in the saved MATLAB function that was generated from the Econometric Modeler.

EstMdl = estimate(Mdl,y,‘Display‘,‘off’);

% Step 3: Forecast future water demand for the next 12 months using
% the fitted ARIMA model and the observed water demand time series as
% presample data to generate MMSE forecasts and their corresponding MSE and RMSE
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[yF,yMSE] = forecast(EstMdl,12,‘Y0’,y);
upper = yF + 1.96*sqrt(yMSE);
lower = yF − 1.96*sqrt(yMSE);

mse = mean((lower-yF).∧2) % calculate the MSE
rmse = sqrt(mse) % calculate the RMSE

figure
plot(y,‘Color’,[.75,.75,.75])
hold on
h1 = plot(T + 1:T + 12,yF,‘r’,‘LineWidth’,2);
h2 = plot(T + 1:T + 12,upper,‘k—’,‘LineWidth’,1.5);
plot(T + 1:T + 12,lower,‘k—’,‘LineWidth’,1.5)
xlim([0,T + 12])
title({‘Forecast and 95% Forecast Interval using ARIMA (11,2)’, ‘RMSE = ’ + rmse})

legend([h1,h2],‘Forecast’,‘95% Interval’,‘Location’,‘NorthWest’)
xlabel(‘Month’)
ylabel(‘Water Demand’)
hold off

The results of the ARIMA forecast are shown in Figure 4.16.

SARIMA FORECAST MATLAB CODE:

% Forecast SARIMA Model
% This example shows how to forecast a seasonal ARIMA (11,2) × (01,1)12 model
% for a hypothetical water demand data using MATLAB’s forecast function.

Figure 4.16 Forecast and 95% forecast interval using ARIMA (1,1,2).
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% Step 1: Load the water demand data and prepare it for analysis.

[∼, ∼, data] = xlsread(‘C:\Users\User\Documents\NYC 311 Water Complaints\waterdemand.xlsx’); % 
change this to your file location

data = data(:,1); % corresponds to the 1st column in the excel file (column A)
data = data(2:37); % corresponds to the data range from row 2 to 37 in the excel file
data = [data{:}];
data = data’;
y = data;
T = length(y);
% Step 2: Estimate an ARIMA (11,2) × (01,1)12 model for the water demand time series data.

Mdl = arima(‘Constant’,NaN,‘ARLags’,1,‘D’,1,‘MALags’,1:2,‘SARLags’,[],‘Seasonality’,12,‘SMALags’,12, 
‘Distribution’,‘Gaussian’); % the seasonal ARIMA model function on the right hand side of the equal to 
sign was copied directly from the model estimate equation given in the saved MATLAB function that was 
generated from the Econometric Modeler. However, the seasonality term was changed from ‘0’ to ‘12’ 
to include the seasonal difference, which was not included in the estimation as discussed Step 15 in the 
previous section.
EstMdl = estimate(Mdl,y,‘Display’,‘off’);
% Step 3: Forecast future water demand for the next 12 months using
% the fitted ARIMA model and the observed water demand time series as
% presample data to generate MMSE forecasts and their corresponding MSE and RMSE.

[yF,yMSE] = forecast(EstMdl,12,‘Y0’,y);
upper = yF + 1.96*sqrt(yMSE);
lower = yF − 1.96*sqrt(yMSE);

mse = mean((lower-yF).∧2) % calculate the MSE
rmse = sqrt(mse) % calculate the RMSE

figure
plot(y,‘Color’,[.75,.75,.75])
hold on
h1 = plot(T + 1:T + 12,yF,‘r’,‘LineWidth’,2);
h2 = plot(T + 1:T + 12,upper,’k--’,’LineWidth’,1.5);
plot(T + 1:T + 12,lower,‘k--’,’LineWidth’,1.5)
xlim([0,T + 12])
title({‘Forecast and 95% Forecast Interval using ARIMA (11,2) × (01,1)12’, ‘RMSE = ’ + rmse})

legend([h1,h2],‘Forecast’,‘95% Interval’,‘Location’,‘NorthWest’)
xlabel(‘Month’)
ylabel(‘Water Demand’)
hold off

The results of the SARIMA forecast are shown in Figure 4.17.

4.2.5 Limitations
Although ARIMA and SARIMA can be used to model a wide range of time series problems, one of 
the major limitations of these models is their inability to capture nonlinear patterns due to their linear 
structure (Kofinas et al., 2014). Machine learning-based time series models such as artificial neural 
networks (ANNs) can capture both linear and non-linear patterns, therefore hybrid ARIMA and ANN 
models have been proposed to tackle the nonlinearity deficiencies (Kofinas et al., 2014). Faruk (2010) 



90 Embracing Analytics in the Drinking Water Industry

used a hybrid neural network and ARIMA model for water quality time series prediction by using water 
quality data such as water temperature, and boron and dissolved oxygen concentrations collected at 
the Buyuk Menderes river in Turley from 1996 to 2004. The hybrid model provided accurate results by 
tackling both the linear and nonlinear patterns of the complex water quality time series (Faruk, 2010).

4.3 MACHINE LEARNING TIME SERIES

4.3.1 Machine learning
4.3.1.1 Artificial neural network
Artificial neural networks (ANNs) mimic the biological neural structure of the brain and form 
interconnected groups of artificial neurons which are organized in layers. It is a supervised machine 
learning technique that can be used to forecast water demand patterns over time. ANNs consist of 
three layers: input layer, hidden layer, and output layer. The inputs or predictors are inserted into the 
input layer as the bottom layer. The hidden layer is an intermediate layer with hidden neurons. The 
output layer forms the top layer as forecasts. Among the various architecture of ANN, the feedforward, 
back propagation (BP) neural network is the most popular, effective model to recognize patterns. A 
multilayer feedforward network is shown in Figure 4.18. There are four inputs, one hidden layer with 
three hidden neurons. Each layer of nodes receives inputs from previous layers.

Suppose the input of an ANN is x = [x1, x2, …, xn]
′ and its output is y(x) = [y1, y2, …, yn]

′. There exists 
a mapping M from the input space X:{x ∈ X| x is the input to the system} to output space Y:{yεY |y is the 
output of the system for given input x}. So, the mapping M is as follows:

M X Y: →  (4.15)

The training process can be considered a process of gradually adjusting the network internal 
parameters, for example, the weight w in the weight space ω, that is w ∈ ω, so that the error between 
the expected outputs ˆ( , )y x w  and the real outputs y(x)of the network are minimal:

error y x w y x= −min ( , ) ( )
2

ɵ
 (4.16)

Figure 4.17 Forecast and 95% Forecast Interval using ARIMA (1,1,2)x(0,1,1)12.
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The activation of the artificial neuron is conducted through the following equations:

φ φ( )z i i= +











∑
i

w x b

 

(4.17)

where i stands for the independent variables that we are considering. The activation function is a non-
linear function. Three activation functions that we will consider are the sigmoid function (sigmoid), 
the hyperbolic tangent function (tanh) and the rectified linear function (ReLU) shown below:
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(4.18)
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(4.19)

ReLU(z)=max( , )0 z  (4.20)

The training process of feedforward backpropagation ANN is summarized as follows: (1) 
Initialize: construct the feedforward neural network by choosing the input units and output units; (2) 
Feedforward: the input value is propagated from the input layer via the hidden layer to the output layer 
using the weight and offset value of the network. Compute the output and the error until a stopping 
criterion is met; (3) Backpropagation: the weight is continuously updated and modified so that the 
error is minimized.

4.3.1.2 Support vector machine
SVM is a supervised machine learning algorithm (Candelieri, 2017; Msiza et al., 2007; Sengupta et al., 
2018). The goal of SVM is to separate a given set of binary labeled training data with a hyperplane 
that is maximally distant from them, that is with maximized margin. However, a hyperplane cannot 
separate the training data if they are non-linearly separable. Hence, kernel function is introduced 
to map the training data from its original input space to a high dimensional space where a linear 
separation can be achieved. In this case, the hyper-plane found by the SVM in the feature space 
corresponding to a non-linear decision boundary in the original input space. Several common kernel 
functions are linear kernel, Gaussian radial basis kernel and Sigmoid kernel, and so on.

Figure 4.18 Artificial neural networks (ANNs).
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As shown in Figure 4.19, the decision boundary of SVMs is a hyperplane H: (w, b), where w is 
a normal vector, or a weight vector, perpendicular to the hyperplane with initial value w0 = 0. It is 
adjusted iteratively each time when training examples are misclassified by current w. b is intercept or 
bias. The hyperplane equation is defined as:

w x bT
i + = 0 (4.21)

To assign class labels to each class for test data, another two hyperplane H1 and H2 are used to 
determine their classification labels:

H w x b if y

H w x b if y
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(4.22)

Therefore, the final goal is to find the hyperplane with the largest margin. The points on H1 and 
H2 are called support vectors. Margin of the hyperplanes are the distance from support vectors to the 
hyperplane γT, namely the distance between H1 and H2. To solve the minimization problem, Lagrange 
multiplier method and Karush-Kuhn-Tucker (KTT) conditions are used to transform this problem to 
its dual problem. An equivalent dual problem of minimizing ||w||2 is a maximization problem solving 
by QP (Quadratic Programming) below:

maximize
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(4.23)

where α1, …, αm is the Lagrangian multiplier associated with each training example (xi, yi). The 
Lagrangian multipliers are bounded by C, called a box constraint. αi is the Lagrangian multipliers for 
support vectors.

The training process of SVM is summarized as follows: (1) Initialize: construct the SVM by entering 
input and output pairs of the training data sets. Compute the support vectors. (2) Sequential minimal 
optimization (SMO) is used to solve the QP problem. The goal of this problem to find the hyperplane 
with the largest margin.

Figure 4.19 Support vector machines (SVMs).
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4.3.1.3 Forecasting
The water demand forecasting problems can be formalized as supervised machine learning tasks. 
Supervised learning builds a predictive model that relies on the availability of a finite set of 
observations. These observations are the mapping or relation between a set of input variables and one 
or more output variables of the forecast problem.

The flow of a supervised machine learning forecasting task is presented in Figure 4.20. A raw 
dataset is divided into two subsets: a training set and test set. Data points in the training set are 
excluded from the test set. The training set is a collection of the input and output pairs. The training 
set is fed to a supervised learning algorithm to build a predictive regression model. Then, the test set 
validates the model using its output, that is predictions. In this case, the test set can also be referred 
to as the validation set. In some literatures, validation set is different from test set. Validation set is a 
third part of raw data which is used to tune the model’s parameters to minimize the overfitting.

Water demand forecast can be solved using machine learning regression models. The input of the 
model is non-linear water demand time series. The output is real values depicting the water demand 
on a specific date. The regression problem will find a function f(x) that can map the training inputs to 
the training outputs.

4.3.2 Practice problems
In this section, we present a simple forecasting problem using SVM regression. The data set we used 
is from hourly inflow/outflow data of production and storage facilities of the south-central water 
distribution network in Hillsborough County, FL, Apr 2012–Dec 2012 (Chen, 2018). The first 500 data 
points were selected for our example below for illustration purposes.

Step 1: Import the data. Separate the data as training and test set. Plot the training set as shown 
in Figure 4.21.

Figure 4.20 Machine learning for water demand forecasting.

%Import the data from the data file ‘Water demand data set 2_Unit_MLD.mat’. This file includes 500 data 
points, where 450 data points (90% of the data) is chosen as training data set. The 50 data points are chosen 
as the test data set. Plot the training datasets.

rawdata = importdata(’Water demand data set 2_Unit_MLD.mat’);
rawdata = rawdata’;

data1 = rawdata(1:450,:);
data1 = data1’
figure
plot(data1)
xlabel(‘Hour’)
ylabel(‘Million gallons’)
title(‘System-wide water demands aggregated in 1-hour intervals in million gallons per day’)
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Step 2: Construct training and testing data sets. Ninety per cent of the data (450 data points) is 
chosen as training data set. The remaining 10% of the data (50 data points) is chosen as the test data set.

Figure 4.21 SVM Training data set.

data = rawdata(1:500,:);

numTimeStepsTrain = 450;

dataTrain = data(1:numTimeStepsTrain + 1);
dataTest = data(numTimeStepsTrain + 1:end);

numTimeStepsTest = numel(dataTest(1:end−1));

%XTrain is training data set
%YTrain is the response values of the training data set

XTrain = dataTrain(1:end−1);
YTrain = dataTrain(2:end);

YTest = dataTest(2:end);
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Step 3: Configure and train the SVM.

Step 4: Validate the trained SVM model. The forecasting results are showed in Figure 4.22 and 
compared with the observed results shown in Figure 4.23. The RMSE (root mean square error) values 
for SVM forecast model are shown in Figure 4.24.

%Use ‘fitrsvm’ function to train the SVM. List the kernel function as ‘gaussian’ kernel, and set the 
‘standardize’ as true. The function will standardize the training data set.

svm_Mdl = fitrsvm(XTrain,YTrain, ‘KernelFunction’,‘gaussian’,‘Standardize’,true);

%Use ‘predict’ function to validate the SVM predictive model svm_Mdl, with input test data set YTest. 
YPred stores the forecast results.

YPred = predict(svm_Mdl,YTest);

%Plot the forecast results
figure
plot(dataTrain(1:end−1))
hold on
idx = numTimeStepsTrain:(numTimeStepsTrain + numTimeStepsTest);
plot(idx,[data(numTimeStepsTrain) YPred’],‘.-’)
hold off
xlabel(‘Hourly water demands’)
ylabel(‘Million gallons’)
title(‘Forecast 50 red data points in the future’)
legend([‘Observed’ ‘Forecast’])

%Plot the forecast results versus observed results

figure

plot(YTest)
hold on
plot(YPred,‘.-’)
hold off
legend([‘Observed’ ‘Forecast’])
ylabel(‘Million gallons’)
title(‘Forecast vs Observed’)

% Quantitative evaluation of forecast results using RMSE

rmse = sqrt(mean((YPred-YTest).∧2));
figure(),

stem(YPred – YTest);
xlabel(‘Hourly water demands’)
ylabel(‘Error’)
title(‘RMSE = ’ + rmse)
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Figure 4.23 SVM forecast (testing) results compared with observed results.

Figure 4.22 SVM forecast results.
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4.4 DEEP LEARNING TIME SERIES

Deep learning is a promising type of machine learning technique that has attracted much attention 
over the past few years. Deep learning has the advantages of processing big data, feature learning and 
strong generalization capability compared to shallow machine learning models. The deep learning 
time series model exhibits attractive performance in terms of accuracy, stability, and effectiveness 
(Bedi & Toshniwal, 2019; Du et al., 2021; Guo et al., 2018). We introduce two deep learning time 
series forecasting models in this section: Convolutional neural networks (CNN) and recurrent neural 
networks (RNN).

4.4.1 Deep learning models
4.4.1.1 Convolutional neural network
Convolutional neural network (CNN) is a neural network that has been successfully applied in image 
classification and feature mining. The main advantage of CNN is that it enables the most important 
features from the input to be extracted (Goldberg, 2016). CNN consists of three types of layers as 
building blocks: convolution layer, subsampling or pooling layer, as well as a fully connected layer as 
shown in Figure 4.25.

The convolution layer is a two-layer feed-forward neural network that includes a convolution 
operation that is designed to extract features from the input. CNN is designed to accept two-
dimensional (2D) image data for feature extraction. Time series is one dimensional (1D) data in time 
domain, so a conversion from 1D to 2D data needs to be carried out before feeding into CNN for 

Figure 4.24 RMSE for SVM forecast model.
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forecasting. Specifically, the input features xi are convolved with shared weight w and bias term b and 
get the output yj in the next layer as follows:

y f x w bj i i j j= ∑ ⊗ +( ),  (4.24)

where ⊗ is a convolutional operation and f is a sigmoid function.
The pooling layers are connected to convolutional layers to build up the high-level invariant 

structures in data. The pooling layer aims to reduce the dimensions of the data and create a down-
sampled version of the input. The pooling operations include the max pooling and average pooling.

4.4.1.2 Recurrent neural network
Recurrent neural networks (RNNs) are designed to use the previous information in the sequence to 
produce the current input and gained popularity in time series forecasting with the recent advances of 
AI. Unlike ANN, it has forwarding connections in between the neuros and feedback loops. The main 
advantage of RNN is its acquisition of the internal sequential nature that remembers information 
through many timesteps, making it a powerful tool in forecasting long term trends from time series 
data. RNN is comprised of single rolled RNN units as shown in Figure 4.26.

Three kinds of RNN units are most popular for sequence modelling. They are the Elman RNN 
(ERNN) cell (Elman, 1990), the gated recurrent unit (GRU) cell (Cho et al., 2014) and the long short-
term memory (LSTM) cell (Hochreiter & Schmidhuber, 1997). The LSTM RNN network has been 
applied in time series prediction as a special kind of deep learning model.

The structure of RNN includes hidden state h, input X and an optional output Y. Given a time series 
input sequence X = {x1, x2, …, xt}, at time step t, RNN learns a mapping from xt to ht depending on the 
hidden state at ht−1:

h f h xt t t= −( , ),1  (4.25)

Figure 4.25 Convolutional neural networks (CNNs).
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where f is a non-linear activation function. This function can be ERNN, GRN or LSTM, or as simple 
as a logic sigmoid function.

The training process of RNN suffers from problems of vanishing or exploding gradients which 
occur when backpropagating errors across many time steps. LSTM was introduced to overcome the 
above problem by replacing the hidden layer in the standard RNN by a memory cell. Each memory 
cell contains several gates and four interactive layers: forget gate layer, input gate layer, Tanh layer, 
and output gate layer.

4.4.2 Practice problems
In this section, we present a simple forecasting problem using LSTM regression. The data set we used 
is from hourly sewer flows monitored at Station S2 in Columbus, OH, Jun 1998–Dec 2013 (Chen, 
2018). The first 500 data points was selected for our example below for illustration purpose. The task 
is to forecast the sewer flow in the 1-hour intervals.

Step 1: Import the data. Separate the data as training and test set. Plot the training set as shown 
in Figure 4.27.

Step 2: Construct training and testing data sets. 90% of the data (450 data points) is chosen as 
training data set. The remaining 10% of the data (50 data points) is chosen as the test data set.

Figure 4.26 Recurrent neural networks (RNNs).

%Import the data from the data file ‘sewer_hourly.mat’. This file includes 500 data points, where 450 data 
points (90% of the data) is chosen as training data set. The 50 data points are chosen as the test data set. 
Plot the training datasets.

rawdata = importdata(‘sewer_hourly.mat’);
data1 = rawdata(1:450,:);
data1 = data1’
figure
plot(data1)
xlabel(‘Hour’)
ylabel(‘Million gallons’)
title(‘Hourly Sewer flow aggregated in million gallons per day’)
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Figure 4.27 LSTM training data set.

data = rawdata(1:500,:);
data = data’;

numTimeStepsTrain = 450;

% The data with index 1 to numTimeStepsTrain + 1 will be training set
% The data with index numTimeStepsTrain + 1 to end will be test set
dataTrain = data(1:numTimeStepsTrain + 1);
dataTest = data(numTimeStepsTrain + 1:end);

% Standardize the data by putting different data on the same scale. We calculate the mean and standard 
deviation for each variable. Then, for each observed data, we subtract the mean and divide by the standard 
deviation.

mu = mean(dataTrain);
sig = std(dataTrain);

dataTrainStandardized = (dataTrain – mu)/sig;

%XTrain is training data set
%YTrain is the response values of the training data set

XTrain = dataTrainStandardized(1:end−1);
YTrain = dataTrainStandardized(2:end);
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Step 3: Configure the LSTM neural network.

Step 4: Train the LSTM neural network.

Step 5: Validate the trained LSTM model. The forecasting results are showed in Figure 4.28 and 
compared with the observed results shown in Figure 4.29. The RMSE values for LSTM forecast 
model are shown in Figure 4.30.

% Set the LSTM regression network training option as follows: 250 hidden units.
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 250;

layers = [ …
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits)
 fullyConnectedLayer(numResponses)
   regressionLayer];

% Set the maximum epochs to 250. Gradient threshold to 1. Learn rate determines the step size at each 
iteration while moving toward a minimum of a loss function. Initial learn rate 0.005. After 125 epochs, the 
learn rate will be multiplied by a factor of 0.2.
options = trainingOptions(‘adam’, …
 ‘MaxEpochs’,250, …
 ‘GradientThreshold’,1, …
 ‘InitialLearnRate’,0.005, …
 ‘LearnRateSchedule’,‘piecewise’, …
 ‘LearnRateDropPeriod’,125, …
 ‘LearnRateDropFactor’,0.2, …
 ‘Verbose’,0, …
 ‘Plots’,‘training-progress’); 

% Generate a trained recurrent neural network model in variable ‘net’
net = trainNetwork(XTrain,YTrain,layers,options);

dataTestStandardized = (dataTest – mu)/sig;
XTest = dataTestStandardized(1:end−1);

% predictAndUpdateState function: Predict responses using a trained recurrent neural network ‘net’ and 
update the network state

net = predictAndUpdateState(net,XTrain);

% YPred variable stores the forecast results of 50 data points

[net,YPred] = predictAndUpdateState(net,YTrain(end));

numTimeStepsTest = numel(XTest);
for i = 2:numTimeStepsTest
 [net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i−1),‘ExecutionEnvironment’,‘cpu’);
end
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4.5 OTHER POPULAR ML TECHNIQUES

4.5.1 Ensemble learning
In this section, we demonstrate how ensemble methods may be used to combine multiple MLT to improve 
the solution of regression and classification problems, with practical applications to a real case study, using 
high-resolution water-flow measures. All the applications reported in this paragraph are made available 
in the Github repository (https://github.com/Water-End-Use-Dataset-Tools/EL-WaterDemandTS). An 
ensemble includes a number of learners called base learners, usually generated from training data by 
a base learning algorithm which can be a decision tree, neural network or other kinds of learning 
algorithms. They try to build a set of learners from training data and combine them (Dong et al., 2020). 
The use of ensemble methods is related to the possibility of achieving higher predictive performance 
than using an individual algorithm by itself (Zhou, 2012). In this section, the example code is given in 
Python for the variety of coding capacities (and it is also free!)

YPred = sig*YPred + mu;

% YTest variable stores the observed results of 50 data points

YTest = dataTest(2:end);

% Plot the forecast results

rmse = sqrt(mean((YPred-YTest).∧2));

figure
plot(dataTrain(1:end−1))
hold on
idx = numTimeStepsTrain:(numTimeStepsTrain + numTimeStepsTest);
plot(idx,[data(numTimeStepsTrain) YPred],‘.-’)
hold off
xlabel(‘Hourly sewer flows’)
ylabel(‘Million gallons’)
title(‘Forecast 50 red data points in the future’)
legend([‘Observed’ ‘Forecast’])

% Compare the forecast results with the observed results.

figure
plot(YTest)
hold on
plot(YPred,‘.-’)
hold off
legend([‘Observed’ ‘Forecast’])
ylabel(‘Million gallons’)
title(‘Forecast vs Observed’)

%% Quantitative evaluation of forecast results using RMSE.

figure(),
stem(YPred – YTest)
xlabel(‘Hourly sewer flows’)
ylabel(‘Error’)
title(‘RMSE = ’ + rmse)

https://github.com/Water-End-Use-Dataset-Tools/EL-WaterDemandTS
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Figure 4.29 LSTM forecast (testing) results compared with observed results.

Figure 4.28 LSTM forecast results.



104 Embracing Analytics in the Drinking Water Industry

4.5.1.1 Water end use dataset
For the applications reported in this paragraph, a dataset of water end use consumption is used. The 
dataset has been generated processing the water consumption measured at different fixtures of a 
domestic pilot and collected as water flow time-series. Each time-series contains the water-flow data 
in ml/sec with a sample period of 1 sec (Di Mauro et al., 2019).

The water_usages dataset is a list of records provided as a CSV (comma separated values). Each 
record characterizes the occurrence of a water usage and is described by the following parameters:

• start_date_time: long [sec] it is the starting date-time of the usage as Unix epoch
• duration: int [ms], how long lasts the usage
• liters: int [mL], how many liters of water have been consumed
• month:int, month of occurrence
• hour:int, hour of the day
• day: int, day of the week {0,…,6}
• max_flow: int [mL/sec], maximum flow rate measured during the usage
• av_flow_rate: float [mL/sec], the average flow rate calculates for the usage
• sec_from_midnight: int, the number of seconds after the midnight
• fixture: string, the lable that identifies the fixture (e.g., shower, washbasin, etc.)
• num_fixture: int, an integer that identifies the fixture (e.g., 0: shower, 1: washbasin, …)

The original time-series have been split to identify every single usage, and then the usages have 
been clustered to identify similar water consumption profiles (e.g. hand washing, teeth brushing). The 
individual time-series excerpts will be also used later in this chapter. The complete dataset is available 
in a different GitHub repository (https://github.com/Water-End-Use-Dataset-Tools/WEUSEDTO)

Figure 4.30 RMSE for LSTM forecast model.

https://github.com/Water-End-Use-Dataset-Tools/WEUSEDTO
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4.5.1.2 Bootstrapping
Bootstrapping is a statistical method that resamples a single dataset to create many simulated 
samples. Applying the bootstrap method works like collecting many datasets. Increasing the 
dataset and computing the mean of the means estimates will eventually lead to a zero bias. In other 
words, it aims at computing an unbiased estimator of the population mean. The bootstrapping 
process allows us to evaluate statistics on a population which is obtained by sampling a dataset 
with replacement in order to make the selection procedure completely random. Bootstrapping is 
commonly useful to evaluate statistics such as the mean, standard deviation, construct confidence 
intervals and perform hypothesis testing for different types of statistics samples. It is used in applied 
machine learning to value the ability of machine learning models when making predictions on 
data not included in the training dataset. The importance of bootstrap sampling is related to their 
use as a basic step for several modern MLT, as for example the bagging technique used in various 
ensemble machine learning algorithms like random forests, gradient boost, and so on. Moreover, 
bootstrapping can be used to estimate the parameters of a population when the data sample 
available is not large enough to assume that the sampling distribution is normally distributed. 
Bootstrapping uses the distribution of the sample statistics among the simulated samples as the 
sampling distribution. The application reported below shows an example of mean evaluation on 
resampled datasets.

Bootstrap method formulation: Let there be a sample X of size N. We can make a new sample from 
the original sample by drawing N elements from the latter randomly and uniformly, with replacement. 
In other words, we select a random element from the original sample of size N and do this N times. All 
elements are equally likely to be selected, thus each element is drawn with the equal probability 1/N. 
More details on the bootstrap method can be found in (Efron & Tibshirani, 1993).

Bootstrapping example application and code: The water_usages data-set has been used here to 
demonstrate how bootstrapping works. The amount of water consumed on each usage is the feature 
that is used in the model. Let us visualize in Figure 4.31 the data and look at the distribution of this 
feature for two fixtures, which are the washbasin and the kitchen faucet.

It is straightforward to observe that the washbasin is used more often than the kitchen faucet. 
Moreover, a higher percentage of usages consume less water in the case of the washbasin with respect 
to the kitchen faucet. Now, it may be a good idea to estimate the average amount of water consumed 
for each fixture for designing predictive strategies of water management. Since our dataset is small, 

import numpy as np
import pandas as pd
import seaborn as sns

sns.set()
from matplotlib import pyplot as plt

#Graphics in retina format are more sharp and legible %config InlineBackend.figure_format = ‘retina’
water_data = pd.read_csv(‘.data/dataset.csv’, delimiter = ‘ ’)

water_data.loc[water_data[‘fixture’] = =‘washbasin’, ‘liters’].hist(label = ‘Washbasin’)

water_data.loc[water_data[‘fixture’] = =‘kitchen faucet’, ‘liters’].hist(label = ‘kitchen faucet’)

plt.xlabel(‘mL’)
plt.ylabel(‘Density’)
plt.legend();
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and the number of samples is different for the two fixtures (washbasin: 1354, kitchen faucet: 895), we 
would not get a good estimate by simply calculating the mean of the original sample. With a small 
dataset the estimation of the mean value could be different from the mean value of the population. 
Such a difference is called bias. We will be better off applying the bootstrap method. Let us generate 
5000 new bootstrap samples from our original population and produce an interval estimate of the 
mean.

Figure 4.31 Data distribution of washbasin and kitchen faucet fixtures.

def get_bootstrap_samples(data, n_samples):
  ‘‘‘Generate bootstrap samples using the bootstrap method.’’’ indices =  
  np.random.randint(0, len(data), (n_samples, len(data))) samples = 
  data[indices]
  return samples

def stat_intervals(stat, alpha):
  ‘‘‘Produce an interval estimate.’’’
  boundaries = np.percentile(stat, [100 * alpha / 2.0, 100 * (1 – alpha / 2.0)])
  return boundaries

#Save the data about the washbasin and kitchen faucet to split the dataset
wb_liters = water_data.loc[water_data[‘fixture’] = = ‘washbasin’, ‘liters’ ].values
kit_liters = water_data.loc[ water_data[‘fixture’] = = ‘kitchenfaucet’, ‘liters’].values

#Set the seed for reproducibility of the results
np.random.seed(0)

#Generate the samples using bootstrapping and calculate the mean for each of them 
wb_liters_mean_scores = [

 np.mean(sample) for sample in get_bootstrap_samples(wb_liters, 5000)]
kit_liters_mean_scores = [
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As a result, the mean interval for the milliliters consumed by washbasin and kitchen faucet are 
respectively: [1344, 1547] and [1645, 1953].

In Figure 4.32, the same procedure is applied to compare different fixtures as kitchen faucet and 
shower. It is straightforward to observe that the shower is used less often than the kitchen faucet. 
Moreover, shower usages usually consume more water respect to the kitchen faucet, with a reduced 
variance.

As a result, the mean interval for the milliliters consumed by washbasin and shower are respectively: 
[20056, 24218] and [1344, 1547])

4.5.1.3 Bagging
The bagging is a machine learning ensemble algorithm realized to improve the stability and accuracy of 
algorithms used for statistical classification and regression. Bagging, also called bootstrap aggregating, 
trains multiple models of the same learning algorithm on bootstrapped samples of the original dataset, 
and then aggregates their individual predictions to produce a final prediction as shown in Figure 4.33. 
Bagging is typically used with decision trees and this kind of MLT prevents overfitting, reducing the 
variance of a classifier by decreasing the difference in error when the model is trained on different 
datasets. Besides the use of the bagging technique to reduce model overfitting, it is used in the case 
of high-dimensional data due to its good performance. Furthermore, possible missing values in the 
dataset do not alter the execution of the algorithm. More details on the bagging method can be found 
in Bühlmann and Yu (2002).

 np.mean(sample) for sample in get_bootstrap_samples(kit_liters, 5000)]

#Print the resulting interval estimates
print(‘mliters consumed by washbasin: mean interval’,
stat_intervals(wb_liters_mean_scores, 0.05))
print(‘mliters consumed by kitchenfaucet: mean interval’,

stat_intervals(kit_liters_mean_scores, 0.05)) 

Figure 4.32 Data distribution of kitchen faucet and shower fixtures.
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Bagging method formulation: Bagging method formulation was presented by Breiman as reported 
in Breiman (1996). Consider a training set X then X1, …, XM are generated using bootstrapping. Now, 
a classifier ai(x) is trained for each bootstrap sample. The final classifier will average the outputs from 
all these individual classifiers:

a x
M

a x
i

M

i( ) ( )=
=

∑
1

1  

(4.26)

Figure 4.33 illustrates the bagging algorithm.
Let us consider a regression problem with base algorithms b1(x), …, bn(x). Assume that there exists 

an ideal target function of true answers y(x) defined for all inputs and that the distribution p(x) is 
defined. Then the error can be expressed for each regression function as follows:

εi ix b x y x i n( ) ( ) ( ), , .,= − = …1  (4.27)

and the expected value of the mean squared error:
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Then, the mean error over all regression functions will look as follows:
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Assuming that the errors are unbiased and uncorrelated, that is:

E xx iε ( ) ,[ ]= 0
 (4.30)
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Figure 4.33 Diagram of bagging technique.
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Now, let us construct a new regression function that will average the values from the individual 
functions:

a x
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b x
i

n

i( ) ( )=
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(4.32)

Let us find its mean squared error:
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Thus, by averaging the individual answers, the mean squared error can be reduced by a factor of n.
Let us recall the components that make up the total out-of-sample error:
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Bagging example application and code: In this example, similarly to what is presented in section 7.3 
of Hastie et al. (2009), we show and compare the variance of the expected mean squared error of a 
single estimator against a bagging ensemble in a regression problem applied to time-series of real data. A 
cluster of washbasin usages has been used as they were noisy measures of the same water consumption 
profile (e.g., hand washing), and the spline that approximates all measures of the cluster as the true 
profile. Figure 4.34 shows the results of the application: the upper left figure illustrates the predictions 
(in dark dashed line) of a single decision tree that has been trained over a down-sampled time-series of 
one usage profile. It also illustrates the predictions (in light dashed line) of other single decision trees 
trained over the down-sampled consumption profiles of the cluster. The variance term in this application 
corresponds to the width of the bundle of predictions (in light dashed line) of the individual estimators. 
The predictions for x are more sensitive. The lower left figure plots the pointwise decomposition of the 
expected mean squared error of a single decision tree. It shows the variance in the rectangular marker 
line and also illustrates the noise part of the error which, as expected, appears to be comparable to the 
variance as we considered real profiles as a noisy version of the cluster centroid. The figures on the right 
reported to the same plots using a bagging ensemble of decision trees. In terms of variance, the bundle 
of predictions is narrower, which indicates that the variance is lower. Moreover, as shown by the lower 
right figure, the variance term (rectangular marker line) is lower than for single decision trees.
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Comparing the circle marker line in the lower graphics, it is worth noticing that for bagging the 
overall mean squared error is lower. It depends on the fact that for bagging, averaging several decision 
trees fit on bootstrap copies of the dataset allows for a reduction of the variance.

The total error of the bagging ensemble is a wee bit lower than the total error of a single decision 
tree, this difference hinges on the reduced variance.

In Figure 4.34, f(x) is the true function y(x) are the estimators, El y xs ( )  is the average of the estimators, 
error(x) is the mean square error between the true value and one estimator, noise(x) is the variance of 
the measured timeseries (it is evaluated on the test set that represent noisy measures).

4.5.1.4 Random forest
Random forest (RF) is one of the most popular machine learning algorithms. It was introduced by 
Breiman as an ensemble tree learner (Breiman 2001). The algorithm consists of many decision trees, 
each with the same nodes, built using a different bootstrap sample of the data from the original 
training dataset. RF merges the prediction result from every decision tree in order to find an answer, 
which represents the average of all the decision trees. It selects the best solution by means of voting, 
the most voted is chosen as the final prediction, as shown in Figure 4.35. One of the advantages of 
random forest is its flexibility, in fact, it is used to solve both regression and classification problems. 
It is used mostly because it is not influenced by noise, and due to the presence of several trees in the 

Figure 4.34 Bagging application to washbasin time series.
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from scipy.interpolate import interp1d
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor
import glob

# Settings          
n_repeat = 50         # Number of iterations for computing expectations
n_train = 50         # Size of the training set
n_test = 1000         # Size of the test set
np.random.seed(0)

estimators = [(‘Tree’, DecisionTreeRegressor()),
           (‘Bagging(Tree)’, BaggingRegressor(DecisionTreeRegressor()))]

n_estimators = len(estimators)
ts_files = glob.glob(‘data/csv_Washbasin/cluster_0/*.csv’)
f_true = ‘data/csv_Washbasin/1_spline.csv’

def f(x, iteration):
 if iteration = =−1:
 ts = np.genfromtxt(ts_files[4], delimiter = ‘ ’)
 else:
 ts = np.genfromtxt(ts_files[iteration], delimiter = ‘ ’)
 start_time = ts[0,0]
 ts[:,0] - = start_time
 ts[0,1] = 0
 if ts[−1,0] < 650:
         ts = np.vstack((ts,[ts[−1,0] + 1, 0]))
         ts = np.vstack((ts,[650, 0]))
     for i in range(1,len(ts)−1):
         if ts[i,1] = =0 and ts[i + 1,1]! = 0:
           ts[i,1] = (ts[i−1,1] + ts[i + 1,1])*0.5
 linfunc = interp1d(ts[:,0], ts[:,1])
 return linfunc(x)

def generate(n_samples, n_repeat = 1):
 max_duration = 650
 X = np.linspace(0, 650, n_samples)
 if n_repeat = = 1:
 y = f(X, np.random.randint(1,len(ts_files)))
 else:
 y = np.zeros((n_samples, n_repeat))
 for i in range(n_repeat):
 y[:, i] = f(X, np.random.randint(1,len(ts_files)))
 X = X.reshape((n_samples, 1))
 return X, y

X_train []
y_train = []
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for i in range(n_repeat):
  X, y = generate(n_samples = n_train)
  X_train.append(X)
  y_train.append(y)
X_test, y_test = generate(n_samples = n_test,n_repeat = n_repeat)
plt.figure(figsize=(10, 8))
# Loop over estimators to compare
for n, (name, estimator) in enumerate(estimators):
  # Compute predictions
  y_predict = np.zeros((n_test, n_repeat))
  for i in range(n_repeat):
    estimator.fit(X_train[i], y_train[i])
    y_predict[:, i] = estimator.predict(X_test)

  y_error = np.zeros(n_test)
  for i in range(n_repeat):
    for j in range(n_repeat):
      y_error +  = (y_test[:, j] – y_predict[:, i]) ** 2

  y_error / = (n_repeat * n_repeat)
  y_noise = np.var(y_test, axis = 1)
  y_var = np.var(y_predict, axis = 1)

# Plot figures
plt.subplot(2, n_estimators, n + 1)
plt.plot(X_test, f(X_test,−1), ‘b’, label = ‘$f(x)$’)

for i in range(n_repeat):
 if i = = 0:
 plt.plot(X_test, y_predict[:, i], ‘r’, label = r’$\∧y(x)$’)
 else:
 plt.plot(X_test, y_predict[:, i], ‘r’, alpha = 0.05)

plt.plot(X_test, np.mean(y_predict, axis = 1), ‘c’, label = r’$\mathbb{E}_{LS} \∧y(x)$’)
plt.xlim([0, 350])
plt.title(name)

if n = = n_estimators – 1:
 plt.legend(loc = (1.1, 0.5))

plt.subplot(2, n_estimators, n_estimators + n + 1) plt.plot(X_test, 
y_error, ‘r’, label = ‘$error(x)$’)   plt.plot(X_test, y_var, ‘g’,
label = ‘$variance(x)$’), plt.plot(X_test,    y_noise,  ‘c’,
label = ‘$noise(x)$’)
pltxlim([0, 350])
plt.ylim([0, 2000])
if n = = n_estimators – 1:
 plt.legend(loc = (1.1, 0.5))

plt.subplots_adjust(right = .75)
plt.show()
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forest, it will not overfit the model. RF also has some limitations in terms of computation, which 
becomes slower as the number of trees in the model is larger. More details on random forest method 
can be found in Hastie et al. (2009).

Random forest method formulation: The random forest method formulation was presented by 
Breiman as reported in Breiman (2001) and Hastie et al. (2009).

The algorithm for building a random forest of N trees goes as follows:
For each b = 1, …., N;

• Draw a bootstrap sample Xb;
• Build a decision tree Tb on the bootstrap sample Xbrepeating the following steps:

	{ Pick the best feature according to the given criteria. Split the sample by this feature to create 
a new tree level. Repeat this procedure until the sample is exhausted;

	{ Building the tree until any of its leaves contains no more than nmin instances;
	{ For each split, first randomly pick m features from the original ones and then search for the 

next best split only among the subset.

Output the ensemble of trees { }Tb
N
1

The final prediction at a new point x is defined:

For Regression by: f x
N

T x
b

N

b( ) ( )=
=

∑
1

1

For Classification by: Let Cb(X) be the class prediction of the bth random forest tree.
Then c x majorityvote Cb

N( ) { }= 1

When the RF algorithm is used for regression problems, the mean squared error (MSE) is used to 
evaluate the distance of each node from the predicted value in order to select which branch represents 
the best decision for the forest:
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(4.41)

Figure 4.35 Diagram of random forest technique.
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where N is the number of data points, fi is the value returned by the decision tree and yi is the value of 
the data point you are testing at a certain node.

When the RF algorithm is used for classification problems, the Gini index is used to determine how 
nodes are on a decision tree branch. The class and probability are used to determine the Gini of each 
branch on a node, establishing which of the branches is more likely to occur:

Gini p
i
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=
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1

2( )

 

4.42

where pi is the relative frequency of the class observed in the dataset and c is the number of classes.
Random forest regression example application and code: In the following example machine learning 

techniques have been used to predict the water consumption profiles of a daily usage from a down-
sampled time-series of water-flow measures. In particular, the examples start from the high-resolution 
time-series of the daily water consumption of a kitchen faucet. The training set is composed of 100 
samples, which are randomly selected from the original time-series.

In the first example, a decision tree is used to predict all 779 samples of the original one, as shown 
in Figure 4.36.

import numpy as np
from scipy.interpolate import interp1d
from matplotlib import pyplot as plt

import seaborn as sns
from sklearn.datasets import make_circles
from sklearn.ensemble import (BaggingClassifier,
  BaggingRegressor, RandomForestClassifier, RandomForestRegressor)
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
import glob
import random

n_train = 100
n_test = 779

#Generate data
def generate(n_samples):
    ts = np.genfromtxt(‘data/oneday_kitchen.csv’, delimiter = ‘ ’)
    start_time = ts[0,0]
    ts[:,0] - = start_time
    X = random.sample(range(0, len(ts)), n_samples)
    X.sort()y = ts[X,1]
    X = np.reshape(X, (n_samples, 1))
    return X, y

X_train, y_train = generate(n_samples = n_train)
X_test, y_test = generate(n_samples = n_test)
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In the second example, the bagging regressor uses ten trees to generate the solution, presenting a 
lower MSE, as shown in Figure 4.37.

# One decision tree regressor
dtree = DecisionTreeRegressor().fit(X_train, y_train)
d_predict = dtree.predict(X_test)
plt.figure(figsize = (10, 6))
plt.plot(X_test, y_test, color = ‘0.5’,linestyle = ‘dashed’)
plt.scatter(X_train, y_train, c = ‘b’, s = 20)
plt.plot(X_test, d_predict, ‘g’, lw = 2)
plt.title(‘Decision tree, MSE = %.2f’ % np.divide(np.sum((y_test – d_predict) ** 2),n_test))

Figure 4.36 Decision tree to daily water consumption of a kitchen faucet.

# Bagging with a decision tree regressor
bdt = BaggingRegressor(DecisionTreeRegressor()).fit(X_train, y_train)
bdt_predict = bdt.predict(X_test)

plt.figure(figsize = (10, 6))
plt.plot(X_test, y_test, color = ‘0.5’,linestyle = ‘dashed’)
plt.scatter(X_train, y_train, c = ‘b’, s = 20)
plt.plot(X_test, bdt_predict, ‘y’, lw = 2)
plt.title(‘Bagging for decision trees, MSE = %.2f’
% np.divide(np.sum((y_test – bdt_predict) ** 2),n_test));
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Finally, the random forest regressor is used to solve the same problem with the same number 
of decision trees. The example shows a comparison between random forests and bagging. It can 
be observed that, in a random forest, the best feature for a split is selected from a random subset 
of the available features, while in bagging all features are considered for the next best split. This 
represents the main difference between the two methods. The effect is, at least in this example, a slight 
improvement of the MSE as shown in Figure 4.38.

Random forest classification example application and code: The following example looks at 
the advantages of random forests and bagging in classification problems. The goal is to classify 
the corresponding fixture of each water usage using two features. In this example, random forest 
classification has been applied to three fixtures: washbasin, shower and kitchen faucet. In particular, 
the following code reads from the dataset of water usages, the time of the day (seconds), the volume in 
liters and the related fixture for washbasin, shower and kitchen faucet.

Figure 4.37 Bagging to daily water consumption of a kitchen faucet.

# Random Forest
rf = RandomForestRegressor(n_estimators = 10).fit(X_train, y_train)
rf_predict = rf.predict(X_test)

plt.figure(figsize = (10, 6))
plt.plot(X_test, y_test, color = ‘0.5’,linestyle = ‘dashed’)
plt.scatter(X_train, y_train, c = ‘b’, s = 20)
plt.plot(X_test, rf_predict, ‘r’, lw = 2)
plt.title(‘Random forest, MSE = %.2f’ % np.divide(np.sum((y_test – rf_predict) ** 2),n_test));
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The fixtures are represented as an integer from 0 to 2. Twenty per cent of usages are used as the 
training set.

Figure 4.38 Random forest to daily water consumption of a kitchen faucet.

from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.datasets import make_circles
from sklearn.ensemble import (BaggingClassifier, BaggingRegressor,
     RandomForestClassifier, RandomForestRegressor)
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
import pandas as pd
import sklearn

# Load data
df = pd.read_csv(‘./data/dataset.csv’, delimiter = ‘ ’)
fixtures = [‘washbasin’, ‘shower’, ‘kitchenfaucet’]
# Choose the numeric features
df = df[[‘sec_from_midnight’,‘liters’,‘fixture’, ‘num_fixture’]]
df = df[(df[‘fixture’] = =fixtures[0]) | (df[‘fixture’] = =fixtures[1]) | (df[‘fixture’] = =fixtures[2])] plt
df.head()
df = sklearn.utils.shuffle(df)
X = np.asarray(df[[‘sec_from_midnight’,‘liters’]],dtype = float)
max_dur = max(X[:,0])
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The next code applies three decision trees, a bagging and a random forest with 300 estimators to 
address such classification problem. The learned model is used to classify the points of a 2D grid.

Figure 4.39 shows the results of the classification problems performed with the three methods 
described before. The models are used to classify a mesh-grid of 100 × 100 points in a 2D space whose 
dimensions range from the minimum to the maximum values of the two features of the training set. 

max_lit = max(X[:,1])
X[:,0] = X[:,0] /3600
X[:,1] = X[:,1]/1000
Y = df[‘num_fixture’]−2

X_train_circles, X_test_circles, y_train_circles, y_test_circles = \
train_test_split(X, Y, test_size = 0.2)

def plot_class (X,Y, xx1,xx2,y_hat, title):
 fig, ax = plt.subplots()
 plt.contourf(xx1, xx2, y_hat, alpha = 0.2)
 plt.scatter(X[:,0], X[:,1], c = Y, cmap = ‘viridis’, alpha = .7)
 handles, labels = scatter.legend_elements(prop = ‘colors’, alpha = 0.6)
 legend2 = ax.legend(handles, fixtures, loc = ‘upper right’)
 ax.add_artist(legend2)
 plt.title(title)
 ax.set_xlabel(‘hours’)
 ax.set_ylabel(‘liters’)
 ax.legend()
 plt.show()

x_range = np.linspace(X[:,0].min(), X[:,0].max(), 100)
y_range = np.linspace(X[:,1].min(), X[:,1].max(), 100)
xx1, xx2 = np.meshgrid(x_range, y_range)

dtree = DecisionTreeClassifier()
dtree.fit(X_train_circles, y_train_circles)

y_hat = dtree.predict(np.c_[xx1.ravel(), xx2.ravel()])
y_hat = y_hat.reshape(xx1.shape)
plot_class(X,Y,xx1,xx2,yhat, ‘Decision tree’)

dtree = BaggingClassifier(DecisionTreeClassifier(),
    n_estimators = 300, random_state = 42)
b_dtree.fit(X_train_circles, y_train_circles)
y_hat = b_dtree.predict(np.c_[xx1.ravel(), xx2.ravel()])
y_hat = y_hat.reshape(xx1.shape)
plot_class(X,Y,xx1,xx2,yhat, ‘Bagging (Decisione tree)’)

rf = RandomForestClassifier(n_estimators = 300, random_state = 42)
rf.fit(X_train_circles, y_train_circles)
y_hat = rf.predict(np.c_[xx1.ravel(), xx2.ravel()])
y_hat = y_hat.reshape(xx1.shape)

plot_class(X,Y,xx1,xx2,yhat, ‘Random Forest’)
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Figure 4.39 Random forest classification of washbasin, shower and kitchen faucet fixtures.
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Each chart shows how the points of the mesh-grid have been clustered, coloring the associated region 
with a gradient of the corresponding fixture. For example, a point in a strip represented by darker 
gray shade then it will be classified as belonging to the dark gray fixture. Figure 4.39 shows that the 
decision boundary of the decision tree is serrated, suggesting the presence of overfitting and a not 
clear definition of the class. This means that it is difficult to make reliable predictions for new test 
data. The bagging and random forest algorithms, on the other hand, show more regular bounds and 
no evident signs of overfitting.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Understand the policy context of CBA in United States.
(2) Understand the importance of using marginal benefits and costs in water infrastructure 

planning.
(3) Understand the components of CBA such as benefits, costs, and discount rate
(4) Learn how to organize the components of CBA in Excel
(5) Learn how to build a basic CBA

5.1 INTRODUCTION

Cost-Benefit Analysis (CBA) is one of the most prominent and widely used policy evaluation and 
decision-making tools in public policy. CBA has played a key role in water infrastructure project 
analysis, and at the same time, application of CBA tools and methods in water industry have also 
contributed to the development and refinement of tools and approaches now used in CBA. This 
chapter gives an overview of the methods CBA, with a brief outline of the history and the regulatory 
requirements of using CBA in water industry.

5.2 CONTRIBUTION OF CBA TO WATER POLICYMAKING

5.2.1 Imperatives of water scarcity: demand management or supply enhancement?
Figure 5.1 shows hypothetical demand and supply curves of water in a region. The downward sloping 
demand curve (D) represents the behavior of water users or buyers, which could include municipal, 
industrial, and agricultural users. A demand curve shows the quantity of water demanded at various 
prices. The downward-sloping demand curve shows that quantity demanded increases at lower prices. 
In other words, the additional or marginal benefit of water to users declines at higher volumes of water. 
For example, at smaller water volume, Q1, more necessary water uses with higher marginal benefit 
such as drinking and washing, and at higher volume, Q2 marginal benefit to users is lower which 
captures uses such as lawn irrigation or washing cars. This property of diminishing the marginal 
benefit of water can be leveraged by policy makers to incentivize water conservation by increasing 
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water rates to encourage users to reduce or eliminate uses of water that have a lower marginal benefit. 
The demand curve of water, D, can also be called the marginal benefit or willingness-to-pay curve. 
The supply curve (S) represents the behavior of water providers, for example a water utility. The 
upward sloping supply curve captures the idea that the additional or marginal cost of water supplies 
rises at higher water volume.

In practice, water is often not priced at marginal cost of supply and a true market of water hardly 
ever exists. However, this basic supply-demand framework can be useful for us to understand some 
basic economics of water, and how CBA can be helpful to measure the marginal benefit and marginal 
cost of water supply in a region.

Broadly speaking, there are two general methods to address the problem of water scarcity. We can 
either undertake projects that increase water supply or pursue approaches to control or reduce water 
demand. Supply enhancement projects may include projects such as building new or enlarging existing 
dams and reservoirs, drilling or deepening groundwater wells, building inter-basin water transfer 
facilities, repair deteriorating water infrastructure, building desalinization plants, or capturing and 
reusing rainwater. Costs of each of these options vary by location due to environmental, geographic, 
economic or regulatory reasons. For example, Ziolkowska (2015) reports that in 2010 the price of 
desalinated water ranged between $0.2–1.2/m3 ($0.8–4.5/kgal) for desalinated brackish groundwater 
and $0.3–3.2/m3 ($1.1 12.1/kgal) for desalinated seawater depending on location, local capital 
and operational costs and environmental regulations. Similarly, for some regions accessing deeper 
groundwater may be cheaper than accessing inter-basin water transfer to enhance supply. For the 
region under study, we can rank different supply augmentation options from lower to higher marginal 
cost and the result may look like the upward-sloping supply (S) curve in Figure 5.1.

Demand management options may include policies to reduce water use, such as raising water rates, 
that is a movement up the demand curve at a higher price and lower volume of water is consumed. 
Policy makers often pursue non-price options such as improving plumbing codes or educating water 
users about conservation options, or drought awareness messaging to nudge persuading users to lower 
water use, which would not increase the price of water but would shift the demand back curve and 
lower water demand.

A related concept is the price elasticity of demand, which is defined as the percentage change in 
quantity demanded that will occur for a percentage change in price. Since demand curve is downward-
sloping, price elasticity is negative. Many studies have been conducted estimating price elasticity of 
urban water demand (Dalhuisen et  al., 2003). Water demand functions are generally found to be 

Figure 5.1 A hypothetical demand and supply of water in a region.
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inelastic meaning that elasticity estimates are between −1 and 0, that is a 1% increase in price will 
affect a less than 1% decline in water demand. Price elasticity of water demand can vary within a 
year, it is found that it is more elastic (closer to −1) during summer months when lawn irrigation use 
is higher.

Water policy makers often want to choose from amongst the myriad options in both demand 
management and supply enhancement to achieve larger benefits and lower costs, that is the highest net 
benefit. CBA is very useful tool for evaluating different supply augmentation or demand management 
options. CBA can help make projections for different future scenarios and calculate the net benefit 
in terms of present value. This information can allow policymakers to not only assess whether a 
project provides enough benefits to warrant investing limited resources in it, CBA can also provide a 
measuring stick to help choose among alternative uses of limited resources.

5.2.2 CBA as a decision-making tool
In principle, CBA covers the full range of benefits and costs of a project, whether they have market 
prices or not. Many projects generate intangible benefits, which may be difficult to monetize. In such 
cases, CBA uses techniques to value unpriced benefits, both current and future, in present-dollar 
terms. On many of the water infrastructure projects, placing a dollar value on intangible, indirect, 
and unintended benefits could be crucial. For instance, construction of a reservoir provides additional 
water supplies that could be easily monetized and quantified based on measurable units by using 
water demand and market prices, but the additional recreational benefits provided by reservoirs such 
as boating, fishing, swimming, and wildlife observation etc. may be harder to monetize because they 
are not traded in a market. In such cases, economists rely on non-market valuation methods such as 
the travel cost method, or contingent valuation methods to construct a demand curve of additional 
water supplies as shown in Figure 5.1. In some cases, recreational benefits may be a very significant 
part of total economic value on the reservoir, as was seen in in a case study of the Cumberland River 
system of the southern United States where Bonnet et al. (2015) found that recreational benefits were 
the greatest economic benefit on the river even though no reservoir was built for that purpose. An 
in-depth presentation of discussion of non-market valuation methods and details is beyond the scope 
of this chapter (see Chapter 17 in this book). Please refer to Champ et al. (2017) for those who are 
interested.

5.2.3 Policy background
CBA was pioneered in the pursuit of a better framework for decision making about national water 
projects in the US (Griffin, 2012). Although CBA is clearly applicable for a wide range of public 
investment decisions, its growth as a useful tool in policy decision making is closely tied to construction 
of large water projects in the United States in the 20th century. Several water development agencies, 
and a few States, have made CBA a required step in project evaluation processes. US government 
rules stipulate that water projects that making use of federal dollars must be subjected to CBA, and 
the project approval is contingent on the findings of the CBA (Griffin, 2012).

The beginning of the central role of CBA started with the Flood Control Act of 1936 which stated 
that water projects were economically acceptable, ‘if the benefits to whomsoever they accrue are in 
excess of the estimated costs’, which clearly refers to requiring positive net benefits as a benchmark 
for project approval. Since the Flood Control Act, the federal requirement for water project CBAs 
have evolved considerably, with major rules established in 1952, 1958, 1962, 1973, 1979, 1983, and 
2013 (Griffin, 2012). The most recent rules for federal water project analysis were set in 2013 by the 
US Council on Environmental Quality (CEQ), which is part of the President’s executive branch of 
government. In these rules the agencies subjected to CBA have been extended from the traditional 
four that included the US Army Corp of Engineers, US Bureau of Reclamation, Tennessee Valley 
Authority, and the Natural Resources Conservation Service, to Environmental Protection Agency, 
National Oceanic and Atmospheric Administration, Federal Emergency Management Agency, and 
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the Office of Management and Budget. Thus, CBA retains an influential place in the conversation 
around the decision making of water infrastructure.

5.3 CBA METHODS

In this section, let us now turn to the methods in building a CBA analysis of a project.

5.3.1 Building a spreadsheet of the CBA model
Figure 5.2 shows an example of a CBA spreadsheet. The goal of the CBA is to arrive at the sum of 
discounted net benefits, the value at the bottom right corner of the spreadsheet, also referred to as 
the net present value (NPV). This example is the case of a household’s CBA of installing a 1893 liter 
rainwater barrel and using the captured rainwater for domestic uses, and reduce the use of piped 
water. This example is taken from Dallman et al. (2021) who conducted a CBA of rainwater capture 
and reuse in Los Angeles. In CBA analysis, net present value (NPV) of the discounted net benefits is 
to be calculated as follows:

NPV
B C

d
t

T
t t

t
=

−

+
=

∑
0

1( )
 

(5.1)

Equation (5.1) compresses or summarizes all the benefits and costs in one number, which is a very 
useful and powerful contribution of CBA to decision-making. To arrive at the NPV of the project, the 
analysts must measure the benefits (B) and costs (C) of the project. The analyst also must decide on 
the time horizon of analysis (T) which could last from a few months to several years. Typically, water 
infrastructure projects have long time horizons from a few to several decades. Therefore, the choice 
of the discount rate (d) becomes really important. The next three subsections address the main issues 
involved in identifying and monetizing the benefits and costs.

5.3.2 Identifying and measuring the benefits
Water infrastructure projects can be accompanied by a diverse set of benefits. From a water scarcity 
perspective, the main benefit is the increased water supply. Other major benefits may include 
enhancement in recreation, flood control, hydropower, water quality improvements. A first step 
in using the spreadsheet in Figure 5.1 is to identify whose benefits will be considered, and for this 
relevant population, which benefits will be included. In the rainwater harvesting example given in 
Figure 5.2, the relevant population is the single household and the only benefits being considered 
are the reduction in the household’s monthly water bill, which is reduced by the amount of rainwater 
captured. Assuming this household is an average water consumer in Los Angeles, its water charges 
are $1.68 per cubic meter, based on typical water rates charged by the utilities in the watershed in 
2018. Dallman et al. (2021) estimated that one 1893 liter barrel captures 15.8 cubic meters of water per 
year. Therefore, each year the household had a benefit of ($1.68×15.8) about $27 per year. In general, 
the population of interest is broader than one household and the benefit could include non-market 
benefits as mentioned in section 5.2.2. The analyst should identify all the benefits to the relevant 
population, and once identified, prioritize the ones that are more significant and will be monetized 
and included in the CBA.

5.3.3 Identifying and measuring the costs
Main cost categories for water infrastructure projects include all the planning and construction 
costs, such as design services, materials, equipment, land, and labor costs involved in construction, 
and interest rates on funds if borrowed funds are being used for construction. Also, it is extremely 
important to measure the losses to recreation or environmental resources from the diversion of water 
from one place to another. As Griffin (2016) puts it aptly ‘The key aspect of water infrastructure 
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Figure 5.2 An example of a CBA spreadsheet: A household CBA of rainwater harvesting.
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development is to understand that water resources are being redirected and consumed in a different 
time, place and manner, not increased’. Like benefits, costs also need to be prioritized, and then the 
main cost categories should be monetized. When costs include items available in the market, such as 
materials, equipment, labor etc., market prices can be used to measure the costs. In some cases, the 
costs pertain to goods not traded in the market. Again, lost recreational services or environmental 
costs from diverted waters from receiving water bodies are important examples of non-market costs 
of a water infrastructure project. In the example above, the costs of the barrel and its installation 
were estimated at $500 using market prices. This was a one-time cost paid upfront in the first year of 
installation, and we assumed no costs incurred afterwards (although some maintenance/operations 
cost may incur!).

5.3.4 Time horizon and discount and interest rates
Projects that involve multiple years or decades cannot be evaluated without the use of a discount 
rate that makes dollar figures comparable across time. Discounting means placing a lower value on 
benefits and costs the further away in time they occur. There are two reasons why future values are 
discounted: (i) opportunity cost of capital and (ii) preferences. Capital is scarce, just like water, and 
when it is used in a water infrastructure project, its return from investing in another project is given 
up. This is known as the opportunity cost of capital and is typically measured by the prevailing 
interest rate in the economy. Another motivation for discounting future costs and benefits is typical 
human preference for benefits to come sooner rather than later. This human impatience makes today’s 
rewards (costs) more (less) preferred to the same reward tomorrow. Let us consider a simple example 
to demonstrate this: Suppose you are given an offer of receiving $100 today or $100 a year from 
today. Suppose both amounts are tax free, there is no inflation, that is the purchasing power of $100 
remains the same a year later, and there is no risk of not receiving the amount. Given this choice, most 
people will choose to receive $100 today. Why? This is because most people’s individual rate of time 
preference is such that today is more important than tomorrow. Put simply, most people are impatient. 
What if the choice is between $100 today and $150 a year from today? There is a 50% reward for 
waiting a year. Given this choice, some people may choose to wait for a year to receive $150, while 
some may still choose $100 today. The key insight here is that people vary in their individual rate of 
time preference. Relatively patient people will choose to wait, but for relatively impatient people, this 
reward is not enough to compensate them for the ‘pain of waiting’, and they will prefer to be paid 
today and forgo the 50% reward for waiting.

The basic insight from this discussion on discounting is that when water projects, or any project 
for that matter, involve multiple years, it is essential to consider the rate of time preference. Water 
projects that affect a lot of people for many decades, tend to use social rate of time preference. A rate 
of time preference that applies to an individual may be different from that applied for society. It has 
been argued that governments should not base their social discount rates on individual impatience, 
because water infrastructure projects tend to generate public benefits (i.e., shared by all in the society).

In the example above, Dallman et al. (2021) used a time horizon of 30 years and discount rate of 
3%. Using Equation (5.1) to calculate NPV was $12. A positive net present value means this project 
can be pursued.

5.4 CBA IN PRACTICE

5.4.1 CBA of reservoir construction
The Applewhite Project consisted of a dam and reservoir on the Medina River about 19 km (12 miles) 
south of San Antonio, Texas, United States. This project was approved by a San Antonio city council 
resolution in July 1979. Griffin and Chowdhury (1993) performed a CBA of this project; the section 
below is based on Griffin and Chowdhury (1993) and Griffin (2015).
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Figure 5.3 An example of a CBA spreadsheet: Watershed-scale adoption of rainwater harvesting.
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The Applewhite reservoir was expected to increase San Antonio’s water supply by 59.2 m2 per 
year. Griffin and Chowdhury (1993) decided to restrict the benefits to municipal water users, and 
assumed the non-market benefits of recreation to the users from the reservoir were zero in the baseline 
model. Even though non-market recreational benefits could be significant, analysts may explicitly 
acknowledge and not undertake elaborate non-market valuation techniques to assess if just including 
municipal water benefits is sufficient for positive NPV. What would be the demand of the additional 
water supplies by the municipal water users? Griffin and Chowdhury (1993) used the demand curve 
for municipal water (as shown in Figure 5.1) and estimates from studies of water demand in other 
municipal areas to estimate the marginal value of the water supplies from the reservoir. Previous 
analyses had shown that the monthly price elasticity of water demand vary from −0.31 to −0.4. The 
analysts also accounted for population growth in San Antonio. An increase (decrease) in water users 
means an increase (decrease) in total benefits of the project.

The cost of the project was estimated to be around $180 million. At the time, the cost was to be 
financed by the city issuing municipal bonds and the city planners decided to increase water prices 
for the water users every five years to repay the bonds. Griffin and Chowdhury (1993) assumed this 
payment schedule until all the bonds are repaid. They assumed inflation of 2%. Griffin and Chowdhury 
assumed that bond buyers would receive periodic payments until the purchase price of the bond was 
returned to them as well as some interest for lending their money. At the time of this proposal the 
interest payments were expected to be around 7.5% per year. They also assumed no environmental 
change in the watershed from the diversion of Medina River into a reservoir. They chose a discount 
rate of 4% and a time period of 1991–2040, until all bonds were fully repaid.

Griffin and Chowdhury (1993) found that discounted net benefits of the project were negative. The 
net benefits were initially negative and become more negative during the first few years because the 
water rate increases were harming the consumers. The increase in water rate reduced water demand, 
which meant that water users in San Antonio were not making any use of the additional supplies from 
the reservoir. Eventually, in about 100 months or about eight years, the city collects enough revenues to 
fully pay back all bonds, which lowers water rates for consumers, and they begin using the additional 
water supplies from the reservoir. Population growth also helps in increasing the benefits from the 
reservoir, but thus the conclusion of this CBA was that this reservoir should not be constructed. The 
NPV was negative, −$86 million, and for numerous reasons this project was never undertaken. CBA 
showed that this project was economically undesirable. Sensitivity analyses were also performed by 
altering the rate of population growth or changing the pattern of bond repayments.

5.4.2 CBA of rainwater harvesting systems (RWHS)
Rainwater harvesting provides a potential source of supplemental water supply to meet increasing urban 
demand. Dallman et al. (2021) undertook a CBA of using captured rainwater as a substitute for a share 
of municipal water supplied to residential and commercial buildings in the densely urbanized Ballona 
Creek watershed in Los Angeles, California. This research developed a framework that organizes the 
diverse variables that may affect the benefits and costs of RWHS to answer several questions: how high 
are the net benefits of RWHS to replace potable water supplies? What quantity of ‘new’ water supply 
can be realized? What is the scale of RWHS that maximizes net benefits affected by the key parameters, 
such as weather patterns, tank size, use style (indoor/outdoor), or the cost of other water supplies?

The CBA model of an RWHS was developed for the two possible uses of captured rainwater: 
outdoor use only, and both indoor and outdoor use. Also, the CBA was evaluated at increasing scales 
of adoption in the watershed, that is 20, 40 and 60% of residential and commercial buildings in 
the study area to evaluate the benefits of a coordinated policy to encourage RWHS adoption. Also, 
cisterns of varying sizes were considered for each scale, 208, 1893 and 7571 liters, commonly used 
and available in the market.

The main benefit identified was the economic value of captured water, energy and carbon saved 
from the use of captured rainwater rather than piped municipal water supply. In order to monetize 
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this benefit, the volume of water saved and price per unit of water were needed. Dallman et al. (2021) 
estimated the quantity of water saved by using the Environmental Protection Agency (EPA) Storm 
Water Management Model (SWMM) model based on historic patterns of rainfall, land use, and 
irrigation demand (based on evapotranspiration). The monetary value of a unit of saved water was 
calculated from the wholesale rate of the urban water utility that supplied water to the study area. 
In this study, Dallman et al. (2021) valued the additional supplies at the same marginal rate as the 
current water use.

The costs included were those required to implement and maintain the RWHS infrastructure. To 
estimate the cost of RWHS equipment and installation, purchase price and insallation costs of the 
cisterns were collected from various vendors of cisterns and associated equipment, such as hardware 
stores and specialty vendors. The CBA model used average market prices for southern California. A 
time frame of 30 years, and a discount rate of 3%, was consistent with the Regulatory Impact Analysis 
conducted for EPA’s Clean Power Plan. Figure 5.3 shows the CBA calculations for the scenario of 
60% of the watershed participating in installing 7.57 m3 (2000 gallon) barrels and using this water 
for outdoor irrigation. The price of water increases at the rate of 5% every year. The total cost of 
barrels including installation was a one-time fixed cost of $342.5 million, and the benefits from saved 
municipal water occurred each year. The NPV of $14.1 m showed that this project was desirable.

It is important to recognize that Dallman et al. (2021) assumed certain benefits and costs as zero. 
For example, they argued that reductions in the peak runoff (flooding risk) resulting from rainwater 
capture in this watershed are minimal and thus were not included as a benefit in this analysis, although 
this could be a significant component in other regions. Similarly, Dallman et al. (2021) recognized 
that installing RWHS by a homeowner that is visible to neighbors may be a source of pride for the 
homeowner and yield psychological ‘warm glow’ benefits. Such non-market benefits may be important 
for certain homeowners but are difficult to measure and so were not monetized, although they were 
acknowledged. There may also be non-market benefits of RWHS, if participants believe saving water 
is important even if the monetary benefits are minimal. This analysis does not include such non-
market benefits or benefits from water quality improvements (e.g., due to non-point source pollution).

In their CBA model, Dallman et al. (2021) found that the discounted net benefits (NPV) of RWHS 
were positive for outdoor use of captured rainwater. RWHS NPV rise as cistern size and participation 
rates increase. For example, for the smallest cistern discounted net benefits range from $4 to 12 
million but for the largest cistern discounted net benefits range from about $32 to 100 million for the 
30-year project life. Installing RWHS for only outdoor use is likely to be an economically efficient 
policy for the region if the price of water will rise. One of the key insights of this analysis was the 
value of saved water for outdoor use was the largest component of the benefits of the RWHS and hence 
the most important consideration in the decision to implement RWHS. The conomic value of saved 
water contributes 63% of the total benefits of RWHS, whereas energy and carbon savings respectively 
constitute 30 and 7% of the benefits of RWHS. They assumed that the water price would increase at 
the historic rates of 5%. The results are dependent on the annual rate of increase in water rates as well. 
If the wholesale price of water increases at a higher rate (than 5%), RWHS for outdoor and indoor 
water use could potentially achieve positive net discounted benefits.

This case study showed how a CBA model can help delineate the primary driver of benefits and 
costs and help guide the policy maker to the relatively important benefit and costs.

5.5 CONCLUSION

CBA is an economic tool for helping decision-makers assess the economic efficiency of a policy or a 
project. As this chapter showed, CBA does this by quantifying all the benefits and costs of the project 
for the relevant population. Although it seems straightforward to fill in the spreadsheet cells in the 
benefits and costs columns, and determine the NPV, it is important to remember that a CBA is more 
than NPV for several reasons: First, it can be quite hard to reduce all of the impacts (costs or benefits) 
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of a project to a single metric. For practical reasons, an NPV will not include all important project 
consequences. However, a well-done CBA includes determination and disclosure of all project impacts, 
not just those that can be readily quantified in dollar terms. Therefore, the researcher often must make 
decisions on which impacts to include in the calculation of NPV and which to leave aside. Also, the 
choice of the discount rate to convert future benefits and costs to present values is an important 
choice. These decisions can make a substantial impact on the calculated NPV. It is imperative that 
the researchers/practitioners should clearly disclose all assumption and make modeling decisions 
transparent, and so that the audience understands the true scope of the analysis.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Explain water quality modeling in water distribution systems.
(2) Apply EPANET and EPANET-MSX for water quality modeling.
(3) Calibrate modeling results to observed field data.
(4) Interpret modeling results.

6.1 INTRODUCTION

Water quality within water distribution and plumbing systems is a highly complex and rapidly 
changing issue that is intuitively difficult to predict. This is because it is affected by many factors such 
as the materials, layout, level of disinfectant, water demand, corrosion levels, and other hydraulic 
factors. Seasonal changes in temperature can also affect the water quality as higher temperature is 
known to increase chemical reaction rates (Courtis et al., 2009). Many opportunistic pathogens (OPs) 
and complex chemical species can exist within a plumbing or distribution system, which can expose 
communities to waterborne diseases such as Legionnaire’s disease and cause outbreaks (Falkinham 
et al., 2015; Kusnetsov et al., 2003). Issues often occur as the water ages due to low demand (Rhoads 
et al., 2016). The amount of time that it takes water to exit a system after entering the system is referred 
to as the water age. Drinking water is often treated with a chlorine disinfectant to prevent growth 
of harmful chemical and microbial contaminants, as well as corrosion control inhibitors to prevent 
metal leaching from the pipes. However, as the water age increases, the system experiences decay of 
both the disinfectant and the corrosion control inhibitors, allowing for contaminants and pathogens 
to grow inside the system and biofilm (Ley et al., 2020; Salehi et al., 2018, 2020).

Several federal and state laws such as The Safe Drinking Water Act in the United States exist to 
define the maximum contaminant levels for various parameters within water distribution systems 
(The Safe Drinking Water Act, 2000; USEPA, 2016a, 2021). However, the water quality is only 
reported at selected sampling locations within the system (USEPA, 2013, 2014). Studies have shown 
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that chemical and microbial water quality can vary over the course of a day at different locations 
in a distribution system so sampling at select locations does not capture the complete and changing 
water quality characteristics of the system (Clark et al., 1999). The maximum contaminant level for 
free chlorine in water distribution systems is 4 mg/L as Cl2 disinfectant concentration. However, 
levels that reach buildings are often much lower, sometimes nonexistent. Also, as chlorine navigates 
through the pipes, it often reacts with other materials in the bulk and wall phase that further reduce 
the chlorine concentration. Many physical, chemical, and biological activities occur during the 
transport of water in a distribution system that contribute to the reactions of chlorine and deteriorate 
the water quality (Munavalli & Kumar, 2004). Without models, extensive sampling and analysis 
during different times of the day for every water distribution system is necessary to ensure that safe 
water is delivered to homes.

In contrast to distribution systems, plumbing systems are different because they often contain 
fluctuating temperatures, smaller pipe diameters, lower disinfectant residual, and intermittent 
water demand which increases the residence time and can promote greater chemical and microbial 
growth (Lautenschlager et al., 2010). Because water quality in these systems is so complex, methods 
to mitigate the risk of occurrences of opportunistic pathogens and growth of chemical species are 
often done inside buildings by continuous flushing and installing in home treatment (Hozalski et al., 
2020; Lothrop et al., 2015). However, it is often difficult to know what the water quality conditions 
are at certain points within a home plumbing system or water distribution system without routine 
sampling and analysis. This collection of data is highly time consuming and expensive. To account 
for seasonal variations and periods of low water use, lengthy study periods are necessary. Even 
then, because most water systems are unique in their geometry and water demand, sampling would 
need to occur at each system. To further complicate matters, efforts are currently being made to 
improve water conservation by reducing flow (U.S. Green Building Council, 2015; USEPA, 2016b). 
These water conservation practices could have adverse effects on water quality by increasing the 
water age.

Models are important because they serve as tools to aid in water infrastructure design, and 
instantly identify health risks associated with various water use patterns for different water systems 
and scenarios. The goal of water quality models is to combine hydraulic and water quality parameters 
to predict the concentration of various species that exist within water infrastructure over time 
(Palmegiani et al., 2022).

This section describes the methods to model the hydraulic and water quality components of an 
example water distribution network using the EPANET and EPANET-MSX software. The section 
briefly explains how to build a network on EPANET, how to extract the configuration properties of 
the pipes, nodes, tanks, and reservoirs when given a network, and how to use it to perform hydraulic 
and water quality calibrations and analysis.

6.2 EPANET AND EPANET-MSX SOFTWARE

The EPANET software can be used to model the hydraulic components of drinking water distribution 
systems when configuration and flow demand is known. It can also model water quality but is limited 
to the transport and fate of one water quality species. The water is transferred in pipes through 
advective transport and mixing at pipe junctions and storage nodes. It is often assumed that complete 
mixing occurs at the junctions and storage tanks.

Most water quality problems in water distribution systems involve many species, as well as species 
that interact with one another. The EPANET-MSX software can model the chemical and microbial 
contaminants of multiple species within the distribution system when used alongside the EPANET 
software. Inside a distribution system, a mobile bulk phase and a fixed pipe wall phase exist. Bulk 
phase species are chemical or biological contaminants that are transported through the pipe with an 
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average velocity. Wall phase species are attached to the pipe wall and do not move but react with the 
other species. Both wall and bulk phase species are considered for modeling purposes.

The equations for flow distribution in each pipe and head can be calculated as follows for each 
instant of time.

(1) Continuity equation at each node:

k J

k J

l J

J lQ Q qJ
∈ ∈
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(6.1)

 where qJ = (+) for outflow from node J and (–) for inflow into node J, (k,J) = a pipe entering node 
J, and (J, l) = a pipe leaving node J.

(2) Energy equation for each link:
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 where Hi = head at node i, Hj = head at node j, and Qi,j = flow in pipe (i,j).
(3) Rate of change of volume equal to inflow rate minus outflow rate:
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 where AT = surface area of tank T, HT = water level in tank T, t = time, Qk,T = flow into tank T, 
and QT,# = flow out of tank T.

The calculation of constituent concentration propagation through a pipe network is described 
below. The notation for this includes:
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 Qi = flow into pipe i
 R[.] = Reaction rate expression = α Ci; α = parameter
 ui = velocity of flow in the ith pipe (m/s)
 Vi = AiLi; Vi = volume of pipe i (m3); Ai = area of pipe i (m2); Li = length of pipe i (m)
 x = distance along pipe i (m);

The advection of constituent concentration is given by:

∂ ( )
∂

+
∂ ( )
∂

− ( )



 =

C x t

t
u

C x t

x
R C x t

i
i

i
i

, ,
, 0

 
(6.4)

where R(Ci) = αCi

The solution for this equation is:
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Concentration at distance x at time t = [concentration at distance (x − uiτ) at time (t − τ)]eατ.
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Assuming complete and instantaneous mixing at node k (the head node of outgoing pipe i) due 
to the incoming pipes j of lengths Lj with flow Q j and concentration Cj at time t, the constituent 
concentration for pipe I is as follows (see Figure 6.1):
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If k were to be a tank T, the concentration at the tank is as follows:
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and for any outgoing pipe i from the tank T, the concentration is obtained as:

C t C ti T0, +( )= ( )τ
 (6.8)

To accommodate the mixing that takes place at intervening junctions, each pipe must be considered 
as a whole but separately in solving the advection equation. A single water quality time step is utilized 
as follows:
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where Vi = AiLi, Ai = area of pipe i (m2), Li = length of pipe i (m), Vi = volume of pipe i (m3). Such a 
water quality time step is utilized to split every other pipe into an integer number of segments as 
given in the following: ηi = Int[Vi/Qiτ] = largest integer number of segments of pipe i for water quality 
computations smaller than [Vi/Qiτ]. Once all the pipes are partitioned into volume segments and the 
initial concentration distribution is computed, the propagation of mass through the network over 
each water-quality time step proceeds in four steps: a kinetic reaction step, in which the mass in each 
segment undergoes a kinetic concentration change; a nodal mixing step, in which incoming masses are 
mixed together and divided by the total incoming flows to obtain an average outgoing concentration; 
an advective step, in which mass is moved to the next segment within the same pipe; and an allocation 
step, in which the mixed, average concentration is assigned the first (head) segment of each outgoing 
link. These steps are shown in Figure 6.2 and are summarized in the following:

Step 1. (Reaction within a segment) m’i
k = reacted mass within segment k for pipe i (Kg) = mi

keατ 
and mi

k = CiQiτ (Kg).

Figure 6.1 Water quality at junction.
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 Step 2. (Transport mass from last segment into head node)
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Note the role of ηi, which says that the transport is only from the end segment of each pipe into the 
head node of the downstream pipe J. Also, MJ and VJ are the mixed masses and volumes at node J; and 
Vi

iη =  volume from the end segment of pipe i. We compute the mixed, average concentration CJ as:
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Step 3. (Move contents to the next segment within a pipe)
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Initial Concentration Distribution: To compute initial masses within segments, initial 
concentrations are necessary. These are obtained by linear interpolation between head node and tail 
node concentrations. The initial masses are therefore computed as follows:
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where: Ci
0 and Ci

ηi are the head and tail node concentrations. If the entire pipe is made up of just one 
segment, that is ηi = 1, we compute the initial mass as given below:
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Figure 6.2 Water quality transport steps.
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The flow distribution changes for every iteration of flow simulation. Associated with each flow 
distribution change there is a change in the water quality time step length, which alters the segmental 
division for each pipe. Consequently, an interpolation of concentrations among the previous segments 
should be carried out to fit the current segmentation, as shown in Figure 6.3. The number of segments 
increases for the next time step.

6.3 CREATING AN EPANET NETWORK FILE

When a project is created on EPANET and a network system is made, it will be saved as a network file. 
To create this file, open the EPANET software and select File>>New. A blank project will appear on the 
screen with a ribbon at the top with various options. The icons on the right of the ribbon allow the user 
to add certain features to the network such as pipes, junctions, reservoirs, valves, pumps, and tanks. 
Before starting a project, it is important to set default values. To do so, select Project>>Defaults. The 
pop-up dialog that appears is especially useful for hydraulic components (Figure 6.4). However, the ID 
label tab is useful when setting the ID increment value which is at a default of 1. This means that each 
new junction, pipe, tank, and so on. that is added to the tank will be labeled numerically, increasing 

Figure 6.3 Interpolation between hydraulic time steps.

Figure 6.4 Pop up dialog for setting project defaults.
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by 1. Many of the other properties can be adjusted on an individual basis so all options in this tab can 
be cleared other than that 1 which will allow for easy generation of the network. In the hydraulics tab, 
the default flow units, head loss formula, and other options are set to default values and can be changed 
according to the project. For this example, the default values will be used so flow will be in units of 
gallons per minute (GPM; 1 GPM = 3.79 liters per minute (LPM)) and the head loss will be calculated 
using the Hazen–Williams formula. By selecting the units of GPM for flow, the rest of the units will be 
adjusted to US Customary units as well. For example, by selecting GPM as units for flow, one is also 
automatically selecting units of US units, in this case feet for pipe lengths, inches for pipe diameters, 
psi for pressure, and so on. Likewise, if the user chooses LPM, then all units will automatically be in 
SI units. If changes were made to the defaults, the user can either select ok, or check the box that says 
‘Save as defaults for all new projects’ to avoid having to set the defaults for each new project.

To draw the network, the toolbar at the top of the page is used. If this toolbox is not there, the user 
can select View>>Toolbars>>Map to display the toolbox on the map (Figure 6.5). This toolbox allows 
users to add pipes, junctions, tanks, valves, pumps and reservoirs to the project, as well as labels. More 
information on what each icon does can be accessed by hovering the mouse over the button. The black 
arrow enables selection mode. In selection mode, the properties of each object can be set by simply 
double clicking on the objects for a pop-up window to appear (Figure 6.6). Other methods of opening 
this window include right clicking the object and selecting properties, or selecting the object from 
the data page and then clicking edit. Using this property editor, each object can be given properties 
consistent with that of a given water distribution system. Knowledge of these properties is required.

Figure 6.5 Project toolbox.

Figure 6.6 Property editor.
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Once the network is completed the file can be exported to an input file. This is done by selecting 
project>>run. Once the analysis is run, select File>>Export>>Network. The user can export the map 
or scenario depending on individual needs but for this analysis the network works accordingly as we 
just need the hydraulic layout of the system. This will save the previous network (.net) file into an input 
file (.inp) format. The input file is what is used to analyze the hydraulic and water quality components 
of a model.

Consider the sample water distribution network that was created using the EPANET software 
(Figure 6.7). This distribution system describes how the percentage of lake water in a dual-source 
system changes over time and consists of a series of pipes, nodes or junctions, tanks, and two reservoirs 
which are the lake and river. This network resembles that of a functioning water distribution system 
and will be referred to as Net3 for this example. The junctions that will be focused on for this analysis 
are labeled in the figure. Water distribution systems are typically sampled at several locations in the 
network, and these are the locations assumed to be sampled. Net3 was exported into an input file as 
explained in the previous paragraph which will be used to add key components to the network. The 

Figure 6.7 Example water distribution network, Net3.
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input file can be opened in the Notepad app which provides the descriptive summary of the network 
that is seen on the EPANET software (Figure 6.8).

To model water as it flows through the distribution system, the duration of the simulation as well 
as the hydraulic timestep must be set. For this example, the simulation will run for 1 week, and the 
hydraulic timestep will be 1 hour. That means that calculations will be done for every hour during a 
1-week period (168 times). There are two ways to do this, on the EPANET software before the input file 
is exported, and on the EPANET input file using Notepad. There are advantages to both methods but 
modifying on Notepad is preferred because it can be modified more efficiently as all the data is in the 
same place and there is no need to continue to export the data from EPANET if adjustments need to 
be made. This is especially true for calibration purposes when adjustments are made often. However, 
using the EPANET software has advantages because there is less room for error as one can visually 
see where values are being entered more clearly. To adjust the duration and timestep on EPANET, 
select project>>Analysis Options>>Times. Then set hydraulic time step to 1 and total duration to 168 
which is 1 week (Figure 6.9). On Notepad, the timesteps can simply be changed by scrolling down to 
the [Times] section and changing the values (Figure 6.9). The Quality Time Step is unimportant since 
the EPANET-MSX software will handle the microbial and chemical species and will be explained in a 
later section. Regardless of the method, make sure to save the project. An asterisk will appear next to 
the file name on Notepad if adjustments have been made to the file and have not been saved.

An important parameter that is necessary to model the flow of water throughout the system is the 
demand at certain junctions which is equal to the flowrate at that junction over time. The demand 
can be set to a constant value, 0, or assigned a multiplier value of 1 with an associated pattern (Figure 
6.10). A pattern is made when the demand at a junction changes over time and when the hourly 
demand values are known, usually because of sampling. Although patterns can be assigned using 
EPANET, this pattern will involve 168 hours of data, which is easier to create on Excel or other sheet 
software, and then copied and pasted to Notepad. To create a pattern on EPANET, one should select 
the node that they want to assign a pattern to. For this network, the patterns are assigned to the outlet 

Figure 6.8 Net3 input file on Notepad.
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points as that is where water is discharged. The base demand should be set to 1 because it will serve 
as a multiplier to the demand pattern and the Demand pattern option should be assigned a number 
correlating to the pattern. The multiplier can be set to different values such as 2 or 0.5 if the modeler 
wants to observe the output when increases or decreases to the demand occur. Then, in the browser 
dropdown, select patterns>>specified pattern number (double click). This will give a pop-up window 
of the pattern for each hour at that node which can be modified (Figure 6.10). Again, this option is 
only useful for small duration patterns. For this example, the pattern will be entered into Notepad, 

Figure 6.9 Time adjustments for model setup using EPANET and Notepad.

Figure 6.10 Modification of node demand using EPANET software (top) and using Text Editor (bottom).
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and formatted using Excel. On notepad, the pattern comes out in the form of seven columns per row 
(Figure 6.10). The first column always has the pattern number, then columns 2–6 provide the pattern 
for hours 1–6. The next row also has the pattern number in the first column, followed by hours 7–12. 
For large patterns consisting of many hours, or for patterns consisting of small hydraulic time steps 
such as 1 minute, Excel can be used to ensure column/row consistency, then copied and pasted 
to Notepad. Note that the Notepad figure only includes some of the hours in the pattern. The true 
notepad pattern consists of 168 entries (number of hours in a week) or 28 rows (six entries per row). 
Once the demand has been determined for each of the nodes, the EPANET file is ready for use.

6.4 MODELING WATER AGE AND SINGLE-SPECIES WATER QUALITY ON EPANET

EPANET is capable of modeling both water age and water quality for one single species when the 
plumbing flow demand and initial concentration of the species are known. Water age is correlated to 
the hydraulic retention time of the water in the system, or the amount of time that the water remains in 
the pipe system. When the average hydraulic retention time increases, likely due to periods of decreased 
water use or lower plumbing demand, as well as reduced flowrate at the outlet points, the water age 
increases. EPANET 2.2 has a function built into the software that calculates the water age for every 
second when the water is in the system, and for every second during stagnant conditions. For a given 
system, water age continues to increase until the next water use event in which water leaves the system 
occurs. This simple method of calculating water age is useful to monitor the water quality in a system 
(Güngör-Demirci et al., 2020) because high water age is associated with loss of disinfectant residual as 
well as growth of chemical and microbial contaminants (Hozalski et al., 2020; Ji et al., 2015).

For this example, the water age and free chlorine concentration will be modeled for arbitrary 
junction 115. Free chlorine is a rapidly decaying species that is used to treat water and inactivate 
chemical and microbial contaminants that may be present (Nguyen et al., 2012). Chlorine disinfectant 
in drinking water is crucial to avoid waterborne disease outbreaks (Falkinham et al., 2015). It will 
be assumed that the initial chlorine concentration at the reservoirs is 2.0 mg/L and that it follows 
a first order decay rate as it flows through the pipes, meaning that the free chlorine decay is equal 
to (dC/dt) = −KC where C is the free chlorine concentration, and K is the free chlorine decay rate 
coefficient which will be assumed to be 0.05 hr−1.

First, like the hydraulic analysis option, in the browser menu, once again select Options>>Times 
and make the Quality Time Step equal to 5 minutes (0:05). This is because we are often interested in the 
various water quality fluctuations that could occur within a given hour. Then, select Options>>Quality 
then select age in the parameter row. Once these options have been selected, the user can select 
Project>>Run Analysis. Once the project has completed its run, a pop up will appear saying that the 
run was successful. To view the water age hourly plot, select Report>>Graph. In the graph selection 
window, select time series for graph type, age for parameter, and nodes for object type. We often prefer 
to get concentration values for nodes rather than links (pipes) because they are more representative 
of the water that leaves the system and can be compared to measured data. Then, click on the node 
to be plotted and press add (Figure 6.11). Note that multiple nodes/links can be plotted at once. Once 
all options are selected, press ok to see the plot (Figure 6.12). The graph properties can be edited by 
right clicking anywhere on the plot.

The free chlorine species is modeled on EPANET with a similar approach as the water age. To model 
the species, select Options>>Quality in the browser menu. Then, select chemical in the parameter 
row. Free chlorine is typically measured in units of mg/L so select that option in the mass units row. 
For this example, we will focus on bulk reactions as opposed to both bulk and wall reactions as we 
assume that we do not have any information regarding the wall species in the system. Select reactions 
and specify the bulk reaction order as 1, wall reaction order as zero, global bulk coefficient as −0.05, 
global wall coefficient as 0, and leave the rest of the options as 0. After setting the reaction and quality 
options, the initial conditions must be set. In this system, water enters from the two reservoirs which 
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Figure 6.12 Time-series plots of water age and free chlorine for a sample water distribution system using EPANET.

Figure 6.11 Graph options for node 115.
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are the lake and the river. Double click on one of the two reservoirs and insert a value of 2.0 in the 
quality row. No units are necessary since they have already been specified for the quality options. Run 
the analysis for the project and open the graph for node 115 in the same way that we did for water age. 
This time, select chemical in the parameter option. The resulting plots of water age and free chlorine 
concentration for the 1-week (168 hour) time interval are shown in Figure 6.12.

6.5 MODELING MULTIPLE SPECIES USING EPANET-MSX

Unlike the EPANET file, the EPANET-MSX file is created entirely on Notepad or another text editor 
and run using the computer’s terminal or command prompt in unison with the input file. The file 
should be saved as an MSX file (.msx). Figure 6.13 describes the contents of the MSX file. A semicolon 
is used to add comments to the file and will not be read by the EPANET-MSX software. Not every 
section in the file needs to be included, just the ones that are necessary for the individual program.

For this example, the title of the file will be ‘Net3 MSX Program’ and the options will set the area 
units as US Customary to match the EPANET input file options, rate units as concentration per hour 
and quality time step to 300 seconds (5 minutes). The rest of the options are recommended for most 
programs but can be changed on an individual need basis. The solver option will be set to a 5th order 
Runge–Kutta integrator, and the relative, as well as absolute concentration tolerance will be set to 0.1 
(Figure 6.14).

The species that will be modeled for this example include free chlorine and total trihalomethanes 
(TTHM). As previously mentioned, free chlorine is useful at preventing waterborne disease outbreaks. 
However, chlorination results in the formation of disinfection biproducts such as TTHM which are 
harmful to human health (Brown et al., 2011).

Water quality models on EPANET assume advective-reactive transport with no dispersion effects. 
Therefore, the governing equations often consider reactions in the bulk flow and at the pipe wall. It 
is not always possible to obtain separate data for bulk and wall species concentrations to calibrate 
the models, so the bulk and wall reactions are often grouped into one governing equation and 
instantaneous mixing of water at the nodes, junctions, and storage facilities is assumed (Seyoum et al., 
2013). For this example, we will assume that all reactions occur in the bulk phase and that first order 
TTHM growth depends on free chlorine concentration. Equations (6.12) and (6.13) were used as the 
governing equations for the EPANET-MSX file:

dC

dt
k k C CTTHM

TTHM TTHM TTHM FCL= −1 2 ⋅ ⋅

 
(6.12)

dC

dt
kCFCL

FCL=−
 

(6.13)

where the k values are the kinetic coefficients and C values are the concentrations of free chlorine 
and TTHM.

The governing equations will be used in the MSX file under both the pipes and tanks section (Figure 
6.14). since we have both in our network. Also, the coefficients section will include selected coefficient 
values. Often, these values are unknown, so the selected coefficients are an educated guess. Once the 
program is run, the output concentrations will be compared to known, collected data at that location 
and the coefficient values will be adjusted accordingly (whether the output concentrations are too 
high or too small) and the program will be run again until the values match as well as possible. This 
process will be explained in more detail in the calibrations section. To start, let us set a value of 0.05 
for bulk free chlorine constant, 10 for TTHM bulk constant 1, and 4 for TTHM bulk constant 2. As 
mentioned, free chlorine is measured in units of mg/L so we are setting its units to MG (representing 
mg/L because the program already takes the flow into account). TTHM is typically measured in units 



148 Embracing Analytics in the Drinking Water Industry

Figure 6.13 EPANET-MSX file input sections with descriptions.
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Figure 6.14 EPANET-MSX file for Net3.
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of µg/L so the units are set to UG (Figure 6.14). We will assume that the coefficients will remain 
constant among all pipes. If we wanted to have different coefficient values at different pipes, this could 
be done in the parameters section by specifying the pipe number, the coefficient, and the value at that 
specific pipe.

Finally, let us set the initial conditions for each parameter. For this example, we will use the quality 
section which assumes a constant incoming concentration of each parameter from the reservoirs. If 
water quality was not constant, an incoming water quality pattern could be set using the sources and 
pattern section. For this network, there are two sources of water to the system, the lake, and the river, 
so there are two incoming water quality conditions. At the quality section, add an initial concentration 
of 2.0 for free chlorine, and 0 for TTHM since it is assumed that TTHM begins to grow in the plumbing 
system and is not present in the reservoir. If no initial concentrations are specified, the model assumes 
an initial value of 0. It is important to note that each action in both the input and MSX files begins with 
a space. There will be an error on the program if the space is not added before each row so a space must 
be included before each line that is not a section label or does not have a semicolon.

6.6 RUNNING EPANET-MSX SOFTWARE AND CALIBRATING RESULTS TO SAMPLED DATA

To run the EPANET-MSX program, the user should first ensure that both the EPANET input file and 
EPANET-MSX file are stored in the ‘C’ drive under the user’s username. Also, the EPANET-MSX 
program, that can be downloaded from the USEPA website, must also be stored in the ‘C’ drive for 
the program to run. Once all the files are in the correct location, the user can open a terminal, or the 
command prompt on the computer and type ‘epanetmsx [name of input file].inp [name of MSX file].
msx [defined name of output report file].rpt’ and press enter. For this example, the command window 
is as follows:

C:\Users\username>epanetmsx Net3.inp Net3.msx Net3.rpt

The user must make sure that the input,.msx, and.rpt files are separated by a space, and that the 
file names do not have any spaces themselves as it will confuse the terminal into thinking that they 
are two separate files. Once entered, the program should run and the window will inform the user 
when the program run is complete (Figure 6.15), and the new report file will appear in the ‘C’ drive. 
Several errors could occur in this process and there are a few ways to troubleshoot them. One of the 
two main kinds of errors is a file error where the program cannot run because there is an error in 
either the msx file or the EPANET input file (Figure 6.16). When this occurs, first make sure that there 
is no error on the command line. Often, there could be an issue in which the names of the files were 
not entered exactly as they are saved, or that there is no space between the file names, or that the 
type of file (.inp,.msx,.rpt) are not specified. If naming is not the issue, a.rpt file will be formed in the 
‘C’ drive. This file will specify why the inputs could not be read, and on what line the error occurred. 

Figure 6.15 Successful EPANET-MSX run for 168 hours or 1 week.
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This file will be overwritten once the error is resolved, and the program runs as expected or it can be 
deleted by the user so that a new file is made. The second kind of error can occur while the program is 
running (Figure 6.17). This occurs because the EPANET solver cannot solve the differential equations 
based on the given inputs. This is often either because the RTOL/ATOL values are too high, the 
quality timestep is too low, or the kinetic coefficients are too high for certain differential equations, 
specifically ones that have exponential functions. All the error codes that occur can be found in the 
EPANET-MSX manual or EPANET manual depending on where the errors occur. These manuals 
should be located to troubleshoot other less common errors that may occur.

Once the.rpt file is made, the files can be opened using Microsoft Excel, MATLAB, or other 
software to calibrate results. For this example, Microsoft Excel will be used. Before opening the.rpt 
file, the user must have the sample data from the notes that have been modeled so that model values 
can be compared to the sample data. For this example, Link 125 will be used so that both wall and 
bulk concentrations appear. Table 6.1 demonstrates the measured data at each of the points collected 
every 8 hours from the start of the sample period at pipe 125.

To open the.rpt file on Excel, open Excel, then press File>>Open>>Browse. Go to the C drive 
where the.rpt file is stored and press the file dropdown and change from ‘All Excel Files’ to ‘All Files’. 
The.rpt file should appear in the C drive. Open the file, check the delimited option, then press next. In 
the next page, check the box that says tab, and the box that says space. This should create a new Excel 
column for each column separated by a space on the.rpt file. Once that is done, press next>>Finish. 
The file will appear in Excel format. Delete any unnecessary information from the file to make it easier 
to read (Figure 6.18).

On that Excel file, the user can create another column to turn the hours into date format for easier 
reading and plotting. Let us assume that node 115 was sampled twice a day from January 1 to January 
7. We will assume that the samples were taken at different hours of the day to capture different water 
use patterns, and periods of high and low demand. Table 6.1 shows the measured TTHM and FCL 
values for this example. In the working Excel file that has columns of hours, date time, and simulated 

Figure 6.16 Input errors.

Figure 6.17 Runtime errors.
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TTHM and FCL values, add another two columns and insert the sample data for FCL and TTHM at 
the correct row that corresponds with the hour in which the sample was collected. Now we can plot 
simulated and measured values of TTHM as well as FCL on two separate graphs (one for FCL one for 
TTHM). The measured and simulated values can now be compared visually (Figure 6.19).

By inspecting the figures, it is clear that the chlorine decay rate coefficient is too small as the 
simulated values are larger than the actual values. Also, the TTHM concentrations are much lower 
than the expected values. We must therefore go back to the EPANET-MSX file and adjust the 
coefficient values until the simulated results match the actual concentrations as closely as possible. 
This is achieved by ensuring that the maximum and minimum values in the dataset are captured. 

Figure 6.18 RPT file transferred to Microsoft Excel.

Table 6.1 Sample data at node 115.

Date/Time Measured FCL (mg/L) Measured TTHM (µg/L)

1/1 8:00 AM 1.60 6.90

1/1 10:00 PM 1.00 22.56

1/2 4:00 AM 1.50 7.80

1/2 10:00 AM 1.00 27.80

1/3 1:00 AM 1.50 7.750

1/3 10:00 AM 1.00 27.20

1/4 3:00 AM 1.50 7.75

1/4 6:00 PM 1.08 22.00

1/5 3:00 AM 1.50 7.76

1/5 10:00PM 1.00 23.10

1/6 10:00 AM 0.96 27.25

1/7 3:00 AM 1.50 7.75

1/7 10:00 AM 0.98 27.25

1/7 4:00 PM 1.45 8.50
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For the example, we will change the chlorine decay rate (KFCL) to 0.1 and the second TTHM rate 
coefficient (KTTHM2) to 0.8. Figure 6.20 shows the resulting calibrated plots.

By visually inspecting the plots, it is seen that the simulated values match the expected TTHM 
and FCL values. We can see a relatively even distribution of maximum and minimum peaks that are 
captured. We can also notice that the TTHM concentrations tend to peak when the FCL concentrations 
are at a minimum. This is expected from our governing equation that states that TTHM grows under 
low chlorine conditions.

6.7 MODEL STATISTICAL VERIFICATION

There are many statistic methods to verify that the model works correctly in the form of equations. 
One of the most common methods is the RMSE method. This method represents the mean error not 
affected by cancellation and is given in the same units as the model outputs. The RMSE values can 
range from zero to infinity, with the ideal value being zero or as close to zero as possible (Bennett 

Figure 6.19 First attempt simulated vs. actual concentrations of TTHM and FCL.
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et al., 2013). The normalized root mean squared error (NRMSE) normalizes the RMSE values so that 
species with different units (such as TTHM FCL) can be compared accurately (Bennett et al., 2013). 
The Nash–Sutcliffe (NSE) criterion compares the effectiveness of the models to one that uses only the 
mean of the observed data. NSE values range from negative infinity to 1, with the ideal value being 1. 
For this equation, negative values indicate poor model performance (Bennett et al., 2013). The percent 
bias (PBIAS) is the average tendency of the simulated data to be larger or smaller than the observed 
data. PBIAS values are typically expressed as a percentage, ranging from negative infinity to infinity, 
with the optimal value being 0 (Gupta et al., 1999). Equations (6.14)–(6.17) represent the selection 
criteria that will be used for this example to evaluate the model performance:
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Figure 6.20 Calibrated simulated vs. actual concentrations of TTHM and FCL.
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where yi = observed values, ŷi  = simulated values and N = number of observed values.

NRMSE RMSE= / y  (6.15)

where y  = average model value.
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where Yi
obs  = observed values and Yi

sim  = simulated values.
To evaluate the RMSE, NRMSE, PBIAS, and NSE values, the measured values in Table 6.1 will be 

used and will be compared to the model values that correlate to the exact time as the measured values. 
Tables 6.2 and 6.3 demonstrate the table with calculation of RMSE, NRMSE, NSE, and PBIAS. Although 
the tables only show 24 hours of data, the calculations are for the entire 168-hour duration. The resulting 
values are representative of a good model. Both the RMSE and NRMSE values are near zero for both 
TTHM and FCL, NSE is 1 or close to 1, and PBIAS is expressed as a per cent so a decimal per cent is also 
very close to zero. It is important to note that this was a hypothetical example with hypothetical numbers 
so depending on the model, assumptions, and measurements, it may be unrealistic to have a model with 
near perfect performance as is shown here. This is especially true because chemical reactions in water 
systems are highly complex. The goal is to get the values as close to as possible to these metrics.

6.8 CONCLUSION

This chapter describes the tools and methods for modeling hydraulic and water quality for water 
distribution systems. The EPANET software is used to model the system’s hydraulic characteristics, 

Table 6.2 TTHM statistical analysis of model vs. observed data.

Time
hr:min

TTHM Observed
UG/L

TTHM Model

UG/L Obs.-model Obs.-mean RMSE NRMSE NSE PBIAS

– – – 0.024 0.002 1.000 0.058

0:00:00 0

1:00:00 10.00

2:00:00 20.00

3:00:00 19.90 19.89 0.010 5.757

4:00:00 8.48

5:00:00 7.16

6:00:00 6.93

7:00:00 6.83

8:00:00 6.90 6.91 −0.010 −7.243

9:00:00 6.85

10:00:00 6.90
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as well as a single parameter. The system inputs such as demand can be added on the software itself, 
or by using a text editor to edit the system’s input file. For models of high duration, or small timesteps 
that require a large pattern, it is recommended that the system layout be edited in the text editor rather 
than on the software. However, for patterns with few inputs, it is recommended to use the software 
as it is visually easy to see and has less room for error. The EPANET-MSX software is used alongside 
the EPANET software to model the behavior of multiple species in the system, particularly when they 
react with each other. This software is only applied by using a text editor. Many options are given for 
the calculation of the species. Using the EPANET software with the EPANET-MSX software allows 
for realistic water quality modeling scenarios.

The models are calibrated by fitting the collected sample data to the model’s outputs. To validate 
the calibrated model, several different criteria are given. The user can select one or compare all 
criteria together to verify the best fit. A hypothetical validated calibration is given in the chapter as 
an example but in reality, model performance may be less exact due to error in sampling, or because 
species are highly complex in their behavior within systems.

Although plumbing systems differ from water distribution systems, the methods outlined in this 
model can also be used to model smaller home plumbing systems. These results will depend on the 
ability to simulate actual demand within the building, and consideration of temperature changes, 
especially due to the hot water plumbing that needs to be modeled separately. Overall, water 
distribution systems and plumbing systems can both be modeled with the steps that are outlined in 
this chapter.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Understand the basic definition of calibration and uncertainty analysis.
(2) Define the most important calibration parameters prone to uncertainty in water supply networks.
(3) Explain the steps and the procedure of a hydraulic model calibration.
(4) Employ MATLAB Optimization Tool to solve the problem arising from a pipe network calibration 

example.
(5) Understand the difference between hydraulic analysis under the most pessimistic parameters 

versus uncertainty analysis.
(6) Implement a simple method to quantify the uncertainty of a pipe network results as a function 

of input known uncertainties.

7.1 INTRODUCTION

Today, hydraulic models play an undeniable facilitating role in various stages of design/development, 
rehabilitation, operation and management of urban water distribution networks. Models represent 
an estimate of the behavior of Water Distribution Networks (WDNs), not their entire reality, and 
this is because hydraulic models are prone to different sources of uncertainty. Uncertainties due to 
incomplete understanding of the dynamics of phenomena, uncertainties in the structure of models 
and uncertainties in data and parameters are the most important types of uncertainty associated with 
modeling WDNs, among which, in this chapter, we are going to discuss the latter.

In WDN modeling, parameters are unknowns (constants or non-constant) that appear in the 
governing equations describing the system dynamics, mainly as coefficients or exponents that can 
be spatiotemporal variable. Roughness coefficients of pipes, nodal demand patterns, bulk and wall 
reaction rate coefficient of chemicals and so on, are examples of parameters in WDNs modeling. 
Parameters may be estimated by laboratory tests (e.g., new pipe roughness coefficients) or by analysis of 
field measurements (e.g., demand patterns or pipe roughness coefficients for systems under operation) 
or by a combination of them.

Chapter 7

Calibration and uncertainty analysis 
of hydraulic models
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Calibration of water distribution models is a process that adjusts network parameters to minimize 
the differences between simulation results in the model and real measurements in the network 
(Zanfei et al., 2020). Any parameter calibration is prone to inaccuracy since we just have to make an 
estimate of the parameters. Hence, parameter calibration is generally accompanied by an uncertainty 
analysis. Uncertainty analysis is performed to quantify to what extent the inaccuracies of parameter 
estimation would make the model results imprecise (e.g., nodal heads, velocity in pipes, concentration of 
chemicals etc.). Such analysis is called parameter ‘uncertainty quantification’ or ‘uncertainty analysis’ 
(UA). An important function of UA for operators could be awareness of the expected range of fluctuations 
in model results. Obviously, using an UA, we will be able to recognize less reliable model outputs and 
plan to minimize such uncertainties (e.g., by appropriate modification in the network) to have a more 
robust system in real-life operation conditions. In this chapter we are going to review the concepts of 
WDNs calibration and UA, and represent how to apply these concepts on practical examples.

Another term that is sometimes confused with UA is sensitivity analysis (SA). SA is the process 
of recognizing the effects of parameter variation on model results. UA tries to find the variability 
features of the model results (or responses) against parameters’ variability. To put it more simply, SA 
is performed to distinguish the most important model parameters (i.e., that has the highest impacts 
on the model outcomes/variations), while UA is conducted to determine the most dependent model 
responses (results). SA is mainly relevant when creating and calibrating models, whereas UA is 
performed when models are employed to predict the actual behavior of the system under specific 
operation conditions.

Following the recognition of the effective parameters of the model, the calibration, as a process to 
determine the approximate values of the parameters by tuning them, is performed to attain the least 
squares of differences between the system responses (results) predicted by the model and measured 
in the field. The general method to parameter calibration in WDNs is minimization of the above 
mentioned least square function using optimization techniques. The procedure will be explained in 
detail through the following sections.

7.2 UNCERTAIN PARAMETERS IN PIPE NETWORK ANALYSIS

In this chapter, a distinction should be made between design variables (or decision variables) and 
system parameters. A design variable is basically a factor whose actual value can be changed by 
the system analyst. Each combination of design variables creates a design alternative. For example, 
diameters of the pipes are decision variables in the network sizing problem. The actual value of 
the system parameter, however, is not under control of the analyst, unlike stated above as for the 
design variable. In other words, when the actual value of a parameter was determined (or estimated) 
through the calibration process, the user is no longer allowed to change this value in analysis of the 
system. However, the user may change the parameter’s value if by redefining the problem, the scenario 
expressing the status of the parameter is changed. As an example, imagine that to promote the water 
conveyance capacity of an aged water transmission pipeline by an update in pump station specification 
(scenario A), we need to estimate the pipe roughness parameter. After determining the roughness of 
the aged pipe, for scenario A, we are not allowed to change the value obtained for the pipe roughness. 
However, if as scenario B, it is intended to be study the possibility of pipe replacement, we can modify 
the roughness according to the different options of pipe materials commercially available.

Depending on the network under consideration and how the problem is defined, the system 
parameters will be different. The most important parameters in modeling water distribution networks 
are as discussed below.

7.2.1 Pipe roughness coefficients
In steady-state hydraulics of pipe networks, the Hazen–William roughness coefficient appears in the 
head loss equation with the exponential power of − 1.852. It is not possible to directly measure the 
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parameter of pipe roughness coefficient. In this regard, past experience and engineering judgment can 
provide an acceptable rough guess for the possible range of pipe roughness. Depending on the type 
of pipe material, operation condition, the quality of the water inside the pipe and so on, roughness 
parameter could have been significantly affected by pipe aging (Lamont, 1981; Sharp & Walski, 1988), 
which should be considered in dynamic design of WDNs (Creaco et al., 2014; Minaei et al., 2020).

Since pipe material and age are the most effective factors influencing roughness, it has been 
proposed to categorize the pipes with the same material and age into a separate group having identical 
roughness in the calibration process (Ormsbee & Lingireddy, 1997).

7.2.2 Nodal demands
For Extended Period Simulation (EPS) of WDNs, nodal base demand and demand pattern coefficients 
are considered as known values, while the way base demand is allocated to nodes as well as the 
distribution of demand pattern coefficients over the simulation period are exposed to uncertainties.

Assuming data availability, the simplest way for allocation of the base demands to the nodes could be 
dividing the total outflow from the pipe into two parts and equally loading them on the pipe upstream 
and downstream ends (Ormsbee & Lingireddy, 1997). Hence, the demand pattern coefficients for the 
nodes, as unknown parameters, should be determined in the calibration.

7.2.3 Pipe diameters
Pipe diameters are rarely considered as parameters in the analysis of WDNs. However, in modeling 
aged systems where reducing the inner diameter of pipes (due to sediment deposition, scale, or 
tuberculation) is likely to exist, the pipe diameters may also be considered as unknown parameters. 
Also, in some cases, due to changes in the network layout over time and the lack of as-built drawings, 
we may be unsure about the existence, the material or the size of some pipes in specific sites. In such 
case, if it is not possible to employ any detection facilities, the diameter of uncertain pipes may also be 
considered as the calibration parameters.

7.2.4 Leakage parameters
For aged water distribution networks suffering from high levels of leakage, network calibration without 
considering leakage generally does not lead to reliable results. In this case, leak parameters including 
the number of leaks, leak location and leak area size should also be considered as the calibration 
parameters. Since leak outflow from pipe systems is a function of pressure head at leak locations, in 
most practical application related to leakage simulation, a pressure driven approach is required for 
modeling hydraulics of the network.

7.2.5 Boundary conditions, tanks, valves and pump characteristics
These parameters are especially the case for the networks being under operation. The performance 
of tanks, pumps and valves may change due to ‘wear-and-tear’ over time. For example, the Head (H) 
and Flow rate (Q) characteristic curve of a pump or Q-head loss (Hloss) relationship of a valve due 
to mechanical depreciation may be subject to variability. In such cases, the original characteristic 
curves cannot be used in modeling the system. These sources of uncertainty, however, can be largely 
eliminated by using field measurements. As an example, to reproduce the modified H-Q curve for a 
pump, it is possible to measure flow passing through the pump (using the flow meter usually available 
on the discharge line of the pump station) and the differential pressure between pump suction and 
discharge, at several different openings of the regulating valve installed on the pump discharge line. 
This technique seems to be hard to implement in the case of network’s regulation or isolation valves 
due to the large number of valves and difficulties related to flow measurement within the network. 
Hence, the Hloss coefficients of network valves are sometimes considered as unknown parameters in 
the calibration process.
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7.3 REVIEW ON CALIBRATION STEPS

Ormsbee and Lingireddy (1997) divided the calibration process into the seven basic steps outlined below.

7.3.1 Identifying the intended use of the model
The objective of using the model determines the type of calibration parameters and the method of 
collecting field data. For example, in a model developed for network water quality management, in 
addition to hydraulic parameters (e.g., pipe roughness and nodal demands), reaction rate coefficient 
of the intended chemical should also be considered as calibration parameters. Moreover, if the model 
is created to use in water/energy management, due to the dependence of system results on hourly and 
daily varying demands, it is necessary to use the EPS approach of modeling and a weekly-basis field 
data collection scheduling. Obviously, for a network with pressure deficit, a pressure driven modeling 
approach is needed for calibration purposes.

7.3.2 Determining initial estimation of model parameters
In this step we need to have an initial rough estimate of the calibration parameters. For this purpose, 
useful tabular and diagrammatic information represented in references and standards provide a good 
initial estimate of the values of pipe roughness coefficients according to pipe material, diameter and 
age (Lamont, 1981; Wood, 1991). In addition, from standard field measurements (e.g., fire hydrant 
flow test) reliable data for specific pipe roughness calibration could be achieved (McEnroe et al., 1989; 
Walski et al., 2003).

Additionally, nodal demands can be roughly estimated by identifying the region influencing each 
node, identifying the types of demand units in the service area, and multiplying the number of each 
type by an associated demand factor. Alternatively, the estimate can be obtained by first identifying 
the area associated with each type of land use in the service area and then multiplying the area of each 
type by an associated demand factor (Ormsbee & Lingireddy, 1997).

7.3.3 Collecting calibration data
The accuracy of the initial estimated values for the model parameters must be evaluated in some way. 
To calculate the accuracy of the parameters estimation, it is required to collect field measurements 
(observations) from a number of available sites of nodal pressures and/or pipe flows, and compare 
them with the corresponding results predicted by the model.

Although the routine flow/pressure data collected at the pump station outlet and the water level 
in the storage tanks inside WDNs provides very useful information to be used in the calibration 
process, it is not sufficient in practical applications. Hence, calibration of WDNs usually needs a 
special measurement site design and establishment of measurement devices (like sensors) to collect 
more flow/pressure/water quality data required to achieve reliable results. From this point of view, the 
optimal design of measurement sites is an important and challenging issue, considering the expected 
accuracy of the collected data and the cost associated with sensors’ purchase and installation. 
To  study about optimal measurement site design, interested readers are referred to Kapelan et  al. 
(2003), Vítkovský et al. (2003) and Ranginkaman et al. (2019).

7.3.4 Evaluating model results
To evaluate the results of parameter estimation, it is required to compare the measured data with the 
corresponding calculated result. Simulated flow in hydrant tests or water level in storage tanks are 
examples of model results to evaluate the accuracy of the parameter estimation. To make quantifiable 
the assessment of accuracy, various criteria can be considered. The absolute error of estimation 
and the squared error of estimation are two popular criteria to be considered as evaluation of the 
accuracy of parameter estimation. Ormsbee and Lingireddy (1997) have suggested that for planning 
and development purposes, a maximum deviation of 10% for nodal pressures, pipe flows and storage 
tank water levels and for design, operation and water quality management purposes, a maximum 
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deviation of 5% for the model results and field measurements can be suitable criteria for accepting 
calibration results.

7.3.5 Performing macro-level calibration
Macro calibration is performed when the difference between the measurements in the field and the 
calculations in the model are greater than 30%. It is most likely that the large difference cannot be 
merely due to the parameter estimation error. In such cases it is necessary to further investigate the true 
status of the elements, the boundary conditions and so on, to find the cause of the large disagreement 
between the observed and predicted results. In this regard, possible dissimilarities between the model 
and prototype data may be due to closed or partially-closed valves, different pump performance curve, 
unseen links and network configuration, different pipe diameters and length, incorrect information of 
tanks, incorrect network zones, and so on.

7.3.6 Performing sensitivity analysis
Sensitivity analysis (SA) is a useful tool to determine the parameters to which the model results are 
more sensitive. Through SA time and effort are more efficiently spent in determining the parameters 
being more important in modeling. For example, if there is a limited labor force to do a hydrant flow 
test (a test whose results are very useful for estimating roughness coefficient of a specific water main) 
it is sensible to have more focus on the pipes with more sensitivity to model results.

7.3.7 Micro-calibration
The calibration process in the previous steps led to the determination of the possible range of 
variation and rough estimation of the model parameters. In micro-calibration, as the final step of 
the procedure, accurate values of the parameters are achieved by fine tuning so that the difference 
between the measured and calculated results reaches a minimal value. The fine-tuning process has 
experienced a gradual evolution in past years. Different approaches of micro-calibration include 
manual methods, trial-and-error methods, analytical methods, and optimization-based methods 
(also called automatic calibration). In the following section the optimization-based method, which is 
capable of implementation for practical purposes, is described.

7.4 AUTOMATIC CALIBRATION

This approach is an implicit method in which the problem of estimating the unknown parameters of the 
model is defined as an inverse problem to match some referenced condition. In such an inverse problem, 
the independent variables are initialized so that a number of selected dependent variables match, as much 
as possible, to the predetermined (or measured) values. Assuming that the coefficients of pipe roughness 
and nodal demands are network parameters, since the number of unknowns (network parameters) is 
greater than the number of equations (number of field measurements) a unique combination cannot be 
explicitly found for network parameter values. One practical way to solve such problems is to employ 
simulation-optimization techniques. In this approach, the calibration of WDNs can be defined as a 
nonlinear optimization problem so that unknown parameters are considered the decision variables 
and an equation related to ‘the difference between the calculated results (in the model) and their 
corresponding measured ones (in the field)’ is taken as the objective function. Moreover, the problem 
consists of the hydraulic constraints of mass balance in the nodes and energy conservation in the pipes 
as well as the predefined ranges of variation of unknown parameters. Such an optimization problem can 
be solved using efficient optimization techniques like meta-heuristic algorithms.

7.4.1 Conceptual framework
Figure 7.1 shows the conceptual framework of the simulation-optimization model for micro-calibration 
of water distribution networks. The framework has two main cores including the simulation model 
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(e.g., EPANET) and the optimization engine (e.g., Genetic Algorithm). First, through the box labelled 
‘Network data and configuration’ and the box labelled ‘Boundary Condition Input Data’ the known 
Network Topology, Configuration and Deterministic Data (NTCD Data) and the information related to 
the boundary conditions and other specifications, are introduced to the EPANET to build the network 
hydraulic model inp file. The ‘Network data and configuration’ box also contains the information 
associated with network parameters (e.g., initial estimates and possible ranges) which enters the 
GA. Second, the GA randomly generates a population of solutions based on the initial information 
received (Network Parameters (NPs) Data in Figure 7.1), and sends them to the EPANET for hydraulic 
analysis. By execution of the EPANET, the computational results of the model are produced for each 
solution of the population, and then the results return back to the GA box as labelled ‘Network 
Responses’ in Figure 7.1. In addition to the previous inputs, GA also receives the ‘Measured Results’ 
from the field which enables the GA to evaluate and sort the solutions in regard to ‘how much their 
calculated results match the corresponding ones measured in the field’ (i.e. minimum error based on 
the objective function).

In the third step, according to the sorted population and the predefined Optimization Parameters 
(see Figure 7.1) the GA tries to eliminate the less fitted individuals (solutions) and preserve the more 
fitted ones, and produces a new generation of the solutions by imposing its operators (e.g., selection, 
cross over, migration, mutation, etc.) on the previous generation. The above procedure is repeated in 
a similar way on the next generations until the GA finally converges and the best fitted values for the 
calibration parameters are achieved.

Figure 7.1 Conceptual framework for automatic parameter calibration of WDNs.
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7.4.2 Dynamic link for the simulation-optimization model
During the simulation-optimization process, there are a huge number of ‘sending solutions to’ and 
‘receiving responses from’ the simulation model (EPANET), making the process impossible to 
manually handle. Therefore, any simulation-optimization model requires a dynamic link to make the 
interaction between simulation and optimization model automatic (see Figure 7.1). The major role of 
the dynamic link is to get a solution data (encoded in GA) and translate (decode) it into the language 
being meaningful to EPANET, and then return the calculated results to the GA. A widely popular 
dynamic link for WDN problems modeling is the EPANET-MATLAB Toolkit (EMT) developed by 
KIOS Research Center for Intelligent Systems and Networks of the University of Cyprus (Eliades 
et al., 2016) which is a public domain programming interface to bridge MATLAB (the optimization 
environment) and EPANET (the simulation model).

To use EMT, it is required to first install MinGW-w64 compiler in the MATLAB environment. 
To this end, in MATLAB from APPS Menu Bar, click on Get More Apps, then in Add-On Explorer 
search for MinGW-w64 and install it. After MinGW-w64 installation, from https://github.com/
OpenWaterAnalytics/EPANET-Matlab-Toolkit you should download source code and save it within 
the MATLAB current folder

For introducing an EPANET model to EMT, you should export the model to an inp file and move 
it to the same folder as EMT source code location in MATLAB. By executing start_toolkit.m and 
epanet(’filename.inp’) an EPANET object is created in which all the properties of the input inp file for 
the network model are provided (see Figure 7.2).

By creation of the EPANET object, EMT can read all available data in the inp file and update the 
properties of the system elements. There are many commands provided for the user to retrieve the 
initial data in the inp file, many others to overwrite the network model properties, and run hydraulic 
and water quality simulation as well. A complete list of these functions has been presented in the file 
README.md available for different network design, operation and management problems. Detailed 
examples of how to use different functions of EMT can be found in Eliades et al. (2016).

7.4.3 Mathematical statement of the problem
In addition to the need to properly understand the conceptual relationship among different parts of 
the simulation-optimization model (Figure 7.1), to put the problem into a computer code, it is better to 
state the relationships in the form of mathematical expressions. These expressions appear in two forms 

Figure 7.2 EMT in MATLAB environment: (a) start_toolkit.m command, and (b) EPANET object (d) creation for NYT.
inp network model.

https://github.com/OpenWaterAnalytics/EPANET-Matlab-Toolkit
https://github.com/OpenWaterAnalytics/EPANET-Matlab-Toolkit
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including the relationship stating the Objective Function and the ones stating the Constraints, both 
directly or indirectly are dependent on the values of independent variables (so called decision variables).

7.4.3.1 Actual decision variables
In the case of optimization resulting from an automatic calibration, the unknown parameters of the 
model (calibration parameters) will be the actual decision variables (or independent variables) of 
the optimization problem. Therefore, for a network with M groups of pipes, each group has distinct 
unknown Hazen–William’s roughness coefficient (CH), and N groups of junctions each has distinct 
unknown hourly-demand pattern coefficients, for a T-hour hydraulic simulation model, the string that 
expresses a generic solution (called a decision vector) is expressed as follows:

X x x x x x xn M M M nvar var1 1 2 1 2× + += … …[ ], , , , , , ,
 

(7.1)

where M and N are respectively the number of pipe and junction groups, and nvar is the total number 
of variables (calibration parameters) in which nvar = M + N × T.

7.4.3.2 Objective function
The objective function in the problem of optimization arising from micro-calibration of WDNs is 
the minimization of the sum of squared error (SSE) between calculated and observed pipe flows and 
nodal heads which could be mathematically expressed as follows:
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where Nfms and Nhms are respectively the number of flow and head measurement sites, Qi t
c
,  and Qi t

m
,  are 

the calculated and measured flow in the ith flow measurement site at the tth time step, and Hj t
c
,  and 

Hj t
m
,  are the calculated and measured head on the jth head measurement site at the tth time step. Since 

the degree of importance of measurements may not be the same for all sites, the weighting coefficients 
wi and wj allow us to define different weights for each measurement.

7.4.3.3 Constraints
Constraints of the calibration problem are divided into two general categories. The first set of 
constraints is related to the possible ranges of parameters (decision variables) variation, which are 
expressed as follows:

x x x i ni i i
min max

var≤ ≤ =for to1  
(7.3)

The above set of constraints can be automatically handled while the GA works with normal 
decision variables (i.e., the value changes over the interval [0, 1]). In such a case, using the following 
equation, a normal decision variable xi

nor  is decoded into meaningful decision variable xi with no extra 
imposing constraint:

x x x x x i ni i i
nor

i i= + −( ) =
min max min

varfor to1
 

(7.4)

xi
nor  is initially generated in GA with a random function (e.g. the continuous uniform distribution), 

and updated as the GA advances in successive generations.
Another set of constraints are related to the hydraulic equations of the network (i.e., the mass 

conservation in junctions and energy balance in closed loops) which are automatically satisfied by the 
simulation model (i.e., EPANET), and we do not have to explicitly define any constraint in the GA.
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7.5 EXAMPLE 7.1: CALIBRATION OF ANYTOWN MODIFIED NETWORK

To implement different automatic calibration procedures, the Any Town Modified (ATM) benchmark 
network is considered in this section. The Any Town network has been used as a benchmark in 
previous research with different configurations for different purposes (Ahmadian et  al., 2019; 
Cimorelli et al., 2020; Costa et al., 2016; Kapelan et al., 2007; Rao & Salomons, 2007). The network, 
shown in Figure 7.3, consists of 19 demand nodes, 41 pipes, and three elevated storage tanks. The 
system is fed by a fixed head reservoir at an elevation 3.048 m and a pumping station with three 
identical centrifugal pumps in parallel. The data of system components and characteristic features of 
the pumps are presented in Table 7.1.

In this example, the roughness of pipes and the demand pattern are the calibration parameters. It 
is supposed that the ‘true’ but ‘unknown’ demand pattern multipliers of nodes and Hazen–Williams 
roughness coefficients of pipes are the ones presented in Table 7.1. As a matter of fact, the automatic 
calibration is going to find these true values using the systematic search engine (i.e., the Genetic 
Algorithm). Table 7.2 shows the results of field measurements of water level in tanks, pressure head 
in Node 100 and Node 50, and flow in Pipe 32 and inflow to the network as well. Obviously, if in the 
EPANET hydraulic model of the network we set the pipe roughness coefficients and water demand 

Figure 7.3 Layout of Anytown Modified Network.
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pattern coefficients equal to the values presented in Table 7.1, and the head of the network inlet point 
(Node 20) equal to the values in Table 7.2, the exact time series illustrated in Table 7.2 for nodal 
pressures (Node 50 and Node 100), tank water levels and the Pipe 32 flow rate must be attained. In 
other words, a reliable calibration optimization model should approximately find the true values of the 
calibration parameters stated in Table 7.1.

7.5.1 Optimization model: genetic algorithm
For automatic calibration of the ATM network, we will exploit the Genetic Algorithm (GA) to 
find the true roughness coefficients of the pipes and the demand pattern multipliers. The GA is 
an evolutionary optimization algorithm method inspired by natural genetics. As briefly explained 
earlier, this method starts with creating a population of solutions (called chromosomes in GA 
terminology) in order to systematically search the space of decision variables (called genes). Over 
successive generations, GA gradually alters the solutions to reach the solution that globally has 
optimal objective function. GA randomly generates the initial population and calculates (evaluates) 

Table 7.2 Field measurement data for Example 7.1

Time 
Steps

Pump Station Outlet Data

Site Measurement Data

Water Level in Tanks (m) Pressure Heads in 
Nodes (m)

Flow 
Rate (lps)

Total Head 
at Node 20 
(m)

Total Inflow to 
the Network 
(lps)

Tank 65 Tank 165 Tank 265 Node 50 Node 100 Pipe 32

1 75.25 674.53 66.93 66.93 66.93 52.82 52.26 10.99

2 71.28 390.99 69.15 67.8 67.58 53.17 52.99 9.07

3 71.2 384.93 68.69 68 68.77 53.58 53.38 6.45

4 77 645.76 69.32 69.61 67.42 54.61 54.53 11.89

5 73.23 383.86 71.07 68.46 70.69 55.62 55.15 7.11

6 73.42 366.43 71.08 71.38 69.02 55.38 55.76 8.61

7 73.16 377.52 71.41 70.07 71.1 55.66 55.45 8.01

8 72.75 375.33 70.77 71.41 69.12 54.61 55.19 9.74

9 72.47 400.78 70.41 68.07 71.51 55.24 54.51 6.22

10 71.91 367.28 70.13 71.09 67.73 53.57 54.41 10.83

11 71.59 416.97 69.39 67.01 70.74 54.24 53.47 6.48

12 80.89 843.35 69.09 70.04 66.71 54.08 54.54 16.08

13 82.73 870.23 70.94 67.48 70.32 56.35 55.19 14.84

14 70.25  50.93 71.53 70.45 69.99 54.65 54.81 6.58

15 76.43 668.88 68.79 68.32 70.36 54.84 54.19 9.68

16 77.32 636.74 70.88 70.67 67.52 54.87 55.24 13.64

17 78.46 636.09 71.53 68.42 71.23 56.92 55.99 12.34

18 73.67 385.13 71.53 71.35 70.35 55.67 55.9 8.78

19 71  91.71 71.43 70.6 70.88 55.48 55.43 4.92

20 69.52  0 69.66 70.72 69.68 54.17 54.35 3.79

21 71.18 386.15 68.73 67.66 69.9 54 53.46 4.82

22 76.79 636.53 69.42 70.07 66.86 54.37 54.67 12.48

23 73.2 396.19 71 68.02 70.7 55.49 54.98 7.35

24 70.08  0 70.87 71.51 68.33 54.17 54.78 7.11
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the value of the objective function or the fitness function for each individual. Then, based on the 
evaluation results, the population is sorted, and relatively better individuals are preserved while the 
rest are eliminated. In the next step, by applying the GA operators having random internal processes, 
children (called off-springs) are produced from parents previously preserved, and added to the main 
population to form the next generation. Similar to the previous generation, the next generation of 
solutions are evaluated and altered by applying GA operators, and this iterative process continues 
until the algorithm converges.

The most important GA operators include Selection, Crossover and Mutation. Selection is 
responsible for the process of selecting parents for mating, in which individuals with better fitness are 
given a higher chance of participating in reproduction of the next generation. Crossover controls the 
intersection of parent chromosomes and the way of exchanging the genes to create new off-springs. 
Crossover produces children who receive some characteristics from the father chromosome and some 
characteristics from the mother chromosome. Moreover, Mutation is an operator that creates new 
individuals (solutions) by randomly changing a very limited number of genes which may result in new 
chromosomes with completely different characteristics compared to the population. Mutation is a 
mechanism to free the search process from being trapped in local optima. Without the mutation, the 
diversity of the population decreases rapidly causing the individuals to become too similar to each 
other. This makes the search process to be premature leading to stopping criteria without convergence 
to the global optima.

7.5.2 Optimization model setting
Based on previous information, we also suppose that in terms of the factors affecting Hazen–Williams 
roughness coefficient (e.g., material, age, etc.) all ATM pipes could be categorized into six separate 
groups of pipes: Group 1 (including Pipe 4, 30, 16, 14, 12 and 2), Group 2 (including Pipe 6, 48, 24, 10, 
32 and 36), Group 3 (including Pipe 38, 18, 20, 66, 40, 28, 22, 26 and 42), Group 4 (including Pipe 64, 
60, 58, 44, 50, 52 and 56), Group 5 (including Pipe 62, 46, 34, 87, 80 and 8) and Group 6 (including 
Pipe 74, 76, 72, 68, 70, 178 and 54). The above grouping has fictitiously been done in this example. 
In real applications, however, we probably have some evidence (e.g., the same pipe installation time, 
material, etc.) to group the pipes. This information leads us to the key point that we can consider the 
same grouping in the pipe roughness coefficients so that only six decision variables may be required to 
represent the roughness of all 41 pipes of the network. Although this point may affect the accuracy of 
calibration, it will reduce the dimensions of the optimization problem (number of decision variables) 
likely causing the whole procedure to be much more efficient.

According to the above details, the number of decision variables in this example is 30 which 
includes six variables for the roughness coefficient of groups of pipes and 24 demand multipliers 
(i.e., 24-hour demand patterns). We take wi and wj in the objective function (Equation 7.2) to be 

respectively 1
2

Qi t
m
,











 and 1
2

Hi t
m
,











 based on the suggestion made by Do et  al. (2016). The weights 

are squared since they should have the right same order with the squared errors, and are inversed 
as larger flow rates and pressure heads should have relatively small weights. Moreover, based on 
Equation (7.3), it is required to introduce upper and lower bounds for each decision variable. Prior 
experience and engineering judgment could effectively help accurately estimate these bounds. For 
example, by comparing the minimum night flow and maximum daily flow entering the network 
and comparing them with the 24-hour average inflow to the network, an acceptable estimate of 
the upper and lower bounds of demand pattern multipliers could be made. Also, for the roughness 
coefficient of pipes, the results of hydrant tests, pipe material and age, technical specifications by 
manufacturers, and so on give a good insight into the roughness coefficient upper and lower bounds. 
For the ATM example, we take 0.2 and 2 respectively as the lower and upper bounds of demand 
pattern multipliers, and 95 and 140 for the lower and upper bounds of roughness coefficient of all 
pipes.
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The simplest way to access different optimization engines available in MATLAB environment, is 
the Optimization Tool (OT). To access OT, type ‘optimtool’ in Command Window. In OT (see Figure 
7.4) we have two main parts as follows:

(1) The section ‘Problem Setup and Results’ in which we define and address the information 
related to the objective function(s), decision variables and the constraints, and also we run 
the optimization model and see the final solutions found by the optimization engine. In this 
section, set the Solver as Genetic Algorithm. Below the Solver at the section Problem, we must 
define the Fitness function as a function handle of the form @ObjFunc, where ObjFunc is 
the name of the objective function we are going to minimize. To create ObjFunc, using EMT 
we must develop a MATLAB code as a Function File in which the input is a normal decision 
vector having 30 variables and the output is a variable defined for the value corresponding 
to the fitness of the input decision vector. In the section Constraints, we must only enter the 
bounds of decision variables. For Lower and Upper, type zeros(1,30) and ones(1,30).

(2) The section Options in which we make different settings of GA. Since we defined the decision 
variables as real numbers, in Population type, choose Double vector for the type of the decision 
variable digits. In this section, also specify the ‘Population size’ as 200. In ‘Stopping criteria’ 
for the field ‘Generation’ specify 1000. Furthermore, in ‘Plot Function’ tick ‘Best Fitness’ and 
‘Best Individual’ to check how GA converges to the best solution over generations. Leave the 
rest of the fields in ‘Options’ blank, meaning that we have accepted the default operators and 
parameters of the GA for the rest of the setting. You may come back later to change the defaults 
of different GA operators’ settings (e.g., Mutation, Selection, Crossover, etc.) to check to what 
extent different values and types of operator are effective in GA progress to find the best solution.

Figure 7.4 GA settings in Optimization Tool for calibration of the ATM example.
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7.5.3 Model execution and results
According to the settings mentioned in the previous section, the optimization model was implemented. 
Table 7.3 shows the results of calibrated roughness of pipes and demand patterns multipliers and 
the comparison of the results with their true values. As can be seen, the average relative error of 
estimation (REE) for pipes roughness parameters and demand patterns multipliers are respectively 
1.69 and 5.77%, while the maximum REEs are 4.53 and 18.43%. The agreement between calculated 
and measured data is shown in Figure 7.5, which indicates that the GA has a successful performance 
in searching the decision space to minimize the objective function. As Figure 7.6 also shows, the REEs 
between the measured data and calculated results by the calibrated model for a 24-hour extended 
period simulation, are below 10% indicating that the accuracy of results is acceptable (see section 
7.3.4). As can be seen in these bar charts, the REE for the flow in the pipes is much greater than the 
REE for nodal pressure heads. Generally, in the calibration process, REE for flow measurements is 
higher than REE for pressure measurement. Increasing the number of flow measurement sites and 
performing a sensitivity analysis can reduce the REE. The trade-off between improvement of the 
accuracy of calibration and the costs associated with more measurement sites has always been a 
challenging issue for the planning and development of calibration models.

Table 7.3 Results of parameter calibration and the relative error of estimation (REE) for Example 7.1

Pipe 
ID

Pipe Roughness Pipe Roughness Time 
Steps

Demand Multipliers

True 
value

Calibrated 
Value

REE 
(%)

Pipe 
ID

True 
Value

Calibrated 
Value

REE 
(%)

True 
Value

Calibrated 
Value

REE 
(%)

2 110.9 111.84 0.85 44 121.02 125.1 3.37 1 0.7 0.673 3.90

4 109.2 111.84 2.41 46 130.51 131.4 0.68 2 0.7 0.731 4.39

6 116.1 113.61 2.14 48 113.61 114.6 0.87 3 0.7 0.631 9.80

8 130.1 130.51 0.32 50 121.02 126.5 4.53 4 0.6 0.693 15.57

10 115.2 113.61 1.38 52 121.02 126.1 4.20 5 0.6 0.534 11.05

12 109.5 111.84 2.13 54 132.67 135.1 1.83 6 0.6 0.648 7.94

14 110.1 111.84 1.58 56 121.02 125.8 3.95 7 1.2 1.167 2.75

16 108.8 111.84 2.79 58 121.02 124.3 2.71 8 1.2 1.223 1.94

18 118.7 121.31 2.20 60 121.02 123.9 2.38 9 1.2 1.140 4.98

20 118.9 121.31 2.02 62 130.51 128.8 1.31 10 1.3 1.321 1.60

22 118.5 121.31 2.37 64 121.02 123.6 2.13 11 1.3 1.314 1.09

24 113.8 113.61 0.16 66 121.31 119.5 1.49 12 1.3 1.288 0.93

26 120.9 121.31 0.34 68 132.67 133.3 0.47 13 1.2 1.194 0.50

28 119.3 121.31 1.68 70 132.67 134.7 1.53 14 1.2 1.242 3.48

30 111.3 111.84 0.48 72 132.67 133.7 0.77 15 1.2 1.080 10.00

32 114.9 113.61 1.12 74 132.67 135.8 2.36 16 1 1.184 18.43

34 131.1 130.51 0.45 76 132.67 135.3 1.98 17 1 0.822 17.84

36 114.2 113.61 0.51 78 130.51 131.8 0.98 18 1 1.092 9.23

38 119.2 121.31 1.77 80 130.51 131.6 0.83 19 0.9 0.864 3.98

40 119.9 121.31 1.17 178 132.67 136.6 2.96 20 0.9 0.890 1.16

42 121.1 121.31 0.17 Average REE (%) 1.69 21 0.9 0.913 1.44

22 0.7 0.704 0.61

23 0.7 0.712 1.70

24 0.7 0.729 4.10

Average REE (%) 5.77
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Figure 7.7 depicts the extent to which the calibrated roughness of pipes (Figure 7.7a) and demand 
pattern multipliers (Figure 7.7b) match the corresponding values considered as the true figures for the 
parameters.

Due to the random nature of the GA, different runs may not lead to exactly the same solution. Moreover, 
since the calibration is typically an under-determined problem especially in real world projects, we may 
find solutions representing other states of the system. To avoid such consequences, it is better to test the 
models with new measured data to approve the results obtained in the calibration process.

7.6 PARAMETER UNCERTAINTY ANALYSIS IN PIPE NETWORK MODELING

As seen in the results of the previous example, estimating the parameters of a hydraulic model of 
a WDN is accompanied with error. In addition, some modeling parameters of water distribution 
networks have inherent variability with respect to time and space. For example, water consumption in 
a DMA at 10 a.m. on a weekday may be different from the consumption of the same DMA at the exact 
same time on the next weekday, or the roughness of a particular pipe deteriorates over time due to pipe 
materials, environmental factors and operating conditions. Therefore, the values of the parameters of 
a WDN can be subject to uncertainty.

In a WDN, through the equations governing system dynamics, the network responses (e.g., nodal 
pressures) relate to the network parameters (e.g., roughness of pipes and nodal demands). As a result, 
in modeling a WDN, the uncertainties associated with parameters propagate through the governing 
equations and cause the network responses to be uncertain too. The process of calculating ‘variability 
features of the responses as a result of variability of the parameters’ is called uncertainty analysis 
(UA) or uncertainty quantification. Simply, in UA we are going to quantify the effect of uncertainty 
of independent variables (system parameters or inputs) on the system dependent variables (responses 
or outputs). For any system that includes Inputs → Process → Outputs, the deterministic (also called 
Crisp) outputs are achieved only if both the Inputs and the Process are deterministic, otherwise the 
Outputs will be uncertain (Tung & Yen, 2005). Hence, it is quite realistic to assume that hydraulic 
responses in WDNs are subject to uncertainty.

What the variability of the network parameters perceptibly brings to the system operators is the 
variability in tangible network responses such as flow velocity in pipes and especially nodal pressure 
heads. Therefore, it would be very desirable for system operators if network analysts specify, due to 
uncertainty in network parameters, what to expect from the statistical features of the responses (e.g., 
average, variance and range of the responses). With UA application in operation and especially in 
design projects, we can wisely detect the system’s weak points, critical elements, and plan to make 
modifications where/when needed.

Figure 7.5 Agreement between the calculated and measured data for: (a) pressure head in the tanks and nodes 50 
and 100; (b) inflow to the network; and (c) flow in pipe 32.
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7.6.1 Does UA search for the most pessimistic combination of parameters?
Many prudent engineers imagine that instead of the parameter UA, if the most pessimistic values 
of system parameters are simultaneously introduced to a deterministic model, the most pessimistic 
values would accordingly be captured for system responses. The following example reveals that how 
the above statement will not be true under some conditions, especially regarding looped pipe networks.

Figure 7.6 Relative Error of Estimation (REE) with respect to the measured data for: (a) calculated pressure heads; 
and (b) calculated pipe flow rate for Example 7.1.
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The example is adapted from Sabzkouhi et  al. (2017). As illustrated in Figure 7.8, the example 
includes a simple looped network with five pipes and four demand nodes supplied by a reservoir (via 
gravity flow) with a fixed water level at elevation 78 m. The system’s physical and hydraulic properties 
are shown in Figure 7.8. Imagine that except for Hazen–Williams (HW) pipe roughness, all other 
parameters are deterministic with no uncertainty. Let us also assume that the HW roughness of pipes 
would average to 125 for all pipes while, based on technical knowledge and engineering experience, 
they are exposed to ±20% uncertainty. This means that the maximum and minimum possible HW 
roughness are expected to be 150 and 100, respectively. Based on the principles of pipe hydraulics, the 
less the HW pipe roughness becomes, the more the head loss along the pipe occurs. Hence, if we set 
all the HW pipe roughness equal to 100 (the most pessimistic value), we should apparently expect the 
lower pressure head values for all nodes. Let us see whether this assumption is true for all nodes or 
not. In Figure 7.8a, the results for nodal pressure heads are shown for this scenario. As can be seen, 
the pressure head for Node 3 is 18 m. As another scenario, in Figure 7.8b, we have kept all H-W pipe 
roughness fixed at 100 (as Figure 7.8a) except for Pipe 3 in which it has changed into 150 (the most 
optimistic value). The results in Figure 7.8b demonstrate that the minimum nodal pressure for Node 
3 has been produced with the most optimistic HW roughness for Pipe 3 (i.e., 150) where it drops 

Figure 7.7 Comparison of the parameter calibration results with the true values in Example 7.1 for: (a) roughness of 
pipes; and (b) demand pattern multipliers.
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to 16.8 m. As a matter of fact, compared to the previous scenario, the more hydraulic transmission 
capacity for Pipe 3 results in more flow rate and more energy loss along Pipe 2 which causes a 1.2 m 
decrease in the pressure head of Node 3 compared to Figure 7.8a.

Clearly speaking, the statement that ‘the most pessimistic combination of system parameters 
always leads to the most pessimistic values of network hydraulic responses’ cannot be true for all 
cases. Therefore, evaluating the most pessimistic combination of parameters cannot replace UA for 
the system as a whole.

7.6.2 Approaches for parameter UA
The theory of probability as well as the fuzzy sets theory are the two major approaches of UA in 
WDNs, for which different methods and application have been proposed in the literature (Bao & 
Mays, 1990; Duan et al., 2010; Haghighi and Asl, 2014; Hwang et al. 2017; Sabzkouhi and Haghighi, 
2016, 2018a; Sabzkouhi et  al. 2017; Seifollahi-Aghmiuni et  al., 2013; Tsakiris and Splilotis, 2017). 
Monte Carlo Simulation (MCS) is the most well-known probabilistic method for UA. This method 
requires numerous sampling stochastic input parameter(s) having known probability density function 
(PDF) and successive model execution to derive the PDF of the dependent random output(s). The MCS 
method has been a benchmark for assessing the accuracy of probability-based methods accepted by 
researchers for UA of engineering systems (Kang & Lansey, 2009).

As an alternative approach for UA, using fuzzy sets theory a WDN is considered as an uncertain 
system in which the fuzzy membership functions (FMFs) of the system output(s) are determined, given 
the known FMFs of the input parameter(s).

Implementing both the above approaches requires sufficient information about the parameters’ 
statistical properties (e.g., PDFs) or fuzziness features (e.g., FMFs) which may not be simply accessible 
in most real-world problems. Both approaches also require a huge number of network simulation 
model runs which in the case of large networks makes the UA a very time-consuming and burdensome 
procedure. Hence, by taking simplifying assumptions, alternative approximation methods have been 
developed to reduce the cost of analysis in terms of calculations (Braun et al., 2016; Gupta & Bhave, 
2007; Kang & Lansey, 2011). In the next section, we are going to describe a simple method named 
Interval Analysis (Rao & Berke, 1997; Sabzkouhi & Haghighi, 2019) to practically perform UA in 
WDNs.

7.6.3 Interval analysis (IA) for parameter UA
In the IA approach for carrying out UA, the least information about system parameters is needed – 
the known parameter ranges. If qi is the ith independent parameter (e.g., demand in the ith node) of 

(a) (b)

Figure 7.8 Uncertain nodal pressures corresponding to: (a) the most pessimistic pipes roughness; and (b) the 
critical combination of pipes roughness for the lowest pressure (Sabzkouhi et al., 2017).
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the system, then a known interval [q qi i, ] could be considered for its range of variation. Additionally, 
let us take Hj the jth system dependent output (e.g., pressure head in the jth node) whose relationship 
with independent parameters is established as Hj = ϕ(q1, q2, …, qi, … qnp). Here np is the number of 
independent parameters and ϕ is the set of equations governing pipe network hydraulics that returns 
Hj as a function of network parameters. As a matter of fact, since we employ EPANET hydraulic model 
to calculate the system responses (i.e., Hj), here EPANET takes the role of ϕ.

Corresponding to the interval [q qi i, ], an interval H Hj j,




 is conceivable for the variation of Hj. In 

other words, we can simply consider the UA as q q H Hi i

UA

j j, ,




⇒ 



 . As a desired outcome of IA, we need 

to capture the two extreme values for Hj including the upper bound (Hj ) and the lower bound (Hj). 
However, systematically each extreme happens in a distinct critical combination of system parameters 
as follows:

H q q q q

H q q q q
q q

j i np
H

j i np
H

i i
j

j

= … …( )

= … …( )
∈ ≤

ϕ

ϕ

1 2

1 2
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, qq q i npi i≤
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(7.5)

where q q q qi np
Hj

1 2, , , ,… …( )  and q q q qi np
Hj

1 2, , , ,… …( )  are respectively the combinations of system 
parameters corresponding to Hj and Hj.

According to the nonlinear nature of the equations governing pipe network hydraulics, finding Hj 
and Hj  generally requires an implicit procedure in which determining the upper and lower bounds are 
formulated as a mathematical optimization problem (a minimization type for Hj and a maximization 
type for Hj ). In each of the above optimization problems, Hj or Hj  is the objective function, and q1, 
q2, …, qi, … and qnp are decision variables. Accordingly, in terms of UA of nodal pressure heads for the 
whole system, the number of optimization problems to be solved is two times the number of demand 
nodes. Hence, due to the large number of optimization runs required to perform UA of nodal pressures, 
this classical approach is very time consuming, especially for real networks. Although much effort has 
been made to develop specific optimization methods to reduce computational time (Haghighi & Asl, 
2014; Sabzkouhi & Haghighi, 2016) these methods still do not have high efficiency in the case of real 
networks. Therefore, in this chapter, to carry out the UA of nodal pressure heads with IA approach, 
an approximate deterministic method developed by Gupta and Bhave (2007) is presented.

7.6.3.1 Impact Table Method
To better understand the Impact Table Method (ITM) (Gupta & Bhave, 2007), we first need to 
well understand how uncertainty in dependent variables may differ between monotonic and non-
monotonic variations. In Figure 7.9, if we take Y as a function of X, the difference between monotonic 
and non-monotonic variation of Y is easily understood, where over the interval [Xmin, Xmax], Y 
changes monotonically in the left chart and non-monotonically in the right chart. As we can see, in a 
monotonic variation, the extreme values of the dependent variable (i.e., Ymin and Ymax) definitely occur 
in the extreme points of the independent variable (i.e. Xmin and Xmax). In a non-monotonic variation, 
however, Ymin and Ymax do not occur in Xmin and Xmax.

Accordingly, assuming a monotonic behavior of the responses to the system parameters, Gupta and 
Bhave (2007) proposed the ITM method for UA of a WDN responses including nodal pressures and 
pipe flows. The steps of this algorithm are as follows:

(1) Assuming the system parameters have been already determined, run the hydraulic model with 
the Crisp (i.e., the most likely value) parameters (qi

c ) and extract the values of model responses 
(Hj

c ). To avoid confusion between the above information and other ones in the next steps, we 
label the calibrated data and the corresponding responses as Crisp.

(2) Consider that each system parameter qi
c  is exposure to uncertainty in the interval 

q q q qi
c

i i
c

i− +





∆ ∆, . By keeping all parameters constant in their crisp values, for i = 1 allow only 
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qi
c  to be increased by + Δqi and update its value in the hydraulic model. Then run the model 

and let the corresponding system responses name as ɶHj i, . The sign ∼ indicates that the response 
has uncertainty. In fact, ɶHj i,  means the uncertain value for the jth system dependent response 
corresponding to a small positive change in the ith parameter. Repeat the same procedure for 
i:1 to np and j = 1: nr where np and nr are respectively the number of network parameters and 
responses. The final result of this step is a np × nr matrix called the Impact Table.

(3) If ɶH Hj i j
c

, −( )> 0 , it means that + Δqi has led to an increase in Hj
c . Hence, Hj  would take place 

when the ith parameter value takes its maximum positive uncertainty (i.e. q qi
c

i+∆ ) while Hj 
occurs in q qi

c
i−∆ . On the contrary, for ɶH Hj i j

c
, −( )< 0 , + Δqi has caused a decrease in Hj

c . As a 
result, for the ith parameter, Hj  and Hj would occur in q qi

c
i−( )∆  and q qi

c
i+( )∆ , respectively. 

The same procedure must be done for i = 1:np and j = 1:nr to identify the true combinations of 
the parameters’ extreme to find each response upper and lower bounds.

(4) By accepting the principle of superposition, the value of Hj  and Hj could be explicitly calculated 
by introducing the true combination of extremes corresponding to Hj  and Hjinto the model 
and executing the model for the two states. If there are nr demand nodes in the network for 
which IA of pressure heads is going to be done, then the total number of hydraulic model runs 
for this step is 2 × nr.

Gupta and Bhave (2007) developed the ITM for UA of nodal pressures and velocities (or flow rate) 
in pipes as system responses against system parameters (nodal demands and roughness of pipes). 
Sabzkouhi and Haghighi (2018b) demonstrated that ITM is only effective for UA of nodal pressures. In 
fact, according to the nonlinear equations governing water distribution network hydraulics, for small 
uncertainties in system parameters, the nonlinear behavior of nodal pressures is almost monotonic 
while the variation of flow rate in pipes is non-monotonic.

7.7 EXAMPLE 7.2: INTERVAL ANALYSIS FOR THE ATM NETWORK

In this section, we are going do a UA for the ATM network by using the IA approach and accepting 
the ITM. Considering the deterministic information of the network according to Table 7.1, we want 
to obtain the interval of uncertain nodal pressure heads for a maximum uncertainty of ± 15% in the 
nodal demands and HW roughness of pipes.

Note that due to existence of the storage tanks, the nodal pressures at a specific time step are 
affected not only by nodal demands in that time step, but are also exposed to variation in the network 

Figure 7.9 Monotonic and non-monotonic function (Branisavljevic & Ivetic, 2006).
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operating conditions at other time steps. Therefore, in order to accurately determine the interval of 
uncertain pressure heads, nodal demands of all time steps should be considered as parameters with 
uncertainty. However, since the procedure is the same, to reduce the calculations and the results to 
be shown, by removing the tanks from the network, we perform the analysis only for the maximum 
demand time step of the day (time step 12) as a sample.

7.7.1 Producing the impact table
Taking into account ± 15% changes in nodal demands for time step 12 and the pipe roughness values 
mentioned in Table 7.1, with an iterative process using the 4-step procedure of the ITM illustrated 
in the previous section, the Impact Table was calculated. Since in the matrix of the Impact Table 
only the positive and negative sign of the elements (not the numeric values) are of importance, we 
respectively set 1 for the elements with a positive sign and –1 for the elements with a negative sign 
in the matrix as shown in Table 7.4. The zero-valued elements belong to pressure heads having no 
sensitivity with neither positive nor negative change in the corresponding parameter. Hence, for such 
pressure heads there is no matter which extreme of the parameter is being introduced to calculate the 
extreme response. In such a case, it is also possible to introduce the crisp value of the parameter to 
calculate the extreme pressure heads with no-sensitivity.

7.7.2 Calculating the extreme pressure heads
As explained in the last step of the ITM algorithm, to calculate the upper and lower limit of nodal 
pressures heads, considering a specific column of the Impact Table matrix, the appropriate upper or 
lower limit of each parameter must be selected. If the matrix element opposite the parameter row is 1, 
it means that the upper limit of the nodal pressure of the corresponding column occurs at the upper 
limit of that parameter, and if the element is –1, the upper limit of the node pressure is obtained at the 
lower limit of the parameter. As an example, according to Table 7.4, for the upper bound of pressure 
head in Node 30, the upper limit of roughness for Pipe 4, the lower for Pipe 30, the lower for Pipe 16, 
and so on must be set in the hydraulic model and the model should be once executed to calculate the 
numerical value of the upper pressure head of Node 30. Table 7.5 presents the value of all parameters 
to calculate the upper and lower bounds of pressure head in Node 30.

The results of possible intervals of pressure head variation based on UA done by ITM are illustrated 
in Table 7.6 and Figure 7.10. As Table 7.6 depicts, ±10% uncertainty in the ATM network parameters 
may differently affect the pressure variability in the network junctions where in Node 20 a maximum 
variability of ±1.76% is expected for pressure variation while as the most affected junction, Node 170 
may experience pressure head uncertainty from −11.82 to 8.09%.

Although it was reasonably expected that due to uncertainty of the network parameters nodes that 
are closer to the pumping station would experience relatively less uncertainty than distant nodes in 
terms of pressure head variation, the UA quantified this variability for different network nodes, which 
could be a valuable criterion to identify the network less reliable regions for further mitigation and 
rehabilitation measures.

7.8 CONCLUSION

In this chapter, we reviewed the basic concepts of calibration and parameter uncertainty analysis 
in WDNs in simple procedures and methods. Parameter calibration is one of the most important 
prerequisites for using hydraulic models of WDNs for design, development and rehabilitation 
purposes. Typically, WDN’s parameters are exposed to different types of inherent uncertainty, 
measurement uncertainty, and so on. Uncertainty in network modeling parameters causes variability 
in network responses. Quantifying uncertain network responses provides a suitable measure for 
planners and operators to understand the network weaknesses. Large uncertainties may result in 
violation of standards and minimum acceptable performance which may lead to system failure in 
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terms of reliability indicators. In this regard, planners typically tend to know to what extent the 
system responses are exposed to uncertainties associated with information inputs the system models, 
so that they can more realistically promote a desirable level of system response.

What we expected in this chapter was to state the concept of uncertainty and simple methods to 
quantify it in applications. However, in higher level applications, indicators of uncertain network 
performance can be defined to handle the concepts of uncertainty in design procedures. In many 
cases, prudent decision makers are willing to make a more costly decision but have greater confidence 
that their design is more robust against uncertainties. Therefore, in recent years, development of 
multi-objective models to find solutions that, in addition to minimizing economic costs, have a higher 
resistance to network uncertainties, has been the interest of many designers and decision makers.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Review and analyze the pump characteristics and performance.
(2) Understand how to calculate flow-head characteristic curve of a pump at a new rotational speed.
(3) Know the basics for pump operation control.
(4) Understand the pump scheduling problem and how to use the simulation-optimization 

approach to solve it in constant and variable speed modes.
(5) Use necessary computer tools and applications to run and solve a pump scheduling problem.
(6) Understand how optimization tools can help to solve the conflict resolution of a simple Energy 

and Water Quality Management Systems.

8.1 INTRODUCTION

Pumps are the beating hearts of many civil and industrial projects around the world. Without pumps, 
proper performance of many civil infrastructures such as irrigation and drainage networks, water and 
wastewater treatment plants, sewer and storm water collection systems, urban and industrials water/
oil/gas supply systems, and so on, could not be conceivable. Approximately 80% of municipal water 
processing and distribution costs relates to electrical energy, and up to 85% of this belongs to energy 
consumed by pumps (Güngör-Demirci et al., 2020).

The structural, geometric and mechanical features of pumps are designed considering a variety of 
hydraulic performance expectations in operation. In addition to pump characteristics, true hydraulic 
performance of a pump in real-time operation also depends on features of the system within which the 
pump works. Although in the design stage of a pumping station taking variable demands would result 
in a more flexible system with more realistic insight into operation conditions, designers classically 
consider the most pessimistic data to size system’s components. Operators, however, are generally 
more interested in managing the systems in a way that they have an optimum operational condition to 
achieve the best system performance (e.g. minimum energy consumption, improving water quality etc.).

Chapter 8

Optimal pump operation
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Optimum operation could have different meanings based on objectives defined; for an aged water 
distribution system (WDS) suffering from a high rate of leakage, optimum system operation may 
be defined as maintaining pressure of the network as low as possible to minimize water loss, while 
meeting the minimum pressure requirements (Araujo et  al., 2006; Fontana et  al., 2018; García-
Ávila et al., 2019). For a network having a substantially high rate energy tariff over the peak water 
demand hours of the day, optimum system operation relates to setting the pumps schedule to have the 
minimum energy cost (Cimorelli et al., 2020; Costa et al., 2016; Martıinez et al., 2007). Moreover, a 
multi-purpose approach may consider the optimum operation of network to be finding the trade-off 
among different conflicting objectives such as energy consumption and/or energy cost, and water 
quality measure (Cherchi et al., 2015; Güngör-Demirci et al., 2020).

Today, challenges with key resources including water shortage, limitations on energy and finance, 
environmental pollutions and other aspects of sustainable development have compelled decision-
makers to inevitably adopt an integrated approach to make better informed decisions in practice. 
Hence, water companies should invest in novel multi-objective approaches such as Energy and Water 
Quality Management Systems (EWQMS) to better understand and efficiently resolve the problems, 
covering different concerns associated with available resources. For pumping systems operation, 
thinking in such an integrated way within the water-energy-environment nexus will provide and 
guarantee more environmentally friendly development projects with a desirable level of service to 
customers.

This chapter presents the framework and requirements for a water distribution network (WDN) 
modeling with optimal pump operations/scheduling. At the end of the chapter, an example of EWQMS 
is also provided, assuming that the reader has a sufficient background on water quality modeling in 
distribution pipe networks.

8.2 A BRIEF REVIEW ON PUMP PERFORMANCE

Centrifugal pumps are the most widely used pumps for fluid transmission and distribution in many 
industries, especially in WDSs (Van Zyl, 2014). Based on the direction of inflow to and outflow from 
the impeller, centrifugal pumps are divided into radial, axial and mixed flow types (Sanks et al., 1998) 
among which, in drinking water supply, mainly radial flow pumps are used. The axial and mixed flow 
types are more common in wastewater and storm-water collection systems. Typically, radial flow 
impellers are more suitable for relatively low discharge and high-pressure head, whereas axial flow 
impellers are applied for high flow rate and low pressure head (Mackay, 2004).

For a given rotational speed N, the performance of a centrifugal pump is defined by four 
Characteristic Curves which relate the head (H) produced and the power (P) attracted by pump, 
expected pump efficiency (η) and the required Net Positive Suction Head NPSHr, all as functions of 
the flow moving through the pump. In Figure 8.1, typical characteristic curves for a centrifugal pump 
with radial flow is depicted. Due to widespread use of radial flow centrifugal pumps in urban water 
systems, throughout this chapter, radial flow centrifugal pump is the only intended case herein, and 
is generally called pump, for brevity.

8.2.1 Head-flow characteristics
The Head − Flow or H − Q characteristic curve is a function indicating the energy added by pump to 
the fluid, called Total Dynamic Head − TDH (approximately equals the differential pressure between 
the discharge and suction of the pump), against the flow. According to Figure 8.1a, for a centrifugal 
pump, H − Q is a descending curve starting at the far left with Q = 0 and H = Hsh where Hsh is the shut-
off head, and ending at the far right with maximum Q with the lowest H, called run-out point (not 
shown). Note that as the flow rate becomes larger, the head values (i.e. the elevation that pump can 
supply) becomes smaller.
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8.2.2 Power-flow characteristics
The Power − Flow or P − Q curve, for radial centrifugal pumps, is an ascending curve. The power in 
this curve refers to Brake Horse Power (PBH) which means the power delivered by the electric motor 
to the pump or the power attracted by the pump. Since a part of PBH is dissipated in the pump, the 
net power given to the water, called Water Horse Power PWH, is less than PBH. The relationships to 
calculate the power are as follows:

P QHWH = γ  (8.1)

P
P

BH
WH

=
η  

(8.2)

where γ and η, respectively indicate the fluid specific gravity [N/m3] and the pump efficiency.

8.2.3 Efficiency-flow characteristics
According to Equation (8.2), pump efficiency η, is defined as the ratio of water horse power to brake 
horse power. As shown in Figure 8.1a, the variation of η against Q follows a parabolic trend. Such 
variation may be also presented through ISO-Efficiency lines plotted on the H − Q curve. The point 
corresponding to the ηmax (see Figure 8.1a) on the H − Q curve is called Best Efficiency Point (BEP) 
where the pumping flow is QBEP. Pump operation on BEP, in addition to optimum energy consumed 

Figure 8.1 Characteristic curves for a general centrifugal pump (a) and its performance against the system curve (b).
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by the pump, would guarantee the minimum wear and failure of the pump mechanical components 
(Sanks et al., 1998).

8.2.4 NPSH-flow characteristics
Due to the high velocity of fluid particles inside the pump impeller, the impeller surface is prone to 
cavitation where relatively low pressures (below the vapor pressure) create cavitation bubbles and 
then high pressure in the immediate area on impeller surface force the bubbles to collapse. Such 
implosion can form very strong micro-jets which easily induce hundreds of psi on the impeller surface 
that make cavities on it. The required Net Positive Suction Head (NPSHr) is a measure which indicates 
that for the flow entering the impeller with known discharge Q at temperature T, how much minimum 
pressure head (with respect to the vapor pressure Pv/γ) is needed to prevent the cavitation. In fact, to 
avoid cavitation we need the available Net Positive Suction Head (NPSHa) to be equal to or greater 
than NPSHr. In most centrifugal pumps as the discharge increases, the required net positive suction 
head (NPSHr) goes up with increasing slope of variation for higher discharges (see Figure 8.1a). In 
civil engineering applications, the risk of cavitation is higher for pumps installed above water level.

8.2.5 System’s curve and pump duty-point
For a known pipeline system, the System Curve or HR − Q indicates the static resistance or lift (the 
difference between energy level at both end boundaries) plus the dynamic resistance (energy losses) 
mathematically expressed as a function of discharge passing through the pipe system as follows:

H H H H H f QR R= + ⇒ = + ( )st dy st  (8.3)

where HR is the system total resistance, Hst is the static lift (static total head) and f(Q) represents the 
function of friction and minor losses as a variable dependent on discharge Q. Taking the static lift 
fixed and the technical-operational features of the piping system (e.g. pipe diameters and status, valve 
openings and fittings status etc.) remain unchanged, HR only depends on Q. Hence, similar to the 
pump H − Q curve, HR − Q could be plotted on pressure-head/loss versus discharge coordinate plane, 
covering a wide range of flow rate and total resistance HR. Assuming the Hazen–William’s formula 
for calculating the friction losses, for a known state S1 of the piping system, the function f(Q) may be 
written as (see Figure 8.1b):

f Q Q Q1 1
1.852

1
2( )= +α β
 (8.4)

where α1 is the resistance factor for friction loss which depends on the length, diameter and Hazen–
William’s coefficient of the pipe, and β1 is the minor losses factor related to valves and fittings available 
on the pipeline, all correspond to the state S1 of the piping system.

In addition to pump characteristics, the performance of a pump relies upon the system in which the 
pump is installed. To put it simply, while a pump with H − Q curve and a pipe system having HR − Q 
resistance curve are connected within a pipe-pump system, according to the principle of continuity, 
the same discharge must flow through both segments. Additionally, the head produced by pump must 
compensate for the head-loss caused by system resistance (i.e. HR = H). Hence, to determine the true 
work point of the pump and the system, called Duty Point (DP), it is required to intersect the H − Q 
and HR = H curves (see Figure 8.1b). The optimal pump operation, in terms of both energy efficiency 
and maintenance cost, is achieved when DP overlies BEP.

As the resistance of a pipe system generally deteriorates (increases) by aging, it could be imaginable 
that another state S2 of the system in which the resistance factors for friction and minor losses have 
increased with α2 and β2 making the dynamic resistance as f2(Q) = α2Q

1.852 + β2Q
2. This would 

introduce a steeper slope to the system curve causing the duty point to move to a new coordinate with 
a lower discharge and a higher head-loss. Using a throttling control valve, such a change in duty point 
may purposely be done by the operator to control the system flow and/or pressure on a desired point.
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8.2.6 Affinity laws for rotational speed
Based on the Affinity Laws for rotational speed, for a centrifugal pump having speed N1, there are the 
following relationships between new speed N and the pump characteristics:
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where Q1, H1 and (PBH)1 are respectively the discharge, head, and brake horse power of the pump 
corresponding to the rotational speed N1(i.e. full speed), and Q, H and (PBH) are the same parameters 
at the new rotational speed N.

According to Equations (8.5) and (8.6), for a known (Q1, H1) on the full speed H − Q curve, the locus 
of discharge versus head for different reduced speeds follows a parabola function passing through the 
origin. If (N ≥ 0.6N1), the error of Affinity Laws equations above, would rarely exceed 2 or 3% (Sanks 
et al., 1998). Hence, in practical application, changes in pump efficiency along the parabola (expressed 
by Equations (8.5) and (8.6)) could be negligible. It should be noted that the Affinity equations are 
used to produce the H − Q curves for different speed. However, the pump duty point follows the HR − Q 
curve which, compared to the parabola achieved by the Affinity Laws, has different slope and crossing 
point on the HR-axis. This tip must be considered in determining the true efficiency of pump duty point 
for the reduced speeds which is critical in variable speed pump (VSP) operation (see Example 8.1).

8.2.6.1 Example 8.1
For a centrifugal pump the H − Q and η − Q characteristics at full rotational speed N1 = 1500 rpm are 
available according to columns C1–C3 in Table 8.1. The pump feeds a pipeline having a system curve 

as HR Qm[ ]
−







= + ×
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3m hr/ , so that the duty point, based on Figure 8.2, is DP(775.8, 67.4).

(A) For the case in which the pump speed would be reduced from N = N1 to N = 0.7 N1, determine 
the H − Q characteristic curves. (B) Find the duty point of the pump for N = 0.8 N1 and (C) Determine 
the desired speed for the system operating condition at which Q = 653[m3/hr] and H = 55.4 m.

Table 8.1 H − Q data of the pump for full and reduced speed, and the corresponding points for the system resistance 
for Example 8.1 – Q and H are respectively in m3/hr and m.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

N = N1 = 1500 rpm N = 0.95N1 N = 0.9N1 N = 0.85N1 N = 0.8N1 N = 0.75N1 N = 0.7N1 HR-Q

Q H η% Q H Q H Q H Q H Q H Q H Q HR

1000 51 77 950 46.0 900 41.3 850 36.8 800 32.6 750 28.7 700 25.0 1000 95.5

800 67 82 760 60.5 720 54.3 680 48.4 640 42.9 600 37.7 560 32.8 800 70.1

600 79.5 77 570 71.7 540 64.4 510 57.4 480 50.9 450 44.7 420 39.0 600 50.4

400 86 70 380 77.6 360 69.7 340 62.1 320 55.0 300 48.4 280 42.1 400 36.3

200 88.5 60 190 79.9 180 71.7 170 63.9 160 56.6 150 49.8 140 43.4 200 27.8

0 90 - 0 81.2 0 72.9 0 65.0 0 57.6 0 50.6 0 44.1 0 25.0
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8.2.6.1.1 Solution A
For the pump discharges Q, and head H, (in column C1 and C2 of Table 8.1) using Equations (8.5) and 
(8.6), the H − Q characteristic points are correspondingly obtained for a number of reduced speeds 
including: N = 0.95N1, 0.9N1, 0.85N1, 0.8N1, 0.75N1, 0.7N1; the results are listed in columns C4–C15 in 
Table 8.1. For instance, where N = 0.7N1, Q1 = 1000[m3/hr] and H1 = 51 [m] the calculation will be as 
follows:
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The overall outcome was plotted on H/HR − Q coordinate plane in Figure 8.2 by joining the calculated 
points for each reduced speed separately. Consider that, in Table 8.1, for all points represented along 
each row from columns C4–C15 (i.e. the parabola passing through the origin) the pump efficiency 
remains fixed (according to Column C3).

8.2.6.1.2 Solution: B
The intersection point of H − Q characteristic curve for N = 0.80N1 and the system curve in Figure 8.2 
has been labeled as ‘(1)’ whose coordinates are extracted by scaling as:

Q H=
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Figure 8.2 System curve and H − Q characteristics curve of the pump at full and reduced speed for Example 8.1.
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8.2.6.1.3 Solution: C
The new duty point (653, 55.4) labeled as ‘(2)’ in Figure 8.2 has a corresponding unknown ISO-
efficiency point on H − Q curve for the full speed. To find the true coordinates of this point, simply 
assuming a generic linear function (H1 = b − c × Q1) for the full speed H − Q curve between (800,67) 
and (600, 79.5), solving a system of equation yields:
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8.3 MAIN CONSIDERATIONS FOR OPTIMAL PUMP OPERATION
To ensure the reliable pump operation in real conditions, a number of technical and operational 
considerations need to be taken into account. In this regard, the main considerations for pump 
scheduling are discussed below.

8.3.1 BEP and minimum efficiency
As long as the pump duty point exactly matches the BEP, the system works in the optimum operation 
condition in terms of lower energy consumption and maintenance cost. However, as a result of time-
varying network demands, it is rarely possible to have a condition in which duty point exactly lies 
on BEP. Hence, the closer the duty point is to BEP, the better the operating conditions yields. To 
incorporate such consideration in practice, pump operation could be scheduled so that the pump 
efficiency would be limited to a minimum acceptable value ηmin.

8.3.2 Pump discharge range
Both the minimum and maximum allowable discharge play a major role in long term successful 
mechanical performance of a pump, especially in issues related to different types of cavitation 
phenomenon (Brennen, 1994). Therefore, pump discharge preferably does not go beyond an upper 
and lower limit to provide a safe operating condition.

8.3.3 Pump speed
For VSP operation, it is highly recommended that the pump rotational speed should not exceed beyond 
a minimum and maximum threshold. This is mainly associated with cavitation, centrifugal stresses at 
the impeller, and issues linked to mechanical seal and bearing.

8.3.4 Pump switches and daily working hours
Increasing the cumulative working hours for a pump causes more wear and tear over time. While 
degradation of mechanical parts, especially the impeller, gradually increases, the H–Q characteristic 
curve necessarily changes. The more working hours a pump has, the more degradation will occur, 
leading to less head produced by pump over time. These differences in the H − Q curve of parallel 
pumps operating simultaneously results in poor performance at system pressures above the shut-off 
head of the weaker pump. From this point of view, it is necessary to schedule the system operation 
in such a way that there would be no significant difference between the cumulative working hours of 
identical parallel pumps in the long term. Parallel pumps also should have approximately the same 
number of switches for a specific duration.
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8.4 PUMP OPERATION CONTROL

From both mechanical and hydraulic points of view, pump operation should be controlled in such 
a way that the duty point is as close to the BEP as possible. On the other hand, pump stations are 
generally designed and sized for the most pessimistic state regarding flow/head required by the system. 
Nonetheless, the time-varying nature of the system parameters, especially nodal demands, causes the 
pumps’ duty points to regularly change during operation time. Hence, in such periodically changing 
conditions, pump stations need a strategy to control the duty point to increase pumping efficiency. To 
this end, there are mainly two approaches:

8.4.1 Change in system curve
In this approach, assuming the pump H–Q curve is fixed, by changing the status of the station or 
network elements (e.g. throttling valves, isolation valves, a by-pass line, etc.) the slope of system 
curve would intentionally alter in order to move the duty-point to a desired position (i.e. BEP). This 
approach mainly forces the system to have unnecessary energy dissipation in terms of excess pumping 
head and/or discharge. Today’s strict criteria for reducing energy loss and carbon emission have led to 
this method being gradually abandoned over time.

8.4.2 Change in characteristic curve
Assuming no change in the system curve, this approach requires a change in the pump station 
characteristic curve. Two more popular approaches can be considered for this purpose. First, by 
keeping the rotational speed fixed at the full speed, the number of parallel working pumps changes in 
different time steps, and the pump station characteristic curve is regulated by On/Off pump switches 
based on the network requirements. This approach is called constant speed pumping (CSP). One 
of the main justifications for application of a parallel pumping system is to create a flexibility in 
operation to meet the time-varying network requirements in terms of flow and pressure. The second 
approach (VSP) is to let the pump rotational speed (and pump station characteristic curve as a result) 
vary at each time step, to adapt the desired speed for optimal pump operation. The VSP approach can 
save more energy as it has more flexibility than the CSP approach to match the station characteristic 
curve with the unchanged system curve. Hence, the problem of optimal pump operation, mostly called 
Pump Scheduling, is to find either the optimum number of On-switched pumps in the CSP approach, 
or the optimum relative rotational speed over different time steps, in the VSP approach. In other 
words, in terms of hydraulic modeling, pump scheduling is defined as determining the optimum 
pattern for each pump. In what follows, the simulation-optimization approach to solve the optimal 
pump scheduling problem is described.

8.5 OPTIMAL PUMP SCHEDULING

8.5.1 Simulation-optimization approach
Figure 8.3 depicts a general simulation-optimization framework to solve the implicit problems relevant 
to the design/operation of WDNs. The framework consists of two main cores: (1) a Simulation Model – 
EPANET (Rossman, 2000) as an example, and (2) an Optimization Engine (Genetic Algorithm or GA 
here) both receive ‘Inputs’ (the input arrows in Figure 8.3). The type of inputs to run the simulation 
model have known-values or predefined by the user, named out-of-control inputs (Figure 8.3). A part 
of these inputs belongs to known or calibrated data of the network (e.g. topology and configuration, 
system parameters, etc.) labeled as Inp1 in Figure 8.3, which is directly entered into the simulation 
model. Some other out-of-control inputs (Inp2) associated with the ranges of variables and acceptable 
performance expected from the network, are introduced to the optimization engine to evaluate the 
quality of solutions.



195Optimal pump operation

Another type of inputs (Inp3) called ‘under control inputs’ include unknowns referring to the 
problem’s independent variables or decision variables (called genes in GA terminology). The GA 
has permission to change the value of decision variables during the optimization process. Decision 
variables are generally related to spatial and/or technical and/or operational features of the system 
elements (e.g. pipes, tanks, valves, pumping and chlorine stations, etc.). As previously stated, in pump 
scheduling problems, these unknowns are pump operations/patterns. An initialized set of decision 
variables creates a decision vector called a ‘solution’ or an ‘alternative’ or a ‘chromosome’ (in GA 
terminology). Subsequently, a series of alternatives or solutions forms the population. The aim of 
applying a simulation-optimization model is to find the optimum solution through a systematic search 
done by the optimization engine over successive generation of the GA.

Taking a number of tuning input parameters (Inp4) the GA first randomly initializes the decision 
variables of each individual to form the first generation of design/operation alternatives (called initial 
population). Then the alternatives are sent to the simulation model for evaluation. After solving the 
governing equations through the simulation model, dependent variables or the system responses (e.g. 
nodal pressures, power consumption, energy cost, water quality indices, etc.) return to the GA. Based 

Figure 8.3 The conceptual framework of simulation-optimization model to solve the design/operation problems.
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on the feedback from evaluation of the solutions, and the comparison with constraints and acceptable 
performance (Inp2), the GA calculates the objective function (or fitness function) for each solution. 
Following this, by ranking the individuals and imposing the optimization operators, GA reproduces 
the next generation of individuals, and retransmits them to the EPANET. Then the same story of the 
previous generation is repeated for the new generation and the successive procedure will continue 
until the convergence criteria are satisfied and the optimal solution is achieved.

During the simulation-optimization process, there are a huge number of sending solutions to and 
receiving responses from the simulation model (EPANET), causing the process to be impossible to 
handle manually. Therefore, any simulation-optimization model requires a dynamic link to make the 
interaction of the simulation and optimization model automatic (see Figure 8.3). A widely popular 
dynamic link for WDN problems is the EPANET-MATLAB Toolkit (EMT) which is applied to solve 
the pump scheduling examples in this chapter later. Full details and examples about how EMT works 
can be found in Eliades et al. (2016). Additionally, a general overview of EMT is given in Chapter 7, 
section 7.4.2.

8.5.2 Optimization objectives
Optimization of pump scheduling could be considered based on various goals using single or multi-
objective techniques. Both approaches are capable of taking performance constraints into account to 
achieve a minimum acceptable utility level of the network. While the final output of a single objective 
model is an optimum solution meeting all performance and non-performance constraints, the multi-
objective approach provides a set of optimum solutions non-dominated (called Pareto optimal front) 
on the conflicting objectives coordinates plane. Moreover, it is possible to include a specific criterion 
as an objective in conflict with another objective (i.e. the multi-objective approach) or in the form of 
a constraint defined in a single-objective problem. For instance, to consider a water quality measure 
in scheduling for energy cost minimization, one could define the water quality measure as the second 
objective in a bi-objective programming, or as a constraint in a single objective problem to establish 
a minimum acceptable quality level. For the sake of simplicity, this chapter focuses on the second 
approach (i.e. constraint included in a single-objective problem).

In addition to pumping energy cost, a variety of criteria could also be considered as the objective of 
pump scheduling optimization. The most common criteria include pressure control and management 
(e.g. demand management, leakage and water loss management, crisis management), energy 
consumption management to minimize GHG emission, water quality management, and so on. Among 
the aforementioned measures, energy cost is frequently more attractive to water companies due to 
direct financial benefits resulting from less energy consumption over on-peak power demand time. In 
this chapter, energy cost is taken as the objective of pump scheduling.

The possibility to store water in storage tanks provides an ability to manage the water supply-
demand in order to minimize energy cost during the day, such that the system averagely pumps 
water at a higher and lower flow rate over off-peak and on-peak electricity tariff pattern time steps, 
respectively. This basically means that when electricity cost is cheap (typically overnight), the pump 
is running and the pump is usually off when the electricity cost is higher.

8.5.3 Pump scheduling approaches: CSP vs. VSP
Upon the type of facilities and speed control systems available, pump scheduling could be carried 
out in different schemes. If pumps have no control system to regulate the pump rotational speed, the 
operation status of the pth pump in each time step t, Np,t, would be either 0 (#Off) or 1 (#On). In On/Off 
pump switching (i.e. CSP approach), the figures 0 and 1 respectively indicate the relative rotational 
speed of the pump with regard to pump rated speed (or full speed). Variable speed pumps have a 
control system to regulate the rotational speed, Np,t not only on 0 or 1, but also on any continuous 
figure over the interval [0, 1]. Thanks to modern technologies making it possible to efficiently utilize 
VSP (e.g. variable frequency drives) it is attainable to cover a wide range of changing flow-head 
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conditions required by the system. Nonetheless, due to some mechanical issues, inaccuracy related 
to affinity laws and the fact that the efficiency of VFDs notably decreases below N = 0.6N1 the real 
working speed of VSPs is generally limited (Sanks et al., 1998).

More complex cases of mixed CSP-VSP in a pumping station can also be considered by assuming 
a limited number of pumps equipped with VFDs, which may require a different representation of 
the problem in terms of programming, which will not be discussed here. It is also assumed here 
that the pumps of the pumping station are quite similar in terms of performance curves. However, 
in real operating conditions, for pumps with different lifespans, it is also possible to imagine cases 
in which, despite the same model of pumps, the performance curves would be different due to 
different depreciation of pumps over the past time, which needs the programming to be more 
complex and this is not going to be discussed here. One approach to model such a system is to 
simply assign a distinct decision variable to each different pump to find the best status of the pump 
over each time step.

The CSP approach has been traditionally implemented for many years in urban water supply pump 
stations having 24-hour varying demand. Notwithstanding the emergence of variable frequency drives 
technology with its many advantages, CSP is still being paid attention to in many cases, especially 
because of relatively high capital investment and the need for specialized training of operators.

In the following, the two approaches of CSP and VSP are described by two examples.

8.5.4 Example 8.2 – CSP approach
The Any-Town Modified (ATM) benchmark network has been chosen for implementing different 
pump scheduling approaches in this chapter. The data of ATM network was presented in Example 7.1 
in Chapter 7. However, for the sake of simplicity, all roughness of pipes is taken as 120 in this example.

During a 24-hour period of time, the energy cost is generally calculated in three phases, including 
on-peak, mid and off-peak load demand, by multiplying a base energy price of 1 $/Kw-hr and energy 
tariff multipliers illustrated in Table 7.1.

8.5.4.1 Objective function
In the CSP approach, the objective function to pump scheduling regarding energy cost could be 
defined as follows (Amirsardari et al., 2021; Güngör-Demirci et al., 2020):
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where γ is specific gravity of water (N/m3), TEC is total energy cost ($) during time period T for NPu 
pumps. Qp,t, Hp,t and ηp,t are respectively the flow (m3/s), total dynamic head (m) and efficiency of 
the pth pump at tth time step having Δtt (hr) time interval along which the electricity tariff is ETt[$/
kW-hr]. xp,t is a binary variable representing the state of the pump p at time step t so that it equals 
1(On) or 0(Off). xp,t is inserted as the multiplier of pump pattern in EPANET.

8.5.4.2 Decision variables and decision vector
In this example, based on the problem statement and the objective function defined, the decision 
variables for the CSP approach are the operating status of each pump p at each time step t, 
throughout the simulation period T. Given that system time-varying parameters (consumptions for 
instance) are periodically repeated in a 24-hour cycle, we consider the energy cost minimization 
within a total simulation period of T = 24 hours. Therefore, the generic form of the decision vector 
expressing the operating status of the three pumps consists of a binary string X of 24 × 3 digits as 
shown in Figure 8.4.
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8.5.4.3 Constraints
Constraints related to mass conservation in junctions and energy balance in closed loops are 
automatically handled through the simulation model, here EPANET. There are also a number of 
constraints for energy cost optimization in CSP scheduling problem including:

(i) The pressure constraint for each critical node j, which is mathematically stated as follows:

H H tj t j t, ,
min , , ,≥ = …for 1 2 24  (8.9)

 where Hj,t and Hj t,
min  are respectively the pressure head and the minimum pressure head required 

for the critical node j at time step t. In the ATM example the minimum pressure head required 
for critical nodes 55, 90 and 170 is respectively 42, 51 and 30 m. The total violation regarding 
the above set of constraints could be written as:
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 where NCN = 3 is the number of critical nodes.
(ii) The minimum and maximum storage tank water level constraints for each tank k, which is 

mathematically represented as:

WL WL WL tk k t k t
min

, ,
max , , , ,≤ ≤ = …for 1 2 3 24  (8.11)

 where WLk
min  and WLk

max  are respectively the allowable lowest and highest water levels of tank 
k, and WLk,t is the water level of tank k at time step t. In the ATM benchmark network, 
WLk

min  and WLk
max  respectively equal 66.53 and 71.53 m for all storage tanks. The total violation 

regarding the above set of constraints could be written as:
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 where NT = 3 is the number of storage tanks in the network.
(iii) The periodic repetition of initial water level in each tank k, which is mathematically represented 

as:

WL WLk T k, ,≥ 0 (8.13)

  This set of constraints guarantees that the system will not encounter water deficit in terms of 
volume, and has sufficient energy to periodically repeat its hydraulic behavior during the next 

Figure 8.4 The generic form of decision vector representation in ATM example for the CSP approach.
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24-hour cycles. In the ATM example, WLk,0 is 66.93 m for all storage tanks, and the violation 
regarding the above set of constraints is calculated as:

V WL WL
k

NT

k k T3

1

00= −( )
=

∑max , , ,

 

(8.14)

(iv) Violation related to the maximum number of switches (NSWmax) for each pump p stated as 
follows:

NSW NSW pp ≤ =max ,1 2 3and  (8.15)

 where NSWp is the total number of pump p switches over the period T. This set of constraints 
avoids a high number of pump switches to provide better maintenance conditions in terms of 
mechanical issues. NSWmax for a 24-hour cycle is considered to be 3 in the ATM example. To 
calculate NSWp the Heaviside Function is implemented as follows:

NSW x x Heaviside x x pp

t

p t p t p t p t= −( )× −( )
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24
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 The output of Heaviside Function is 1 for positive arguments and 0 for negative arguments.

The violation of this set of constraints is now written as:

V NSW NSW
p
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p4 0
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8.5.4.4 Constraint handling
Like many metaheuristic algorithms, GAs are unconstrained optimization engines, meaning 
that constraints cannot directly be imposed on the GA, and the violation of constraints should be 
indirectly introduced to the algorithm. In this regard, penalty function is a popular method to handle 
the constraints in GA. For this purpose, by scaling all types of violation through penalty factors, it is 
possible to sum different violations belonging to each constraint into a single positive-value violation, 
and to add it to the objective function which is going to be minimized. Hence, the objective function 
is then rewritten as follows:

Min
p
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t
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where PF1, PF2, PF3 and PF4 are scaling penalty factors related to violations, whose values should 
be determined by tuning. For ATM example, PF1, PF2, PF3 and PF4 were set at 500, 500, 500 and 
105, respectively (Cimorelli et  al., 2020). Consider that in optimization problems, each constraint 
has a different degree of importance to the fitness function variation, indicating why the penalty 
factors should be different. To put it more clearly, different penalty factors proportion the effects of 
different constraints on the objective function so that by changing the decision variables, appropriate 
sensitivity causes the feasible search space to be more efficiently explored.

8.5.4.5 GA settings and execution
In this chapter, MATLAB version 2020a is used to perform the GA. Like many metaheuristic optimization 
algorithms, the GA also has a number of tuning parameters which need to be specified before the 
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main execution of the algorithm. Parameters are generally adjusted either by a calibration process or 
by setting the values obtained by experience in similar projects. The parameters of GA in this example 
were considered according to Cimorelli et al. (2020) including: crossover probability pc = 0.9, mutation 
probability pm = 0.025, the population size of 200 and the maximum number of generations of 1000. 
Additionally, the values of the GA parameters not mentioned above are set to be equal to the default 
value considered in the MATLAB optimization toolbox. To reduce the effect of randomness of the GA 
operators on the optimal solution, the algorithm is run ten times and the best solution is reported.

It should be noted that in the Optimtool panel in MATLAB, the Population Type under the 
Options → Population must be set to Bit string to consider the decision variables as binary digits. A 
brief overview of Optimtool panel in MATLAB is explained in Chapter 7.

8.5.4.6 Results
Given the assumptions stated above, the best solution details for optimal pump operation to minimize 
the energy cost in CSP approach is reported in Table 8.2. According to the table, total energy cost 
for the best solution reaches to 3578.16 $ over a 24-hour period during which Pumps 1, 2 and 3 
respectively experience 2, 3 and 2 starts, meaning that the set of constraints (iv) are completely 
satisfied. In addition, as seen in Figure 8.5, the best solution could provide adequate pressure head 
required for the nodes 55, 90 and 170 according to the set of constraints (i). Moreover, the limitations 
imposed by constraints (ii) and (iii) to control the water level at tanks are also met as depicted in 
Figure 8.6.

Figure 8.5 Pressure variation of the critical nodes for the best solution in ATM example for the CSP approach.

Table 8.2 The optimum pump operation schedule for CSP approach in ATM example.

Pump 
ID

Time steps TU 
(hr)

NS 
Wp

TEC ($)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 18 2 3578.74

2 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 7 3

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2 2

TU: total utilization; TEC: total energy cost; NSW: number of switches.
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Given the logic behind the role of tanks in regulating water supply and demand, a closer simultaneous 
look at the pump optimum schedule (Table 8.2), the energy price tariff (Table 7.1) and the water level 
in tanks (Figure 8.6) reveals that the GA has tried to keep more pumps off during peak tariff hours 
and let the system use more water from storage in tanks. This is more evident in time steps 9, 10, 19, 
20 and 21, while all three pumps are at OFF status, and the tanks release water. Obviously, this trend 
cannot be expected for all time steps due to the limited storage capacity available within the tanks.

8.5.4.7 Challenges and opportunities
In the above example, pump operation optimization was considered by using the pump OFF/ON 
status as the independent decision variables. Obviously, if operation optimization could have been 
combined with the network design phase, due to the possibility of having more numbers of independent 
variables (e.g. tank location and specifications, pipe and pump sizing, etc.) the ability of the integrated 
simulation-optimization model in reducing the energy cost will increase significantly. Clearly, this will 
require more detail and information to define the objective function in a different form in which other 
types of costs, including the capital investment and so on, are taken into account at the same time.

In terms of asset management and reduction of maintenance cost, operators would rather have a 
system of parallel pumps with approximately the same utilization time. Although this point has not 
been observed for the pump scheduling in Table 8.2, due to the same characteristic performance of the 
pumps, in the operation phase, the system can be planned in such a way that the role of each pump as 
Pumps 1, 2 and 3 in a periodically working program (e.g. weekly or monthly-basis) would change to 
balance the utilization of pumps.

As the demand pattern may vary from season to season, optimal pump operation may need updating. 
Additionally, due to the changes in the behavior of customers during the days of the week, especially 
on the weekends, it is more accurate to schedule the operation of the pumps on a weekly-basis instead 
of daily-basis as presented here. For the current example, in the weekly-basis scheduling each pump 
requires (24 × 7 = 168) digits (variables) to represent the pump pattern over the entire week, meaning 
that the problem totally needs (168 × 3 = 504) variables. Such a representation turns the case into 
a relatively higher-dimensional problem which increases the burden of time to run the simulation 
model. In such cases researchers highly tend to exploit dimension-reduction techniques to lessen the 

Figure 8.6 Water level variation at tanks for the best solution in ATM example for the CSP approach.
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simulation model run time. For instance, it is possible to formulate the weekly-basis scheduling of the 
ATM example in such a way that the decision vector has 168 digits, which are quantified by integer 
values of 0, 1, 2 or 3 representing the number of active pumps along each time step. In fact, compared 
to the Binary Programing, the aforementioned problem should be solved using an Integer Programing 
method. A generic representation of the decision vector for Integer Programing approach is shown in 
Figure 8.7.

8.5.5 Example 8.3 – VSP approach
In this example, the ATM problem is solved by assuming the variable frequency drives available for all 
three electro-pumps which make the pumps have variable speed over each time step.

8.5.5.1 Objective function
The objective function in VSP is almost similar to that of the CSP approach except that the relative 
rotational speed of the pump p (i.e. xp,t) as the decision variable does not directly appear in the objective 
function but is indirectly concealed in Qp,t and Hp,t, which here are respectively the pump flow and 
TDH in the decreasing relative speed xp,t. The objective function in this approach is stated as:

TEC =
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∑∑
p
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T
p t p t

p t
t t

Q H
t ET

1 1
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η

, ,

,

∆

 

(8.19)

Note that ηp,t should also be calculated for the same parabola function from the affinity laws 
corresponding to the real duty point (see Example 8.1). This has not been included in EPANET, 
making the VSP modeling requires energy consumption calculation separately outside the EPANET 
environment.

8.5.5.2 Decision vector
The decision vector in this approach can be considered similar to the previous example as a string 
with 3 × 24 genes, except that the value of decision variables (xp,t) are real numbers changing between 
0 and 1, which are inserted in pump pattern and translated as pump relative rotational speed during 
each time step. On the other hand, in each time step, active parallel pumps should run at the same 
rotational speed. Hence, if the generic decision vector is defined as a 72-gene chromosome, there 
will be a systematic internal dependency between some genes, which makes the GA efforts not as 
efficient in searching the decision space. To solve this issue, the decision vector is defined as a 24-gene 
chromosome (corresponding to 24 time steps daily) in which genes fill with real numbers in the range 
[0, 1]. In addition, the real encoded value of genes could be simultaneously used for a 2-stage decoding 
procedure to interpret both the number and the speed of active pumps being operated, as described in 
Table 8.3. Simply speaking, based on the interval xp,t falls into, not only the number of active pumps 

Figure 8.7 Generic form of the decision vector representation in Example 8.2 for a weekly-basis scheduling with 
Integer programing.
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is specified but the relative rotation speed (i.e. Np,t) of parallel active pumps is also determined at the 
same time. This tricky point leads to effectively decreasing the complexity of the problem in terms of 
dimensionality.

It should be added that in the Optimtool panel in MATLAB, the Population Type under the 
Options → Population must be set to Double vector and also in Constraints → Bounds the upper and 
lower bounds must be respectively set to zeros(1, 24) and ones(1, 24), in order to consider the decision 
variables as real numbers between 0 and 1.

8.5.5.3 Constraints
In the VSP example, the Affinity Laws (Equations (8.5) and (8.6)) play roles as constraints automatically 
handled through the simulation model. Additionally, all constraints defined in the CSP example are 
applied here except the constraint set (iv), instead of which the following set of constraints is replaced:

(iv) The relative speed for each pump p should not exceed beyond upper and lower bounds 
mathematically stated as follows:

0 7 1 1 2 3 24. , , ,,≤ ≤ = …N tp t  (8.20)

Since the encoded decision variable xp,t is generated as a real value between 0 and 1, by employing 
the instruction stated in Table 8.3, this set of constraints will be self-adaptively imposed on the 
optimization model and no violation is required to handle it.

8.5.5.4 Model execution and results
The GA optimization model was run considering the same tuning parameters as the previous 
example. The result of optimal solution for VSP operation mode in ATM example is shown in Table 
8.4. The optimal pump scheduling in this approach is also depicted in Figure 8.8. While all constraints 
applied in the problem have been satisfied, the VSP operation mode could lower the total energy cost 
to 3252.8 $. In comparison with the CSP operation mode, 9.11% improvement in energy cost has 
been achieved by the using VSP approach. Note that EPANET does not consider variation of pump 
efficiency with pump speed. Therefore, for the best solution found in this example, EPANET calculates 
the energy cost as 3297.82 $ that includes nearly 1.4% error with regard to the true value (i.e. 3252.8 $).

Similar to the results obtained in the previous example, for the VSP operation mode the model has 
also tried to benefit the capacity of storage tanks to balance water supply and demand in such a way that 
for on-peak tariff time, the network is fed from the tanks as much as possible. In contrast, during off-
peak hours, the system is mainly supplied with pumping and the tanks are mainly used to store water.

8.5.5.5 Challenges and opportunities
Notwithstanding all the advantages of the VSP alternative, due to concerns about the cost of purchase 
and installation of variable frequency drives, many operating companies prefer to manage their budget 

Table 8.3 Decoding a decision variable to both the number of active pumps and pump speed for VSP approach in 
Example 8.3.

Decision variables Interval [LB, UB) Relative pump speed

xp,t (encoded in GA) [0, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1] Min. 
acceptable

Max. 
acceptable

Decoded in 
EPANET

Number of 
active pumps

0 1 2 3

Relative pump 
speed (Np,t)

0
=

−

−
− +

b a

UB LB
LB a( ),xp t

a = 0.7 b = 1
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by implementing both approaches of constant and variable speed pumping together. Therefore, there 
are many pumping stations that work with a combination of constant and variable speed pumps. Such 
a system requires a special type of scheduling for optimal pump operation, in which the techniques 
used in the previous two examples should be combined.

Storage tanks play a key role in optimal pump operation when aiming to reduce energy cost. 
According to the principle of mass/flow continuity, without any storage tank, the pumping system 
must supply water equivalent to the demand at each time step. Conversely, when the system has 
storage capacity available, the operation could be planned in such a way that the pumped flow differs 
from the demand so that the total energy cost over the entire time period is reduced. For example, 
during the time steps with high cost of electricity, the station pumps water at a lower rate than the 
demand, whereas the stored water in tanks is responsible for supplying the remaining portion of 
demand. Conversely, during the time steps with low cost of electricity, more water is pumped than 
water demands and surplus was stored in tanks. In other words, to reduce pumping energy cost, the 
active storage capacity of tanks allows the system to manage energy consumption by shifting high rate 
pumping time steps from the on-peak electricity tariff to the off- peak.

From the above-mentioned perspective, although tanks have a positive role in reducing the energy 
cost, they prolong water stagnation in the system (possibly) resulting in poor water quality. Hence, 
the characteristics of the storage tanks in water distribution networks are closely related to variation 
of water quality indices. From this point of view, beside any optimal pump operation scheduling, the 
water quality analysis (see Chapter 6) should be carried out to determine associated challenges. Such 
a challenge is further discussed in the next section.

8.6 VSP SCHEDULING; EWQMS APPROACH

Supplying water with acceptable levels of quantity and quality for customers is an undeniable service 
obligation for water utilities. The term ‘water quantity’ mainly deals with issues related to hydraulic 

Figure 8.8 The optimum pump operation schedule for VSP approach in Example 8.3.
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requirements (pressure and flow) while the term ‘water quality’ is related to the consideration of 
characteristics such as safe Residual Chlorine, Trihalomethanes (THMs), Heavy Metals, Microbial 
Contamination, water age, etc. Meeting such quantitative and qualitative requirements alongside 
energy-related limitations are among the most serious challenges faced by operating companies, so that 
an integrated approach of Energy and Water Quality Management Systems (EWQMS) seems essential.

The EWQMS takes all three aspects of water quantity, water quality and energy into account 
in WDNs planning and management. In EWQMS for WDNs, Energy can be significant from two 
perspectives: The first is the economic aspect in which the minimization of pumping ‘energy cost’ is 
considered (as emphasized in this section, too), and the second is the environmental aspect associated 
with the growing concern over greenhouse gas emissions, in which ‘energy usage’ needs to be 
minimized in planning and operation. Note that minimizing energy costs does not necessarily mean 
minimizing energy usage. If the cost of energy consumption has a single-tariff pattern, then pump 
scheduling to energy cost and energy usage minimization would practically lead to the same solution. 
However, in most cases, due to the multi-tariff pattern for energy costs, pump scheduling with the two 
above different approaches results in different solutions. Nonetheless, in the present section we have 
considered the aspect of the energy cost in EWQMS.

As already discussed in the Section 8.4, in pump scheduling with energy cost minimization as 
the sole optimization objective, storage tanks play an active role in balancing fluctuations in water 
supplied (by the pumping station) and water consumed (by customers) over a 24-hour extended period. 
Storage tanks, on the other hand, may possibly cause poor water quality due to the longer residence 
time of water within the system (called Water Age) before delivery to the customers. The degree of 
water quality deterioration (i.e. increasing in water age) can depend on different factors such as the 
characteristics of tanks, the spatiotemporal pattern of demand distribution in the system, the pipe 
network details, pump scheduling plan, tank flushing strategies, and so on.

In the last part of this chapter, we are going to simply bring up the idea of EWQMS in variable pump 
scheduling problems through the following examples in which the planning simultaneously takes both 
‘energy costs’ and ‘water quality’ criteria in the planning. Moreover, we have tried to simply approach 
the concept of multi-objective optimization application in pump scheduling, though we are not going 
to review every detail of a multi-objective approach here. Rather, we express the general concept of 
this method in relation to Example 8.5 and leave the study of the details of the method to the reader.

8.6.1 EWQMS for ATM network – A single objective optimization approach
In Example 8.3, we optimized the pump scheduling problem of the ATM network for minimum energy 
cost (the optimum solution hereinafter is called S1 for the sake of brevity). In Example 8.4A, we will 
assess the status of the water age over the whole network (by a criterion defined later) for the solution S1. 
It is obvious that for S1, the water age criterion does not have a high level of desirability, considering that 
the solution was achieved based on the minimization of energy cost. As a matter of fact, such planning 
tries to store more water in tanks during off-peak hours of electricity tariff, and to release water from 
tanks during on-peak hours of electricity tariff (i.e. longer water residence time in the system). Therefore, 
in Examples 8.4B and 8.4C, we will show that pump scheduling driven by the energy cost minimization 
as the objective function conflicts with water age improvement (i.e. speeding up the water delivery to 
customers). Simply speaking, the better the water age index is desired, the more costly the solution of 
pump scheduling should be. From this point of view, energy cost and water age are considered as two 
opposite criteria that can be taken as planning goals in a multi-objective optimization, which in turn 
provides a higher level of flexibility for the decision-making process (see Example 8.5).

8.6.1.1 Example 8.4A
Setting the total duration (T): Assuming that the 24-hour time pattern of nodal demand remains 

constant during a whole week, a 24-hour simulation period is sufficient for hydraulic analysis 
of a network (provided that for each storage tank, the water level at the end of the simulation 
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is equal to or greater than the water level at the beginning of the period). Conversely, a much 
longer simulation period is needed to attain accurate results in a normal water quality modeling. 
A good criterion to reliably set the ‘Total Duration’ (T) in EPANET is ‘observation of the same 
repetitive periodic behavior of the water quality in network junctions over time (i.e. water 
quality time series)’. A simple way to determine the appropriate T could be manual trial and 
error. To this end, we should execute a number of EPANET runs with increasing Ts, and check 
whether in ‘Time Series Plot’ (Report → Graph) the same repetitive periodic behavior for the 
water quality parameter (herein the water age) is observed or not. Nonetheless, since long T 
causes the optimization process to be very time consuming, to set T in the ATM network, it is 
preferred to consider a ‘total time’ as short as possible to ensure that a periodic trend of water 
age is being formed. Employing the trial and error approach for a number of random solution 
and checking it for the following optimal decision, T = 336 hr was determined as a reliable total 
time duration (T) for the ATM network.

Initial water quality: Water quality analysis requires calculating the initial water quality (IWQ) for 
each node. To calculate IWQs for a specific solution, it makes sense that under a long-enough 
extended period simulation, the results at the end time step could be taken as the IWQs for 
the same pattern being repeated in the next period. However, end time-step water qualities 
themselves are solution-dependent outputs since for different pump scheduling solutions, the 
time series of nodal heads and water levels in tanks are possibly not the same, leading inevitably 
to different water quality time series. However, in the optimization process concerning water 
quality issues, the solutions are systematically altered. Hence, to be fair, it is required to assume 
that we have the same set of IWQs for all solutions. This simplifying assumption avoids additional 
calculations to determine initial water quality for each solution separately. For this purpose, in 
the present example, it is assumed that for all solutions, before the beginning of simulation, a 
complete tank flushing has been already done while the network was being fully supplied by 
pumps for a long time without any limitation. In this regard, the water age at the end of this 
long simulation period is independent of the optimization solutions and can be considered as 
the IWQ for all decisions. The results of such IWQ analysis for the ATM network is presented 
in Table 8.5 and the time series of water age for some sample nodes are depicted in Figure 8.9. 

Figure 8.9 Time series for calculating IWQ in ATM network: plot of water age variation in some sample nodes for 
no storage tank under operation.
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According to Figure 8.9, only two 24-hour cycles are sufficient to establish the same repetitive 
periodic behavior for water age in ATM. Nonetheless, it should be noted that such a short period 
of time is due to the assumption that the storage tanks are out of operation.

Water age measure: In water distribution networks, water age is the length of time that water leaves 
the source (or treatment plant) till the time it is delivered to the customer. According to AWWA 
and AWWA Research Foundation (1992), a survey showed that the average and maximum water 
age in 800 sample networks in the United States were 31.2 and 72 hours, respectively. In the 
present example, by accepting the allowable water age threshold equal to a maximum of 72 
hours, we will use a water age measure (WAM) in the ATM network (Güngör-Demirci et al., 
2020) which is defined as the sum of positive deviations of the average water age (in the last 
24-hour simulation period) from the allowable water age threshold (72 hours), as follows:
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 where Ndn is the number of demand nodes and WAj,t is the water age in the jth demand node of 
the network at the tth time step with a 1-hour time interval.

Water age analysis for solution S1: Water quality analysis was performed for S1 and based on a 
simulation period of TD = 336 hours (2 weeks), the results obtained are shown in Table 8.5. The 
tables shows the average water age for the last 24-hour period of the simulation (i.e. Ave(WA)T−24) 
and the positive deviations of Ave(WA)T−24 from the allowable threshold (72 hours) for each 
node. As seen, the WAM for this solution is 276.9 hours, which seems a high measure for this 
solution. According to the table, the average water age in the last 24 hours of the simulation 
varies from 0.2 hours in Node 20 to 164.3 hours in Node 140, while the overall average for water 
age in the whole network is 48.7 hours.

  Results of the water age analysis for S1, presented in Table 8.5, along with considering location 
of the nodes (Figure 7.3), show that the nodes ‘directly adjacent’ or ‘ indirectly adjacent with an 
interface node’ to the tanks have a high WAM. In addition, Tank 265, as the farthest tank from 
the source, has the most negative effect on deterioration of water age. In this regard, except the 
nodes directly adjacent to the tanks (Node 60, 140 and 160) other high-WAM nodes (Node 115, 
175 and 75) are affected by Tank 265.

8.6.1.2 Example 8.4B: VSP scheduling with WAM constraint
In this example, due to the high WAM obtained for the solution S1 in Example 8.4A, we want to 
redefine the problem of VSP scheduling for ATM network (Example 8.3) by adding a new constraint in 
order to restrict the WAM to an upper limit. Obviously, since we have placed an additional constraint 
on Example 8.3, the feasible decision space becomes more limited, and inevitably the optimization 
objective function (energy cost) will be larger than the one achieved for S1. Considering this issue, the 
following equation is added to the mathematical model of Example 8.3:

WAM x WAMp t S,( )≤ −( )1 1α  (8.22)

where WAM(xp,t) is the water age measure as a function of the solution xp,t, α is a ratio between 0 and 
1, and WAMS1 is the water age measure achieved for the solution S1. Introducing the water quality 
constraint stated in Equation (8.22) for α1 = 0.1 and α2 = 0.25 to the VSP scheduling in Example 8.3, the 
model ran and the results of the optimal solutions are exhibited in Table 8.5. As can be seen, considering 
α1 = 0.1 (let us name this optimal solution S2) the solution obtained by the new form of problem statement 
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has an energy cost of 45550.75 $ and WAM of 248.7 hours which, in comparison with S1, indicates a 
10.18% decrease in WAM while the energy cost has only a 0.64% increase. The solution S2 also has an 
overall average water age of 46.6 hours that shows 2.1 hours less than that of solution S1.

8.6.1.3 Example 8.4C: VSP scheduling for WAM minimization
An interesting point about the implementation of the optimization model of Example 8.4B for α2 = 0.25 
is that the model could not achieve any feasible solution. To put it simply, despite the repetition of 
runs of the pump scheduling model for energy cost minimization, the GA could basically not find any 
solution satisfying all the constraints. This suggests that although imposing stricter constraints (i.e. 
WAM) leads to more costly solutions for energy cost minimization problem, it seems that the WAM 
constraint ‘to an unknown extent’ restricts the problem, so that thereinafter, even by imposing a 
stricter WAM on the optimization, feasible solutions are not achieved anymore. In other words, in the 
pump scheduling problem, same as global optimum energy cost, there exists a global minimum for 
WAM as well. In this regard, finding the optimal WAM may be considered as a separate optimization 
problem, the objective function of which can be as follows:

Min WAM xp t,( ) (8.23)

The set of constraints for the above programming are exactly the same as for Example 8.3.
The result of VSP scheduling for WAM minimization is illustrated in Table 8.5 (named as solution 

S3). As can be seen in this table, the global optima in this run includes a solution with a WAM of 
223.1 hours in which the ATM network experiences an overall average water age of 44.9 hours. The 
optimum solution S3, compared to the solution S1 has reduced the WAM by 19.5%. In addition, the 
energy cost for the optimum solution in VSP scheduling for WAM minimization reaches to 48421.26 $ 
(7% larger than S1). Now it is clear why the optimization model in Example 8.4B, was not able to find 
any solution for the scenario α2 = 0.25(!).

8.6.2 EWQMS for ATM network – A multi-objective optimization approach
8.6.2.1 General concept of multi-objective optimization
In the two recent examples (Examples 8.3 and 8.4) it was observed that pump scheduling could 
be modeled to minimize either the energy cost (Example 8.3, 8.4B) or the WAM (Example 8.4C). 
In Example 8.4B, a capability to have an upper limit of WAM (Equation (8.22)) as an additional 
constraint, was included as well. We could even include an upper limit of energy cost as a budget 
constraint, in VSP scheduling for WAM minimization in Example 8.4C, though we did not. In other 
words, for pump scheduling, either of energy cost or WAM criteria can be separately considered as 
the objective function, and the emerging problem with or without taking the other criterion as a 
constraint can be solved using a single optimization approach.

An important feature of the two above criteria in previous examples (i.e. energy cost and WAM) is 
that they are in conflict. Simply, consider the two optimal solutions S1 and S3; to improve one of the 
criteria (e.g., WAM), the other one (e.g., energy cost) needs to be deteriorated and vice versa. Generally 
speaking, in optimization-based planning problems, when two criteria (like WAM and energy cost 
here) are conflicting, another approach of optimization (called multi-objective) can be implemented 
in which both criteria are included in the planning as the objective functions.

Let us again take Example 8.3 and Example 8.4C into consideration. The result of model execution 
were two distinct solutions with different energy cost and WAM. If we have a look at the values of 
these two objectives related to S1 and S3, we realize that these solutions have no advantage over each 
other, since S1 has a better energy cost and a worse WAM against S3 that has a better WAM and 
a worse energy cost. Such optimal decisions, in the terminology of multi-objective optimization are 
called non-dominated solutions. The concept of domination is the logic behind a number of efficient 
Multi Objective Evolutionary Algorithms (MOEAs) the most well-known of which are the Strength 
Pareto Evolutionary Algorithm II (SPEA2) by Zitzler et al. (2001) and Non-dominated Sorting Genetic 
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Algorithm-II (NSGA-II) by Deb et al. (2002). Both algorithms have been successfully implemented in 
many researches in the field of WDNs (Creaco et al., 2014; Farmani et al., 2003,  2005; Güngör-Demirci 
et al., 2020; Minaei et al., 2020; Roshani & Filion, 2014; Sabzkouhi et al., 2017, 2021; Zheng et al., 2016).

Unlike the single-objective optimization, where only one global optima is found in each run, the 
multi-objective optimization model leads to a number of optimal solutions which have no predetermined 
distinction between each other due to the conflict between the objectives. The set of these optimal 
solutions is called the Pareto Optimal Front. Having the Pareto set solutions allows the best decision 
to always be accessible according to the priorities that may change over time. This feature does not 
exist in single-objective optimization where based on changes in priorities, it is required to re-run the 
optimization model. An up-to- date overview on multi-objective optimization in water distribution 
networks can be found in Sarbu et al. (2020).

8.6.2.2 Example 8.5: VSP scheduling for energy cost vs WAM minimization
According to the general description of the multi-objective optimization and its advantages, in this 
section the results of the implementation of multi-objective optimization model for VSP scheduling is 
presented for the following objective functions:

Min TEC

Min WAM

=
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The constraints of optimization for the above problem are exactly the same as for Example 8.3.
The above programming was solved using the NSGA-II multi-objective optimization algorithm. 

The algorithm settings were similar to Example 8.3. In Figure 8.10 the resulting optimal Pareto front 
is presented. As previously stated, the result of bi-objective optimization is a large number of non-
dominated solutions that cover a range of possible values for the optimization objectives. Among 
the Pareto set, the solutions S1, S2, and S3, whose coordinates previously found in single-objective 
optimization in Examples 8.3 and 8.4, are also observable. Additionally, the point previously explained 
in Example 8.4C about an optimal value beyond which there is not any further improvement in the 
objective function, is well illustrated in the diagram above, where no other solution is found beyond 
S1 and S3.

Once capturing the Pareto optimal solution set was done, a decision-making process should be 
carried out by decision makers to select the final solution. The Pareto frontier and how it changes in 
the range of objectives variation provide useful information to choose the final solution. For example, 
in the area adjacent to solutions S1, the slope of energy cost changes compared to WAM changes is 
very small. Obviously, if this area is desired for selecting the final decision, solutions near by the left 
of S2 are in a better position. However, in the left-hand side of the S2, the relative cost required to 
improve WAM, increases dramatically due to the steeper slope of the energy cost-WAM changes.

The decision-making process should involve the views of different stakeholders (water utility 
companies, customers, environmentalists, etc.) who may consider the objectives with different levels 
of importance. Since optimization objectives are often in conflict, the final solution is usually selected 
using bargaining-based selection methods, the most widely-used of which is Young’s bargaining 
method based on game theory. Interested readers are referred to Fallah-Mehdipour et al. (2011).

8.7 CONCLUSION

The purpose of this chapter has been to introduce the application of a simulation-optimization 
approach for pump scheduling and EWQMS problems. The general principles of pump scheduling in 
both constant speed pumping (CSP) and variable speed pumping (VSP) approaches were expressed 
after a brief review on pump performance basics. Since the main purpose of this chapter was mostly 
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educational aspects, we tried to simply apply the methods on the ATM network, a small benchmark 
pipe system from the literature. First, the classic CSP method for pump scheduling was implemented 
to find the minimum energy cost expressed in the form of binary programming and the resulting 
problem was solved using the Genetic Algorithms in the MATLAB environment. Then, the general 
principles of VSP scheduling was described and the model was employed in the ATM network. The 
result showed that the solution found by VSP approach (abbreviated as solution S1) decreased the 
energy cost by 9.11% compared to the optimum solution found by the CSP approach.

Later, expressing the Energy and Water Quality Management Systems (EWQMS) approach in water 
distribution networks, the capabilities of single and multi-objective simulation-optimization models 
to VSP scheduling was simply investigated into the ATM network. In this regard, first by calculating 
the water age measure (WAM) criterion to evaluate the status of water quality in different solutions, 
S1 was assessed, and the reasons why S1 had a high WAM were discussed. Since no restrictions were 
imposed on WAM in obtaining S1, the role of the tanks in increasing the water residence time in 
the distribution system, and accordingly the age of water delivered to the nodes, was quite obvious. 
Afterwards, by redefining the VSP scheduling problem to minimize the energy cost with a constraint 
of maximum allowable WAM, the ATM problem was again solved as a single objective optimization, 
which was naturally expected to result in a solution with a higher energy cost (named as solution S2). 
Finally, the EWQMS approach was implemented for VSP scheduling as a bi-objective programming 

Figure 8.10 Pareto optimal frontier for Example 5.
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to simultaneously minimize the conflicting goals of energy cost and WAM, and the importance of the 
Pareto optimal frontier obtained was discussed.

Nowadays, by combining multiple features (e.g. simulation packages, optimization methods, data-
driven and machine learning-based models, GIS applications, etc.) alongside the facilities associated 
with physical assets, efficient possibilities have been provided in design, operation and management 
of real-world water distribution networks. Familiarity with the basic principles of these techniques 
and their applications can motivate engineers to learn them and effectively employ them in real 
problems. While the rate and cost of collecting and accessing to reliable data have been highly cost-
effective, mastery of design engineers and operators of water systems with decision support systems 
are becoming more and more essential.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Explain hydraulic transients in pressurized pipe systems.
(2) Use the hydraulic transients governing equations, codes and run for very simple cases.
(3) Run TSNet for simple water distribution systems.
(4) Assess and interpret modeling results.

9.1 INTRODUCTION

Many water utilities have in-house hydraulic modeling capacities to analyze their systems in terms 
of planning, design, operations, and management. However, many of the modeling efforts are geared 
toward or limited to steady state or extended period simulations, which assume that the water column 
is completely incompressible, and that pipe materials are not elastic. Clearly, the mass continuity and 
energy equations neglect to explain rapid changes that should be described by momentum equations 
(i.e., transient pressure waves generated due to sudden changes in flow). As is well known, the resulting 
pressure can result in pipe bursts and structural damage to other critical appurtenances. In addition, low 
flow due to transients can induce contamination intrusion in the systems (Lee, 2008; Lee et al., 2012).

For transient flow analysis, Joukowski’s equation is the most fundamental theory that is still used 
as a rough check for a head (H) change calculation:

∆ ∆H
a

g
V=− ⋅

 
(9.1)

where a is pressure wave speed, g is gravitational acceleration and V is the velocity. The model’s 
assumptions are: (i) no friction in the pipe and (ii) no wave reflections in the system. In other words, 
there is no interaction among boundary conditions in the system. Here, we are presenting 1D classic 
water hammer equations (Wylie & Streeter, 1993) as follows:
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Continuity equation:
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Momentum equation:
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(9.3)

where p is pressure, V is velocity, c is wave speed, ρ is density, g is acceleration due to gravity, α is angle 
of inclination of pipe, f is friction factor, D is diameter, x is spatial dimension, and t is time.

These two equations are solved for a pipe network that incorporates suitable interior boundary 
conditions for appurtenances such as valves and junctions along the pipelines and external boundary 
conditions such as reservoirs and tanks. The solution of these equations yields the pressure/head, p 
or H (x, t) and velocity/flow rate, V or Q (x, t) as functions of spatial dimension x (taken along the 
length of the pipelines) and time t. The pressure can be highly positive and negative for hydraulic 
transients, and the velocity can be negative, indicating flow reversal. In the following, we provide 
a general overview of the mumerical schemes followed by the hydraulic transients computation 
tool, TSNet.

9.2 NUMERICAL METHOD CONSIDERING INITIAL AND BOUNDARY CONDITIONS

The governing equations for hydraulic transients are nonlinear hyperbolic Partial Differential 
Equations (PDE), so a closed-form solution is not available. Numerical methods must be used to 
solve these governing equations. There are several numerical methods such as, but not limited 
to, Methods of Characteristics (MOC), implicit Finite Difference (FD) method, and explicit FD 
schemes. In this article, we introduce an introductory explicit FD scheme, McCormack’s method, 
which should be helpful for understanding why certain types of data are needed to run a specific 
hydraulic transients modeling package. The results obtained from McCormack’s method are known 
to be satisfactory for many flow applications (Anderson, 1995). Please refer to Chaudhry (1987), 
Karney and McInnis (1990) and Wylie and Streeter (1993) for details on backgrounds as well as 
other numerical methods.

In McCormack’s FD, the PDE is transformed into FDM (Finite Difference Method), such that the 
unknown conditions at a point at the end of a time step are expressed in terms of the known conditions 
at the beginning of the time step. Figure 9.1 shows the general schematic of the 1D explicit FD scheme. 
We solve unknown time level variables (H, Q) based on known time levels (H, Q). McCormack’s 
explicit FD scheme is composed of a predictor and corrector step. One-sided FD is used for the spatial 
derivatives in each of these steps. First, forward FD is used in the predictor, and backward FD is used 
in the corrector part. Alternatively, backward FD is adopted in the predictor, and forward FD is used 
in the corrector part. Each alternative takes turns as the time step increases. Note that we are using 
simplified governing equations using (H, Q) here as follows:
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where H is head, Q is flow rate, a is wave speed, g is acceleration due to gravity, f is friction factor, 
R f t D= ∆ /2 , D is diameter, x is 1D spatial dimension, and t is time. See the formulations below. *: 
predicted values, i: space node and j: corresponding time step. H and Q’s values are assumed to be 
known at all nodes at the time j level. We are solving for the time (j + 1) level (Figure 9.1).
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In alternative 1, the predictor part is:
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The corrector part is:
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In alternative 2, the predictor and corrector parts are:
Predictor part:
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Corrector part:

H H H
t

x

a

gA
Q Q

Q Q

i
j

i
j

i i i

i
j

i

+
+

+

= + − −( )











=

1
2

1

1

1
2

1
2

* * * ,
∆

∆

jj
i i i i iQ

t

x
gA H H RQ Q t i n+ − −( )− ⋅









 = …+

* * * * * , , , ,( )
∆

∆
∆1 1 2

 

(9.9)

As mentioned, each alternative takes turns as the time step (j) increases. These formulations work 
for internal nodes, but we will have to consider separately for the boundary conditions. From the 
governing Equation (9.4), we will consider characteristic boundaries.

Figure 9.1 1D explicit FD scheme.
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Multiplying Equation (9.4) by η  and adding it to Equation (9.5), then we have:
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when

λ λ λ− −
−

−
−

= =− −
∂

∂
+

∂

∂











−

∂

∂
+

∂

∂






dx

dt
a C

H

t

H

x

a

gA

Q

t

Q

x
, : 






− =

aR

gA
Q Q 0,

 
(9.12)

At the boundary conditions, equations are solved with the condition imposed by the boundary. 
The characteristic of the boundary condition is shown in Figure 9.2. For the upstream boundary, 
the C− characteristic line is valid, and C+ is for downstream. These are used to depict the complete 
water phenomena. Each boundary condition is solved independently of the interior points’ calculation 
and another end of the boundary. In this chapter, we are presenting several representative boundary 
conditions. Please refer to Chaudhry (1987) and Wylie and Streeter (1993) for more details.

9.2.1 Reservoir
During a short-period transient event, the upstream reservoir’s hydraulic grade line elevation is 
assumed to be constant:

H HR1 =  (9.13)

where HR is hydraulic grade line above the reference datum, and H1 is head value at the upstream 
section at point P. With C– equation and H1 = HR, Q can be obtained at the boundary. So, H and Q are 
obtained for the next time level (j + 1).

9.2.2 Junctions
A general junction with pipeline, non-pipeline elements (valve), and nodal inflow are shown in Figure 
9.3. A continuity equation can be written at the junction. At any instant, the sum of the inflow is zero:

∑ = ∑ +∑ + =Q Q Q Qin p e n 0 (9.14)

Figure 9.2 Boundary characteristic (upstream and downstream).
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where ∑Qin is the sum of the inflow (added to zero at any instant), ∑Qe is the sum of all instantaneous 
non-pipe flows, ∑Qp is the sum of all instantaneous pipe flows, and Qn is a nodal flow. When minor 
losses are neglected at the junction, the energy equation can be written for each junction element:

H H H H HNS NS= = = =1 2 3 1 4 1, , , ,  (9.15)

Using the compatibility equations, Q1,NS, Q2,NS, Q3,1, and Q4,1 are obtained.
Figure 9.4 shows the valve located between two pipelines, where A and B show the interconnecting 

junctions on both sides of the valve. It is assumed that the inertia effects are neglected in the steady-
state orifice equation, and the volume of fluid stored inside the valve is constant. For positive flow, 
H1,NS = HA and H2,1 = HB. The orifice equation is:
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where H0 is steady-state HGL drop across the valve with the flow of Q0 (t
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dimensionless valve opening). When combined with the compatibility equation, Qv can be obtained. 
Also, for reversal flows:
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Combined with the compatibility equation, Qv can be obtained.
While working on the numerical methods or solvers, you should be aware of a few critical issues, 

such as convergence and stability. We are introducing fundamental concepts as follows:

Figure 9.3 General junction.

Figure 9.4 Valve located in-line.
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9.2.3 Discretization error
Say, U (x, t) is the exact solution of the PDE, and u (x, t) is the finite difference equation’s exact 
solution. Then, (U–u) is called discretization error. This is introduced when replacing the PDE with 
finite difference approximation.

9.2.4 Truncation error
F ui

j( )= 0 is the finite difference equation at grid point iΔx and jΔt, where i and j are the number 
of grid points in the x and t directions. Substituting the exact solution of PDE U (x, t) into the FD 
approximation equation, then F Ui

j( ) is the local truncation error at (iΔx, jΔt).

9.2.5 Consistency
FDM is consistent when the truncation error tends to zero as Δx and Δt approach zero.

9.2.6 Convergence
FDM is said to be convergent as the exact solution of FDM u approaches the exact solution of PDE 
U, as both Δx and Δt approach zero. It is not easy to directly prove convergence. However, FDM is 
convergent if the scheme is proved to be consistent and stable.

9.2.7 Stability
When the computations are performed to an infinite number of significant figures (decimal digits), the 
solution u (x, t) of the FDM will be exact. However, even in computers nowadays, round-off errors are 
introduced at each time step. So, the numerical solution we obtain is different from the exact solution. 
In some cases, round off errors are amplified, decrease, or stay the same. The scheme is stable when 
the amplification of the round off errors is bounded for all sections as time goes infinity. Unstable 
schemes result in very rapidly growing error in a few time steps. So, stability conditions must be 
satisfied.

9.2.8 CFL (Courant Friedrich Lewy) stability condition

∆ ∆x a t≥ , the courant number is defined as C a x t a t xN = =( ) ( )/ / /∆ ∆ ∆ ∆  and CN ≤ 1. This stability 
criterion applies only to linear equations (when the friction term is small). Even if the CFL condition 
is met, the scheme may become unstable: when the friction term is large (e.g., large friction factor, 
large time step, a large change in discharge, or small conduit diameter: according to the friction loss 
equation). The stability of the FDM may be done using von Neumann theory. In this approach, errors 
are expressed in a Fourier series simultaneously (for linear equations). The scheme is said to be stable 
if the errors decay as time increases. In the following, the pseudocode is shown for those who are 
interested in coding (Figure 9.5).

9.2.9 Example
For the given schematics, compare the pressure transient behavior when we shut the valve 
instantaneously (closing time = 0 at t = 0): Explicit scheme (McCormack’s scheme) (Figure 9.6).

9.2.9.1 Given
Darcy Weisbach friction coefficient = 0.02; Time step = 0.02 sec; Distance step = 100’; Flow rate = 19.5 cfs.

9.2.9.2 Find
Pressure variation at x = 500’ (from the valve; at the center of the pipe).
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9.2.9.3 Solution
MATLAB was used for running explicit scheme and is plotted in Excel (see Figure 9.7). It shows clear 
fluctuations in head values. The code is included below.

9.3 OTHER PHENOMENON OF INTERESTS | CAVITATION AND COLUMN SEPARATION

As mentioned previously, ‘water hammer’ is a transient flow phenomenon introduced in pipe flow 
systems by suddenly obstructing the flow. Consequently, there is a pressure rise and fall, and the 

Figure 9.5 Pseudocode for running hydraulic transients.

Figure 9.6 Reservoir problem.
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RESERVOIR PROBLEM

clear all;

delT = 0.02; %time step

h = 100;

M = 1000/h;

t_final = input(‘Enter end of time in seconds:’);

time_step_N = t_final/delT;

a = 4000; %FT/SEC celerity

A = 0.785398; %FT2 area of pipe: PI/4*D 2̂, D = 1’

g = 32.2; %FT/sec2 gravitational acceleration

f = 0.02; %darcy-weisbach friction coeff.

D = 1;% FT; Diameter of the conduit

AA = delT*(â 2)/(h*g*A);%constant AA

BB = delT*g*A/h;% constant BB

CN = a*delT/h; % Courant Number should be less than 1

R = f/(2*D*A);

Hold = zeros(1,M + 1);

Qold = zeros(1,M + 1);

for m = 1:M + 1%set initial data

Hold(m) = 200-(20)*(m−1);

Qold(m) = 19.5;

end

Hstar = zeros(1,M + 1);

Qstar = zeros(1,M + 1);

Hnew = zeros(1,M + 1);

Qnew = zeros(1,M + 1);

% CP = Qold(M) + g*A/a*Hold(M)-R*delT*Qold(M)*abs(Qold(M));

% CN = Qold(2)-g*A/a*Hold(2)-R*delT*Qold(2)*abs(Qold(2));

% CA = g*A/a;

%------------------------------ McCommas Scheme-------------

for j = 1:time_step_N %time step

CP = Qold(M) + g*A/a*Hold(M)-R*delT*Qold(M)*abs(Qold(M));

CN = Qold(2)-g*A/a*Hold(2)-R*delT*Qold(2)*abs(Qold(2));

CA = g*A/a;

alterna = mod(j,2);

if alterna = =1

for i = 1:M

Hstar(i) = Hold(i)-AA*(Qold(i + 1)-Qold(i));

Qstar(i) = Qold(i)-BB*(Hold(i + 1)-Hold(i))-R*abs(Qold(i))*Qold(i)*delT;

end

Continued
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pattern is repeated until the transient energy decays. Typical vapor pressures of water (10–40°C) 
range from 0.012 to 0.073 atmosphere; the total dissolved gas pressure of natural water is typically in 
the range of 0.8–1.2. When the fluid pressure drops below the constituent gases’ saturation pressure, 
bubbles comprised of dissolved gases are formed, which is known as gaseous cavitation (Lee, 2008). 

for i = 2:M

Hnew(i) = 0.5*(Hold(i) + Hstar(i)-AA*(Qstar(i)-Qstar(i−1)));

Qnew(i) = 0.5*(Qold(i) + Qstar(i)-BB*(Hstar(i)-Hstar(i−1))-R*abs(Qstar(i))*Qstar(i)*delT);

end

Hnew(1) = 200; %set the left B.C.

Qnew(M + 1) = 0; %set the right B.C.

Qnew(1) = CN + CA*Hnew(1); %set the left B.C.

Hnew(M + 1) = CP/CA; %set the right B.C.

else

for i = 2:M + 1

Hstar(i) = Hold(i)-AA*(Qold(i)-Qold(i−1));

Qstar(i) = Qold(i)-BB*(Hold(i)-Hold(i−1))-R*abs(Qold(i))*Qold(i)*delT;

end

for i = 2:M

Hnew(i) = 0.5*(Hold(i) + Hstar(i)-AA*(Qstar(i + 1)-Qstar(i)));

Qnew(i) = 0.5*(Qold(i) + Qstar(i)-BB*(Hstar(i + 1)-Hstar(i))-R*abs(Qstar(i))*Qstar(i)*delT);

end

Hnew(1) = 200; %set the left B.C.

Qnew(M + 1) = 0; %set the right B.C.

Qnew(1) = CN + CA*Hnew(1); %set the left B.C.

Hnew(M + 1) = CP/CA; %set the right B.C.

end

% for mm = 1:(time_step_N) + 1

% time(mm) = mm*delT;

% end

%

% figure (1)

% plot(time,Hnew(1),’-g’,time,Hnew(10),’-r’, time, Hnew(21),’-r’)

H1(j) = Hnew(4);

H5(j) = Hnew(5);

H10(j) = Hnew(6);

AAA = [H1;H5;H10];

for kk = 1:M + 1

Hold(kk) = Hnew(kk);

Qold(kk) = Qnew(kk);

end

end
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When the pressure drops below the vapor pressure, vapor cavities are created in liquid by phase 
transformation, called vaporous cavitation.

In a liquid, gas may have two forms: dissolved and free gas. The dissolved gas is invisible in liquid 
and does not increase its volume and compressibility noticeably. However, free gas (or ‘entrained gas’) 
is dispersed in the liquid as bubbles that may make the liquid look turbid. The liquid which is not 
entirely degassed will usually contain some entrained air in the form of microscopic or submicroscopic 
bubbles, either in the bulk of the liquid or near solid contaminants or near the container wall. Fluid 
mixtures can be categorized into five phenomena (Shu, 2003): (1) fully degassed fluid, (2) thoroughly 
degassed liquid with vapor, (3) liquid with dissolved gas, (4) liquid with dissolved and free gas, (5) 
liquid with dissolved gas, free gas, and vapor.

Vaporous cavitation can be present in cases (2) and (5). The cavity may become so large as to fill 
the entire or partial section of the pipe (known as air pocket) and divide the liquid into two columns 
in vertical pipes or pipes with steep slopes known as column separation. In horizontal pipes or mild 
slopes, however, a thin cavity is aggregated to the top of the pipe and extends over a long distance in 
the pipe (i.e. cavitating flow). So, the vapor cavities may be physically dispersed homogeneously or 
collected into a single or multiple void space, or a combination of the two phenomena. For gaseous 
cavitation, both liquid with dissolved and free gases can be observed. Free gas is distributed throughout 
the liquid in a homogeneous mix or lumped as pockets of free gas, trapped along the pipe wall, in pipe 

Figure 9.7 Reservoir results comparison.
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joints, in surface roughness, and crevices. In this article, we introduce modeling concepts for vaporous 
cavitation.

9.3.1 Discrete vapor cavity model (DVCM)
DVCM is assumed to have a vapor cavity quantity concentrated at each computational section (see 
Figure 9.6). This model is the most commonly used model for column separation (Bergant et al., 2006). 
Cavities are allowed to form at any computational grid point when the computed pressure is below 
the vapor pressure. The pressure wave speed is assumed to be constant between the vapor. Also, the 
absolute pressure in the vapor is set equal to the vapor pressure:

p pv
* *=  (9.18)

The upstream and downstream discharges at a cavity are computed from classic water hammer 
equations Equations (9.2), (9.3), or (9.4), and the vapor cavity volume (V) can be obtained as below:

Continuity equation for vapor cavity :
∂∀

∂
= −

t
Q Q2 1

 
(9.19)

where ∀  is vapor volume, Q1 is downstream flow rate, and Q2 is upstream flow rate (Figure 9.8).
It is assumed that mass transfer during cavitation is ignored. Also, flow rate discontinuity is assumed 

at each computational node. So, there will be two predicted values of flow rates (Figure 9.6). This 
continuity equation for the vapor volume V is applied at each computing section. The liquid flow in the 
pipe is instantaneously and entirely separated by its vapor phase when the cavity is formed. However, 
in reality, when a cavity is formed in a section of the pipe, it usually expands and propagates in the 
direction of flow as an elongated bubble. So, this formulation’s phenomenon does not necessarily 
occur in a horizontal or near horizontal pipe (Shu, 2003). It is known that DVCM may generate 
unrealistic pressure spikes with a multi-cavity collapse. However, the oscillations may be suppressed 
by assuming small gas volumes in each grid (Wylie & Streeter, 1993).

Column separation or cavitating flow is caused by the negative or rarefaction waves passing through 
the pipelines. When these waves meet a boundary such as a reservoir, they are reflected as positive 
waves. This raises the local pressure higher (than total dissolved gas pressure or vapor pressure). They 
can reduce the cavity’s size during column separation and compress the bubbles in the cavitating flow 
region. When the cavities collapse or when the separated column rejoins, very high pressure that may 
burst the pipes are generated. According to Kranenburg (1974), the inclusion of gas release had no effect 
when only cavitating flow occurs, but the gas release effect is large when column separation occurred 
with the cavitating flow. The implosion of gas or air bubbles in pressurized conduits introduces extra 
shock waves, namely, the intense pressure wave in water produced by explosions that create violent 

Figure 9.8 Discrete vapor cavity model sketch (modified from Bergant et al., 2006).
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pressure changes. Shock waves travel faster than the sound wave, and their speed increases as the 
amplitude is raised; however, the intensity of a shock wave also decreases faster than that of a sound 
wave. This is because some of the shock wave energy is dissipated due to the heat transfer in the water 
in which it travels. In this vein, steep waves or shocks may be generated at different boundaries due 
to abrupt changes in the discharge. However, damages from vaporous cavitation decrease with higher 
gas content as dissolved gas has a cushioning effect on implosion.

9.3.2 Short term pressure peaks following cavity collapse
According to Walsh (1964), the maximum possible pressure rise following the collapse of the first 
cavity at an upstream valve can be expressed as:

∆H
a

g
V Hf RVmax = + 2

 
(9.20)

where Vf is the velocity of the liquid column at the valve just before cavity collapse, and HRV is the 
difference of reservoir head and vapor head at the valve. Wylie and Streeter (1993) also showed the 
pressure after collapsing of the first cavity for the case of instantaneous closure of upstream and 
downstream valves:

∆ ∆ ∆H H Hinmax = + 2  (9.21)

Thus, the maximum pressure can be more than two times the Joukowski value.

9.4 TRANSIENT SIMULATIONS IN WATER DISTRIBUTION NETWORKS: TSNet

9.4.1 TSNet
Transient simulation in water networks (TSNet) is a Python package designed to perform hydraulic 
transients simulation in water distribution networks (Xing & Sela, 2020). TSNet adopts the Method of 
Characteristics (MOC) for solving the system of partial differential equations governing the unsteady 
hydraulics. The main capabilities of TSNet are: (1) allowing the user to select the computational time 
step and control numerical accuracy and computational complexity, (2) simulating transient system 
responses to the operation of valves and pumps, (3) simulating transient system response to background 
leakage and pipe bursts, (4) simulating open and closed surge tanks for controlling transient response, 
(5) simulating steady, quasi-steady, and unsteady friction models, (6) simulating instantaneous nodal 
demand changes using demand-pulse model, and (7) visualizing and postprocessing simulation results. 
In this section, we will see examples of running TSNet to simulate the transient events under different 
scenarios. For additional examples, see TSNet documentation (Xing & Sela, 2021a).

9.4.2 Use of Python, Spyder and Anaconda
Before looking into TSNet, it is beneficial to learn some Python basics. There are many useful 
resources out there, such as Python Programming and Numerical Methods: A Guide for Engineers 
and Scientists (Kong et al., 2020).

In this section, we will be using Spyder as our Python environment. Spyder is a free and open-
source integrated development environment (IDE) for scientific programming in the Python language 
(Spyder, 2021). Spyder is included by default in the Anaconda Python distribution (Anaconda, 2021), 
which comes with everything you need to get started in an all-in-one package. To download Anaconda, 
please visit the Anaconda website (Anaconda, 2021) and download the installer for your platform, 
that is Windows, Mac, or Linux. After installation, you can open Anaconda and should see something 
like Figure 9.9.

To run Spyder after installing it with Anaconda, you can open Anaconda Navigator, scroll to 
Spyder under Home, and click Launch. Then, you should see the Spyder interface as in Figure 9.10. 
The default layout of Sypder has three windows. Editor (left) is where you will be doing most of your 
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coding. In this window, you can create, edit, and save scripts and functions. You will run these scripts 
by selecting the green arrow at the top of the screen in the tool bar or by pressing F5. Help (upper 
right) is where you search for information on various functions within Python. For the upper right 
window, you can also choose to display Variable Explorer, where you can find all variables you create 
or import into Python, Plots, where you can view all figure outputs, and Files, where you can find and 
open various files under the current directory. On the lower right, Console is the main window for 
executing commands and viewing results. Press enter key to execute a command. Any code output and 
errors will be displayed in the Console. Then we can download the TSNet Python package by typing ‘! 
Pip install tsnet’ in the Console as shown in Figure 9.10. This command will automatically download 
and install TSNet and other packages that TSNet depend on (e.g., Numpy, Matplotlib, WNTR, etc.).

9.4.3 Example application
Now that we have installed TSNet and have a basic understanding of how Python works, we can 
now move on to see how to use TSNet to simulate transient events. We will demonstrate how to use 
TSNet using an example network shown in Figure 9.11a, which is comprised of 113 pipes, 91 junctions 
two pumps, two reservoirs, three tanks, and one valve. The information of this network is stored in 
an EPANET INP file, Tnet2.inp, as shown in Figure 9.11b. The INP file and the codes that we will 
demonstrate here can be downloaded from Xing and Sela (2021b).

After installing TSNet, the main steps in setting up and running the transient model are: (1) read 
water network model input (EPANET INP) file and create the corresponding transient model; (2) set 
up a transient model by defining additional transient-related features, such as wave speed and time 
step; (3) define a transient scenario, such as operational changes in valves and pumps, and pipe bursts; 
(4) define if the system includes background leak conditions and obtain the initial conditions by 
conducting a steady-state simulation; (5) perform transient simulation using method of characteristics 

Figure 9.9 Anaconda navigator interface.
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Figure 9.10 Spyder IDE interface.

Figure 9.11 Example network: (a) network topology and (b) screenshot of Tnet2.inp.
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(MOC) (Wylie & Streeter, 1993); and (6) obtain and visualize flow and pressure results. The following 
sections will detail how to use TSNet to set up the transient model and simulate various transient 
events, including valve closure, pump shutdown, and pipe bursts.

9.4.4 Create and set up a transient model
To use TSNet for transient simulations, we first need to import the TSNet package to enable TSNet APIs 
(line 1), and read the EPANET INP file to import the network information and create the transient 
model (lines 2–3), as shown in Figure 9.12. In this example, the EPANET INP file is Tnet2.inp, which 
locates in the networks folder. The INP file contains all the information about network elements, for 
example junctions, pipes, reservoirs, tanks, pumps, and valves, as well as their characteristics, such 
as elevation and demands at junctions and pipe diameter, length, and roughness coefficient. More 
information about INP files can be found in Rossman (2000). In addition to the information included 
in the INP file, we also need to specify the wave speeds for each pipe (line 5), simulation duration and 
the time step (lines 6–8) as shown in Figure 9.12. These are required for TSNet to define the numerical 
grid that will be used to solve the equations that model transient hydraulics. More information about 
defining wave speeds and time steps in transient modeling can be found in Wylie and Streeter (1993). 
In this example, we assume the wave speeds for all pipes are 1200 m/s, simulation duration is 60 s, and 
time step is 0.01 s. It should be noted that the codes behind the # sign are comments for explanation 
purposes and are not executed when running the code.

Type these commands in the Editor window, save and run your script. In the Console window you 
should see ‘Simulation time step 0.01043 s’, and in the variable explorer you should see four variables 
(dt, inp_file, tf, tm). To test that the model was created properly, type the command tm in the Console, 
and you should see something like <tsnet.network.model.TransientModel at 0 × 7fb9201db4e0>. 
Now that we have created and set up a transient model in TSNet, we can move forward to define 
different scenarios for transient simulations.

9.4.5 Valve closure
Let us start with a valve closure scenario. Rapidly closing a valve in the system may cause a sudden 
change of flow rate, and the force resulting from the change in velocity will cause a pressure increase 
or decrease that may be significantly greater than the normal pressure in the pipeline. This pressure 
disturbance then propagates in the water network causing further pressure and velocity changes in 
the distribution system. We can simulate a valve closure event in TSNet by defining the valve closure 
start time (ts) from the beginning of the simulation, closure duration (tc), valve opening percentage 
when the operation is completed (se), and the operating constant (m), which characterizes the shape 
of the closure curve. These parameters define the valve closure curve as shown in Figure 9.13, where 
the solid and dashed lines represent m = 1 and m = 2, respectively.

In this example, we simulate the closure of TCV-1 (shown in Figure 9.11a), which starts at ts = 1 s, 
and takes tc = 1 s to completely close the valve, using the code shown in Figure 9.14.

Figure 9.12 Create transient model (lines 1–3) and define wave speed and time step (lines 5–8).
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Once the transient conditions are defined, the transient model is initialized by running a steady 
state simulation. TSNet uses Water Network Tool for Resilient (WNTR) (Klise et al., 2018) to simulate 
the steady-state hydraulics, either demand or pressure driven in the event of background leaks. We 
initialize the hydraulic transients at t0 = 0 and use the demand driven simulator for the steady-state 
calculation in lines 17–19 in Figure 9.15. Moving forward, we specify the object name for saving 
results and run the actual transient simulation using lines 21–22 in Figure 9.15.

At the beginning of a transient simulation, TSNet will report the approximate simulation time. 
The computation progress will also be printed in the Console as the simulation proceeds, as shown 
in Figure 9.16.

Once the simulation is completed, we can then plot the pressure head at any junction, for example 
JUNCTION-105 (shown in Figure 9.11), using the command shown in Figure 9.17.

The pressure head at JUNCTION-105 versus time is shown in Figure 9.18. It can be observed that 
the transient wave induced by the valve closure arrives to JUNCTION-105 in around 7 s and causes 
a pressure jump of 5 m amplitude. The pressure then fluctuates and returns to the original level after 
approximately 35 s. The results indicate that the fast valve closure can introduce pressure transients; 
however, the amplitude of transient is not very significant. We will see much larger transients in the 
following examples.

Figure 9.15 Initialize (lines 17–19) and running transient simulation (lines 21–22).

Figure 9.13 Valve closure operating curve.

Figure 9.14 Define valve closure.
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9.4.6 Pump shutdown
Now, let us move on to the pump shutdown scenario. When PUMP2 (see Figure 9.11) is being shut 
down, the rotating pump impeller begins to decelerate with the pressure dropping on the discharge 
side of the pump and rising on the suction side. The resultant transient may quickly lead to column 
separation with ensuing hard-to-predict consequences (Larock et al., 1999). Hence, it is very important 
to be able to perform transient simulation to determine whether dangerous negative pressures may 
develop. With TSNet, we can define pump shutdown by specifying how pump rotational speed 
changes over time using pump shutdown start time (ts), operation duration (tc), the ratio of final pump 
rotational speed to the original speed (se), and the operating constant (m), which characterizes the 

Figure 9.16 Runtime outputs – computation time and progress.

Figure 9.17 Plot head results.

Figure 9.18 Pressure transients at JUNCTION-105 when closing valve TCV-1.
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shape of the operation curve in the same way as defined for the valve closure. Following the same 
simulation process as the valve scenario, we can perform the transient simulation and plot the pressure 
at JUNCTION-105. Figure 9.19 shows the entire code, starting with importing the TSNet package, 
network INP file, setting up the transient model, initializing and running the transient simulation, 
and plotting results. Figure 9.20 shows that the pressure wave generated by the pump shut-off reaches 
JUNCTION-105 after approximately 3 s and introduces a pressure drop with amplitude greater than 
12 m. The pressure then fluctuates until reaching a new steady state after approximately 30 s.The 

Figure 9.19 Transient simulation under the pump shutdown scenario.

Figure 9.20 Pressure transients at JUNCTION-105 when shutting down PUMP2.
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results indicate that pump shutdown, especially when operated quickly, can generate significant 
transients in the system. Therefore, it is essential to evaluate the impacts of pump operations on the 
pipelines and design an appropriate procedure to guide pump operations (Boulos et al., 2005).

9.4.7 Pipe burst
Now we move to the simulation of pipe bursts. Pipe bursts, defined as sudden pipe rupture and break 
events, can introduce sudden and rapid hydraulic transients, which then propagate in the pipe system. 
TSNet simulates pipe bursts using the orifice equation, which quantifies the pressure-dependent burst 
discharge where Q t k t H tb b b( ) ( ) ( )= , where t is time, Hb is the pressure head at the location of the burst, 
and kb is the lumped burst coefficient, which changes with time, and aggregates the size of the leak, 
units, and burst coefficients (Larock et al., 1999). In TSNet, pipe bursts can be specified at junctions. 
To model the burst occurring along a pipe, the user should introduce a new junction at the location of 
the burst in the INP file.

An example of simulating a pipe burst using TSNet is shown in Figure 9.21. In this example, a burst 
event at JUNCTION-105 is simulated by defining the burst location (line 13) and how the lumped 
burst coefficient (kb) changes with time. The change in (kb) is defined by specifying the burst start time 
(line 10), time for the burst to fully develop (line 11), and final burst coefficient when the burst is fully 
developed (line 12). In this example the burst starts at ts = 1 s, takes tc = 1 s to fully develop and reach 
a final burst coefficient of 0.01. The pressure head at JUNCTION-105 is shown in Figure 9.22. It can be 
seen that the pressure head at JUNCTION-105 decreases by more than 25 m as the burst is developing 
between 1 and 2 s. The pressure then recovers gradually to a pressure slightly lower than the original 
level. The results suggest that pipe bursts can introduce significant transient pressure changes in the 
system, and it is possible to detect pipe bursts by monitoring pressure signals.

9.4.8 Other applications
In addition to valve closure, pump shutdown, and pipe bursts, TSNet can also be used to simulate 
other transient events, such as valve opening, pump startup, and demand pulses with and without 
background leaks. Users can also test the effects of including open and closed surge tanks on damping 
pressure transients. Different friction models, that is steady, quasi-steady, and unsteady friction 

Figure 9.21 Transient simulation under the pipe burst scenario.
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models, are implemented in TSNet. Additionally, more simulation results can be accessed, such as 
burst discharge, pipe flow rate, and pipe flow velocity. For more information about TSNet, please refer 
to the online documentation (Xing & Sela, 2021a).
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Understand the main characteristics of Water Network Partitioning (WNP).
(2) Explain the advantages and drawbacks of WNP.
(3) Distinguish empirical and automatic approaches.
(4) Run a basic automatic procedure based on Python code.

10.1 INTRODUCTION

One of the most effective ways to reduce water distribution network (WDS) complexity is to apply the 
paradigm of ‘divide and conquer’ (Di Nardo et al., 2014c), which exploits the property that complex 
systems can be better analyzed if it can be split into many sub-components.

This technique was proposed in England in the early 1980s (Water Authorities Association and 
Water Research Centre, 1985; Water Industry Research Ltd., 1999; Wrc/WSA/WCA Engineering 
and Operations Committee, 1994) and is now implemented in many countries. It consists of defining 
smaller water districts or sectors, defined as district meter area (DMA), obtained through the 
permanent insertion of boundary valves and flow meters along properly selected pipes. This can 
significantly improve management and maintenance, and, specifically, the water balance estimation 
for water leakage, pressures control, and water security from intentional contaminations (Di Nardo 
et al., 2015a; Grayman et al., 2009).

In Figure 10.1, a layout of permanent Water Network Partitioning (WNP) with three DMAs is 
shown, highlighting flow meters, gate valves, and district boundaries.

This technique, defined more recently in Di Nardo et  al. (2013) as WNP, provides a series of 
interventions on the WDSs that require a careful economic planning by the managing authority; 
furthermore, it envisions the use of modern monitoring systems (remote control, etc.) which are 
generally becoming less expensive, and which, to be implemented, only await a new management 
policy. It is evident that having a network divided into smaller sub-regions makes it easier to study and 
manage the system (Di Nardo & Di Natale, 2011; Water Industry Research, 1999).

The definition of an optimal partitioning layout is a crucial and arduous problem. Nowadays it is 
possible to provide new opportunities to the traditional approach of analysis, design and management 

Chapter 10
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with the development of new monitoring and control technologies and with the recent growth of 
computational power used by simulation software. Therefore, WNP represents a crucial task not only 
for the technicians of the sector but also for the scientific community, because it modifies (and even 
challenges) some fundamental criteria followed in the design of water systems.

WNP contrasts with the traditional design criteria of the WDS with a high level of topological 
redundancy with many loops to have a more robust water system to face unforeseen changes in design 
conditions (such as pipe breaks or different distribution of water demand). Indeed, the introduction 
of the concept of permanent sub-districts and water sectors (Di Nardo et al., 2015b) is in opposition 
to the traditional criterion followed in the field of the hydraulic constructions (Mays, 2000) designed 
with a multi-meshed network to improve its efficiency under different operating conditions. Network 
partitioning can indeed generate a hydraulic performance deterioration of the system (Di Nardo 
et al., 2015b); in fact, when it is carried out in almost all cases on networks already designed and 
implemented using traditional design criteria, system efficiency can be partially and/or globally 
compromised. Indeed, the closure of some pipes with boundary valves can decrease, also significantly, 
the available hydraulic diameters of the whole network, with the increase of head loss and dissipated 
power and, consequently, worsening of the level of service for the users in terms of water pressure.

However, and conversely, the introduction of ‘divide and conquer’ for WDS design promotes 
innovation in management of water networks by introducing the concept of a Smart WAter Network 
(SWAN) as a key subsystem of the notion of Smart City (Di Nardo et al., 2021).

Traditionally, WNP was achieved basing on empirical suggestions, such as the number of customers 
or parcels, length of pipes or other geometric or topological criteria; while the hydraulic alteration 
due to the insertion of gate, or boundary, valves is tested with hydraulic simulation based on ‘trial 
and error’ methods. These semi-empirical approaches are not effective for large water networks with 
thousands of nodes and links because the number of possible layouts of water districts is huge and 
requires heuristic optimization approaches.

In the last 10 years, many authors proposed different procedures to obtain automatically optimal 
water network partitioning layouts (Bui et  al., 2020), based on two phases, called clustering and 

Figure 10.1 Scheme of a permanent Water Network Partitioning.
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dividing, with a systematic approach based on different innovative algorithms such as graph algorithms, 
multilevel partitioning, community structure, spectral clustering, and so on. Also, performance 
indices can measure the reduction of water network resilience because the reduction of network pipes 
availability, due to insertion of gate valves, reduces the level of service and the capacity of the water 
network to face different design conditions, as widely reported in Di Nardo et al. (2013).

The authors of this chapter developed the first automatic tool, called SWANP© (Smart Water 
Network Partitioning and Protection), to define the optimal layouts of water districts and sectors that 
is presented in this work.

10.2 ADVANTAGES OF WNP

The optimal design of DMAs simplifies monitoring and maintenance, with reference to the problems 
that will be explained in the following sections. Specifically, the main advantages of a permanent 
WNP, obtained inserting both gate valves and flow meters, can be arranged as follows:

• water balance;
• water pressure management;
• water contamination protection.

Furthermore, the data collection by monitoring of each DMA (and not of the whole network) can 
provide to water utilities other several detailed information related to each single district, such as 
demand distributions, categories of users, break frequencies, pressure levels, water quality, and so on., 
that can improve management, quality and cost of service.

10.3 WATER BALANCE

The most important problem of WDS management is the obsolescence of pipes and hydraulic devices 
(gate valves, control valves, flow meters, etc.) that generate low hydraulic performance (insufficient 
pressures, reduced resources during summer, poor water quality, etc.) and, above all, high values of 
Non-Revenue Water (NRW) both real and apparent, as reported in Lambert and Hirner (2000).

As is well known, the United Nations devoted the year 2003 (United Nation, 2003) to the problem 
of water in the world, and to the areas of the planet affected by water scarcity, suggesting actions to 
minimize waste and optimize resources. A year before, the Organization for Economic Co-operation 
and Development (OECD) already focused attention on the waste of water resources for the major 
industrialized countries, estimating that water losses in urban water networks account for around 
30% (for the 30 most industrialized countries), exceeding the optimal economic level of 10 and 20% 
(OEAD, 2002). The more recent estimation in some industrialized countries, such as Italy, indicate 
water losses of about 40% (ISTAT, 2021).

Evidently, water balance estimation is crucial to evaluate the efficiency of a WDS and to help 
management activities reduce water leakage. The estimation of water loss is achieved as follows using 
a simple mass continuity statement:

Water losses Water Inflow WaterConsumption= –  (10.1)

The practical application of the water balance is a very complex problem, from scientific and 
technical perspectives and for economic and management reasons. Some practical problems are: 
(a) water inflow depends on accuracy of flow meters; (b) water consumption depends on the ability 
of water utility to measure all user consumptions; (c) difficulty to identify user consumption (civil, 
industrial, commercial, etc.), authorized or not; (d) some water consumption is not measured (such as 
public fountains, schools, hospitals, etc.); (e) all measures have to be synchronized (or reported at the 
same time interval).
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The correct application of the water balance estimation can also provide water utilities precious 
information about the percentage of real (or physical) losses, water really lost, apparent (or administrative) 
losses, and not billed water.

Furthermore, the water balance and evaluation of network integrity presupposes the exact 
definition of the different components of the volumes to estimate the water losses and to compare 
water networks of different systems in other locations. More than technical and scientific problems 
to correctly estimate the water balance, there have been difficulties related to the drafting of an 
international ‘standard terminology’. So, the International Water Association (IWA) proposed 
a fundamental contribution (Lambert & Hirner, 2000) to define water balance components and 
compare the performance of the systems using evaluation indices equal for all countries (Lambert 
et al., 1999).

Theoretically, we can carry out a water balance on the entire distribution network, but this 
operation is not very useful because it does not provide detailed information on which parts of the 
water network can be affected by higher leakage levels; so a DMA water balance is significantly better, 
as represented in Figure 10.2, allowing a more thorough investigation and monitoring of each district 
and supporting water utilities to prioritize the choice of economic investments for operations of water 
losses detection.

Therefore, the application of a divide and conquer approach with WNP optimal design allows the 
easier application of some methodologies for the water balance estimation developed in England (UK 
Water Industry, 1999; Wrc/WSA/WCA, 1994) such as minimum night flow (MNF) and minimum 
flow consumption (MFC).

10.4 WATER PRESSURE MANAGEMENT

Another advantage of WNP is to significantly facilitate the application of water pressure management 
to reduce water leakage.

Figure 10.2 Water balance: Network vs DMA layout.
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As is known, water leakage QLeakage in the pipelines increases with increasing pressures P according 
to the relation (Khaled et al., 1992; Lambert, 2000):

Q cPLeakage = γ

 (10.2)

in which the values of the coefficients c and γ depend on the pipelines characteristics and the type 
of leak, while P (pressure or pressure head) is expressed in meters of water head.

Therefore, it is evident from Equation (10).(2) that the placement of pressure reducing valves (PRV) 
can bring about decreases in network water loss, as reported in Figure 10.3. The pressure reduction 
inevitably decreases the network hydraulic efficiency and the insertion of pressure regulation valves 
downstream to network reservoirs or sources can also reduce hydraulic performance of the whole 
water system using the same pressure control of all pipes. Therefore, a subdivision of the water network 
in some permanent DMAs can help the application of water pressure management inserting different 
PRVs upstream of each DMA and reducing water pressure for water saving. Also, it can help preserve 
the hydraulic performances of the system, guaranteeing the minimum level for the users in each DMA. 
In other terms, WNP also allows adjustment of the pressure values in each DMAs, considering the 
different needs of the urban areas (Alonso et al., 2000).

10.5 WATER CONTAMINATION PROTECTION

Recent applications of water network partitioning have also shown interesting benefits with respect to 
protecting water systems from intentional contamination according to the dual-use value criteria (Di 
Nardo et al., 2015a; Grayman et al., 2009). Indeed, WNP has some primary aims (‘main-use value’), 
related to water balance, pressure management, leakage reductions, and so on., and a secondary 
aim (or ‘dual-use value’) that consists of providing water protection from accidental or intentional 
contaminations. In this manner, the water distribution system protection obtained with WNP is 

Figure 10.3 Flows reduction through pressure management.
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capable of a likely return on investment because evidently only a small portion of the system lifetime 
will be spent on network protection while the majority of the system lifetime will be spent on the day-
to-day management of achieving the main goals, as illustrated in Di Nardo et al. (2015a).

The authors investigated how WNP can reduce the risk of user contamination and limit the effects of 
a malicious (terroristic) act on water distribution systems. Specifically, Di Nardo et al. (2015a) showed 
that an optimal design of permanent DMAs can reduce exposures due to terrorist contamination 
with cyanide. This is done by closing all gate valves and quickly sectorizing the attacked district. 
The analysis was carried out on a real water distribution network comparing different sectorization 
scenarios and the simulation results showing the effectiveness of an early warning system coupled 
with WNP to significantly reduce the contamination risk for users.

In Figure 10.4, a simulation on the Matamoros network is reported, in which the triangle indicates the 
insertion point of contamination attack, light gray being the isolated DMA (i-DMA) after contamination 
alarm, and the dot is the exposed user without isolating district and the circle is with isolating actions. 
The effectiveness of WNP with isolation is clear: the number of exposed users, proportional to circle 
dimension, are significantly lower. More details can be found in Di Nardo et al. (2015a).

10.5.1 Clustering and dividing
As anticipated, the main problem of WNP is represented by the perturbation on the water distribution 
system due to pipe closing. Indeed, the insertion of gate valves can also significantly reduce the 
water network performance in terms of alternative paths of flows in case of pipe breaks (decrease of 
topological redundancy) and nodal water pressures (decrease of energy redundancy).

Figure 10.4 Simulation results of risk mitigation from terroristic attack of Matamoros water distribution network 
(Di Nardo et al., 2015a).
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Physical (or permanent) district metering gives more opportunities than virtual districting 
metering, which uses only flow meters for water balance without closing the pipe (Di Nardo et al., 
2018). The permanent definition of DMA allows to simplify the monitoring and managing of WDS 
and to optimize and simplify water pressure management for leakage reduction thanks to insertion 
of district pressure regulation valves (PRV). In addition, physical district metering can also be used 
to protect water networks from accidental or intentional contamination, implementing a dual-use 
approach (Di Nardo et al., 2015a).

On the other hand, this methodology is complicated to achieve because, by intervening in a physical 
way on the system (with closing pipes by gate valves), it is necessary to verify the variations of the 
system with respect to the initial conditions through hydraulic simulation and calibration techniques 
(Di Nardo & Di Natale, 2011).

The main outcomes that can be achieved through permanent WNP optimal design include (but are 
not limited to): (a) minimize the alteration of hydraulic performance (b) minimize the number of flow 
meters (the best management condition occurs when a single meter is installed for each district) in 
order to simplify the computation of water balance (Twort et al., 2000).

The literature offers empirical suggestions for water network partitioning based on DMAs 
characteristics (number of users, pipes length, etc.) (Water Industry Research, 1999); or ‘trial and 
error’ approaches used with hydraulic simulation software (Di Nardo et al., 2013). However, these 
suggestions and approaches are very difficult to apply to large water supply systems. In the last 10 
years, many optimization techniques have been proposed, based on graph and network theory, that 
have significantly improved water network partitioning.

Several suggestions about DMA size can be found in the technical literature, that propose to include:

• 1000–3000 properties (Water Authorities Association and Water Research Centre, 1985);
• 2500–12 500 inhabitants with 5–30 km of water network (Butler, 2000);
• a number of properties up to 1000 (small DMA) and 3000 (medium DMA) and 5000 (large 

DMA) (as recommended by the UK Water Industry Research).

These guidelines cannot be easily extended to large water supply systems since they are based on 
empirical considerations, and sometimes on a small number of case studies.

Different optimization methods allow to define automatic procedures for water network 
partitioning (or sectorization) (Bui et al., 2020). Generally, the procedures are divided into the two 
phases discussed below (Di Nardo et al., 2016d; Perelman et al., 2015).

10.5.1.1 Phase 1
Clustering is aimed at defining the shape and the dimensions of the network subsets in order to 
minimize the number of connections (or other characteristics like diameter, length, conductance, 
etc.) balancing the number of nodes (or other characteristics like flow, pressure, etc.) for each district.

As shown in Figure 10.5, with reference to a simple network clustered in two subnetworks (highlighted 
in red and blue colors in three different ways) shows the importance of clustering, minimizing the 
number Nb of boundaries and balancing the nodes. In Figure 10.5a, there are only three links (or 
boundaries) between two subnetworks but this solution is not well balanced with six red nodes and 
12 blue nodes. Figure 10.5b shows a perfect balanced scheme with nine nodes both for blue and red 
nodes but a significantly higher number (seven) of boundaries. Finally, in Figure 10.5c shows the best 
clustering with a perfect balance of nodes (nine) and the minimum number of boundaries (three).

Therefore, the example shows that already with a very small network, different clustering layouts are 
possible. In a large water network, the problem to find the optimal solution in terms of minimization of 
elements between the clusters (links or boundaries) and of balancing of nodes or other characteristics 
in a way that the similarity (or the density) in each cluster is maximized (as number of nodes, length 
of pipes or flow delivered, etc.) is an NP-hard problem (Fortunato, 2010).
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10.5.1.2 Phase 2
Dividing is aimed at physically partitioning the network by selecting boundaries (pipes) in which to 
insert flow meters or gate valves, as reported in Figure 10.6.

In the case of a small network, such as that represented in Figure 10.6, this phase, once the number 
Nfm of flow meters is fixed, can be carried out with the need of hydraulic software, permutatively, 
inserting the number of boundary valves Nbv = (Nb–Nfm), minimizing the alteration of hydraulic 
performance of water distribution network due to the closure of some pipes with the insertion of 
boundary valves between clusters. In the dividing phase, for large water networks, this problem is very 
complex and it is impossible to test all permutations of the possible positioning of flow meters and 
boundary valves in links between clusters.

This problem is an NP-hard problem (Bodlaender et al., 2010) and it requires heuristic algorithms 
to find optimal solutions (Tindell et al., 1992). In other terms, once all the Nb boundary pipes between 
clusters have been defined, those that can be closed must be chosen among all the possible combinations 
NC of water network partitioning layouts, expressed by the following binomial coefficient:
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Figure 10.5 An example of possible clustering of a small network.

Figure 10.6 An example of possible dividing of a small network.
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in which, already with a small network with 30 boundary pipes (Nb) and only 10 flow meters (Nfm), the 
number of all possible water partitioning layout, NC, reachs about 3 × 107, as reported in Figure 10.7.

It is important to emphasize that even for a small water supply network and for a small number k 
of DMAs, NC can be such a large number that it is often computationally impossible to investigate the 
entire solution space.

Therefore, it is clear that both the phases of clustering and dividing require us to define a permanent 
water network partitioning, and cannot be achieved using a traditional approach based on empirical 
suggestions or hydraulic simulation based on ‘trial and error’ methods if an effective optimal solution 
is needed. Indeed, these empirical or semi-empirical approaches are not effective for large water 
networks and require automatic procedures, which will be explained in the following section.

10.5.2 Innovative methods for optimal WNP design
As anticipated, traditional approaches for WNP cannot find the optimal design of DMAs for large 
water distribution networks. In this section, we introduce some innovative methods based on different 
algorithms, often developed in other disciplines for different classes of problems.

With reference to the clustering phase, the main methods proposed in the literature (Di Nardo 
et al., 2018) to obtain a WNP are based on the following techniques:

(1) graph algorithms (Jacobs & Goulter, 1989; Savic & Walters, 1995; Tzatchkov et  al., 2006) 
starting from the representation of the water network as a simple weighted graph considering 
G = (V, E), where V is the set of n vertices (or nodes) and E is the set of m edges (or pipes). 
Subsequently, the network is defined by a n × n connectivity matrix A and the matrix of weights 
W n by n (matrix of the intensity of the connections between nodes). Then, the application of 
different techniques of graph theory, in particular related to the search for minimum paths 

Figure 10.7 Number NC of possible dividing layout of WNP for a small network changing Nb.
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(with or without the use of weights on links and nodes), allows us to obtain groupings of nodes 
on which it is then possible to apply the next dividing phase. Through these techniques it is 
possible to quickly identify the districts in the subsequent dividing phase and to guarantee a 
minimum service level compatible with original network reliability (Di Nardo & Di Natale, 
2011; Di Nardo et al., 2014a). The ‘least important’ or ‘most redundant’ sections are identified 
and, at the same time, the number of sections on which it is needed to insert gate valves and/
or meters is reduced.

(2) multilevel partitioning (Di Nardo et al., 2015c) that starts from techniques implemented in 
informatics tools allows us to automatically obtain water network clustering, minimizing 
the number of links between districts. In fact, for simulations that need huge computational 
power like, for example, simulations based on finite element methods, parallel computation 
can be used. In this case, it is necessary to distribute the finite element mesh among different 
processors. This distribution, to improve performance, must be made according to two main 
rules: (1) an equal number of finite elements has to be allocated to each processor for balancing 
the workload; (2) a minimum number of adjacent elements between processors has to be found 
for reducing communication overhead. This problem can be assimilated to partitioning of 
a computational mesh in a k-way or in k-processors that will perform each computational 
process. The mesh is commonly schematized by a graph with vertices corresponding to 
individual computational processes (e.g., finite elements) and with links corresponding to their 
connections. Starting from this schematization of the mesh, partitioning techniques of a graph 
in k-way were developed in Computer Science for the optimal allocation of a computational 
mesh in parallel or distributed computing architectures. The proposed methodology is based 
on the similarity between a calculation mesh and a water distribution network, in particular 
on the analogy between the districts design criteria and those of parallel computing system, in 
other words: the balancing of the load of calculation to be assigned to different processors can 
be compared with the balancing of the number of nodes (or the flow rates) to be assigned to 
each water district, and the minimization of the connection elements between two processors 
corresponds to the minimization of the pipe closures.

(3) community structure, is a bottom-up hierarchical algorithm based on the measure of network 
density to define clusters. These algorithms identify sub graphs in an iterative manner, 
aggregating nodes time by time and then the groups of nodes, minimizing the density between 
groups and maximizing the density within each group. Density therefore becomes a measure 
of the quality of the clustering process, where for density it means the number of connections 
between nodes. Modularity and centrality of segments are generally used as metrics for 
measuring density (Di Nardo et al., 2015c; Newman, 2004).

(4) spectral approach, developed in the last few years (Di Nardo et al., 2016a; Herrera et al., 2010) 
starts from considering the network as a simple graph G = (V,E), where V is the set of n vertices 
vi (or nodes) and E is the set of m edges. Subsequently, it defined the matrix of connectivity 
A n × n and the matrix of weights W n × n (matrix of the intensity of the connections between 
nodes). In this case, methodologies and algorithms of complex networks theory are adopted 
(Boccaletti et al., 2006), assuming water distribution networks as complex systems, constituted 
by thousands of elementary units (nodes and stretches), connected to form meshes (loop), and 
strongly geographically bound (Boccaletti et al., 2006). Starting from the adjacency matrix A, 
it defined the diagonal matrix of the degrees D n × n (matrix of the degree of connection of each 
single node), and therefore the Laplacian matrix of the graph L = D–A, whose spectrum defines 
important characteristics of the network. In detail, if k is the number of clusters in which the 
network has to be divided, the first k eigenvectors of the Laplacian define a new representation 
of the nodes that facilitates the identification of the subsets (Fiedler, 1973). It is shown that 
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the obtained clustering layout minimizes the number of boundary (or infra-clusters) pipes and 
simultaneously balances the number of nodes for each clusters (or the sum of the weights if the 
graph is weighed).

With reference to the dividing phase, two different approaches are proposed in the literature:

(1) By selecting pipes for the insertion of flow meters or gate valves using recursive bisection 
procedure (Ferrari et al., 2014);

(2) Optimization technique (Di Nardo et al., 2016b) with the objective of identifying the optimal 
layout that minimises the economic investment and the hydraulic deterioration.

Specifically, once the number of Nb is found after the clustering phase, both methods aim to find 
the optimal NC layout, which can reduce the number of flow meters Nfm or the number of boundary 
(gate) valves Nbv.

Usually, the optimization approaches adopted some performance indices (Di Nardo et al., 2015b), 
both in the objective functions chosen and after the optimization process, also to compare solutions 
providing to operators a wide perspective of the alteration caused by the closing pipes with gate valves 
and, consequently, the reduction of resilience, robustness, pressure, and so on. comparing different 
solutions, in terms of number of flow meters and gate valves inserted in the water network for each 
number of cluster selected.

For this reason, often a multi-objective optimization technique is preferred in order to take into 
account simultaneously different performance indices and installation and maintenance costs of 
devices (flow meters and boundary valves).

10.5.3 WNP with SWANP© software
After more than 15 years of research work on WNP and many international experiences of case 
studies, the authors thought that the time was ripe to collect all knowledge, algorithms and procedures 
to develop an automatic software which can automatically define the optimal layout of DMAs and 
provide to a flexible decision support system to water utilities to find different solutions in terms of 
number of districts, performance indices, compliance with the physical constraints, and so on.

Therefore, the authors have developed a software in Phyton (Di Nardo et al., 2014b, 2016c, 2020) 
in geographical information system (GIS) environment for the automatic clustering and dividing of a 
water distribution network. The software, called SWANP© (Smart Water Network Partitioning and 
Protection) and registered to Copyright Office Washington on March 10, 2019, implements different 
clustering algorithms and objective functions. It can carry out hydraulic simulation both in demand 
driven analysis (DDA) and pressure driven analysis (PDA), as well as water quality simulation to select 
the optimal positioning of quality detection devices to protect water systems from contamination.

SWANP© provides to the decision-maker different WNP layouts using topological, energy, hydraulic 
and protection performance indices.

In Figures 10.8 and 10.9, an example of the graphical user interface (GUI) of SWANP© is reported 
showing the results of both a clustering phase with four DMAs and a dividing phase with four flow 
meters and 11 gate valves for a small network in Italy.

10.5.4 Phyton code to design an optimal WNP
In this last paragraph, a Python code for students and operators to design an optimal water network 
partitioning is provided using a spectral method for the clustering phase and a multi-objective genetic 
algorithm for the dividing phase.

The code briefly gives some notes on the most important aspects (INPUT, OUTPUT, etc.) of the 
algorithms used. The readers can find more information in Di Nardo et al. (2013, 2016a).
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1 def cluster_phase(path,network,n_dma):

2 from epanettools import epanet2 as ep

3 import numpy as np

4 import os

5 from sklearn.cluster import SpectralClustering

6 """

7 spectral approach (Jianbo Shi, Jitendra Malik 2000) to perform

8 clustering phase

9 input:

10 network = Epanet input file of water distribution network (.inp)

11 path = directory of WDS file

12 n_dma = number of DMAs

13 output:

14 dma = labels that define cluster for each node

15 boundarypipes = pipes between two different DMAs

16 """

17 #compute the adjacency matrix of water distribution network

18 os.chdir(path)

19 err = ep.ENopen(network,‘net.rpt’,’’) #opening Epanet network file

20 err,n_node = ep.ENgetcount(ep.EN_NODECOUNT) #reading number of nodes

21 err,n_link = ep.ENgetcount(ep.EN_LINKCOUNT) #reading number of links

22 M = np.zeros((n_link,3), dtype = np.int) # array with index of link, start node and end node for each 
pipe

23

24 for i in range(0,n_link):

25  err,startnode,endnode=ep.ENgetlinknodes(i + 1)

26  M[i] [0]=i+1 # index of i-th pipe

27  M[i] [1]=startnode # start node of i-th pipe

28  M[i] [2]=endnode # end node of i-th pipe

29 ep.ENclose() #closing Epanet network file

30 A=np.zeros((n_node,n_node),dtype=np.int) # adjacency matrix of water network

31 for i in range(0,n_link):

32

33  if A[M[i][1]-1][M[i][2]-1] == 0 and A[M[i][2]-1][M[i][1]-1] == 0:

34

35  A[M[i][1]-1][M[i][2]-1]=1

36

37  A[M[i][2]-1][M[i][1]-1]=1

38 clusters=SpectralClustering(n_clusters=n_dma,affinity = ‘precomputed’).fit(A) # spectral clustering

39 dma=clusters.labels_

(Continued)



249Innovative methods for optimal design of water network partitioning

40 boundarypipes=[]

41 for k in range(0,len(M)):

42

43  cluster_node_i=dma[M[k][1]-1]

44  cluster_node_j=dma[M[k][2]-1]

45

46  if cluster_node_i != cluster_node_j:

47

48   boundarypipes.append(k + 1)

49 return dma,boundarypipes

50 def dividing_phase(path,network,boundarypipes,design_pressure):

51 import numpy as np

52 from pymoo.model.problem import Problem

53 from pymoo.factory import get_algorithm, get_sampling, get_crossover, get_mutation

54 from pymoo.optimize import minimize

55 import matplotlib.pyplot as plt

56 from epanettools import epanet2 as ep

57 import os

58 """

59 NSGAII algorithm to perform dividing phase

60 input:

61 network=Epanet input file of water distribution network (.inp)

62 path=directory of WDS file

63 boundarypipes=pipes between two different DMAs

64 output:

65 FO=values of computed objective function

66 flow_meters=array wiht optimal positioning of flow meter

67 (0 - closed pipe; 1 - opend pipe)

68 """

69 os.chdir(path)

70 n_variables=len(boundarypipes) #number of variables

71 class MyProblem(Problem):

72  def __init__(self):

73   super().__init__(n_var=n_variables, n_obj=2, n_constr=1,

74    xl=np.zeros(n_variables), xu=np.ones(n_variables),type_var=int)

75

76  def _evaluate(self, x, out, *args, **kwargs):

77

(Continued)
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78   ep.ENopen(network,‘rete.rpt’,’’) #opening Epanet network file

79

80   err,n_node=ep.ENgetcount(ep.EN_NODECOUNT) #reading number of nodes

81

82   err,n_link=ep.ENgetcount(ep.EN_LINKCOUNT) #reading number of pipes

83

84   err,n_serb=ep.ENgetcount(ep.EN_RESERVOIR) #reading number of reservorir

85

86  dim_x=max(x.shape)

87  f1=np.zeros(dim_x)

88  f2=np.zeros(dim_x)

89  constraint=np.zeros(dim_x)

90  #chiusura dei tratti

91  for l in range(0,dim_x):

92

93  f1[l]=sum(x[l,:])

94  for k in range(0,len(boundarypipes)-1):

95   err=ep.ENsetlinkvalue(boundarypipes[k],4,np.int(x[l][k]))

96

97

98   err=ep.ENsolveH() #run hydraulic simulation

99

100   pwr_node=np.zeros(n_node-n_serb, dtype=float)

101

102   pressure=np.zeros(n_node-n_serb, dtype=float)

103

104

105   pwr_node=np.zeros(n_node, dtype=float) #compute objective function 1 (number of flow meters)

106
  for k in range(0,n_node-n_serb):

107

108   err,head=ep.ENgetnodevalue(k+1,ep.EN_HEAD)

109

110   err,demand=ep.ENgetnodevalue(k+1,ep.EN_DEMAND)

111

112   err,pressure[k]=ep.ENgetnodevalue(k+1,ep.EN_PRESSURE)

113   pwr_node[k]=head*demand

114

115  f2[l]=-sum(pwr_node) #compute objective function 2 (node available power)

116

(Continued)
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117  constraint[l]=design_pressure-min(pressure)

118

119  out["F"]=np.column_stack([f1, f2])

120

121  out["G"]=constraint

122

123  #chiusura epanet

124  ep.ENclose()

125 problem=MyProblem()

126 method=get_algorithm("nsga2",

127   pop_size=100,

128   sampling=get_sampling("int_random"),

129   crossover=get_crossover("int_sbx", prob=1.0, eta=3.0),

130   mutation=get_mutation("int_pm", eta=3.0),

131   eliminate_duplicates=True,

132   )

133 res=minimize(problem,

134   method,

135   termination=(‘n_gen’, 100),

136   seed=1,

137   save_history=True,

138   disp=False)

139 res.F[:,1]=np.abs(res.F[:,1]) #print Objective Space

140 FO=res.F

141 flow_meters=res.X

142 plt.title("Objective Space")

143 plt.scatter(FO[:, 0], FO[:, 1])

144 plt.xlabel(‘FO1’)

145 plt.ylabel(‘FO2’)

146 plt.grid()

147 plt.show()

148 return FO,flow_meters

149

150

151

152

153

154

155

207
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Figure 10.8 Clustering phase with SWANP©.

Figure 10.9 Dividing phase with SWANP©.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Understand the linking of EPANET tool kit functions in MATLAB Dynamic Link Library.
(2) Work with EPANET tool kit functions.
(3) Work with Genetic Algorithm tool in MATLAB.
(4) Understand the concepts of Fuzzy logic, Optimization and Reliability.
(5) Develop a reliability-based optimization model for design of water supply pipe networks in 

MATLAB by combining EPANET toolkit functions.
(6) Appreciate the difference between binary logic and fuzzy logic in terms of reliability achievement 

for the water supply pipe networks.
(7) Work with different types of networks of water supply for their design.
(8) Analyse the results and suggest the best solution depending upon the requirement of the water 

users.

11.1 INTRODUCTION

11.1.1 Brief history of pipe networks
The history of water distribution systems is parallel to the history of civilization. All earlier civilizations 
developed on the banks of rivers. More than 2000 years ago the city of Rome had a well-developed 
water supply system. The means for transportation and water distribution/supply and irrigation were 
also developed, and artificial conduits were also constructed for the conveyance of water.

Even though water distribution systems existed earlier, modern distribution systems are of recent 
origin. In 1544, the British Parliament passed an act to provide clean water to the residents of London. 
In 1962, Boston was credited with the earliest recorded water supply in USA and used ductile iron 
pipes in 1968. In 1746, the first piped supply for the entire community was built in Schaeffer town, 
Pennsylvania. Now, modern water transmission and distribution systems throughout the world use 
pipes of ductile iron, steel, concrete and plastic, and so on. to meet the demands from the public.

11.1.2 Development of water supply engineering
Any community water supply/distribution systems should aim to:

Chapter 11
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• provide enough water to meet all their usage requirements;
• supply water at required pressures to draw adequate water flow;
• establish and maintain water quality integrity – supplying good quality of water which is free 

from disease causing bacteria and chemicals (not to mention taste and odor);
• maintain the level of service within the budgets – consistent quality, quantity, and pressure over 

space and time.

To meet the above requirements, every component should be designed, constructed and maintained 
properly. The critical tasks to be performed in the overall planning process of a water distribution 
network consists of three phases: layout, design and operation. Design plays a vital role in the water 
distribution system. Optimal design of a water distribution network is the aim of any agency dealing 
with water supply/distribution. Through a trial-and-error procedure and using a simulation model, a 
water distribution network may be designed. Further, the knowledge gained over experience may be 
utilized in choosing the design parameters. However, there is no guarantee that the design selected 
is optimal. Especially, when the network is large, it is difficult to reach a satisfactory solution by this 
method.

Hence, mathematical optimization models are preferred compared to a trial-and-error procedure. 
As the analysis and design process of a water distribution system is a complex and non-linear process, 
and with the advancements in computer technology/capacities, people nowadays use a variety of 
software packages or are developing their own algorithms.

11.1.3 Brief description of optimization techniques
Wide varieties of optimization tools have been applied in the past 30 years for optimal design of 
networks which include linear programming, different kinds of non-linear programming, heuristic 
methods like genetic algorithms, simulated annealing techniques, ant colony optimization, bee colony 
optimization, and so on. Each method has its own advantages and disadvantages in the formulation, 
speed of solving, handling nonlinearity, efficiency, and so on. The complexity of the optimal design 
of a distribution network is due to the discrete characteristics of decision variables, discrete and 
complicated cost function required to address the materials, labor, and overall installation/operational 
setting, the need for considering multiple demand loading patterns, uncertainty in demands, location 
of tanks, pumping station, booster pumps and valves, and so on. Selecting a network configuration 
with minimum pipe cost and maximum reliability is a complex process (Afshar et al., 2005; Bhave and 
Gupta, 2006). Several works have been reported in the literature for the optimal design and some of 
them consider certain reliability factors also.

It may be possible to have different solutions satisfying the requirements of an engineering problem. 
Naturally these solutions would have different costs and the objective would be to find the least cost 
solution. On the other hand, in a water resource project, the objective may be to find a solution 
that would give maximum benefits. A solution having minimum cost or maximum benefits is termed 
as optimum solution (Bhave, 2003) and the concept of obtaining the optimum solution is termed 
optimization.

When a physical problem is expressed mathematically in the form of an optimization framework, 
the expression defining the objective (maximization or minimization) is termed as objective function, 
whereas different conditions which the objective has to satisfy are termed as constraints, and the 
entire problem consisting of the objective function and constraints is termed as optimization problem. 
Mathematically, such an optimization problem can be expressed as:

Maximize Minimize/ Z f x x xn= ………( )1 2, , ..,
 

Subject to  whereg x x x b i mi n i1 2 1 2, , .., ,……… ≤ ≥ = = ……( )  
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where Z represents the objective function which involves ‘n’ parameters or decision variables x1, x2… 
xn. gi(x1, x2, …, xn) represents a set of m constraints expressed as equalities or inequalities.

Depending on the nature of the problem, there are different methods available for solving the 
optimization problem. Most of the problems are non-linear in nature, which are solved by search 
techniques. Some optimization methods that can be used for the optimal design of water distribution 
networks are Exhaustive Enumeration, Classical Optimization, Linear Programming, Non-Linear 
Programming, Dynamic Programming, Geometric Programming, Integer Programming, Stochastic 
Programming, Stochastic search methods, Genetic Algorithm method, Simulated Annealing Method, 
Goal Programming, Swarm intelligence and so on. (Bhave, 2003).

11.1.4 Brief description of reliability concept
Reliability of water distribution networks is another aspect on which considerable research has been 
carried out. The words ‘reliable’ and ‘reliability’ are generally used in our daily life to indicate some 
degree of confidence in a person/thing/system. The word reliability( = re + liability) means repeated 
liability because of various breakdowns and failures of a device/system. Reliability of a device or 
system is defined as the probability that it can perform its purpose within tolerance for the period of 
time intended under the given operating conditions (Gurjar, 2007).

Reliability may be quantified using different methods and while assessing reliability, various factors 
influencing the performance are to be taken into consideration. A perfectly reliable water supply 
system must be able to supply desired quality of water in required quantities with desired residual 
heads to all consumers at their tapping points throughout the design period.

Consideration of reliability in the optimal design of water distribution networks has received 
increasing attention (Prasad, 2008). Reliability of a water distribution system is concerned with 
the ability of the network to provide an adequate supply to the consumers under both normal and 
abnormal operating conditions. Extensive research on reliability of water distribution systems has 
been performed and various measures were developed to address the reliability of the system under 
the failure of components or due to demand variation. However, none of these measures have been 
accepted universally. This is mainly due to the problem of addressing all the parameters, which affect 
the performance of the system as a single measure. If the network is designed with reliability alone as 
a prime objective, then the resulting system may also be an uneconomical one.

11.2 CONCEPT OF FUZZY SET THEORY

11.2.1 Brief description of fuzzy set theory
Zadeh (1965) first proposed fuzzy set theory in the field of system theory. Since then, it has been 
applied in many fields of engineering including optimization, risk analysis and resource management. 
The fundamental principle of fuzzy set theory is that a parameter can be ‘noisy’ or ‘ill-defined’ and 
can take on a range of values having a degree of membership. The incorporation of fuzzy set theory 
and fuzzy logic into computer models has shown a tremendous payoff in areas where intuition and 
judgment still play a role in the model (Ross, 1997).

Fuzzy sets in practice are often understood as fuzzy numbers and are represented through 
membership functions. Zadeh (1965) proposed the use of fuzzy membership function with values 
between 0 and 1. A fuzzy set can be represented as:

A x x x XA= ∈{( ( )) },µ /  

where µA(x) is the membership function indicating the degree of membership or degree of belongingness 
with values between 0 and 1. A fuzzy set is different from a normal set. The normal set follows binary 
logic, that is a particular member belongs to the set or is not a member, whereas in a fuzzy set, there 
is gradual transition between membership and non-membership.
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11.2.2 Membership functions
The most common types of membership functions for fuzzy numbers are: (1) triangular; and (2) 
trapezoidal. A fuzzy number is any fuzzy variable defined over a real number set. A fuzzy parameter 
x is shown by a triangular function in Figure 11.1 and by a trapezoidal function in Figure 11.2. The 
value of fuzzy parameter x is shown along the x-axis and its membership value µA(x) is shown along 
the y-axis. Here, µA(x) gives the membership value of parameter x in fuzzy set A. In both the figures, 
AB represents the support; while in Figure 11.2, DE represents the core, which reduces to the most 
likely value, represented by points C and CB in Figure 11.1 and AD and EB in Figure 11.2 represent 
the boundaries.

The triangular function of Figure 11.1 corresponds to the imprecision of the type ‘the parameter 
x is included between xa and xb and is most likely to be xc’. The trapezoidal function of Figure 11.2 
corresponds to the imprecision of the type ‘the parameter x is certainly included between xa and 
xb and is most likely between xd and xe’. The membership function mathematically represents the 
membership of a parameter in a fuzzy set and always lies between zero and one. Thus:

µA x( ) [ ],∈ 0 1  

in which the symbol µA(x) is the degree of membership of parameter x in the fuzzy set A. Therefore 
µA(x) is a value on the unit interval that signifies the degree to which parameter x belongs to fuzzy set 
A. Since x is a continuous variable, its membership value is also continuous between zero and one.

Figure 11.1 Triangular membership function.

Figure 11.2 Trapezoidal membership function.
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11.2.3 Types of fuzzy sets and fuzzy functions
There are two types of fuzzy sets, namely discrete fuzzy set and continuous fuzzy set. In discrete fuzzy 
sets, the members are associated with their degree of belongingness.

For example:

A= ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 0 1 3 0 3 4 0 8 5 1 6 0 8 7 0 3 8 0 1, . , , . , , . , , , , . , , . , , .
 

A continuous fuzzy set is expressed as:

A x x x f x f xA A= = ≤ ≤{( ( )) ( ) ( ) ( ) }, ,µ µ/  0 1  

A set of elements whose degree of membership equal to 1 is called core.

Support /A x xA( )= ={ }( ( )µ 1  

A set of elements whose degree of belongingness is greater than zero is called support:

Core A x xA( )= >{( ( ) }/µ 0  

A fuzzy set is considered normal if core is nonempty:
α-cut (or) α-level set: α-cut of A = {(x/µA(x) ≥ α}
strong α-cut of A = {(x/µA(x) > α}
Crossover points: These are the points of x, which have µA(x) = 0.5.
Convex fuzzy set: if x1 and x2 have, µA(x1) and µA(x2), then it is said to be convex fuzzy set, if
µA(λx1 + (1–λx2))>λµA(x1) + (1–λ) µA(x2), at an intermediate point, the membership is greater than the 

average.
Similar to normal set theory, fuzzy set theory also has the following functions.

11.2.3.1 Complement of fuzzy set
It indicates the non-membership of the given set. It is represented as:

A x x x XA
1 1= − ∈{( ( ( )) },  /µ  

11.2.3.2 Intersection
It represents the minimum degree of belongingness of a particular member in two different sets:

µ µ µA B x A x B x∩ =( ) ( ( ) ( ))min ,  

11.2.3.3 Union
It represents the maximum degree of belongingness of a particular member in two different sets:

µ µ µAUB x A x B x( ) ( ( ) ( ))max ,=   

Example: Let us consider a discrete fuzzy set A = {(2,0.1),(3,0.3),(4,0.8),(5,1),(6,0.8),(7,0.3),(8,0.1)}
Then the support, core and α-cut are extracted from the set as follows:

Support (A) = {2,3,4,5,6,7,8}
Core(A) = {5}, hence it is a normal set
Let α = 0.3, α-cut of A = {3,4,5,6,7}
Strong α-cut of A = {45,6}
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Let B = {(2,1),(3,0.7),(4,0.3),(5,0.1)}
So, from the two sets A and B, intersection and union can be obtained as follows:

µA B x∩ ( ) ( ) ( ) ( ) ( ){ }= 2 0 1 3 0 7 4 0 3 5 0 1, . , , . , , . , , .
 

µAUB x( ) ( ) ( ) ( ) ( ) ( ) ( ) (= 2 1 3 0 7 4 0 8 5 1 6 0 8 7 0 3 8 0 1, , , . , , . , , , , . , , . , , . )){ }  

11.3 RELIABILITY ANALYSIS OF WATER SUPPLY PIPE NETWORKS

11.3.1 Definition of reliability index
Most researchers have defined reliability based on meeting consumer demands and incorporated this 
into optimization models. Very few researchers focused on excess residual pressures, so the satisfaction 
levels of these excess residual pressures have not been considered. Hence, in the present study, we 
defined a new parameter to assess the reliability of a water distribution network and incorporated 
it into the optimization model. The Network Reliability Parameter (NRP) is defined as the ratio of 
algebraic sum of the product of demand and satisfaction index at all the demand nodes in the network 
to the total demand of the network (Chandramouli, 2013).

Mathematically, it is expressed as:

NRP Q SI Q i Ni i i= ∑ ∑ =( )* / to1
 

(11.1)

where i is the index representing the demand nodes in the network; Q is the rate of flow required in 
m3/s at a demand node in the network; N is the number of demand nodes in the network and SI is the 
Satisfaction Index at the demand node.

11.3.1.1 Satisfaction index
In finding the NRP, the satisfaction index plays a significant role. In the present study, fuzzy logic is 
used to obtain the satisfaction index. The satisfaction index is the membership function associated 
with the residual pressures. It represents the degree of belongingness of a particular value in the 
specified range. If x represents the residual pressure, then µA(x) represents the membership function 
corresponding to x. Here, x is the residual pressure within the range specified. The maximum value of 
satisfaction index is 1 whereas the minimum is 0. The trapezoidal membership function is considered, 
and the details are provided in the results and discussions section.

The following algorithm is adopted to find the NRP.

• Step 1: Standard benchmark network/real network are selected from the literature.
• Step 2: The networks are analysed using EPANET.
• Step 3: The heads at all the demand nodes are obtained.
• Step 4: The heads obtained are compared with the minimum heads required and then the 

residual heads are computed.
• Step 5: The residual heads are linked with the satisfaction level of the consumers through 

membership function. A trapezoidal membership function is adopted with residual heads. For 
example, if the residual heads are in the range of 10–15 m it adopts a satisfaction level of 100% 
and if the residual head is less than 0 m and greater than 25 m, it adopts a satisfaction level of 
0%. In between, it adopts a straight-line variation.

• Step 6: NRP is determined using the formula mentioned above.



261Reliability analysis using optimization

11.3.2 Ranges of residual pressures and satisfaction levels based on fuzzy logic
The details of various ranges of residual pressures considered in the present study are presented below 
in Tables 11.1–11.3. These ranges are fixed by trial and error.

11.3.2.1 Satisfaction index based on fuzzy logic for different ranges of residual pressures
The satisfaction indices for different ranges are presented below in Tables 11.4–11.6. The trapezoidal 
membership functions for different ranges are shown in Figures 11.3–11.5.

11.3.2.2 Satisfaction index based on binary logic for different ranges of residual pressures
In binary logic, there are only two possibilities of a particular value belonging to the range or not. 
No gradual variation within the range is considered in binary logic. The satisfaction indices based on 
binary logic for the same ranges which are considered for fuzzy logic are given in Tables 11.7–11.9. The 
graphical representation of the satisfaction indices for different ranges is shown in Figures 11.6–11.8.

Table 11.1 Range-1 Residual pressures (0–15 m).

Serial No. Range of Residual Pressures in m

1 0–5

2 5–10

3 10–15

Table 11.2 Range-2 Residual pressures (0–25 m).

Serial No. Range of Residual Pressures in m

1 0–10

2 10–15

3 15–25

Table 11.3 Range-3 Residual pressures (0–30 m).

Serial No. Range of Residual Pressures in m

1 0–15

2 15–25

3 25–30

Table 11.4 Satisfaction index based on fuzzy logic for Range-1.

Serial No. Range of Residual Pressures at Demand 
Nodes in the Network (in m)

Satisfaction Index

1 0–5 x/5

2 5–10 1

3 10–15 (15-x)/5
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Table 11.5 Satisfaction index based on fuzzy logic for Range-2.

Serial No. Range of Residual Pressures at Demand 
Nodes in the Network (in m)

Satisfaction Index

1 0–10 x/10

2 10–15 1

3 15–25 (25-x)/10

Table 11.6 Satisfaction index based on fuzzy logic for Range-3.

Serial No. Range of Residual Pressures at Demand 
Nodes in the Network (in m)

Satisfaction Index

1 0–15 x/15

2 15–25 1

3 25–30 (30-x)/5

Figure 11.3 Trapezoidal membership function for Range-1.

Figure 11.4 Trapezoidal membership function for Range-2.
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Figure 11.5 Trapezoidal membership function for Range-3.

Table 11.7 Satisfaction index based on binary logic for Range-1.

Serial No. Range of Residual Pressures at Demand 
Nodes in the Network (in m)

Satisfaction Index

1 0–5 0

2 5–10 1

3 10–15 0

Table 11.8 Satisfaction index based on binary logic for Range-2.

Serial No. Range of Residual Pressures at Demand 
Nodes in the Network (in m)

Satisfaction Index

1 0–10 0

2 10–15 1

3 15–25 0

Table 11.9 Satisfaction Index based on Binary Logic for Range-3.

Serial No. Range of Residual Pressures at Demand 
Nodes in the Network (in m)

Satisfaction Index

1 0–15 0

2 15–25 1

3 25–30 0

Figure 11.6 Satisfaction index based on binary logic for Range-1.
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11.4 RELIABILITY BASED OPTIMIZATION OF PIPE NETWORKS

11.4.1 Description of objective function
Minimization of the total cost of the network and maximization of network reliability are considered 
as two objectives – hence the problem is multi-objective. The aim is to obtain several optimal solutions 
with different costs and having different reliabilities to obtain a Pareto-Optimal front.

Minimize CT

where:

CT = total cost of the network = CT = ∑ Lj × Dj × C(Dj)
Lj = Length of the link ‘j’
Dj = Diameter of the link ‘j’
C(Dj) = Unit cost for the diameter of the link ‘j’
(or)
CT = ∑ cjxLj

cj* = Unit cost according to continuous function (units may be the currency of that particular 
country)

 = 1.2654 Dj
1.327 (*Bhave, 2003)

11.4.2 Description of constraints
The objective function stated above is subject to satisfaction of the following constraints

TH TH i N
i i

( ) ( )≥ = ………………min , ,1 2 3
 

(11.2)

Figure 11.7 Satisfaction index based on binary logic for Range-2.

Figure 11.8 Satisfaction index based on binary logic for Range-3.
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V V V j Mjmin max , ,≤ ≤ = ………………1 2 3  (11.3)

∑ = = ………………Q k Pk 0 1 2 3, ,  (11.4)

∑ = = ………………h x Rx 0 1 2 3, ,  (11.5)

Dj ≥ 0 (11.6)

where: i is the index used to represent demand node in the network; j is the index used to represent 
the link in the network; k is the index used to represent any node in the network; x is the index used to 
represent any link in the loop of network; N is the number of demand nodes in the network; M is the 
number of links in the network; P is the number of links joined at the node; R is the number of links 
in the loop; TH is the total head at the demand node in m; THmin is the minimum HGL required at the 
demand node; Vmin is the minimum velocity of flow in the link in m/s; Vmax is the maximum velocity 
of flow in the link in m/s; V is the actual velocity of flow in the link in m/s; hL is (10.68 L Q1.852)/(C1.852 
D4.871); hL is the head loss in the pipe in m; C is the Hazen–Williams roughness coefficient; D is the 
pipe diameter (m); L is the pipe length (m); Q is the flow rate (m3/s).

Equations (11).(4) and (11).(5) are used to determine the hydraulic balance of the network and they 
are basically continuity and energy equations respectively. The continuity equation is applied at each 
node with Qk being the flow rate (in and out of the node). The energy equation is applied to each loop 
in the network with hx being the head loss in each pipe. The head loss is the sum of minor losses and 
losses due to friction, that is major losses. The friction head loss can be computed by various formulae, 
in the present study the Hazen–Williams head loss equation is used.

11.4.3 Incorporation of reliability index into optimization
In the present study, the maximization of reliability is considered as a constraint to the main objective 
function, which is a typical practice in multi-objective optimization. Hence, some penalty in the 
form of cost is added to the objective function if it violates the minimum value of network reliability 
parameter that is specified.

NRP NRP≥ min  (11.7)

where NRP = Network Reliability Parameter; NRPmin = minimum required Network Reliability 
Parameter.

The minimum required Network Reliability Parameter is considered to be between 0.5 to 1 in the 
present study.

11.5 DESCRIPTION OF EPANET TOOLKIT FUNCTIONS

11.5.1 Introduction
EPANET is a program that analyses the hydraulic and water quality behavior of water distribution 
systems. EPANET performs extended period simulation of hydraulic and water quality behavior 
within pressurized pipe networks. A network can consist of pipes, nodes (pipe junctions), pumps, 
valves and storage tanks or reservoirs. EPANET tracks the flow of water in each pipe, the pressure 
at each node, the height of water (HGL or piezometric head) in each tank, and the concentration 
of chemical species throughout the network during a multi-time period simulation. In addition to 
chemical species, water age and source tracing can also be simulated (United States Environmental 
Protection Agency, 2012).

The Programmer’s Toolkit is an extension of the EPANET simulation package. The EPANET 
Programmer’s Toolkit is a dynamic link library (DLL) of functions that allows developers to customize 
EPANET’s computational engine for their own specific needs. The functions can be incorporated into 
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32-bit Windows applications written in C/C ++, Delphi Pascal, Visual Basic, or any other language 
that can call functions within a Windows DLL. The Toolkit DLL file is named EPANET2.DLL and is 
distributed with EPANET. The Toolkit comes with several different header files, function definition 
files, and.lib files that simplify the task of interfacing it with C/C ++, Delphi, and Visual Basic code. 
The Toolkit provides a series of functions that allow programmers to customize the use of EPANET’s 
hydraulic and water quality solution engine to their own applications. Before using the Toolkit, one 
should become familiar with the way that EPANET represents a pipe network and the design and 
operating information it requires to perform a simulation.

11.5.2 A typical usage of the toolkit functions to analyse a distribution system
(1) Use the ENopen function to open the Toolkit system, along with an EPANET Input file.
(2) Use the ENsetxxx series of functions to change selected system characteristics.
(3) Run a full hydraulic simulation using the ENsolveH function (which automatically saves results 

to a Hydraulics file) or use the ENopenH – ENinitH – ENrunH – ENnextH – ENcloseH series 
of functions to step through a hydraulic simulation, accessing results along the way with the 
ENgetxxx series of functions.

(4) Run a full water quality simulation using ENsolveQ (which automatically saves hydraulic and 
water quality results to an Output file) or use the ENopenQ – ENinitQ – ENrunQ – ENnextQ 
(or ENstepQ) – ENcloseQ series of functions to step through a water quality simulation, 
accessing results along the way with the ENgetxxx series of functions.

(5) Return to Step 2 to run additional analyses or use the ENreport function to write a formatted 
report to the Report file.

(6) Call the ENclose function to close all files and release system memory.

11.5.3 Input file format with examples
An input file (in notepad with.dat or.txt format) according to the format specified in the EPANET tool 
kit is to be prepared. A sample of the input file is given below.

 [Title]
 (Here, the title can be mentioned as ‘Hydraulic Analysis of a Standard benchmark network’)
 [Junctions]
 (Here the details of the demand nodes need to be provided as per the format given below)
 ID Elevation demand pattern
 [Reservoirs]
 (here the details of the source node such as reservoirs/tanks need to be provided as per the 

format given below)
 ID Head Pattern
 [PIPES]
 (here, the details of the pipes in the network need to be provided as per the following format)
 ID Node1 Node2 Length Diam. Roughness Mloss Status
 [OPTIONS]
 (here, we can provide the details of analysis options)
 [UNITS]
 (here, the units to be followed can be mentioned)
 [HEADLOSS]
 (there are three different formulae available in EPANET, so we can mention the formula i.e. 

adopted, H-W, or D-W or C-M formula)

11.5.4 Linking of EPANET tool kit functions in MATLAB (input, output, opening and closing)
The EPANET tool kit is a shared library which is a collection of functions. On Windows systems, 
the library is precompiled into a dynamic link library (.dll) file named EPANET2.dll. At run-time, 
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the library is loaded into memory and made accessible to all applications. The MATLAB Interface to 
Generic DLLs enables interaction with functions in dynamic link libraries. This interface can load an 
external library into MATLAB memory space and then access any of the functions defined therein.

To load and unload EPANET library into MATLAB, the following functions are used.

 loadlibrary(‘epanet2’,’epanet2’)
 unloadlibrary(‘epanet2’)

Generally, at the beginning of the program, the library is to be loaded into memory and at the end of 
the program, it is to be unloaded. To invoke library functions, the calllib function is used.

For loading an input file and creating a report file, the following function is used.

 calllib(‘epanet2’,’ENopen’,’input2.inp’,’report2.rpt’,’ ‘)

11.5.4.1 Description of functions for assigning parameters
To assign a value to a link in the network, the following function is used.
 calllib(‘epanet2’,’ENsetlinkvalue’,1,0100)

11.5.4.2 Description of functions for performing analysis of the network
To analyse the network, the following functions are used:

 calllib(‘epanet2’,’ENsolveH’)
 calllib(‘epanet2’,’ENsolveQ’)
 calllib(‘epanet2’,’ENreport’)

11.5.4.3 Description of functions for extracting values of parameters
To extract any value from the node/link, the following functions are used:

 calllib(‘epanet2’,’ENgetnodevalue’,1,11,0)
 calllib(‘epanet2’,’ENgetlinkvalue’,19,0)

11.6 PROCESS OF OPTIMIZATION USING GENETIC ALGORITHMS IN MATLAB USING GA 
TOOL KIT FUNCTIONS

11.6.1 Genetic algorithms
Genetic algorithms (GAs) are one of the most popular methods used for optimization of water 
distribution networks. GAs are inspired by Darwin’s theory about evolution. GA is a search algorithm 
based on natural selection and the mechanism of population genetics (Goldberg, 2000). GA simulates 
mechanisms of population generation and normal rules of survival. It relies on the collective learning 
process within a population of individuals, each of which represents a point in space of feasible or 
infeasible solutions. In GA, an initial population is generated randomly. The population consists of 
number of individuals and each individual is a point on the solution space. The algorithm is started with 
a set of solutions (represented by chromosomes) called a population. Solutions from one population 
are taken and used to form a new population. This is motivated by a hope that the new population will 
be better than the old one. Solutions which are selected to form new solutions (offspring) are selected 
according to their fitness – the more suitable they are the more chances they have to reproduce. This 
is repeated until some condition (e.g. number of populations or improvement of the best solution) is 
satisfied. In the case of pipe network optimization, giving random values for diameters of all links will 
generate one individual. The values given to the individuals may be real or binary numbers.

11.6.2 Description of GA tool kit functions
In MATLAB, (Prasad et al., 2003) the commands ga and gatool are used to implement the genetic 
algorithm to minimize an objective function. ga implements the genetic algorithm at the command 
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line to minimize an objective function. gatool opens the Genetic Algorithm Tool, a graphical user 
interface (GUI) to the genetic algorithm. In the present study ga is used to implement the genetic 
algorithm. The description of ga is presented in detail below:

 Syntax of ‘ga’:

 x = ga(fitnessfcn, nvars, options) applies the genetic algorithm to an optimization problem, using 
the parameters in the options structure.

 options = gaoptimset;
 gaoptimset(‘PopulationType’,’DoubleVector’,’PopulationSize’,4,’InitialPopulation’,[50;60;70;80],’

PopInitrange’,[50;100],’Generations’,50)
 ga(@fitnessfcn,4)

 fitnessfcn -- Fitness function, nvars -- Number of independent variables for the fitness function

Please refer to the Matlab’s GA options for more detailed descriptions.

11.7 IMPLEMENTATION OF RELIABILITY BASED OPTIMIZATION FOR PIPE NETWORK 
DESIGN USING MATLAB AND EPANET TOOLKIT FUNCTIONS

11.7.1 Development of coding in MATLAB – step by step process
The methodology adopted in the present study of reliability based optimal design of water distribution 
networks is explained in the following steps. The combination of genetic algorithms toolbox in Matlab 
for optimal design and EPANET toolbox for analysis of the network is used. The coding is developed 
in the MATLAB editor file.

(1) Standard benchmark networks/a real network are selected.
(2) Input files are prepared for all the networks according to the format specified in the EPANET 

tool kit and are stored in the computer directory.
(3) Through dynamic link libraries, EPANET2.DLL is linked within the MATLAB to access 

EPANET tool kit functions.
(4) EPANET Tool kit functions are used within the objective function in the MATLAB editor file 

and coding is developed in M-file with the same name as that of the objective function. For 
example:

 function f = myfun(x,arg1,…..)
 path(path,’c:\Matlab\R2014\extern\examples\shrlib’)
 loadlibrary(‘epanet2’,’epanet2’);
 calllib(‘epanet2’,’ENopen’,’input2.inp’,’report2.rpt’,’’);
 d1 = x(1); d2 = x(2); d3 = x(3); d4 = x(4);
 calllib(‘epanet2’,’ENsetlinkvalue’,1,0,d1);
 calllib(‘epanet2’,’ENsetlinkvalue’,2,0,d2);
 calllib(‘epanet2’,’ENsolveH’);
 calllib(‘epanet2’,’ENsolveQ’);
 calllib(‘epanet2’,’ENreport’);
 calllib(‘epanet2’,’ENclose’);
 f = (632*x(1)∧1.3 + 506*x(2)∧1.3 + 759*x(3)∧1.3 + 2538*x(4)∧1.3) + 104*(arg1 + arg2 + ….)
 end
 (here, myfun is the name of the objective function and also name of the M-file)
(5) The objective function developed in the M-file mentioned in step 4 is linked with Genetic 

Algorithms functions in another M-file. For example:
 options = gaoptimset;
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 gaoptimset(‘PopulationType’,’DoubleVector’,’PopulationSize’,4,’InitialPopulation’,[50;60;70; 
80],’PopInitrange’,[50;100],’Generations’,50)

 ga(@myfun,4)
(6) The second M-file is executed to get the optimal solution.

The internal process of optimization is explained below in the following steps.

(1) Initially, GA optimization tool randomly generates the decision variables, that is pipe diameters, 
of equal number of links in the network within the given range of diameters.

(2) The generated link diameters are assigned to all the links in the network.
(3) The network is analyzed using the EPANET tool kit functions which are linked in the MATLAB 

through DLLs based on the input file supplied.
(4) A report file is generated and is stored in the default directory of the computer.
(5) The required information such as total heads, pressure heads, and demands at all demand 

nodes is extracted and velocities of all the links of the network also extracted using the 
specified functions in EPANET tool kit.

(6) The obtained total heads at the demand nodes are compared with the minimum required 
heads, and also the velocities with the maximum permissible velocities. If the obtained values 
are violating the specified conditions, penalties are assigned in the form of cost which is added 
to the objective function. The penalty cost is calculated as the product of the unit cost of 
violation of constraint and the amount of deviation.

(7) The pressure heads obtained are compared with the minimum pressures and the residual 
pressure heads are computed.

(8) Network Reliability Parameter (NRP) is determined.
(9) The penalty is added in the form of cost if NRP is less than the minimum value. The penalty cost 

is calculated as the product of the unit cost of violation of NRP and the amount of deviation of 
NRP.

(10) The total cost of the network is computed.
(11) The optimization algorithm is repeated till it gets the optimal cost of the network by assigning 

different values of diameters randomly at each generation.
(12) The optimal diameters obtained are converted into commercially available pipe sizes and then 

the network is analyzed until all the required parameters are obtained.
(13) The total heads are compared with the minimum required pressures, if they are satisfied, the 

optimal results are noted down, otherwise the procedure is repeated.
(14) This procedure is repeated for a number of times to obtain more optimal solutions. While 

selecting the next solution, the sizes of several pipes around nodes with residual pressures near 
zero are increased. Similarly, for a low-lying area where residual pressures are high, several 
pipe sizes are reduced. This helps in improving reliability and keeping the solution near the 
Pareto-optimal front. This will reduce the total number of solutions required to be generated 
to obtain the Pareto-optimal front.

(15) A graph of network reliability parameter versus network cost is plotted.
(16) A Pareto-optimal front is obtained.
(17) All solutions lying on the Pareto-optimal front are Pareto-optimal solutions, and the decision 

maker can choose the proper one depending upon the available funds.

11.8 STUDY ON A STANDARD BENCHMARK NETWORK

11.8.1 Description of network
The network shown in Figure 11.9 was first used by Alperovits and Shamir (1977) for optimal design 
using Linear Programming. Subsequently the same network has been used by several researchers 
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for optimal as well as reliability study. Some of them are Quidry et al. (1979), Goulter et al. (1986), 
Fujiwara et al. (1987), Kessler and Shamir (1989), Savic and Walters (1997), Abebe and Solomatine 
(1998), Cunha and Sousa (1999), Eusuf and Lansey (2003), Shie-Yui Liong et al. (2004), Keedwell and 
Khu (2005), Samani and Mottaghi (2006), Suribabu et al. (2006), Prassad et al. (2008), Van Dijk et al. 
(2008) and Afshar (2009).

The two loop gravity network consists of eight links, six demand nodes and one reservoir. The 
nodal information for this network is given in Table 11.10. Node 1 is a source node with HGL of 210 m 
and a demand of –1120 m3/hr. All the links in the network have a length of 1000 m and the Hazen–
Williams coefficient (CHW) is taken to be 130. The minimum required HGL values at demand nodes 
are given in Table 11.10. Table 11.11 shows the cost of pipes which can be used in the network.

Figure 11.9 Two loop gravity network.

Table 11.10 Node details for two loop gravity network.

Node Elevation  
(m)

Min. HGL  
(m)

Demand  
(m3/hr)

2 150 180 100

3 160 190 100

4 155 185 120

5 150 180 270

6 165 195 330

7 160 190 200
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11.8.2 Input file preparation for the standard benchmark network
[Title]

Analysis of a test network (Two loop gravity network)
[Junctions]
;ID Elevation demand pattern
;--------------------------------------------------
  2 150 1668 default
  3 160 1668 default
  4 155 2000 default
  5 150 4500 default
  6 165 5500 default
  7 160 3334 default
[Reservoirs]
 ;ID Head Pattern
 ;--------------------------
   1 210 default
[PIPES]
 ;ID Node1 Node2 Length Diam. Roughness Mloss Status
 ;---------------------------------------------------------------------------------
   1 1 2 1000 558.8 130 0 open
   2 2 3 1000 609.6 130 0 open
   3 2 4 1000 406.9 130 0 open
   4 4 5 1000 254.0 130 0 open
   5 4 6 1000 355.6 130 0 open
   6 6 7 1000 203.2 130 0 open
   7 3 5 1000 355.6 130 0 open
   8 5 7 1000 152.4 130  open

Table 11.11 Cost data for pipes of two loop gravity network.

Diameter  
(inches)

Diameter  
(mm)

Cost  
(units)

1 25.4 2

2 50.8 5

3 76.2 8

4 101.6 11

6 152.4 16

8 203.2 23

10 254.0 32

12 304.8 50

14 355.6 60

16 406.4 90

18 457.2 130

20 508.0 170

22 558.8 300

24 609.6 550
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[OPTIONS]
UNITS LPM
HEADLOSS H-W
[TIMES]
DURATION 0
[REPORT]
NODES ALL
LINKS ALL
HEAD YES
FLOW YES
LENGTH YES
DIAMETER YES
STATUS FULL
SUMMARY YES
VELOCITY PRECISION 2

11.8.3 Developing the code in matlab
11.8.3.1 First M-file

 function f = fristMfile(x)
 %path(path,’C:\Program Files\MATLAB\R2014a\extern\examples\shrlib’)
 %loading library into Matlab
 loadlibrary(‘epanet2’,’epanet2’);
 %Calling EPANET input file prepared for the network
 calllib(‘epanet2’,’ENopen’,’input.inp’,’report.rpt’,’’);
 % Setting the diameters for the pipes in the network
 calllib(‘epanet2’,’ENsetlinkvalue’,1,0,x(1));
 calllib(‘epanet2’,’ENsetlinkvalue’,2,0,x(2));
 calllib(‘epanet2’,’ENsetlinkvalue’,3,0,x(3));
 calllib(‘epanet2’,’ENsetlinkvalue’,4,0,x(4));
 calllib(‘epanet2’,’ENsetlinkvalue’,5,0,x(5));
 calllib(‘epanet2’,’ENsetlinkvalue’,6,0,x(6));
 calllib(‘epanet2’,’ENsetlinkvalue’,7,0,x(7));
 calllib(‘epanet2’,’ENsetlinkvalue’,8,0,x(8));
 % Performing analysis of network
 calllib(‘epanet2’,’ENsolveH’);
 calllib(‘epanet2’,’ENsolveQ’);
 calllib(‘epanet2’,’ENreport’);
 %Extracting hydraulic heads at various demand nodes of the network
 [a h2] = calllib(‘epanet2’,’ENgetnodevalue’,1,11,0);
 [a h3] = calllib(‘epanet2’,’ENgetnodevalue’,2,11,0);
 [a h4] = calllib(‘epanet2’,’ENgetnodevalue’,3,11,0);
 [a h5] = calllib(‘epanet2’,’ENgetnodevalue’,4,11,0);
 [a h6] = calllib(‘epanet2’,’ENgetnodevalue’,5,11,0);
 [a h7] = calllib(‘epanet2’,’ENgetnodevalue’,6,11,0);
 %calculation of reliability index based on range-1 residual pressures
 if h2>25 | h2<0     SI2 = 0;
 elseif h2> = 10 &h2< = 15 SI2 = 1;
 elseif h2>15 & h2< = 25 SI2 = (25-h2)/10;
 elseif h2>0 & h2<10     SI2 = h2/10;
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 end
 if h3>25 | h3<0     SI3 = 0;
 elseif h3> = 10 &h3< = 15 SI3 = 1;
 elseif h3>15 & h3< = 25 SI3 = (25-h3)/10;
 elseif h3>0 & h3<10   SI3 = h3/10;
 end
 if h4>25 | h4<0     SI4 = 0;
 elseif h4> = 10 &h4< = 15 SI4 = 1;
 elseif h4>15 & h4< = 25 SI4 = (25-h4)/10;
 elseif h4>0 & h4<10   SI4 = h4/10;
 end
 if h5>25 | h5<0     SI5 = 0;
 elseif h5> = 10 &h5< = 15 SI5 = 1;
 elseif h5>15 & h5< = 25 SI5 = (25-h5)/10;
 elseif h5>0 & h5<10    SI5 = h5/10;
 end
 if h6>25 | h6<0     SI6 = 0;
 elseif h6> = 10 &h6< = 15 SI6 = 1;
 elseif h6>15 & h6< = 25 SI6 = (25-h6)/10;
 elseif h6>0 & h6<10    SI6 = h6/10;
 end
 if h7>25 | h7<0     SI7 = 0;
 elseif h7> = 10 &h7< = 15 SI7 = 1;
 elseif h7>15 & h7< = 25 SI7 = (25-h7)/10;
 elseif h7>0 & h7<10    SI7 = h7/10;
 end
 %extraction of demands at various demand nodes of the network
 [a de2] = calllib(‘epanet2’,’ENgetnodevalue’,1,1,0);
 [a de3] = calllib(‘epanet2’,’ENgetnodevalue’,2,1,0);
 [a de4] = calllib(‘epanet2’,’ENgetnodevalue’,3,1,0);
 [a de5] = calllib(‘epanet2’,’ENgetnodevalue’,4,1,0);
 [a de6] = calllib(‘epanet2’,’ENgetnodevalue’,5,1,0);
 [a de7] = calllib(‘epanet2’,’ENgetnodevalue’,6,1,0);

 sum1 = de2*SI2 + de3*SI3 + de4*SI4 + de5*SI5 + de6*SI6 + de7*SI7;
 sum2 = de2 + de3 + de4 + de5 + de6 + de7;
 NRP = sum1/sum2
 %Pressure constraint violation
 if ge(h2,30) flag2 = 0;
 else flag2 = (30-h2); end
 if ge(h3,30) flag3 = 0;
 else flag3 = (30-h3); end
 if ge(h4,30) flag4 = 0;
 else flag4 = (30-h4);
 end
 if ge(h5,30) flag5 = 0;
 else flag5 = (30-h5);
 end
 if ge(h6,30) flag6 = 0;
 else flag6 = (30-h6);
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 end
 if ge(h7,30) flag7 = 0;
 else flag7 = (30-h7);
 end
 %Extracting velocities at various pipes in the network
 [a ve1] = calllib(‘epanet2’,’ENgetlinkvalue’,1,9,0);
 [a ve2] = calllib(‘epanet2’,’ENgetlinkvalue’,2,9,0);
 [a ve3] = calllib(‘epanet2’,’ENgetlinkvalue’,3,9,0);
 [a ve4] = calllib(‘epanet2’,’ENgetlinkvalue’,4,9,0);
 [a ve5] = calllib(‘epanet2’,’ENgetlinkvalue’,5,9,0);
 [a ve6] = calllib(‘epanet2’,’ENgetlinkvalue’,6,9,0);
 [a ve7] = calllib(‘epanet2’,’ENgetlinkvalue’,7,9,0);
 [a ve8] = calllib(‘epanet2’,’ENgetlinkvalue’,8,9,0);
 v1 = double(ve1);
 v2 = double(ve2);
 v3 = double(ve3);
 v4 = double(ve4);
 v5 = double(ve5);
 v6 = double(ve6);
 v7 = double(ve7);
 v8 = double(ve8);
 %velocity constraint violation
 if ge(v1,6) flagv1 = 0;
 else flagv1 = (6-v1); end
 if ge(v2,6) flagv2 = 0;
 else flagv2 = (6-v2); end
 if ge(v3,6) flagv3 = 0;
 else flagv3 = (6-v3);
 end
 if ge(v4,6) flagv4 = 0;
 else flagv4 = (6-v5);
 end
 if ge(v5,6) flagv5 = 0;
 else flagv5 = (6-v5);
 end
 if ge(v6,6) flagv6 = 0;
 else flagv6 = (6-v6);
 end
 if ge(v7,6) flagv7 = 0;
 else flagv7 = (6-v7);
 end
 if ge(v8,6) flagv8 = 0;
 else flagv8 = (6-v8);
 end
 %NRP violation
 if ge(NRP,0.5) flagNRP = 0;
 else flagNRP = (1-NRP);
 end
 %cost function including penalities
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 f = 1265.4*(x(1)∧1.327 + x(2)∧1.327 + x(3)∧1.327 + x(4)∧1.327 + x(5)∧1.327 + x(6)∧1.327 + x(7)∧1.327 +  
x(8)∧1.327) + 25000*(f lag2 + f lag3 + f lag4 + f lag5 + f lag6 + f lag7) + 5000 x(f lagv1 + 
 flagv2 + flagv3 + flagv4 + flagv5 + flagv6 + flagv7 + flagv8) + 3000*flagNRP;

 %Closing
 calllib(‘epanet2’,’ENclose’);

11.8.3.2 Second M-file
options = gaoptimset(‘PopulationSize’,[8],’Generations’,1500,’PopInitRange’,[25.4;610],’StallGenLimit’,
1000,’StallTimeLimit’,1000,’PlotFcns’,[@gaplotbestf],’EliteCount’,4);
[x fval ‘reason’ output population scores] = ga(@firstMfile,8,options)

11.8.4 Screenshots for the program implemented in matlab
For better understanding, the various screenshots are shown in Figures 11.10–11.16.

11.8.4.1 Screenshot-1: storing EPANET toolkit functions in Matlab shared library
Note: (i) the content highlighted within the top rectangular box shows the path for the DLL file and 
Header File stored in Matlab; (ii) the content highlighted within the bottom rectangular box shows 
the files.

11.8.4.2 Screenshot-2: code developed in Matlab editor for first M-file
Note: (i) the content highlighted within the rectangular boxes show that the function name and file 
name are same.

11.8.4.3 Screenshot-3: Run file (second M-file) showing options and ga function
Note: (i) the content highlighted within the first rectangular box shows that the options set to ga 
function; ii) the content highlighted within the second rectangular box shows the ga function which 
involves first M-file, number of decision variables and options.

Figure 11.10 Storing EPANET toolkit functions in Matlab shared library.



276 Embracing Analytics in the Drinking Water Industry

11.8.4.4 Screenshot-4: input file created in notepad showing the details of the network
Note: the content highlighted within the rectangular box shows the name of the input file which 
contains all the details of pipe network.

11.8.4.5 Screenshot-5: report file generated in notepad showing the analysis results of the 
network
Note: the content highlighted within the rectangular box shows the name of the report file generated 
which contains all the pressures and velocities and so on.

Figure 11.11 Code developed in Matlab editor for first M-file.

Figure 11.12 Run file (Second M-file) showing options and ga function.
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11.8.4.6 Screenshot-6: population generated in Matlab
Note: the content highlighted within the rectangular box shows the population generated a function 
in Matlab.

11.8.4.7 Screenshot-7: final output in terms of decision variables
Note: the content highlighted within the rectangular box shows the variables -x in Matlab (final 
output in terms of decision variables).

Figure 11.13 Input file created in notepad showing the details of the network.

Figure 11.14 Report file generated in notepad showing the analysis results of the network.
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11.8.5 Analysis of the results
11.8.5.1 Best optimal solutions
The advantage of the coding developed is that it gives different optimal solutions for every run, so that 
feature is captured and the best optimal solutions obtained are presented below. The full details such 
as diameters, nodal pressure heads and total heads at demand nodes and velocity and flows in the 
links of the network and Total Cost (TC), Network Reliability Parameter (NRP), Cost Reliability Ratio 
(CRR) and Cost per Unit Reliability and Unit Length (CURUL) are presented in Table 11.12.

Figure 11.15 Population generated in Matlab.

Figure 11.16 Final output in terms of decision variables.
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Table 11.12 Full details of the best solutions obtained for the two loop gravity network.

Solution/Parameter 1 2 3 4 5 6 7

D1 in mm 508 508 457.2 457.2 457.2 508.00 457.2

D2 in mm 304.8 355.6 355.6 355.6 355.6 254.00 304.8

D3 in mm 406.4 406.4 406.4 406.4 406.4 406.40 406.4

D4 in mm 254 76.2 76.2 254 254 50.80 203.2

D5 in mm 355.6 355.6 355.6 355.6 355.6 355.60 406.4

D6 in mm 254 50.8 50.8 254 254 304.80 203.2

D7 in mm 254 406.4 406.4 304.8 304.8 254.00 254

D8 in mm 254 355.6 355.6 304.8 254 101.60 203.2

H2 in m 55.96 55.96 53.24 53.24 53.24 55.96 53.24

H3 in m 41.74 39.64 36.93 40.18 40.28 32.74 38.38

H4 in m 45.65 48.63 45.91 43.96 43.87 46.24 43.26

H5 in m 46.91 47.36 44.65 46.5 46.78 35.76 42.42

H6 in m 31.79 36.2 33.49 30.8 30.42 30.05 31.01

H7 in m 35.50 36.44 33.73 35.38 34.67 32.63 30.03

Th2 in m 205.96 205.96 203.4 203.24 203.24 205.96 203.24

Th3 in m 201.74 199.64 196.93 200.18 200.28 192.74 198.38

Th4 in m 200.65 203.63 200.91 198.96 198.87 201.24 198.26

Th5 in m 196.91 197.36 194.65 196.5 196.78 185.76 192.42

Th6 in m 196.79 201.2 198.49 195.8 195.42 195.76 196.01

Th7 in m 195.50 196.44 193.73 195.38 194.67 192.63 190.03

V1 in m/s 1.54 1.54 1.9 1.9 1.9 1.54 1.90

V2 in m/s 1.14 1.56 1.56 1.06 1.04 1.88 1.23

V3 in m/s 1.54 0.99 0.99 1.38 1.39 1.45 1.49

V4 in m/s 0.95 0.59 0.59 0.76 0.7 0.74 1.05

V5 in m/s 1.20 0.93 0.93 1.07 1.13 1.54 0.97

V6 in m/s 0.53 0.39 0.39 0.29 0.4 0.84 1.06

V7 in m/s 1.09 0.98 0.98 1.06 1.03 1.33 1.22

V8 in m/s 0.56 0.55 0.55 0.56 0.7 0.74 0.65

Q1 in lpm 18 670.00 18 670 18 670 18 670 18 670 18 670.00 18 670.00

Q2 in lpm 4985.00 9293 9293 6296 6176 5717.00 5384.00

Q3 in lpm 12 017.00 7708 7709 10 706 10 826 11 285.00 11 617.00

Q4 in lpm 2891.00 161 161 2309 2114 90.00 2046.00

Q5 in lpm 7126.00 5548 5548 6397 6712 9195.00 7571.00

Q6 in lpm 1626.00 48 48 897 1212 3695.00 2071.00

Q7 in lpm 3316.00 7625 7625 4628 4508 4049.00 3716.00

Q8 in lpm 1708.00 3286 3286 2437 2122 −361.00 1263.00

TC in Units 498 000 543 000 503 000 504 000 486 000 450 000 461 000

NRP 0.591 0.6762 0.586 0.5705 0.5545 0.321 0.454

CRR 842 782 803 017 858 362 883 436 876 465 1 404 056 1 016 090

CURUL 105 100 107 110 110 176 127
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In the present study, the following parameters are used to know the overall network performance.

(1) Total Cost of the network (TC)
(2) Reliability Parameter (NRP)
(3) Cost Reliability Ratio (CRR)
(4) Cost per Unit Reliability and Unit Length (CURUL)

The above parameters are also used to compare the results with the previous literature.

11.8.5.2 Pareto-optimal solutions
The Pareto-optimal solutions are determined for different ranges of residual pressures using the TC 
and NRP obtained for different solutions and are shown in Figures 11.17–11.19.

The exponential trend line of pareto-optimal solution of Range-1 is showing differently to that of 
Range-2 and Range-3. Actually, with the increase in reliability, the cost has to increase. Range-3 is 
following this fact. Hence in the present study it is proposed to use pareto-optimal front developed 
based on Range-3 which is having reliability of more than 0.8 for the network under consideration.

11.8.5.3 Comparison of results with previous researchers
The optimal solutions obtained by different researchers for the two loop network are compared with 
the present research and the details are given in the Table 11.13.

The complete sets of optimal values of the parameters obtained on the network by previous 
researchers are compared with the present work and are presented in Figures 11.20–11.25.

Based on the performance indicators (NRP, CRR, CURUL), it is concluded that the values obtained 
for these parameters in the present study are giving better results when compared to other researchers.

Figure 11.17 Pareto-optimal front for Range-1.

Figure 11.18 Pareto-optimal front for Range-2.
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11.8.6 Comparison of reliability Index of a simple pipe network based on binary logic and 
fuzzy logic
11.8.6.1 NRP results obtained on two loop gravity network (network 1) based on fuzzy logic 
and binary logic
The proposed methodology is applied to a standard two loop gravity network. This network is taken 
from the literature which is used by most of the researchers. Several optimal solutions are obtained in 
which 54 optimal solutions are identified as the best solutions for comparison.

The range wise comparison is made and is presented graphically in Figures 11.26–11.28.
Based on binary logic, range-3 shows partially higher values of NRP for some solutions, range-2 for 

some other solutions and range-1 for remaining solutions so there is no clear cut demarcation for the 
ranges based on this logic. However, all the NRP values obtained are lesser than those obtained based 
on fuzzy logic. Based on fuzzy logic, range-3 gives the highest NRP values in almost all the optimal 
solutions.

In all the three ranges, almost all the values of NRP based on fuzzy logic are higher than those 
obtained based on binary logic. Hence, it is concluded that range-3 is the best range based on fuzzy 
logic for incorporating in the optimal design of water distribution networks for maximum reliability.

Figure 11.19 Pareto-optimal front for Range-3.

Table 11.13 Optimal solutions for two loop network obtained by different researchers.

Reference D1 D2 D3 D4 D5 D6 D7 D8 CT 
(103)

FENa 
(103)

Savic and Walters (1997) (GA1) 457.2 254 406.4 101.6 406.4 254 254 25.4 419 65

Savic and Walters (1997) (GA2) 508 254 406.4 25.4 355.6 254 254 25.4 420 65

Abebe and Solomatine (1998) 457.2 254 406.4 101.6 406.4 254 254 25.4 419 1.373

Cunha and Sousa (1999) 457.2 254 406.4 101.6 406.4 254 254 25.4 419 25

Wu and Simpson (2001) 457.2 254 406.4 101.6 406.4 254 254 25.4 419 7.467

Eusuf and Lansey (2003) 457.2 254 406.4 101.6 406.4 254 254 25.4 419 11.323

Prassad et al. (2003) 450 250 400 100 400 250 250 25 419 -

Liong and Atiquazzaman (2004) 457.2 254 406.4 101.6 406.4 254 254 25.4 419 1.091

Van Dijk et al. (2008) 457.2 254 406.4 101.6 406.4 254 254 25.4 419 100

Afshar (2009) 457.2 254 406.4 101.6 406.4 254 254 25.4 419 3

Present Study 457.2 254 406.4 101.6 406.4 254 254 25.4 419 0.8

aFEN: Function Evaluation Number.
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Figure 11.20 Comparison of pressure heads at demand nodes of network 1 with previous researchers.

Figure 11.21 Comparison of total heads at demand nodes of network 1 with previous researchers.

Figure 11.22 Comparison of velocities in the links of network 1 with previous researchers.
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Figure 11.23 Comparison of NRP of network 1 with previous researchers.

Figure 11.24 Comparison of CRR of network 1 with previous researchers.

Figure 11.25 Comparison of CURUL of network 1 with previous researchers.



284 Embracing Analytics in the Drinking Water Industry

11.8.7 Summary of results and conclusions
GA optimization techniques are very effective in minimizing an objective function if it has only a single 
objective function without constraints. However, in the present study, the problem is a two-objective 
problem with constraints. Hence the problem is converted into a single objective optimization by 
considering reliability as one of the constraints. A penalty cost is added to the network cost if it 
is violating the specified conditions. EPANET is based on the gradient method of analysis which 

Figure 11.26 Comparison of NRP for range-1.

Figure 11.27 Comparison of NRP for range-2.

Figure 11.28 Comparison of NRP for range-3.
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is basically a demand driven network analysis method. Hence in the present study, the developed 
algorithm for reliability-based optimal design of water distribution networks has been conducted 
numerous times until it obtains the optimal solutions satisfying the pressure constraints at the demand 
nodes and for the maximum reliability so that the optimal solutions obtained are satisfying both the 
demands and the minimum pressure requirements at the demand nodes in the network.

In the two-loop gravity network, to know the variation of the NRP, three different ranges of 
residual pressures which are in excess of the minimum pressure requirements at the demand nodes are 
considered in the present study for fixing the best range of residual pressures such that the reliability 
of the network is maximum. A comparison is also made between fuzzy logic and binary logic in 
estimating the network reliability parameter for three different ranges of residual pressures. The 
range-3 (0–30 m) residual pressures are fixed as the best range for the network. The optimal results 
obtained are compared with those obtained by previous researchers.

Following are the major conclusions arrived at from the present study:

• For the two loop gravity network, three different ranges of residual pressures that is 0–15, 0–25 
and 0–30 m at the demand nodes are considered for fixing the best range of residual pressures 
such that the reliability of the network is maximum. The ranges are fixed based on the elevation 
difference between the source node and demand node of the network. Fuzzy logic and binary 
logic are used separately to link the residual pressures with the satisfaction index. Based on the 
results obtained, it is concluded that the range-3 pressures based on fuzzy logic are the best to 
incorporate in the optimal design for achieving maximum reliability of the network considered.

• The Function Evaluation Number (FEN) is an indication of how an optimal solution is obtained 
quickly, so in the present study it is obtained as 800 for the two loop network using the proposed 
approach, which is the least when compared to the number obtained by previous researchers. 
Also, the runtime to reach the optimal solution is less. So it is concluded that the developed 
method gives the solution quickly with less number of function counts.

• All the optimal output parameters of the two loop network obtained, such as diameters, pressures 
and so on., are comparable with those obtained by previous researchers.

• The best NRP, CRR and CURUL obtained among the 54 optimal solutions for the two loop 
network are 0.6762, 803017 and 100 which are also better than those obtained by the previous 
researchers.

• The pareto-optimal front obtained based on range-3 is the best one when compared with the 
other two ranges since it gives the highest reliabilities for least cost for the two loop network.

11.9 LIMITATIONS OF THE PRESENT STUDY AND SCOPE FOR FUTURE RESEARCH

The following are the limitations of the present research work.

• The optimization cost considered in the present study is only the cost of pipes in the network.
• In the present study the network reliability parameter is based on excess residual pressures and 

the demands at demand nodes of the network.
• Only gravity looped water distribution networks are considered in the present study.
• The best range of residual pressures obtained is applicable only if the elevation difference 

between the reservoir and the demand nodes is more than or equal to 60 m.
• The algorithm searches the optimal solution by assigning the decision variables to the 

optimization function randomly.

The scope for continuing the present work in future is described below.

• In the present study the optimization cost considered is the cost of links in the network only, 
so one may also include installation cost of other components of the water distribution network 
such as reservoir, pumps and so on., and can also include the operational cost of the network.
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• In the network reliability parameter, one may also consider quality of water as one of the criteria 
in satisfying the consumer needs and cost of treatment may also be taken into consideration.

• Failure probability of components could also be included in assessing the reliability. In this 
study it is assumed that all the pipes are functioning well.

11.10 PRACTICE PROBLEMS

11.10.1 Practice problem-1
This test network is a three loop water distribution network of Hanoi city water distribution system, 
which consists of 32 nodes, 34 pipes and a single reservoir and is shown in Figure 11.29. The input 
data for this problem are given in the Tables 11.14 and 11.15.

Perform reliability-based optimization for the Hanoi City Water Distribution Network by using the 
above data. Assume any data, if required suitably.

11.10.1.1 Solution
The optimal diameters obtained for the Hanoi network and FEN (Function Evaluation Number) and 
run time are compared with the previous researchers and the data are presented in Table 11.16.

The performance indicators of the network TC, NRP, CRR and CURUL obtained for the Hanoi 
network are compared with that of the previous researchers and the data are presented in Table 11.17 
and in Figures 11.30–11.33.

Based on the above values, it is clearly understood that the present proposed methodology shows 
better results when compared with other researchers’ results.

Figure 11.29 Hanoi City Water Distribution Network (three loop network).
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Table 11.14 Pipe cost for Hanoi network.

Diameter (inches) Diameter (mm) Cost (units)

12 304.8 45.73

16 406.4 70.40

20 508.0 98.38

24 609.6 129.33

30 762.0 180.8

40 1016.0 278.3

Table 11.15 Node and link data for Hanoi network.

Node Number Demand (m3/hr) Link Index Arc Length (m)

1 −19 940 1 (1,2) 100

2 890 2 (2,3) 1350

3 850 3 (3,4) 900

4 130 4 (4,5) 1150

5 725 5 (5,6) 1450

6 1005 6 (6,7) 450

7 1350 7 (7,8) 850

8 550 8 (8,9) 850

9 525 9 (9,10) 800

10 525 10 (10,11) 950

11 500 11 (11,12) 1200

12 560 12 (12,13) 3500

13 940 13 (10,14) 800

14 615 14 (14,15) 500

15 280 15 (15,16) 550

16 310 16 (16,17) 2730

17 865 17 (17,18) 1750

18 1345 18 (18,19) 800

19 60 19 (19,3) 400

20 1275 20 (3,20) 2200

21 930 21 (20,21) 1500

22 485 22 (21,22) 500

23 1045 23 (20,23) 2650

24 820 24 (23,24) 1230

25 170 25 (24,25) 1300

26 900 26 (25,26) 850

27 370 27 (26,27) 300

28 290 28 (27,16) 750

29 360 29 (23,28) 1500

30 360 30 (28,29) 2000

31 105 31 (29,30) 1600

32 805 32 (30,31) 150

33 (31,32) 860

34 (32,25) 950
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Table 11.16 Comparison of optimal diameter and other parameters of Hanoi network with previous research.

Pipe 
Number

Pipe Diameter (inches)

Savic and 
Walters (1997)

Abebe and Solomatine 
(1998)

Cunha and 
Sousa (1999)

Liong and 
Atiquazzaman (2004)

Present 
Study

GA1 GA2 GA ACCOL

1 40 40 40 40 40 40 40

2 40 40 40 40 40 40 40

3 40 40 40 40 40 40 30

4 40 40 40 40 40 40 30

5 40 40 30 40 40 40 30

6 40 40 40 30 40 40 30

7 40 40 30 40 40 40 24

8 40 40 30 40 40 30 30

9 40 30 30 24 40 30 20

10 30 30 30 40 30 30 40

11 24 30 30 30 24 30 30

12 24 24 39 40 24 24 24

13 20 16 16 16 20 16 30

14 16 16 24 16 16 12 40

15 12 12 30 30 12 12 24

16 12 16 30 12 12 24 20

17 16 20 30 20 16 30 24

18 20 24 40 24 20 30 20

19 20 24 40 30 20 30 40

20 40 40 40 40 40 40 40

21 20 20 20 30 20 20 40

22 12 12 20 30 12 12 24

23 40 40 30 40 40 30 40

24 30 30 16 40 30 30 40

25 30 30 20 40 30 24 20

26 20 20 12 24 20 12 40

27 12 12 24 30 12 20 30

28 12 12 20 12 12 24 24

29 16 16 24 16 16 16 30

30 16 16 30 40 12 16 40

31 12 12 30 16 12 12 30

32 12 12 30 20 16 16 40

33 16 16 30 30 16 20 40

34 20 20 12 24 24 24 40

FEN – – 16 910 3055 53 000 25 402 1800

Run time 3 hr 3 hr 1 hr 15 min 15 min 2 hr 11 min 8 min
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11.10.2 Practice problem 2
This network is a two reservoir seven loop network consisting of two source nodes and 13 demand 
nodes and 21 links. The network is shown below in Figure 11.33. The details of the network are given 
below in Tables 11.18 and 11.19.

Perform reliability-based optimization for the above two reservoir Water Distribution Network by 
using the above data. Assume any data if required, suitably.

Table 11.17 Comparison of NRP, CRR and CURUL obtained for Hanoi network with previous researchers.

Researcher NRP Cost  
(millions)

CRR  
(Rel/millions)

CURUL  
(rel/millions/km)

Abebe et al. (1998) (GA) 0.4222 7.01 16.60 0.422

Abebe et al. (1998) (ACCOL) 0.5908 7.84 13.27 0.337

Liong and Atiquazzaman (2004) 0.5754 6.22 10.81 0.275

Zecchin et al. (2006) 0.5754 6.14 10.67 0.271

Present study 0.7323 7.78 10.62 0.269

Figure 11.30 Comparison of NRP with previous researchers of Hanoi Network.

Figure 11.31 Comparison of CRR with previous researchers of Hanoi Network.
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11.10.2.1 Solution
The two reservoir network considered in the present study is analyzed by previous researchers for 
three different cases (cases 1–3). In the present study, the proposed methodology is applied on the 
network and the pressures obtained are compared with those three cases. The observed pressure 
heads and the obtained pressure heads are shown in Table 11.20 and in Figure 11.34.

From Figure 11.34, the pressures obtained in the present study show higher values than the 
observed values and also with the values obtained by the previous researchers. Hence, one can rely on 
the present proposed methodology.

Figure 11.32 Comparison of CURUL with previous researchers of Hanoi Network.

Figure 11.33 Two reservoir seven loop network.
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Table 11.19 Pipe characteristics of network 3.

Pipe ID Start Node End Node Length (m) Hazen–William 
Coefficient (CHW)

1 1 2 609.60 130

2 3 4 243.80 128

3 4 5 15 240.00 126

4 5 6 1127.76 124

5 2 7 1188.72 122

6 6 7 640.08 120

7 6 8 762.00 118

8 5 9 944.88 116

9 4 9 1676.40 114

10 8 9 883.92 112

11 7 8 883.92 110

12 7 15 1371.60 108

13 8 15 762.00 106

14 9 10 822.96 104

15 4 12 944.88 102

16 11 12 579.00 100

17 12 13 487.68 98

18 13 14 457.20 96

19 11 14 502.92 94

20 10 11 883.92 92

21 10 15 944.88 90

Table 11.18 Node characteristics of network 3.

Node Id Elevation (m) Demand (lpm)

3 27.43 0

4 33.53 3540

5 28.96 3540

6 32 10 680

7 30.48 3540

8 31.39 11 400

9 29.56 10 680

10 31.39 5460

11 32.61 0

12 34.14 0

13 35.05 1800

14 36.58 1800

15 33.53 0

RES−1 60.96 N/A

RES−2 60.96 N/A
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LEARNING OBJECTIVES

This chapter introduces the Water Network Tool for Resilience (WNTR) and how it can be used to 
evaluate drinking water distribution system (WDS) resilience. At the end of this chapter, you will be 
able to:

(1) Install and run WNTR.
(2) Set up and run various disaster scenario simulations.
(3) Calculate resilience metrics.
(4) Create simple network plots.

12.1 INTRODUCTION

Resilience can be defined as the capability of an object to recover or adjust after a source of strain or 
change. In the context of drinking water distribution systems (WDSs), resilience is the ability of the 
system to continue delivering sufficient water to users in a damaged state while working to return the 
system to regular service as quickly as possible (EPA, 2015). Predicting and measuring resilience in 
WDSs is helpful to prioritize strategies to improve resilience, perform cost-benefit analyses, measure 
progress, and identify critical components within a WDS (NAS, 2012). Tools that can quantify 
system resilience are important and help improve system security and general operations even when 
confronted with natural or human induced disruptions.

Models simulate the dynamic relationships between components of a system and can help identify 
how different components affect each other during a disaster and subsequent response. Modeling 
highlights interactions, side effects, and consequences of each action that are used to improve 
resilience of a WDS (Fiksel, 2006). Modeling tools can provide quantitative information, which 
provides more clarity when performing benefits analysis for different corrective or response actions 
related to building system resilience. Metrics are needed to assess resilience quantitatively. Several 
metrics have been developed to help assess resilience for WDSs (EPA, 2015).

Chapter 12

Water network tool for resilience
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Modeling tools can be used to understand system resilience, but such tools need to be: (1) capable of 
providing simulation results even during damaged states; and (2) able to dynamically change models to 
reflect damage and recovery for various types of scenarios. The United States Environmental Protection 
Agency (EPA) and Sandia National Laboratories developed the Water Network Tool for Resilience 
(WNTR) (pronounced ‘winter’) to address these modeling needs. WNTR extended the capabilities of 
EPANET (Rossman, 2000) for applications to resilience-oriented problems. EPANET 2.00.12 (Rossman, 
2000) provided only a demand-driven hydraulic solver, which did not realistically reflect water demands 
if pressures were low due to the system being damaged or stressed. WNTR included a pressure dependent 
hydraulic solver engine based on the work of Wagner (Wagner et  al., 1988). A pressure dependent 
hydraulic solver engine is now available in EPANET 2.2 (Rossman et al., 2020).

The second needed component of a resilience modeling tool is flexibility to dynamically change the 
water distribution model to simulate an incident. How damage manifests within a WDS (generation 
of a damage state) and how a system responds (response action) can both be affected by the type of 
disaster or system disruption under consideration. The first disaster scenario implemented in WNTR 
was an earthquake (Klise et al., 2017). WNTR has the capability to: (1) simulate how an earthquake 
might damage pipes (i.e. identifies which pipes could be damaged given an earthquake of a certain 
magnitude and location); and (2) modify the network to reflect that damage (e.g. break pipes or add 
leaks). WNTR has also been used to simulate other disaster scenarios such as pipe breaks (Logan 
et al., 2021; Mazumder et al., 2020; Tomar et al., 2020), power loss or source isolation (Abdel-Mottaleb 
et al., 2019), and cyber-security related incidences (Moraitis et al., 2020; Nikolopoulos et al., 2021). 
The results from these types of applications can be used to identify important system components 
that help improve system resilience. Analysis using WNTR can be used to evaluate and potentially 
improve response actions through failure planning exercises and to develop more effective mitigation 
strategies for the future. WNTR can also be used to model more routine exercises such as fire flow 
analysis to assess WDSs ability to respond to everyday incidents.

This chapter discusses: (1) the challenges disasters pose on WDS infrastructure and the process to 
apply WNTR to assess these challenges; (2) the steps to install WNTR; (3) the types of disasters that 
can be currently modeled; (4) the available resilience metrics; and (5) tutorials. While not explicitly 
discussed here, interested researchers and developers can support WNTR through EPA’s GitHub 
repository (https://github.com/USEPA/WNTR). WNTR is actively being used and extended within 
the Water Distribution Systems Analysis community for a variety of topic areas.

12.2 RESILIENCE OF DRINKING WATER SYSTEMS

WDSs are critical infrastructure that provide residential and commercial consumers with safe 
drinking water. A WDS also supplies water used in fire-fighting activities, healthcare facilities, 
electrical sectors, and others. For this reason, it is imperative to maintain all components of a WDS.

12.2.1 Disasters
Potential threats that can disrupt water service include natural disasters, releases of hazardous 
materials, or intentional attacks. Disasters can lead to water loss, water quality issues, power outages, 
and/or fires. In the event of disasters, multiple consequences are possible. For example, the 2020 Texas 
winter storm observed power outages and pipe breaks across the whole state (NPR, 2021). Similarly, 
the 2014 earthquake near Napa, California caused pipe breaks and fires throughout the city (USGS, 
2014). Fires create unique challenges by dramatically increasing the water demand at a specific site. 
Additionally, wildfires can destroy and damage large parts of the system. During the Camp Fire in 
2018 across Butte County, California, Paradise had 85% of the town’s buildings and infrastructure, 
including water pipes, destroyed (NIST, 2021). Water contamination can also occur and prevent the 
water utility from providing safe drinking water. For example, the 2014 Elk River chemical spill in 
West Virginia impacted over 300 000 residents in Charleston and left them without access to clean 

https://github.com/USEPA/WNTR


297Water network tool for resilience

drinking water due to crude methylcyclohexane methanol (MCHM), a chemical used in washing coal, 
entering the drinking water system (USGS, 2015). As the MCHM contamination moved downstream, 
numerous utilities along the Ohio River, which use the river as their source water, had to close their 
intakes as the chemical plume passed them. Sometimes disaster consequences may cause long term 
impacts to a system which makes the system more susceptible to additional consequences in the future. 
For example, in 2021, Hong Kong, China had pipes burst within their system which led to a landslide 
(SCMP, 2021). When modeling disasters, it is also important to identify potential cascading impacts. 
The modeling framework in WNTR allows the user to develop effective response actions or mitigation 
strategies. These actions and strategies can be modeled within WNTR using component attributes 
and controls. Examples on using controls are provided in the tutorials (Section 12.6) and additional 
information be found in the WNTR user manual (Klise et al., 2020, https://wntr.readthedocs.io).

Figure 12.1 lists potential hazards that WDSs can face and their potential consequences. The 
additional columns highlight response actions and ways to reduce risk in the future. Select topics will 
be discussed in later sections of this chapter.

12.2.2 Measuring resilience
Understanding the consequences that a disaster can have to a water utility is important for identifying 
ways to mitigate severe impacts in the future. Similarly, understanding how to measure the resilience of 
a WDS provides a baseline for how prepared a water utility may be against disasters. System modeling 
tools, like WNTR, can be used to measure resilience by calculating the predicted impact due to certain 
hazards on a given system. Modeling tools can also help test the effectiveness of response actions 
and mitigation strategies related to the hazard. Metrics are needed to assess resilience quantitatively. 
WNTR includes hydraulic, topographic, water quality, and cost metrics to help quantify a system’s 
resilience. Section 12.5 provides more information on these metrics.

12.2.3 Challenges with modeling system resilience
Modeling a WDS to determine resilience is not without its challenges. Damaged or impaired WDSs are 
likely to experience low or no pressure conditions, which need to be accurately simulated. Simulating 
extreme events and the potential associated damage (i.e. multiple pipe breaks, change in flow demand) 
can cause the hydraulic equations to not converge and result in failed simulations. Modeling tools for 
resilience applications need to be able to handle more complex conditions than would typically be 

Figure 12.1 Summary of potential disasters, their consequences on a WDS, response actions and mitigation strategies.

https://wntr.readthedocs.io


298 Embracing Analytics in the Drinking Water Industry

encountered in a regular extended period simulation. Furthermore, tools should be able to stop and 
restart simulations to capture operational or network changes (e.g. repairing a pipe) mid simulation. 
Tools should be able to build and manage a variety of network states to capture the disaster/recovery 
during a simulated incident and include probabilistic analyses. Once simulated, the results need to be 
analyzed across a range of metrics and presented effectively to utility decision makers.

Specific models for the disaster or response action may not be available or easily translated into a 
model. Similarly, there are limited data at the appropriate scales needed to develop or validate models 
for resilience applications (e.g. costs, weather data, or impacts from previous incidents). WNTR was 
designed to be a flexible modeling tool, and as additional disaster models or increased data become 
available its capabilities can be expanded.

12.3 WATER NETWORK TOOL FOR RESILIENCE

Researchers from the EPA and Sandia developed WNTR to help drinking water utilities assess a 
WDS’s resilience to disasters. WNTR is an open-source Python package made available through 
EPA’s public GitHub repository (https://github.com/USEPA/WNTR). At the time of writing this 
chapter, the WNTR release version was 0.4.2. Specific releases can be found at https://github.com/
USEPA/WNTR/releases.

12.3.1 Overview
WNTR is based on EPANET and integrates hydraulic and water quality simulations, damage 
estimates and response options, and resilience metrics into a single platform. Since WNTR is a Python 
package, this allows for customized modeling and analysis of more complex network states than 
previously available within EPANET. Users are encouraged to be familiar with Python and EPANET 
or understand hydraulics and pressurized pipe network modeling before using WNTR. WNTR can 
simulate and analyze resilience of water distribution systems using EPANET network input files (i.e. 
INP). Network files represent a collection of pipes, pumps, valves, junctions, tanks, and reservoirs. 
Given WNTR’s flexible application programming interface (API), changes to the network can easily 
be made to account for structural and operational changes associated with disaster scenarios and 
simulate recovery actions. Figure 12.2 outlines the general process for analyzing a WDS. WNTR 
allows users to evaluate the resilience of the system under different disaster scenarios. This information 
provides the utility with options to determine the most effective actions to improve resilience.

12.3.2 Installation and requirements
WNTR requires 64-bit Python (tested on versions 3.6, 3.7, 3.8, and 3.9) along with several Python 
package dependencies. For the latest requirements and other installation information see https://
wntr.readthedocs.io.

WNTR can be installed into the user’s Python environment using PyPI, as:

or from Conda, as:

pip install wntr

conda install -c conda-forge wntr

https://github.com/USEPA/WNTR
https://github.com/USEPA/WNTR/releases
https://github.com/USEPA/WNTR/releases
https://wntr.readthedocs.io
https://wntr.readthedocs.io
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Those interested in supporting development can also use the developer approach from the command 
prompt, as:

12.3.3 Units
WNTR uses SI (International System of Units) units (Newell & Tiesinga, 2019). When importing an 
EPANET INP file into WNTR, units are automatically converted to SI units. Users must convert their 
preferred unit system to SI when developing simulation scripts or functions. Table 12.1 highlights 
common parameters and their associated default base unit for EPANET and WNTR. The full table of 
default units can be found at https://wntr.readthedocs.io.

12.3.4 Available solvers
WNTR has two available simulators: (1) EpanetSimulator and (2) WNTRSimulator. The 
EpanetSimulator by default uses the EPANET 2.2 toolkit, but the EPANET 2.0 toolkit can also 
be selected when initializing the simulator. The EPANET 2.2 toolkit can be used to simulate both 
demand-driven analyses (DD) and pressure dependent demand analyses (PDD). Only DD is available 
when using the EPANET 2.0 toolkit. Since the EPANET engine/toolkit is written in C, the runtimes 
of the EpanetSimulator are typically faster than the WNTRSimulator, which is written in Python. 

Figure 12.2 Diagram of WNTR process and capabilities.

git clone https://github.com/USEPA/WNTR

cd WNTR

python setup.py develop

https://wntr.readthedocs.io
https://github.com/USEPA/WNTR
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While slower, the WNTRSimulator provides more flexibility in how PDD simulations are configured 
compared to the EpanetSimulator. Specifically, the WNTRSimulator can handle node-specific PDD 
parameters, where EPANET can only handle globally defined PDD parameters. Since Python can also 
handle complex data structures, the WNTRSimulator can provide more advanced analysis options 
that would not be easily achieved using the EPANET GUI or the EpanetSimulator.

12.3.5 Examples and demos
The WNTR package includes example scripts and demos to help new users familiarize themselves 
with WNTR’s capabilities. These were developed to capture the current capabilities and will evolve 
with continued WNTR development. When WNTR is installed using PyPI or Conda, the examples 
folder is not included. Examples and demos can be found within the WNTR repository at https://
github.com/USEPA/WNTR/tree/main/examples.

Python scripts can be run in a variety of integrated development environments (IDEs), but common 
software programs are Spyder, Jupyter Notebook, PyCharm and Atom. The WNTR examples are 
Python scripts, and the demos are Jupyter Notebooks. A Jupyter Notebook requires additional software 
installation (https://jupyter.org/), or it can be accessed through Anaconda. Jupyter Notebook is an 
open-sourced web-based application that acts as both an IDE and a presentation tool. Tutorials of 
the Jupyter Notebooks are provided in Section 12.6 and interested readers can check the WNTR 
examples repository folder for available Jupyter Notebook examples. Tables 12.2 and 12.3 provide a 
brief description of each example and demo file.

Table 12.1 EPANET and WNTR hydraulic unit conventions.

Parameter US Customary Units (EPANET) SI Units (WNTR)

Time min s

Demand or flow gal/min (GPM) m3/s

Diameter (for pipes) in m

Diameter (for tanks) ft m

Length ft m

Elevation ft m

Pressure psi mH2O (assuming a fluid density 
of 1000 kg/m3)

Table 12.2 Script examples.

File Purpose

getting _ started.py Demonstrates how to import WNTR, generate network model from an INP file, 
simulate hydraulics, and plot node pressures 5 hours into the simulation

fire _ flow.py Runs hydraulic simulations with and without fire flow demand to a single fire node. 
Plots and compares node pressures 24 hours into simulation

pipe _ criticality.py Runs multiple hydraulic simulations to compute the impact that different individual 
pipe closures have on water pressure. Plots junction pressure impact from a single 
pipe break

sensor _ placement.py Uses WNTR with Chama (https://chama.readthedocs.io) to optimize the placement 
of sensors that minimize detection time of contamination incidents. Plots location 
and detection time for each sensor

stochastic _ simulation.py Runs multiple realizations of pipe leaks where each pipe is assigned a probability 
failure related to pipe diameter. Calculates and plots water service availability and 
tank water levels for each realization

https://github.com/USEPA/WNTR/tree/main/examples
https://github.com/USEPA/WNTR/tree/main/examples
https://jupyter.org/
https://chama.readthedocs.io
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12.3.5.1 Basic example with getting _ started.py
The basics of using WNTR can be found in the getting _ started.py example. The full example can be 
found in the GitHub repository. To start using WNTR, open a Python console and import the package.

Next an EPANET compatible INP file needs to be supplied – shown here as providing a file 
location (using  referential or explicit file path and file name) and supplying that to the WNTR 
WaterNetworkModel function. To avoid errors, make sure the file path to the network file is correct.

To ensure the correct INP file was imported, a simple network map can be created.

After all the steps, the user should see a network map like Figure 12.3.
All examples and demos use the Net3.inp file, which consists of 92 junctions, two reservoirs, 

three tanks, 117 pipes, and two pumps. Additional example networks can be found at https://github.
com/USEPA/WNTR/tree/main/examples/networks and range from a 9-junction network to a 
3000-junction network. The University of Kentucky also provides additional networks at https://
uknowledge.uky.edu/wdsrd/ for testing purposes.

import wntr

import matplotlib.pyplot as plt

inp _ file = "networks/Net3.inp"
wn = wntr.network.WaterNetworkModel(inp _ file)

Table 12.3 Jupyter notebook demos.

File Purpose

pipe_break_demo.ipynb Runs multiple hydraulic simulations to compute the impact that different 
individual pipe breaks have on network pressure. Plots pressure and population 
impacts for all junctions impacted by pipe breaks

segment_break_demo.ipynb Runs multiple hydraulic simulations to compute the impact that different 
segment breaks have on network pressure. Plots pressure and population impacts 
for all junctions impacted by segment breaks

fire_flow_demo.ipynb Runs multiple hydraulic simulations with and without fire flow demand to 
multiple fire hydrant nodes. Plots pressure and population impacts for junctions 
impacted by fire demand nodes

earthquake_demo.ipynb Runs hydraulic simulations of earthquake damage with and without repair efforts. 
Plots fragility curves, peak ground acceleration, peak ground velocity, repair rate, 
leak probability, and damage states. Compares junction pressure 24 hours into 
the simulation, and tank and junction pressure over time. Also plots water service 
availability and population impacted by low pressure conditions

wntr.graphics.plot _ network(wn, title=wn.name)
plt.show()

https://github.com/USEPA/WNTR/tree/main/examples/networks
https://github.com/USEPA/WNTR/tree/main/examples/networks
https://uknowledge.uky.edu/wdsrd/
https://uknowledge.uky.edu/wdsrd/


302 Embracing Analytics in the Drinking Water Industry

12.4 DISASTER SCENARIOS

WDSs can experience disruptions in their ability to deliver water to their customers in a variety of 
ways. Disruptions caused by a disaster could result in short- or long-term issues. Persistent pipe leaks, 
population fluctuations (e.g. after loss of housing), or changes to supply and demand are some of the 
impacts that could be experienced. This section describes common disaster scenarios that can be 
modeled using WNTR.

12.4.1 Pipe breaks
A pipe break is the simplest form of damage that is considered. Pipe breaks, or leaks, prevent water 
from being delivered to consumers within a network or reduce available downstream pressure. In 
WNTR, users can identify pipes of interest by diameter or other attributes and simulate a break or a 
leak. Pipe breaks can be simulated three ways within WNTR: (1) using the controls to simulate pipe 
closure; (2) using the split _ pipe method to add a leak to the pipe; or (3) using the break _ pipe 
method to create a break in the system. By closing a pipe, water is no longer able to flow through that 
pipe during a simulation. Controls and rules can be used to change the status of a pipe, pump, or valve 
between ‘open’ or ‘closed’. The split _ pipe method splits the pipe of interest into two new pipes and 
junction. The new junction has a base demand of 0 and the default demand pattern. The new junction 
can then be used to simulate a leak. The break _ pipe method breaks the pipe of interest into two 
separate pipes by adding two new junctions (with the same coordinates). The junctions have a base 
demand of 0 and the default demand pattern. The break _ pipe method is ideal for simulating a break 
at a specific location on the pipe and to stop water flow through the pipe. The example and demo files 
use the pipe closure method to simulate the pipe breaks. The results identify which junctions in the 
system experience a drop in pressure below a specified threshold. The simplest scenario is a single 
pipe break; however, it is possible that multiple pipes, or segments, may break at once.

12.4.2 Segment isolation
The basic purpose of an isolation valve is to control water flow within a WDS. Since in some cases 
isolation valves are not available for individual pipes – because they are paved over, broken, or 
otherwise unavailable – segment break analyses can provide a more realistic picture of the impact 
of damage to a pipe segment. In segment break analysis, isolation valves are placed throughout the 

Figure 12.3 Network map of Net3.
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network where pipes between two valves create a segment. In the event valve locations are not known 
within the network, WNTR can be used to identify potential valve locations to generate a valve layer. 
Using the generate _ valve _ layer method, users can choose between (1) strategic placement and 
(2) random placement to add isolation valves within the network. For the strategic placement method, 
a variable, n, is used to determine the number of pipes from each node that do not include a valve. 
The random placement method randomly places n valves throughout the network. During analysis, 
all pipes within the segment are closed using pipe attributes or controls. Like the pipe break analysis, 
the results identify which junctions in the system experience a drop in pressure below a specified 
threshold.

12.4.3 Earthquakes
Earthquakes can cause significant damage to a WDS that could take weeks, or months, to repair. 
Damage could be to pipes, tanks, pumps, and other infrastructure. Additionally, earthquakes can 
cause power outages and source loss leaving a majority, if not all, of the users without safe drinking 
water. WNTR can simulate these consequences to understand the severity of the impact on the system. 
For instance, pipe leaks, tanks leaks, and pump closures can be changed in the model prior to running 
a simulation. WNTR includes the ability to calculate peak ground acceleration (PGA) using the 
pga _ attenuation _ model method, peak ground velocity (PGV) using the pgv _ attenuation _ model 
method, and repair rates (RR) using the repair _ rate _ model method. Fragility curves can be used 
to define the probability of damage to a component with respect to PGA, PGV, and/or RR (Klise et al., 
2017, 2020).

12.4.4 Fires
Fires affect water distribution systems by increasing water demand at the hydrant location to support 
firefighting activity. While the minimum required fire flow and duration vary by state and building type, 
most small residential fires may require 0.095 m3/s (1500 GPM) for 2 hours while large commercial 
spaces may require 0.505 m3/s (8000 GPM) for 4 hours (International Code Council, 2011). The size 
and spread of a fire can have a large effect on the rest of the system since the additional water demand 
near the fire location may cause users to lose water for an extended period of time. WNTR can be used 
to simulate firefighting conditions to understand these impacts. Demand, location, time, and duration 
of firefighting are all parameters that can be specified within WNTR.

12.4.5 Loss of source water
The loss of source water within the system can hinder the ability to deliver safe drinking water to 
users. This could be a result of pump failure or power loss at water treatment facilities or source water 
contamination. During an incident, a water utility may advise consumers to conserve water or enact a 
water boil notice to prolong the availability of water in storage tanks. Water conservation efforts can 
be simulated within WNTR by reducing junction demands to understand how they impact a utility’s 
ability to continue delivering water during an incident. Changes to source water availability can be 
simulated within WNTR as pump closures or adjustments to the water demands.

12.4.6 Power outage
Power outages can have both short- and long-term effects on a system depending on the length of 
the outage. Power is required to operate many WDS components and power outages can disrupt the 
ability to operate the WDS normally. Of particular concern, power outages can cause pump stations 
to shut down, resulting in reduced water pressure. Reduced water pressures may prevent certain 
portions of a WDS from receiving their expected demands – in some cases, receiving no water at 
all. This can lead to depressurization in the system, which in turn can cause long-term damage such 
as pipe breaks. WNTR has a method add _ outage that allows users to quickly add time controls to 
pumps and specify when to start and stop a power outage.
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12.4.7 Other scenarios
The previous scenarios are just a few examples of how a disaster may affect a system, but there are 
many others. For example, environmental changes, such as drought, may lead to long term water 
shortages. Chemical, microbial, or radiological contamination could also render the water unsafe to 
drink even with boil water alerts. Moreover, disasters can have multiple consequences to a system as 
seen with floods, hurricanes, tornadoes, and winter storms to name a few. Given its flexibility, WNTR 
can be extended to model a range of these disasters if appropriate damage-state estimation techniques 
and response actions are available.

12.5 WNTR RESILIENCE METRICS

Metrics seek to provide a standardized quantitative measure of system resilience. Resilience can refer 
to design, maintenance, or operations of a system and are all vital for providing safe drinking water to 
the community. The following section describes key hydraulic metrics (i.e. water service availability, 
Todini index, and modified resilience index) and briefly highlights topographic, water quality, water 
security, and economic metrics that are included in WNTR.

12.5.1 Water service availability
Water service availability (WSA) is the ratio of delivered consumer demand to expected (requested) 
demand (Ostfeld et  al., 2002). This metric captures the amount of water a user will actually 
receive during an incident relative to the amount they would normally receive. In WNTR, the 
water _ service _ availability method can be used to calculate WSA as a function of time or 
space (Equation (12.1)):
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(12.1)

where Di is the actual demand at junction i and Dexp is the expected demand at junction i. Expected 
demand can be calculated using the expected _ demand method.

12.5.2 Todini index
While WSA only considers a system’s ability to deliver water, this may not capture the full breadth 
of a system’s resilience. The Todini index (Todini, 2000) quantifies a system’s capability to continue 
meeting consumer demands and pressures at junctions, reservoirs, and pumps while overcoming 
failures within the system. The Todini index reports resilience as a ratio of surplus internal power to 
the maximum power for a given time while satisfying junction demands and head. The Todini index 
is best suited for networks with a single water source. In WNTR, the todini _ index method can be 
used to compute the Todini index (Equation (12.2)):
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where Di is the actual demand at junction i, Hi is the head at junction i, Pstar is the pressure threshold 
(i.e. required pressure), Elevi is the elevation of junction i, N is the total number of junctions, Dj is the 
actual demand at reservoir j, Hj is the head at reservoir j, M is the total number of reservoirs, Fk is the 
flowrate at pump k, HLk is the headloss at pump k, and Z is the total number of pumps.

12.5.3 Modified resilience index
Like the Todini index, the modified resilience index (MRI) (Jayaram & Srinivasan, 2008) quantifies 
surplus energy within the network but has the additional ability to calculate surplus power at each 
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junction for a given specific time or as a system average for each timestep. MRI is more versatile than 
the Todini index since it calculates a system’s excess energy more accurately for networks with multiple 
water sources. In WNTR, the modified _ resilience _ index method can be used to calculate MRI 
per junction (Equation (12.3)) or over all junctions (Equation (12.4)):
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where Pi is the pressure at junction i, Elevi is the elevation of junction i, and Pstar is the pressure 
threshold (i.e. required pressure),
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where Di is the actual demand at junction i and N is the total number of junctions.

12.5.4 Additional metrics
While the hydraulic-based metrics discussed above can provide useful information, they are unlikely to 
fully describe the impacts for all aspects of a system’s ability to deliver water. Additional resilience metrics 
available in WNTR are categorized as topographic, water quality, water security, and economic metrics 
(Klise et al., 2020). Topographic metrics are based on graph theory and are used to assess the strength 
of connectivity within a WDS (e.g. how many pipes serve a given node). Water quality metrics quantify 
contaminant concentrations or water age, which provides valuable information about water quality but 
at the expense of more complex simulations. Water security metrics measure the effect contaminated 
water may have on the consumers (e.g. estimate exposure), extending the use of water quality simulations. 
Economic metrics measure costs associated with operating the WDS as well as greenhouse gas emissions.

12.6 TUTORIALS

This section provides step by step tutorials of resilience analysis demos using four simple disaster 
scenarios: (1) pipe break, (2) segment isolation, (3) fire flow, and (4) earthquake. All tutorials use default 
WNTR SI units (refer to Section 12.3.3). Figure 12.4 outlines the basic steps for each analysis. The code 
provided below follows these steps. The snippets of code provided assume readers have a moderate 
understanding of Python and its structure. More guidance, detailed comments, and additional 
visualization options for each scenario can be found in the Jupyter Notebook demo files located at 
https://github.com/USEPA/WNTR/tree/main/examples/demos. Demo files are not automatically 
downloaded with the PyPI or Conda installations. The Jupyter Notebook demo files are in color, which 
highlights the subtleties and provides more details of the graphs included in this section.

12.6.1 Pipe break
Step 1: Import Python packages and create a water network. Numpy is required to support data 
handling. Once the network model has been created, continue to the sample code for the disaster 
scenario of interest. The file path in this example assumes that the user is working from the demos 
folder directory.

import numpy as np

import wntr

inp _ file = "../networks/Net3.inp"
wn = wntr.network.WaterNetworkModel(inp _ file)

https://github.com/USEPA/WNTR/tree/main/examples/demos
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Step 2: Define the start time of the break (s), the break duration (s), the system pressures requirements 
(mH2O), and the pipe diameters of interest (m). The parameters minimum _ pressure and required _ pressure 
are used for PDD simulations. Nodes with pressures below minimum pressure will not receive any 
water, and node pressures need to be at least the required pressure to receive all of the requested 
demand. The parameter min _ pipe _ diam defines the lower limit of pipe diameters to include in analysis.

start _ time = 2*3600 # 2 hours
break _ duration = 12*3600 # 12 hours
total _ duration = start _ time + break _ duration # 14 hours

minimum _ pressure = 3.52 # 5 psi
required _ pressure = 14.06 # 20 psi

min _ pipe _ diam = 0.3048 # 12 inch

Figure 12.4 Flow chart demonstrating basic steps for resilience analysis of various disaster scenario simulations.
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Step 3: Identify non-zero demand (NZD) junctions by calculating average expected demand (AED) 
for each junction and selecting those with a value greater than zero. Simulate normal conditions. 
Identifying junctions that experience pressures below minimum_pressure during normal conditions 
helps identify junctions that experience low pressures during the disaster simulations as a direct result 
of the disaster. Note, it is standard practice to set the report_timestep and hydraulic_timestep to an 
hour or less.

Step 4: Identify pipes of interest. The parameter pipes_of_interest include all pipes in the network 
with diameters greater than min_pipe_diam defined in Step 2.

Step 5: Simulate pipe breaks for each of the identified pipes of interest. Criticality is determined by 
the impact of a pipe break on the system. Iterate through the list of pipes and simulate a break. For 
each pipe break, save out results for impacted junctions. A junction is considered impacted if the 
pressure drops below minimum_pressure during the disaster time interval. This list does not include 
junctions with pressure drops below minimum_pressure during normal operations. A try/except/
finally approach is taken to ensure the script can finish running and still catch any convergence 
issues a single pipe break might cause. The user is shown which simulations failed to complete, and 
all successfully run simulations are saved to analysis_results. With large numbers of simulations, it 
is sometimes necessary to use such an approach to prevent one error from causing a user to have to 
repeat the entire set of simulations. A user can revisit nodes with failed simulations individually to 
determine the cause of failure, if desired.

AED = wntr.metrics.average _ expected _ demand(wn)
nzd _ junct = AED[AED > 0].index

wn.options.hydraulic.demand _ model = ’PDD’
wn.options.time.duration = total _ duration
wn.options.hydraulic.minimum _ pressure = minimum _ pressure
wn.options.hydraulic.required _ pressure = required _ pressure
wn.options.time.report _ timestep = 3600 # 1 hour
wn.options.time.hydraulic _ timestep = 3600 # 1 hour

sim = wntr.sim.WNTRSimulator(wn)
results = sim.run _ sim()

pressure = results.node[’pressure’].loc[start _ time::, nzd _ junct]
normal _ pressure _ below _ pmin = pressure.columns[(pressure < 
minimum _ pressure).any()]

pipes _ of _ interest = wn.query _ link _ attribute(’diameter’,  
np.greater _ equal, min _ pipe _ diam)
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Step 6: Calculate pressure and population impacts for each pipe break and visualize results in the 
network. The parameters node _ range and link _ range in the plot _ network method can be changed to 
best fit the analysis results. If users are working through the code in Jupyter Notebooks, the resulting 
graphs will automatically generate. However, if the code is run in a different IDE and graphs do not 
appear, import matplotlib.pyplot as plt and plt.show() should be added to the code as 
shown in Section 12.3.5.1.

analysis _ results = {}
for pipe _ name in pipes _ of _ interest.index:

wn = wntr.network.WaterNetworkModel(inp _ file)
wn.options.hydraulic.demand _ model = ’PDD’
wn.options.time.duration = total _ duration
wn.options.hydraulic.minimum _ pressure = minimum _ pressure
wn.options.hydraulic.required _ pressure = required _ pressure
wn.options.time.report _ timestep = 3600 #1 hour
wn.options.time.hydraulic _ timestep = 3600 #1 hour

pipe = wn.get _ link(pipe _ name)
act = wntr.network.controls.ControlAction(pipe, ’status’, 0)
cond = wntr.network.controls.SimTimeCondition(wn, ’Above’,  
start _ time)
ctrl = wntr.network.controls.Control(cond, act)
wn.add _ control(’close pipe ’ + pipe _ name, ctrl)

try:

sim = wntr.sim.WNTRSimulator(wn)
sim _ results = sim.run _ sim()

sim _ pressure = sim _ results.node[’pressure’].loc[start _ time::, 
nzd _ junct]

sim _ pressure _ below _ pmin = sim _ pressure.columns[(sim _ pressure  
< minimum _ pressure).any()]
impacted _ junctions = set(sim _ pressure _ below _ pmin) 
- set(normal _ pressure _ below _ pmin)

except Exception as e:

impacted _ junctions = None
print(pipe _ name, ’ Failed:’, e)

finally:
analysis _ results[pipe _ name] = impacted _ junctions

Population = wntr.metrics.population(wn)

num _ junctions _ impacted = {}
num _ people _ impacted = {}
for pipe _ name, impacted _ junctions in analysis _ results.items():

if impacted _ junctions is not None:
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The resulting graphs are shown in Figure 12.5. The left side shows the pipe breaks that impacted 
junctions within the network where the color and pipe thickness corresponds to the number of 
junctions impacted. The right side shows the pipe breaks that impacted consumers where the color 
and pick thickness corresponds to the number of consumers impacted. Pipe thickness increases with 
junction and population impacts. The graphs indicate the pipe with the most impacts affected over ten 
junctions and over 5000 consumers.

12.6.2 Segment isolation
Step 1: Import Python packages and create a water network. Numpy and Matpotlib are required to 
support data handling and graphics/plotting. Once the network model has been created, continue to 
the sample code for the disaster scenario of interest. The file path in this example assumes that the 
user is working from the demos folder directory.

num _ junctions _ impacted[pipe _ name] = len(impacted _ junctions)
num _ people _ impacted[pipe _ name] = population[impacted _  
junctions].sum()

wntr.graphics.plot _ network(wn, link _ attribute=num _ junctions _ impacted, 
node _ size=0,

link _ width=2,
link _ range=[0,10], link _ colorbar _  
label=’Junctions  
Impacted’,

title=’Number of junctions impacted by each 
pipe closure’)

wntr.graphics.plot _ network(wn, link _ attribute=num _ people _ impacted, 
node _ size=0, link _ width=2,

link _ range=[0,5000], link _ colorbar _ label=
’Population’,

title=’Number of people impacted by each pipe 
closure’)

Figure 12.5 Net3 results from pipe break analysis.
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Step 2: Define the start time of break (s), the break duration (s), and the system pressures (mH2O). 
The parameters minimum _ pressure and required _ pressure are used for PDD simulations. Nodes 
with pressures below the minimum pressure will not receive any water, and node pressures need to 
be at least the required pressure to receive all of the requested demand.

Step 3: Identify non-zero demand (NZD) junctions by calculating average expected demand (AED) 
for each junction and selecting those with a value greater than zero. Simulate normal conditions. 
Identifying junctions that experience pressures below the minimum _ pressure during normal conditions 
helps identify junctions that experience low pressures during the disaster simulation are as a direct 
result of the disaster. Note, it is standard practice to set the report _ timestep and hydraulic _ timestep 
to an hour or less.

import numpy as np

import matplotlib.pylab as plt

import wntr

inp _ file = "../networks/Net3.inp"
wn = wntr.network.WaterNetworkModel(inp _ file)

start _ time = 2*3600 # 2 hours
break _ duration = 12*3600 # 12 hours
total _ duration = start _ time + break _ duration # 14 hours

minimum _ pressure = 3.52 # 5 psi
required _ pressure = 14.06 # 20 psi

AED = wntr.metrics.average _ expected _ demand(wn)
nzd _ junct = AED[AED > 0].index

wn.options.hydraulic.demand _ model = ’PDD’
wn.options.time.duration = total _ duration
wn.options.hydraulic.minimum _ pressure = minimum _ pressure
wn.options.hydraulic.required _ pressure = required _ pressure
wn.options.time.report _ timestep = 3600 #1 hour
wn.options.time.hydraulic _ timestep = 3600 #1 hour

sim = wntr.sim.WNTRSimulator(wn)
results = sim.run _ sim()

pressure = results.node[’pressure’].loc[start _ time::, nzd _ junct]
normal _ pressure _ below _ pmin = pressure.columns[(pressure < minimum _ pressure).
any()]
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Step 4: Generate, save, and visualize the valve layer. A valve layer represents valve placement within 
a network, where pipes between two valves are considered a segment. While the pipe break analysis 
is helpful in identifying impacts of specific, individual pipes within the network (since it assumes 
isolation valves at the end of each pipe), the segment isolation analysis is more realistic since it reflects 
the position of isolation valves across the network. The example provided uses n = 2 strategic valve 
placement, which indicates that for every node, two pipes connected to that node do not have a valve.
The resulting graph is shown in Figure 12.6 where triangles represent isolation valve placement.

Step 5: Simulate segment breaks for each segment. Iterate through the list of segments and simulate 
each break. For each segment break, save out results for impacted junctions. A junction is considered 
impacted if the pressure drops below the minimum _ pressure during the disaster time interval. This list 
does not include junctions with pressure drops below minimum _ pressure during normal operations. 
Like the pipe break analysis, the try/except/finally approach is taken to ensure the script can finish 
running and still catch any failures a single pipe break may cause.

Figure 12.6 Net3 isolation valve locations using ‘strategic’ valve placement.

valve _ layer = wntr.network.generate _ valve _ layer(wn, placement _ type= 
’strategic’, n=2, seed=123)
G = wn.get _ graph()
node _ segments, link _ segments, seg _ sizes = wntr.metrics.valve _ segments 
(G, valve _ layer)

analysis _ results = {}
for segment in link _ segments.unique():

wn = wntr.network.WaterNetworkModel(inp _ file)
wn.options.hydraulic.demand _ model = ’PDD’
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Step 6: Calculate the pressure and population impacts for each segment and visualize results onto a 
network. The impacts for each segment are calculated and then mapped to each pipe within that segment. 
This allows for the impacts to be plotted onto a network map correctly. The parameters node _ range 
and link _ range in the plot _ network method can be changed to best fit the analysis results. If users 
are working through the code in Jupyter Notebooks, the resulting graphs will automatically generate. 
However, if the code is run in a different IDE and graphs do not appear, import matplotlib.pyplot 
as plt and plt.show() should be added to the code as shown in Section 12.3.5.1.

wn.options.time.duration = total _ duration
wn.options.hydraulic.minimum _ pressure = minimum _ pressure
wn.options.hydraulic.required _ pressure = required _ pressure
wn.options.time.report _ timestep = 3600 #1 hour
wn.options.time.hydraulic _ timestep = 3600 #1 hour

pipes _ in _ seg = link _ segments[link _ segments == segment]

for pipe _ name in pipes _ in _ seg.index:

pipe = wn.get _ link(pipe _ name)

act = wntr.network.controls.ControlAction(pipe, ’status’, 0)
cond = wntr.network.controls.SimTimeCondition(wn, ’Above’,  
start _ time)
ctrl = wntr.network.controls.Control(cond, act)
wn.add _ control(’close pipe ’ + pipe _ name, ctrl)

try:

sim = wntr.sim.WNTRSimulator(wn)
sim _ results = sim.run _ sim()

sim _ pressure = sim _ results.node[’pressure’].loc[start _ time::,  
nzd _ junct]

sim _ pressure _ below _ pmin = sim _ pressure.columns[(sim _ pressure < 
minimum _ pressure).any()]
impacted _ junctions = set(sim _ pressure _ below _ pmin) – set(normal 
 _ pressure _ below _ pmin)
except Exception as e:

impacted _ junctions = None
print(segment, ’ Failed:’, e)

finally:
analysis _ results[segment] = impacted _ junctions

population = wntr.metrics.population(wn)

num _ junctions _ impacted _ per _ segment = {}
num _ people _ impacted _ per _ segment = {}
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The resulting graphs are shown in Figure 12.7. The left side shows the number of junctions each 
segment impacted represented with color and segment thickness. The right side shows the number 
of consumers each segment impacted represented with color and segment thickness. Segment 
thickness increases with junction and population impacts. Unlike the pipe break analysis which 
only simulated breaks in pipes of specified diameters, the segment break analysis simulated the 
impact for all pipes. The pipe break analysis results show the most impactful pipe is located near 
the bottom of the network. However, when taking into consideration isolation valve placement and 
grouping pipes into segments, the most impactful segments are located both near the top of the 
network and the bottom.

for segment, impacted _ junctions in analysis _ results.items():
if impacted _ junctions is not None:

num _ junctions _ impacted _ per _ segment[segment] =  
len(impacted _ junctions)
num _ people _ impacted _ per _ segment[segment] =  
population[impacted _ junctions].sum()

num _ junctions _ impacted = link _ segments.
map(num _ junctions _ impacted _ per _ segment)
num _ people _ impacted = link _ segments. 
map(num _ people _ impacted _ per _ segment)

wntr.graphics.plot _ network(wn, link _ attribute = num _ junctions _ impacted, 
node _ size = 0,

link _ width = 2,
link _ range = [0,10], link _ colorbar _ label = 
 ’Junctions Impacted’,

title = ’Number of junctions impacted by each 
segment closure’)

ax = plt.gca()
wntr.graphics.plot _ valve _ layer(wn, valve _ layer, add _ colorbar = False, 
include _ network = False,ax = ax)

wntr.graphics.plot _ network(wn, link _ attribute = num _ people _ impacted, 
node _ size = 0, link _ width = 2,

link _ range = [0,5000], link _ colorbar _ label = 
 ’Population Impacted’,

title = ’Number of people impacted by each 
segment closure’)

ax = plt.gca()
wntr.graphics.plot _ valve _ layer(wn, valve _ layer, add _ colorbar=False, 
include _ network=False,ax=ax)
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12.6.3 Fire flow
Step 1: Import Python packages and create a water network. Numpy and Matplotlib are required to 
support data handling and graphics/plotting. Once the network model has been created, continue to 
the sample code for the disaster scenario of interest. The file path in this example assumes that the 
user is working from the demos folder directory.

Step 2: Define the start time of fire (s), the fire duration (s), the fire flow (m3/s), the system pressures 
(mH2O), and the pipe diameters (m). The parameters minimum _ pressure and required _ pressure are 
used for PDD. Nodes with pressures below minimum pressure will not receive any water, and node 
pressures need to be at least the required pressure to receive all of the requested demand. Hydrants 
are typically attached to pipes with diameters between 0.15 m (6 inches) and 0.20 m (8 inches). For this 
reason, pipes selected for this analysis are within that range.

Figure 12.7 Net3 results from segment break analysis.

import numpy as np

import matplotlib.pylab as plt

import wntr

inp _ file = "../networks/Net3.inp"
wn = wntr.network.WaterNetworkModel(inp _ file)

start _ time = 2*3600 # 2 hours
fire _ duration = 4*3600 # 4 hours
total _ duration = start _ time + fire _ duration

fire _ demand = 0.5047 # 8000 GPM

minimum _ pressure = 3.52 # 5 psi
required _ pressure = 14.06 # 20 psi

min _ pipe _ diam = 0.1524 # 6 inch
max _ pipe _ diam = 0.2032 # 8 inch
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Step 3: Identify non-zero demand (NZD) junctions by calculating average expected demand (AED) 
for each junction and selecting those with a value greater than zero. Simulate normal conditions. 
Identifying junctions that experience pressures below minimum _ pressure during normal operations 
help determine which junctions that experience low pressures during the disaster are as a direct result 
of the disaster. Note, it is standard practice to set the report _ timestep and hydraulic _ timestep to an 
hour or less.

Step 4: Identify hydrant locations. Assuming that there are hydrants at every junction in the network 
model, hydrants of interest are identified as nodes connected to pipe diameters of interest. This snippet 
shows how to select only certain size pipes and a unique set of nodes that are connected to that 
selection of pipes. In this tutorial, hydrant locations are referred to as junct _ of _ interest or fire nodes.

Step 5: With the list of identified fire nodes, simulate fire flows for each. Iterate through the list of fire 
nodes and simulate the increased fire demand flow for each. For each fire node, save out results for 
impacted junctions. A junction is considered impacted if its pressure drops below minimum _ pressure 
during the disaster time interval. If the junction experiences pressures below minimum _ pressure 

AED = wntr.metrics.average _ expected _ demand(wn)
nzd _ junct = AED[AED > 0].index

wn.options.hydraulic.demand _ model = ’PDD’
wn.options.time.duration = total _ duration
wn.options.hydraulic.minimum _ pressure = minimum _ pressure
wn.options.hydraulic.required _ pressure = required _ pressure
wn.options.time.report _ timestep = 3600 #1 hour
wn.options.time.hydraulic _ timestep = 3600 #1 hour

sim = wntr.sim.WNTRSimulator(wn)
results = sim.run _ sim()

pressure = results.node[’pressure’].loc[start _ time::, nzd _ junct]
normal _ pressure _ below _ pmin = pressure.columns[(pressure < minimum _ pressure).
any()]

pipe _ diameter = wn.query _ link _ attribute(’diameter’)
pipes _ of _ interest = pipe _ diameter[(pipe _ diameter < = max _ pipe _ diam) &

(pipe _ diameter > = min _ pipe _ diam)]

junct _ of _ interest = set()
for pipe _ name in pipes _ of _ interest.index:

pipe = wn.get _ link(pipe _ name)
if pipe.start _ node _ name in wn.junction _ name _ list:

junct _ of _ interest.add(pipe.start _ node _ name)
if pipe.end _ node _ name in wn.junction _ name _ list:

junct _ of _ interest.add(pipe.end _ node _ name)
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during normal conditions, it is not included in the list of impacted junctions. Like pipe and segment 
break analyses, a try/except/finally approach is taken to ensure the script can finish running and still 
catch any failures a single pipe break may cause.

Step 6: Calculate pressure and population impacts for each fire node and visualize results onto a 
network. The parameters node _ range and link _ range in the plot _ network method can be changed 

analysis _ results = {}
for junct in junct _ of _ interest:

wn = wntr.network.WaterNetworkModel(inp _ file)
wn.options.hydraulic.demand _ model = ’PDD’
wn.options.time.duration = total _ duration
wn.options.hydraulic.minimum _ pressure = minimum _ pressure
wn.options.hydraulic.required _ pressure = required _ pressure
wn.options.time.report _ timestep = 3600 #1 hour
wn.options.time.hydraulic _ timestep = 3600 #1 hour

fire _ flow _ pattern = wntr.network.elements.Pattern.binary _ pattern(
’fire _ flow’,
start _ time = start _ time,
end _ time = total _ duration,
step _ size = wn.options.time.pattern _ timestep,
duration = wn.options.time.duration
)

wn.add _ pattern(’fire _ flow’, fire _ flow _ pattern)

fire _ junct = wn.get _ node(junct)
fire _ junct.demand _ timeseries _ list.append((fire _ demand, fire _ flow _ pattern, 
’Fire flow’))

try:

sim = wntr.sim.WNTRSimulator(wn)
sim _ results = sim.run _ sim()

 sim _ pressure = sim _ results.node[’pressure’].loc[start _ time::, 
nzd _ junct]

 sim _ pressure _ below _ pmin = sim _ pressure.columns[(sim _ pressure  
< minimum _ pressure).any()]
 impacted _ junctions = set(sim _ pressure _ below _ pmin) –  
set(normal _  

pressure _ below _ pmin)

except Exception as e:

impacted _ junctions = None
print(junct, ’ Failed:’, e)

finally:
analysis _ results[junct] = impacted _ junctions
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to best fit the analysis results. If users are working through the code in Jupyter Notebooks, the 
resulting graphs will automatically generate. However, if the code is run in a different IDE and 
graphs do not appear, import matplotlib.pyplot as plt and plt.show() should be added to 
the code as shown in Section 12.3.5.1.

The resulting graph is shown in Figure 12.8. The left side shows which fire nodes impacted junctions 
where the color and circle size corresponds to the number of junctions impacted. The right side 
shows which fire nodes impacted consumers where color and circle size corresponds to the number of 
consumers impacted. Circle size increases with junction and population impacts. The graphs indicate 
the fire nodes with the greatest junction impact are at the bottom of the network and each impacted 
three other junctions. However, the fires nodes with the greatest population impact are at the top of 
the network and each impacted 1902 consumers.

12.6.4 Earthquake
Step 1: Import Python packages and create a water network. Numpy, Pandas, Matplotlib, and SciPy 
are required to support data handling and graphics/plotting. Once the network model has been 
created, continue to the sample code for the disaster scenario of interest. The file path in this example 
assumes that the user is working from the demos folder directory.

population = wntr.metrics.population(wn)

num _ junctions _ impacted = {}
num _ people _ impacted = {}
for pipe _ name, impacted _ junctions in analysis _ results.items():

if impacted _ junctions is not None:

num _ junctions _ impacted[pipe _ name] = len(impacted _ junctions)
num _ people _ impacted[pipe _ name] = population[impacted _ junctions].
sum()

wntr.graphics.plot _ network(wn, node _ attribute = num _ junctions _ impacted, 
node _ size = 20,

link _ width = 0,
node _ range = [0,3], node _ colorbar _ label = 
 ’Junctions Impacted’,

title = ’Number of junctions impacted by each 
fire demand’)

wntr.graphics.plot _ network(wn, node _ attribute = num _ people _ impacted, 
node _ size = 20, link _ width = 0,

node _ range = [0,2000], node _ colorbar _ label =
’Population’,

title=’Number of people impacted by each fire 
demand’)
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Step 2: Define all parameters. For the earthquake analysis, this includes the epicenter (x,y-coordinates: 
same used by EPANET), the magnitude (Richter scale), and the depth (m).

Step 3: Create the earthquake object and calculate PGA, PGV, and RR. Create fragility curve and 
damage states. Coordinate morphing is optional.

epicenter = (32000,15000) # m (x,y)
magnitude = 6.5 # Richter magnitude
depth = 10000 # m

total _ duration = 24*3600 # 24 hours

minimum _ pressure = 3.52 # 5 psi
required _ pressure = 14.06 # 20 psi

leak _ start _ time = 5*3600 # 5 hours
leak _ repair _ time = 15*3600 # 15 hours

Figure 12.8 Net3 results from fire flow analysis.

import numpy as np

import pandas as pd

import matplotlib.pylab as plt

from scipy.stats import expon

import wntr

inp _ file = "../networks/Net3.inp"
wn = wntr.network.WaterNetworkModel(inp _ file)
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Step 4: Define the hydraulic parameters, the start time of failure, and the duration of failure. In this 
demo, failure is simulated as pipe leaks. Note, it is standard practice to set the report _ timestep and 
hydraulic _ timestep to an hour or less.

Step 5: Add all pipe leaks to the network and simulate hydraulics. First, the area of the pipe leak needs 
to be defined, where this code classifies a leak as ‘Major leak’ or ‘Minor leak’ to specify leak area. In 
this example, a ‘Major Leak’ assumes a 25% leak relative to the pipe’s diameter and a ‘Minor Leak’ 
assumes a 10% leak relative to the pipe’s diameter. To add the leak to a pipe, the split _ pipe method 
is used to split a pipe and add a node while retaining the characteristics of the original pipe. The leak 
is then applied to the node just created to simulate a leak in the pipe of interest.

wn.options.hydraulic.demand _ model = ’PDD’
wn.options.time.duration = total _ duration
wn.options.hydraulic.minimum _ pressure = minimum _ pressure
wn.options.hydraulic.required _ pressure = required _ pressure
wn.options.time.report _ timestep = 3600 #1 hour
wn.options.time.hydraulic _ timestep = 3600 #1 hour

wn = wntr.morph.scale _ node _ coordinates(wn, 1000)
earthquake = wntr.scenario.Earthquake(epicenter, magnitude, depth)

R = earthquake.distance _ to _ epicenter(wn, element _ type = wntr.network.Pipe)
pga = earthquake.pga _ attenuation _ model(R)
pgv = earthquake.pgv _ attenuation _ model(R)
RR = earthquake.repair _ rate _ model(pgv)

L = pd.Series(wn.query _ link _ attribute(’length’, link _ type = wntr.network.Pipe))

pipe _ FC = wntr.scenario.FragilityCurve()
pipe _ FC.add _ state(’Minor leak’, 1, {’Default’: expon(scale = 0.2)})
pipe _ FC.add _ state(’Major leak’, 2, {’Default’: expon()})
pipe _ Pr = pipe _ FC.cdf _ probability(RR*L)
pipe _ damage _ state = pipe _ FC.sample _ damage _ state(pipe _ Pr, seed = 123)

for pipe _ name, damage _ state in pipe _ damage _ state.items():
pipe _ diameter = wn.get _ link(pipe _ name).diameter
if damage _ state is not None:

if damage _ state = = ’Major leak’:
leak _ diameter = 0.25*pipe _ diameter
leak _ area = np.pi/4.0*leak _ diameter**2

elif damage _ state = = ’Minor leak’:
leak _ diameter = 0.1*pipe _ diameter
leak _ area = np.pi/4.0*leak _ diameter**2

else:

leak _ area = 0
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Step 6: Simulate hydraulics with repair efforts included. Below simulates a partial repair of the leaks 
for each pipe of interest. Remember, leaks are applied to nodes within WNTR to simulate pipe leaks. 
The code below specifies four pipes will be repaired.

Step 7: Visualize and compare earthquake scenarios with and without repair efforts. The time 
index is first converted from seconds to hours. The code below provides figures for: (1) network 
map without repair, (2) network map with repair, and (3) average system pressure with and without 
repair. The parameters node _ range and link _ range in the plot _ network method can be changed 
to best fit the analysis results. If users are working through the code in Jupyter Notebooks, the 
resulting graphs will automatically generate. However, if the code is run in a different IDE and 
graphs do not appear, import matplotlib.pyplot as plt and plt.show() should be added to 
the code as shown in Section 12.3.5.1.

pressure = results.node[’pressure’]
pressure _ wrepair = results _ wrepair.node[’pressure’]
pressure.index = pressure.index/3600
pressure _ wrepair.index = pressure _ wrepair.index/3600

wn.reset _ initial _ values()

leaked _ demand = results.node[’leak _ demand’]
leaked _ sum = leaked _ demand.sum()
leaked _ sum.sort _ values(ascending = False, inplace = True)

number _ of _ pipes _ to _ repair = 4
leaks _ to _ fix = leaked _ sum[0:number _ of _ pipes _ to _ repair]

for leak _ name in leaks _ to _ fix.index:
node = wn.get _ node(leak _ name)
leak _ area = node.leak _ area
node.remove _ leak(wn)
node.add _ leak(wn, area = leak _ area, start _ time = leak _ start _ time, 
end _ time = leak _ repair _ time)

results _ wrepair = sim.run _ sim()

wn = wntr.morph.split _ pipe(wn,pipe _ name, pipe _ name + ’A’, ’Leak’ 
+ pipe _ name)
n = wn.get _ node(’Leak’ + pipe _ name)
n.add _ leak(wn, area = leak _ area, start _ time = leak _ start _ time)

sim = wntr.sim.WNTRSimulator(wn)
results = sim.run _ sim()
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pressure _ at _ 24hr = pressure.loc[24,wn.junction _ name _ list]
wntr.graphics.plot _ network(wn, node _ attribute = pressure _ at _ 24hr, node _  
size = 20,

node _ range = [0,90], node _ colorbar _ label = 
 ’Pressure (m)’,
title = ’Pressure at 24 hours, without repair’)

pressure _ at _ 24hr _ wrepair = pressure _ wrepair.loc[24,wn.junction _ name _ list]
wntr.graphics.plot _ network(wn, node _ attribute = pressure _ at _ 24hr _ wrepair, 
node _ size = 20,

node _ range = [0,90], node _ colorbar _ label = 
 ’Pressure (m)’,
title = ’Pressure at 24 hours, with repair’)

plt.figure()
ax = plt.gca()
pressure.loc[:,wn.junction _ name _ list].mean(axis = 1).plot(label = ’Without 
repair’, ax = ax)
pressure _ wrepair.loc[:,wn.junction _ name _ list].mean(axis = 1).
plot(label = ’With repair’, ax = ax)
ax.set _ xlabel(’Time (hr)’)
ax.set _ ylabel(’Average system pressure (m)’)
ax.legend()

Figure 12.9 Net3 results from earthquake analysis.
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The resulting graphs are shown in Figure 12.9. The network graphs and pressure graphs show that 
the partial repair restored junction pressure to most of the junctions. This is supported by the graph 
showing the average system pressures represented with color and circle size. Circle size increased 
with average system pressure.

12.7 CONCLUSIONS

WNTR was developed to be a flexible and extendable framework for modeling resilience of water 
distribution systems. This chapter highlights numerous disaster scenarios that can be modeled by 
WNTR and some associated tutorials.

Estimating how a disaster impacts a WDS and modeling the simulated disaster and associated 
response actions can help a water utility prepare for such disasters. WNTR is a tool capable of 
dealing with such complex problems. Furthermore, the integration of the data structures available 
within Python and the ability to deal with complex inputs can provide necessary flexibility for 
addressing a range and combination of disaster scenarios. Analysis results can help utilities identify 
which components are critical to their system resilience and take steps to ensure that they: (1) use 
the best material/design configuration to maximize resilience (e.g. strengthened to a certain type 
of failure); (2) have available backup options to ensure rapid replacement if damaged; or (3) have 
emergency response plans in place to manage failures to continue operations and minimize impact 
to customers. Fire flow analyses provide utilities with information about the impact of firefighting 
activities to overall system pressure and ability to meet system demands. The ability to model disasters 
in a realistic manner and analyze impacts and responses with standard metrics provides utilities with 
a more quantitative concept of their resilience to that disaster. Working through such exercises can 
help utilities to prepare and prioritize mitigation strategies to help build resilience and ensure security 
in their WDS.

12.8 DISCLAIMER

The U.S. Environmental Protection Agency (EPA), through its Office of Research and Development, 
funded and managed the research described herein under Interagency Agreement (IA # 
DW08992524701) with Department of Energy’s Oak Ridge Associated Universities (ORAU) and 
Interagency Agreement (IA #DW08992513801) with the Department of Energy’s Sandia National 
Laboratories. It has been subjected to review by the Office of Research and Development and 
approved for publication. Any mention of trade names, manufacturers or products does not imply an 
endorsement by the United States Government or the U.S. Environmental Protection Agency. EPA 
and its employees do not endorse any commercial products, services, or enterprises.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Explain asset management and the concepts of pipe replacement program.
(2) Calculate the threshold break rate.
(3) Compute optimal replacement time given failure datasets.

13.1 INTRODUCTION

According to the USEPA (2022), Asset Management (AM) is defined as ‘maintaining a desired level 
of service for what you want your assets to provide at the lowest life cycle cost. Lowest life cycle cost 
refers to the best appropriate cost for rehabilitating, repairing or replacing an asset’. Collectively, 
interpretation and implementation of AM definitions and programs depend on the water utility, but 
typical water mains replacement program is composed of several, interconnected parts (Figure 13.1):

• Performance Management;
• Failure Mode Analysis;
• Operations and Maintenance (O&M);
• Risk Analysis;
• Prioritization and Capital Specification.

Many water utilities define their pipes with an individual ID; a pipe ID is assigned in GIS for 
every piece with the same diameter, material, install date, and project code based on the assumption 
that all pieces are degrading at the same rate and a leak will spring up at a random location along 
the pipe. More details on this will be covered in Chapter 18 about GIS applications. Below are brief 
descriptions on the different phases in water mains replacement programs.

13.1.1 Performance management
Performance management governs the entire asset management program and tracks the company’s 
overall service level.

Chapter 13
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13.1.2 Failure mode analysis
Every asset is vulnerable to four modes of failure: (i) Mortality, (ii) Capacity, (iii) Efficiency, and (iv) 
Level of Service (LOS). Mortality refers to the end of life of the asset, specifically the financial end 
of life. The concept of threshold break rate to determine end of life can be considered here (and will 
be covered later in this chapter). Prior to this threshold, a pipe is replaced if three or more leaks have 
occurred or have operated based upon an engineering judgment/rule of thumb basis. Capacity of the 
asset refers to its performance in terms of hydraulic parameters such as flow and pressure. Water 
utilities can consider replacement with increased diameter if a pipe does not provide adequate flow or 
pressure due to insufficient diameter or heavy tuberculation. In addition, if a small diameter pipeline 
results in high water velocities which can carry sediment to the customers resulting in complaints, 
then the utility can propose replacement with a larger diameter. Efficiency is often interpreted as an 
output-to-input ratio, with perhaps the clearest water utility example being that of pump and motor 
efficiency.

LOS is defined by quality, quantity, reliability, environmental standards, and associated system 
performance goals, both short- and long-term. Information about customer demand, as well as 
data from utility commissions or boards and other stakeholders, can be utilized to develop LOS 
requirements. Therefore, developing/defining LOS concepts is critical for the water utilities. The 
AWWA benchmark recommends comparing the number of leaks per 100 miles of pipe, while the 
Partnership for Safe Water sets their optimal distribution system standard at 15 breaks per 100 miles 
of pipe per year. The five-year running average is expected to be trending down as a result of effective 
asset management.

Figure 13.1 Overall structure of water mains replacement program.
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13.1.3 Operations and maintenance
O&M is composed of pipeline inspection, condition assessment, valve maintenance, and so on. 
Pipeline inspection is done by individual districts and based upon visual assessment (i.e., with the 
basis being if it looks bad, then it is bad) and only occurs following a report of an existing leak. Many 
utilities currently may not have a standardized process for determining the optimum course of action 
based upon visual inspection. Also, leak detection may not be a part of O&M, but many utilities are 
showing interest in incorporating this in the replacement program.

13.1.4 Risk analysis
Risk Analysis involves Business Risk Exposure, which is comprised of the likelihood of failure (LOF) 
and the consequences of failure (COF). Each asset can be categorized by low, medium or high COF 
and low, medium, or high LOF. More details on this will be covered in Chapter 18 with respect to 
GIS Analytics. Any pipes that are categorized as ‘high’ for both categories are assigned a high priority 
for replacement. A GIS leak database where the leak locations are geocoded are typically available 
for water utilities. LOF is typically based upon observed pipe failure (leak/breaks) histories. COF 
levels are determined by their proximity to roads, schools, and sensitive environmental areas such 
as waterways, marine protected areas, and locations listed in the national wetland inventory using 
buffer zones in GIS. COF also takes into account situations in which an additional leak would incur 
additional costs for the utilities and/or pose a potential danger to the area.

13.1.5 Capital specification
Capital specification refers to the material and design of the assets. These specifications are dependent 
upon the generally accepted practice at the time of installation.

13.1.6 Prioritization
Prioritization of pipe replacement considers both affordability and risk management. This is discussed 
in more detail in the following.

13.2 OPTIMAL REPLACEMENT

In a water distribution system, the repair/replacement cost and possible water damage cost must be 
balanced by the water utility when deciding at the time of a leak/break whether to repair or replace 
the system. Accelerated replacement refers to replacing the system well in advance of the optimal 
replacement time, while delaying replacement beyond the optimal replacement time will lead to 
consequences through neglecting repairs, which may effectively amount to the utility paying a penalty 
to compensate for the high replacement cost. To manage the integrity of water main infrastructure 
through its entire life cycle, we introduce a replacement program for water utilities in this section. 
This program is expected to ensure affordability, manage risk, and support a high level of confidence 
in the decisions reached.

The following construct is utilized to assess the contribution of costs towards present worth (see 
Loganathan and Lee (2005)). At the time of the nth leak, a decision has to be made whether to replace 
the system at a cost of Fn or to repair it at a cost of Cn. The scenario also implies that for the previous 
(n–1) leaks only repairs have been performed. If we assume that the system will be replaced (the value 
of Cn included in the sum should be adjusted for Fn when necessary) at the time of the nth leak, tn, we 
can write the present worth of the total cost of the pipe as:
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where R = the discount rate, ti = the time of the ith leak measured from the installation year (in years), 
Ci = the repair cost of the ith leak, Fn = the replacement cost at time tn, Tn = the total cost at time ‘0’ 
(present worth).

When the system is new, it tends to experience very few leaks, while an old system experiences 
more leaks under the same conditions. Therefore, the combination of varying time interval between 
leaks (accelerated leak incidences towards the end), relatively smaller repair costs, and a generally 
large replacement cost (fixed cost) generates a ‘U’ shaped present worth of the total cost curve over 
time (Figure 13.2). The optimal replacement refers to the point at which the total cost is minimized.

Following Loganathan et al. (2002), the point of minimum total cost in Equation (13.1) occurs at 
the time when the inequality is satisfied for the first time:
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where Cn = the repair cost at the nth leak and Fn = the replacement cost, R = the discount rate, and 
tn = the leak occurrence time. Furthermore, the threshold break is defined as follows:

Threshold break rate
ln( )
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(13.3)

For a water system using the data from data sets, we can calculate the time that minimizes the total 
cost. That is, when the inter-arrival time becomes smaller than the threshold year, the system should 
be replaced. Clearly, these values will change based on the available data.

Figure 13.2 Present worth of total cost curve over time.
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The above methods can be applied to develop their prioritization model. In theory, it is expected 
that the time between leaks should become smaller as the pipe ages. A majority of pipes do follow this 
pattern, but some pipes do not. For those pipelines where the assumption of increasing break rate is 
not satisfied, utilities have analysts consider the shape of the curve; if the curve shape was trending 
up, flat, or nearly flat, the utility can propose replacement as the pipeline’s annualized costs were 
near or at a minimum value. It is noted that repair and replacement costs may vary considerably due 
to site specific conditions or accounting procedures. Therefore, utilities can implement a risk-based 
annualized cost curve analysis for the prioritization of replacement decisions. To this end, utilities 
should consider: (i) the risk score based upon LOF and COF, (ii) the life cycle cost curve and (iii) the 
hydraulic performance. Based upon the level of confidence of the analyst, each parameter can be 
weight summed to assign a replacement priority.

13.3 PRACTICAL EXAMPLES

13.3.1 Example 1
Table 13.1 shows the break time and the number of pipe breaks for a water system. Calculate and plot 
the repair, replacement, and total cost.

13.3.2 Example 2
Answer the following. Pipe repair cost is $1000, replacement cost is $150 K. use discount rate of 7.5% 
(adopted from Khambhammettu, 2001; see Figure 13.3 and Table 13.2 for pipe break data):

(1) Compute the cumulative costs when the pipes were replaced in year 5.
(2) Compute the present worth cost in year 0 to cover the cumulative costs up to year 3.
(3) Compute the optimal replacement year when the present worth cost is the minimum.

13.3.3 Solution

(1) Total repair cost = $1000 * (3 + 5 + 7 + 9 + 11) = $34 000 

 Replacement cost = $150 000. So, the Cumulative cost = $34 000 + $150 000 = $184 000

(2) The present worth is obtained by discounting the yearly repair costs and the replacement cost 
to the origin and calculate the sum. The Present worth would be obtained by summing up the 
repair and replacement components. So, the repair components are:

Repair component
$ $ $

=
+

+
+

+
+

3000
1 0 075

5000
1 0 075

7000
1 0 0752. ( . ) ( . ))

( . )

3

3

12 752

150 000
1 0 075

120 744

=

=
+

=

$

Replacement component
$

$

Preesent Worth $ $ $= + =12 752 120 744 133 496  

Table 13.1 Pipe break data and calculated costs.

Break Time (years) #brks Repair Cost ($) Fixed Cost ($) Total Cost ($)

15 1 169 1690 1859

22 2 204 1019 1222

25 3 246 820 1066

27 5 355 709 1064

30 12 685 571 1256
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Figure 13.3 Pipe break for each year.

Table 13.2 Pipe break data.

Year Breaks Year Breaks

0 3 16 49

1 5 17 53

2 7 18 57

3 9 19 61

4 11 20 65

5 13 21 69

6 15 22 73

7 17 23 77

8 19 24 81

9 21 25 85

10 25 26 89

11 29 27 93

12 33 28 97

13 37 29 101

14 41 30 105

15 45  
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(3) Optimal replacement time can be determined from Table 13.3. The fifth year has the lowest 
Present Worth of $131 637, . So, the threshold break rate is calculated as follows:

Threshold break rate
ln( )

ln( )
=

+

+

1
1

R

C F( / )  

Threshold break rate =
+

+
=

ln
ln( / )

( . )
( , )

.
1 0 075

1 1000 150 000
10 88 breaks. From Table 13.3, it is shown that 

that the optimum indeed occurs for a break rate of 11 breaks/year. So, the optimal replacement time 
is the fifth year!

Table 13.3 Present worth costs.

Time Breaks Repair Replacement Present Worth

0 3 $2791 $139 535 $142 326

1 5 $7117 $129 800 $136 917

2 7 $12 752 $120 744 $133 496

3 9 $19 491 $112 320 $131 811

4 11 $27 153 $104 484 $131 637

5 13 $35 577 $97 194 $132 771

6 15 $44 618 $90 413 $135 031

7 17 $54 150 $84 105 $138 256

8 19 $64 060 $78 238 $142 298

9 21 $74 249 $72 779 $147 028

10 25 $85 533 $67 701 $153 234

11 29 $97 709 $62 978 $160 687

12 33 $110 597 $58 584 $169 182

13 37 $124 040 $54 497 $178 537

14 41 $137 896 $50 695 $188 591

15 45 $152 044 $47 158 $199 202

16 49 $166 374 $43 868 $210 242

17 53 $180 793 $40 807 $221 600

18 57 $195 218 $37 960 $233 178

19 61 $209 578 $35 312 $244 890

20 65 $223 812 $32 848 $256 660

21 69 $237 868 $30 557 $268 425

22 73 $251 702 $28 425 $280 126

23 77 $265 275 $26 442 $291 717

24 81 $278 557 $24 597 $303 154

25 85 $291 523 $22 881 $314 404

26 89 $304 152 $21 284 $325 436

27 93 $316 427 $19 800 $336 227

28 97 $328 338 $18 418 $346 756

29 101 $339 874 $17 133 $357 007

30 105 $351 031 $15 938 $366 968
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13.4 CONCLUSIONS

This chapter presents the general concepts of asset management and replacement program. The 
optimal replacement program and concepts can lay the foundation for a standardized platform of 
sustainable life cycle assessments for individual elements of the water infrastructure. Given the 
pace of infrastructure aging and deterioration, combined with workforce retirements and aggressive 
technology changes/adoption, it is thus imperative that this type of systematic decision support system 
be adopted to address the challenges that this will entail for the water industry.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:
(1) Perform water main and water main failure data preprocessing.
(2) Run a basic multilinear regression model using R.
(3) Visualize findings through GIS.
(4) Optimize the model parameters to improve performance of a GIS.
(5) Assess results based on model accuracy and perform interpretation of GIS results.

14.1 INTRODUCTION

Water mains are typically the largest and most significant asset for any water utility. Depending on the 
number of served customers, large water utilities can manage hundreds of miles of water mains made 
of different materials and diameters. When water mains fail, utilities are affected by the loss of treated 
and energized water (Güngör-Demirci et al., 2018). To be delivered to customers, potable water is 
treated and then pressurized so it can be distributed to meet EPA water quality standards. Potable water 
lost between treatment and customers is defined as nonrevenue water (AWWA, 2017). Additionally, 
rising failure rates in distribution systems increase the capital improvement and maintenance budgets 
which likely lead to higher bills to their customers and a negative public perception (Folkman, 2018; 
Giustolisi et  al., 2006; Martínez García et  al., 2020; Shi et  al., 2013). Water main failures could 
cause lower pressure and flow in premise plumbing and possibly deteriorating water quality (Lee & 
Tanverakul, 2015; Lee et al., 2012). The general public can be also affected by traffic and construction 
disruptions when water mains are being repaired as these processes can take several days.

Recent reports issued by the American Society of Civil Engineers (ASCE, 2013) and the American 
Water Works Association (AWWA, 2017), indicate that the aging of water distribution assets represents 
one of the most critical technical and financial challenges in the United States. Both estimate that the 
cumulative gap between needs and likely (feasible) investments from water utilities was $84 billion by 
2020 and $144 billon by 2040 (ASCE, 2013; AWWA, 2017).

Water mains can fail due to multiple reasons and it is generally thought that failures occur due to 
a combination of multiple factors. Internal factors such as pipe length, material and diameter often 
interact in different ways with external factors such as soil types, climatic conditions and external 
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loads (e.g. traffic). In addition, operational parameters like internal water pressure and quality often 
play an important role (Christodoulou et al., 2008; de Oliveira et al., 2011; Giustolisi et al., 2006; 
Goulter & Kazemi, 1988; Kettler & Goulter, 1985; Shi et al., 2013; Tabesh et al., 2010; Wang et al., 
2009).

Although an aggressive capital program to repair or replace all affected water mains will reduce 
the amount of revenue loss, economic and financial constraints make it impossible to replace all failed 
water mains at the same time. Therefore, supporting water utilities to make informed decisions about 
the time and location to perform water mains repairs or replacements has attracted attention from 
researchers in the water industry. In recent years more research has been influenced by technological 
resources available and advanced computational capacities (de Oliveira et al., 2011; Giustolisi et al., 
2006; Rajani & Kleiner, 2001; Wang et al., 2009).

Monitoring (including condition assessment) and identifying water mains that need rehabilitation 
and replacement is important. As mentioned, unnoticed aging water mains and failures could lead 
to disruption in the service and water contamination. As introduced in previous chapters, several 
computational and machine learning-based techniques have been developed to support water utilities 
in allocating resources for an optimal replacement/rehabilitation of pipes (e.g. artificial neural 
networks, clustering, etc.)

Clustering analysis involves spatial and temporal grouping of attributes under consideration, such 
as crime rates, motor vehicle accidents and pipeline failures, to identify areas of high-risk zones in 
future for planning and replacement/rehabilitation purposes. Clustering analysis considers the spatial 
and temporal aspects of the pipeline failures to identify areas in high risk of failure. In this chapter, 
we present different approaches that can assist in decision making for optimal replacement of water 
mains by using clustering techniques coupled with GIS analysis.

A cluster in the context of water mains is a geographical area with an anomalously higher number 
of pipe leaks or breaks when compared to surrounding areas. The extent of the cluster will depend 
on the pipe density, for example in New York City where water mains are located in every block, the 
definition of a cluster will be different than in a rural city in Iowa, for instance. In the late 1980s, 
Goulter and Kazemi (1988) utilized clustering techniques that were available to a dataset of water 
mains and their failures. By utilizing these techniques, they found a strong spatial and temporal 
clustering in pipe failures. In other words, most water main failures (58%) occurred within 20 m (65 ft) 
of the original one and around the same time (within same week or month).

The tools presented in this chapter can provide valuable information about the spatiotemporal trend 
of water main failures. By applying these techniques (along with a more comprehensive enterprise 
asset management program that focus on maintaining water main integrity), water utilities can save 
economic resources in avoided failures, reduced water loss and energy savings. In addition, an asset 
management program (or water mains integrity program) can help select improved materials and 
sizing can provide other benefits to customers such as improvement in water supply reliability, system 
resilience, and level of service.

14.2 DATA

The analytical techniques described in this chapter require datasets that the water utilities should 
have in their database. In general, large water utilities collect reported water main failure data and 
have datasets that cover all their water assets.

14.2.1 Water main failures
In performing these techniques, a water main failure is defined as a leak and/or break incident that 
requires attention from the utility’s field crews and is available in the utility’s database (e.g. GIS 
database or asset management records). It must be recognized that not all water main failures are 
reported and some of them remain out of sight. While preparing the data, it is important to note that 
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some water utilities keep records of water main failures for those that have been already replaced. For 
example, a cast iron (CI) pipe segment was installed in 1950, then it failed three times between 1950 
and 1990 and was replaced in 1995 with an asbestos cement (AC) pipe. Some utilities will still show 
the three failures assigned to the AC pipe segment without specifying that these failures occurred in 
the old CI pipe that is not currently in place. Therefore, it is important to verify that all water main 
failures in the dataset you will use are actual attributes of the currently installed water mains.

Depending on the water utility capability to collect information, water main failure databases may 
include the following data: reported date, location, type of failure and repair cost. For the purposes of 
these techniques, reported date and location are the minimum parameters to be collected.

14.2.2 Water mains
In addition to collecting water main failure data, it is common practice for water utilities to have a 
database of their assets such as reservoirs, tanks, valves, pump stations and water mains (as covered in 
previous chapters). The water main databases could have various degrees of information, depending 
on the water utility, for example diameter, material, pressure rating, date of installation, bedding, 
depth of installation, joint details, and so on. Our experience tells us that material, diameter and 
installation date are the minimum parameters to be collected for a reliable spatiotemporal analysis.

14.2.3 Base map
A base map or reference map contains local geographic features and is used to overlay the data we are 
analyzing to facilitate visualization. Depending on the software used, base maps are freely available or 
can be obtained from the software server (e.g. GIS). Base maps can contain streets, highways, parcels, 
neighbors, rivers, and so on. For this application, it is recommended to have a street and county/city 
base map to identify location of water mains and failures (Figure 14.1).

14.3 MULTILINEAR REGRESSION MODEL

14.3.1 Description of linear model
In Chapter 2, we covered the concept of regression, and we know that multiple curves can be fitted to 
create a model that represents the relationship between an independent variable ‘x’ and a dependent 

Figure 14.1 Example of a water district distribution system data. White lines represent water mains and dots 
reported water main failures.
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variable ‘y’. Regression models can have multiple independent variables that all combined influence 
the dependent variable. We described earlier that water mains can fail due to multiple reasons and 
those failures are usually a combination of factors such as age, material, diameter, type of soil, and so 
on. In this section, we create a Multi-linear Regression (MLR) model to predict pipe longevity based 
on historical failure data.

14.3.2 Age based linear model
The age based linear model that we are going to set up is based on pipe longevity (i.e. pipe installation 
date till the first failure). This means that we will be able to make a prediction of how long a pipe will 
last under given conditions.

In the model, pipe longevity is selected as the dependent variable ‘y’. In this context, pipe longevity 
can be defined as the difference in years between the installation date of the pipe and the reported 
date of the first water main failure. For example, water main ‘A’ was installed in May 1957 and there is 
a failure record in December 2008. The longevity of this pipe would be calculated using the difference 
between the failure year (2008) and the installation date (1957), a longevity of 51 years.

One of the disadvantages of this type of modelling approach is how to manage water mains that 
have failed on multiple occasions. As mentioned earlier, one of the principles of water main failure 
clustering is the fact that failures tend to occur close to earlier failures and in many cases caused 
by them. However, in this type of modeling we are trying to predict the first failure which is not 
related to previous failures but caused by the combination of internal and external factors discussed 
in the previous section(s). Therefore, to be consistent with one of the fundamental assumptions of 
regression modeling (independent samples), dependent failures within each pipe need to be removed 
from the dataset (Martínez García et al., 2018) and the MLR model will only contain the first failure 
of each pipe segment. Dependent failures in this context refer to the second or subsequent failure that 
occurred in the same water main following the definition of Jacobs and Karney (1994). They defined 
dependent failures as those that occur within 20 m and 90 days from previous failures in the same 
pipe segment.

Depending on the amount of data available, the regression model can utilize independent variables. 
The general structure of this model is as shown in Equation (14.1). Table 14.1 contains a generic 
description of water main variables that can be included in the model:

Pipe longevity material diameter pressure

sea

= + + +

+

α β β β

β

i 1 2 3

4

* *

* sson soil length

air temperature water content

+ +

+ + +

β β

β β ε

5 6

7 8

* *

* *  

(14.1)

From your math classes, you remember there are three types of variables: continuous, discrete and 
categorical. A continuous variable can take any value, for example the height of your classmates. For 

Table 14.1 Description of variables for modelling water main failures.

Pipe material Diameters 
(mm)

Pressure 
(kPa)

Season Soil Type Pipe Age (years) Pipe Length 
(m)

Asbestos 
cement
Cast iron
Ductile iron
PVC
Steel
W. iron

25
50
75
100
150
200
250

300
350
400
450
500

Varies from 
0 to 1400

Spring
Summer
Fall
Winter

Entisols
Alfisols
Inceptisols
Vertisols
Mollisols

Varies from 1 to 
about 100 years

Varies from 
1 m to 500 m 
(typically)

Categorical variables Continuous variables
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this model, some of the continuous variables will be pipe length and pressure. On the other hand, a 
categorical variable can only take certain values and is not necessarily arranged in a logical order. 
These variables are identified with levels or categories. For example, pipe diameter where each pipe 
size would constitute a ‘level’ of the variable ‘diameter’: 2 in (50 mm), 4 in (100 m), and so on. Another 
example of categorical variable is pipe material where a level will be each different material: asbestos 
cement, cast iron, ductile iron, PVC, and so on. For each variable and each level, a binary set of 
dummy regressors has to be included by assigning a 0 value or 1. Refer to Example 17.1 to understand 
how these dummy regressors help to set up the model.

One characteristic of categorical variables is that the model results will be based on the intercept 
values. In a linear equation y = mx + b, ‘b’ is called the ‘y’ intercept because it is the value where the 
line (represented by the equation y = mx + b) crosses the ‘y’ axis when the independent variable ‘x’ 
takes a value of zero. In an equation with categorical variables, since the independent variable cannot 
take a value of zero (there is no pipe with a diameter of 0 in (0 mm) and there is no material called 
0), we need to assign certain values to these variables so the model can utilize those as the baseline 
scenario for intercept. If we set up the model with the reference level being an asbestos cement 
pipe with a diameter of 6 in (150 mm), the model will calculate the intercept coefficient as the pipe 
longevity of a water main with this material/diameter combination. All other materials and diameters 
will have a coefficient which is based on the intercept value.

For example, in Table 14.2 there are partial results of a model that predict pipe longevity using 
two categorical variables: pipe material and pipe diameter. Because these variables are categorical, 
they cannot take continuous values as seen in Table 14.2. The intercept coefficient is 31.3 years, 
which means that a pipe segment made of asbestos cement (AC), with a diameter of 6 in (150 mm) 
have an average longevity of 31 years. The rest of the coefficients represent the difference in years 
between the intercept and other variables. For example, a water main with a diameter of 2 in (50 mm) 
has a coefficient of −5.31 years, which means that its estimated longevity is 5.3 years less than the 
intercept (31.32 – 5.31 = 26 years). In the case of material, the coefficient compares the longevity of 
other materials with asbestos cement pipes. Cast iron is estimated to last 27.1 years more for example. 
For any given water main, the model should be like:

• Pipe longevity = αi + β1material + β2diameter
• Pipe longevity = 31.33 + β1material + β2diameter

Table 14.2 Variable coefficient in years.

Variable Coefficient

Intercept – AC 31.33

Intercept – 6 in (150 mm)

Diameter 2 in (50 mm) −5.31

Diameter 4 in (100 mm) 0.91

Diameter 6 in (150 mm) Intercept

Diameter 8 in (200 mm) −3.03

Diameter 10 in (250 mm) 8.26

Diameter 12 in (300 mm) 1.50

Asbestos cement Intercept

Cast iron 27.10

S. Steel 15.45

Steel 20.02
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Example 18.1
Given the following set of water mains, fill the following table using binary dummy regressors to 

develop the model

 Pipe A: 6 in (150 mm), PVC, 3500 ft (1067 m), pressure rate 150 psi
 Pipe B: 3 in (80 mm), Cast iron, 4500 ft (1372 m), pressure rate 200 psi
 Pipe C: 8 in (200 mm), Ductile iron, 2000 ft (610 m), pressure rate 150 psi

Step 1: Identify the variables from the information provided: diameter, material, length and pressure 
rate.

Step 2: Identify the levels for each variable

 Diameters – 3 levels: 3 in (80 mm), 6 in (150 mm) and 8 in (200 mm).
 Materials – 3 levels: cast iron (CI), ductile iron (DI) and PVC
 Length – no levels because it is a continuous variable
 Pressure rate – no levels because it is a continuous variable

Step 3: Create a table adding the four variables and their respective levels.
Step 4: Add the dummy regressors for each categorical variable.

14.3.3 R linear regression model
As we covered in a few previous chapters, ‘R’ is a language and environment for statistical computing 
and graphics (The R Foundation, 2016). R is an open source software and provides a wide variety of 
statistical techniques with hundreds of extensions for more advanced processes. R can be used for 
linear and nonlinear modeling, statistical tests, classification, graphing, and so on. R is available as 
free software and runs on different operating systems such as MacOS and Windows, hence, it can 
be used in most computers. In this section, we are going to learn how to setup a linear model in R to 
predict water main longevity given a set of data. The full example with explanation is available in the 
online repository.

The following data contains data from a hypothetical water main failure database. Table 14.3 
contains data from 180 water main failures, but we only show the selected rows as an example. 
Table 14.3 contains the reported date of failure and the installation date of the water main. With that 
information, the pipe longevity was calculated. Table 14.3 also contains water main’s information such 
as diameter, material and length. In this particular dataset, the season of the failure is also included 
because we wanted to determine what the impact of air and soil temperature is on the different pipe 
materials that could possibly cause a failure.

Using R language and a basic code, a linear regression is generated and shown below. The water 
main longevity is the dependent variable and the data is stored with the name RegExampledata which 
is a name given by the user:

Variable Level Pipe A Pipe B Pipe C

Diameter 3 in (80 mm) 0 1 0

  6 in (150 mm) 1 0 0

  8 in (200 mm) 0 0 1

Material Cast iron 0 1 0

  Ductile iron 0 0 1

  PVC 1 0 0

Length (ft) No level 3500 (1067 m) 4500 (1372 m) 2000 (610 m)

Pressure rate (psi) No Level 150 200 150
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RegExampledata lm Exampledata Age Exampledata Diameter

Exa

<

+

( $ ~ $

mmpledata Material Exampledata Season Exampledata Length$ $ $ )+ +  

After R generates the regression model, the next step is to call the model results with the ‘summary’ 
function by typing summary(RegExampledata). The end result is the following table (Figure 14.2). An 
explanation of each section is included below.

The first line includes the regression model with the variables we included:

Call:

lm(formula = Exampledata$Age ∼ Exampledata$Diameter + Exampledata$Material + 
Exampledata$Season + Exampledata$Length)

The residuals describe the distribution of longevity compared to the intercept.

Residuals:

Min    1Q Median 3Q  Max

-36.559 −6.144 1.161 8.518 23.441

The third section includes the coefficients. Each coefficient measures the pipe longevity compared 
with the reference levels (in years), the first column depicts the variables and their respective levels. 
For diameter, there were four levels (2 in (50 mm), 4 in (100 mm), 6 in (150 mm) and 8 in (200 mm)). 
You can see diameter 6 in is not listed, this is because it is already included in the intercept. Take a 
look at Problem 14.1 to learn how to use the function ̈ relevel¨ to set the intercept in R. In this example, 
the intercept contains a water main made of asbestos cement (AC) and 6 in (150 mm) diameter that 
failed during the spring. The coefficient indicated that the model predicts a longevity of 40.2 years 
before failure for a water main with these characteristics.

Let us start comparing the other diameters, the coefficient for a 2 in (50 mm) is −0.67 years. 
This indicates that an asbestos cement, 2 in (50 mm) in diameter will last 40.2 years minus 0.67 
years = 39.53 years. With regard to the material, the cast iron pipe coefficient is 17.35 years, this 
means that CI water mains last more than AC. For example, a 6 in (150 mm) CI pipe will last (40.2 
years + 17.5 years = 67.7 years). The length variable is the only one that is not categorical. This means 
it can take any value. The coefficient is −0.000028 and is multiplied by the actual pipe length (m or 

Table 14.3 Pipe failure dataset.

Longevity Reported Date Install Date Diameter Material Season Length

44 02/03/2001 00:00 14/11/1957 00:00 6 AC Spring 105.514

41 15/10/1993 00:00 01/01/1952 00:00 4 STL Fall 106.0233

59 05/01/2007 00:00 01/01/1948 00:00 2 CI Winter 108.9022

62 22/09/2010 00:00 01/01/1948 00:00 2 CI Fall 108.9022

59 05/01/2007 00:00 01/01/1948 00:00 2 CI Winter 108.9022

49 06/12/2001 00:00 01/01/1952 00:00 2 CI Winter 110.1174

62 28/10/2014 00:00 01/01/1952 00:00 2 CI Fall 110.1174

55 21/12/2001 00:00 01/01/1946 00:00 2 CI Winter 110.1796

54 24/05/2000 00:00 01/01/1946 00:00 2 CI Spring 110.1796

50 11/09/2013 00:00 01/01/1963 00:00 6 AC Fall 110.5255

34 27/09/1993 00:00 16/07/1959 00:00 6 AC Fall 111.8343

52 30/03/1998 00:00 01/01/1946 00:00 6 CI Spring 112.4503

50 06/03/1996 00:00 01/01/1946 00:00 6 CI Spring 112.4503
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ft depending on the data that you used). Therefore, the coefficient for a pipe with 1000 ft (305 m) of 
length would be (−0.000028 × 1000 = −0.28 years). In general, the longer the pipe the more prone to 
water main failures and that is what the negative sign of the coefficient is indicating.

Another interesting data from this summary is the adjusted R-square which indicates how well the 
model fits the data.

Finally, another item to pay attention to is the p-value located in the last column on the right. The 
p-value for each term tests the null hypothesis that the coefficient is equal to zero (no effect). A low 
p-value (<0.05) indicates that you can reject the null hypothesis. Therefore, a variable with a low 
p-value is likely a meaningful addition to the model because a small variation in this independent 
variable will produce a significant increase or decrease in pipe longevity. On the other hand, a larger 
p-value suggests that a change in a variable is not associated with a pipe longevity change. In the 
results we can see that the cast iron p-value is low so water that mains made of this material are likely 
to have a larger pipe longevity based on the sign of the coefficient.

14.4 HOT SPOT ANALYSIS OF WATER MAIN FAILURES

Now that you have a good understanding of what a cluster of water main failures is (a region with an 
anomalously higher number of water main failures compared to its surroundings!), we are going to 
present a methodology to analyze clusters by utilizing the ‘Hot Spot Analysis’ tool in ArcGIS.

14.4.1 Hot spot analysis tool
The Hot Spot Analysis Tool was developed by the Environmental Science Research Institute (ESRI) 
to be utilized under their ArcGIS platform. The tool calculates the Getis-Ord Gi* statistic for each 
feature in a dataset. The Getis-Ord-Gi* is a statistic that measures the intensity of spatial clustering.

The Hot Spot Analysis Tool produces a z-score with its associated p-value, which indicates if features 
with either a high or low value are grouped together by looking at a feature within the context of 
neighboring features  (ESRI, 2021). For example, in Figure 14.3 there are two distributions of events 
(red circles), which could represent recorded events such as crimes or water main failures. If we place 
a grid over the distribution and get a count of the number of events per square, we can see that the cell 
in the center has five events. In the context of the Hot Spot Analysis tool, a feature with a high value 
such as the red cell could be interesting to analyze but may not be detected as a statistically significant 

Figure 14.2 Results from regression model.
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hot spot. The tool will only identify a feature as a hot spot if it is surrounded by other features with high 
values as well. Beyond assessing the density of points in a given area, hotspot techniques also measure 
the extent of point event interaction to understand spatial patterns (Baddeley, 2010). The local sum of a 
feature and its neighbors (light gray cells) is compared proportionally to the sum of all features (ESRI, 
2021), when the sum is very different from the average local sum and the difference is too large to be the 
result of random chance, a hot spot is identified. The same occurs with features with a low count. When 
a feature with a low count is surrounded by others with low counts as well, and the difference of the 
local area compared to the average is too low to be the result of random chance, a cold spot is identified.

Because the data analysis to identify hot spots is based on quantifying the value of a feature (number of 
events occurring within an area), it is necessary to aggregate data spatially. This means that we must create 
a polygon where all the events are aggregated. There are multiple ways to achieve this. An option could be 
to create a circular area around each failure (buffer) and count the number of events. The end result in this 
case would be a hot spot definition per event. Another approach is to create a square grid and have each 
cell to be a polygon where the number of events will be counted. In the practice problems, the creation of 
grid to aggregate data is included to visualize the process. The result is shown in Figure 14.4.

Once the features are aggregated, the Hot Spot Analysis tool calculates the Getis-Ord Gi* statistic 
in each bin. The Gi* statistic returns a z-score for each cell (Figure 14.5). A z-score is a standard 
deviation and the p-value is the probability that the observed pattern is result of a random process 
(ESRI, 2021). Both the z-score and p-value are related with the normal distribution.

Very high or very low (negative) z-scores, associated with very small p-values, are found in the tails 
of the normal distribution (ESRI, 2021). When we run this tool and it yields small p-values and either a 
very high or a very low z-score, this indicates it is unlikely that the observed spatial pattern is caused 
by random pattern (ESRI, 2021). If the z-score is very large, clustering of high values is occurring in 
that cell, which means that a cell in the grid and its neighbors have a higher number of water main 
failures than the average in the whole study area (i.e. hot spots).

Likewise, small negative z-scores are called cold spots and indicate clustering of low values, which 
means the number of water main failures is not high. The z-scores and associated p-values for each 
water main failure indicate whether the null hypothesis (i.e. that water main failures are following a 
random process) should be rejected based on given confidence levels (Martínez García et al., 2018). 
A combination of high z-scores and low p-values indicate that the water main failures are exhibiting 
significant clustering rather than a random pattern. The detection of clustering can be a sign of 
phenomena that is causing a higher number of water main failures in a region.

Figure 14.3 Two-point distributions and how the hot spot tool classifies clustering.
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14.4.2 Interpretation of results
The result of this analysis will be a table (Figure 14.6) with the Hot Spot Analysis results and a new 
shapefile depicting the grid with the results from the tool. The table will have as many rows as bins 
were created. The attributes of the table are:

(A) FID and Source ID: ID of each bin.
(B) Shape: Type of bin object, it will always be a polygon.

Figure 14.5 Normal distribution p-values and associated z-scores (image credit ESRI, 2021).

Figure 14.4 Water main failure count per bin with different grid sizes (A) 200 m, (B) 100 m and (C) 50 m.
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(C) Join_Count: Number of events per bin. In our case the number of water main failures per bin.
(D) GiZscore: Calculated z-score for each bin. If the z-score is very large, clustering of high values 

is occurring in that cell, which in our context means that a cell in the grid and its neighbors has 
a higher number of water main failures than the average in the whole study area (hot spots).

(E) GiPValue: Calculated p-value for each bin.
(F) Gi_Bin: This attribute can take values from −3 to +3. These numbers do not represent a 

magnitude but instead represent the confidence levels based on each combination of z-score 
and p-value (see the legend included in Figure 14.6). For confidence levels above 99% to be a 
cold spot, bin value is –3, confidence levels between 95 and 99%, bin value is −2 and so forth.

14.5 SPATIOTEMPORAL ASSESSMENT OF WATER MAIN FAILURES

14.5.1 Introduction
Research of water main failures has determined that the probability of a water main that has already 
failed increases substantially after the first event (de Oliveira et al., 2011; Goulter & Kazemi, 1988). 
In other words, spatial and temporal failure clustering could be caused by previous failures. The first 
failure in each cluster is considered to be an independent one, and subsequent adjacent ones are then 
treated as dependent failures (Berardi et al., 2008; Bogárdi & Fülöp, 2011; Ganesan et al., 2017; Jacobs 
& Karney, 1994; Martínez García et al., 2018).

A history of failure could be a proper forecaster of future water main failures, that is, a water 
main that has broken one or more times will be a likely candidate to fail again, and the time intervals 
between failures are likely to become smaller (Goulter & Kazemi, 1988; see Chapter 13 for more 

Figure 14.6 Hot spot analysis example results.
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details). This may be due to the inevitable disturbance of the subsurface surrounding the water main 
due to the repair process combined with other concerns, such as local reduction in the structural 
integrity of the water main, as well as water leakage from the failed portion (Goulter & Kazemi, 1988).

By using the space time cube tool in ArcMap, we can identify clusters of failures within a predefined 
distance ‘d’ of each other, as well as a specified time interval ‘t’ between one failure and the other. 
Now we consider time-dimension as well! By identifying space and time clusters, these clusters can be 
used to infer the effect of distance ‘d’ between two failures on the time interval of occurrence between 
one failure and the other. The result of the spatio-temporal clustering will be identifying areas with a 
high risk of pipeline failure based on the distance between the failures, and also the time interval of 
failure occurrence

This technique can be adapted to identify hot spots of water main failures to assist in decision 
making for optimal replacement of pipelines. For instance, if there are intensifying hot spots of pipeline 
failures at a location, then those are spots which need immediate attention and can be assessed for 
repair/replacement based on cost and lifecycle factors (see Chapter 13 for cost-benefit analysis). The 
outcome of emerging hot spot analysis is the identification of areas which are in high risk of pipeline 
failure which may warrant replacement. Once emerging hot spots are identified, further steps can be 
taken to analyze the repair cost versus replacement cost. For example, a water utility can establish 
that if the replacement cost is 50% higher or more than the repair cost, then repair is a best option 
when compared to replacement. Again, refer to Chapter 13 for the various logics in pipeline optimal 
replacement strategies.

14.5.2 Emerging hot spot analysis tool
This spatiotemporal analytics tool is also provided in the catalog of ArcMap. The first step to use this 
tool is to create a space time cube. This cube is a 3D representation of geographical events through 
time. To analyze water main failures, a space time cube can be established by water district. In the 
cube, the (x, y) location of each failure is represented by the X and Y dimension of the cube, similar to 
a map. The vertical axis of the cube (Z) represents time. The newest events are located on top of the 
cube (Figure 14.7).

Figure 14.7 Parameters of the space time cube (image credit: ESRI, 2021).
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For a given study area (city, neighborhood) the cube is divided horizontally and vertically to create 
bins. The vertical size of the bins represent time. This parameter can be adjusted depending on the 
variable we are studying. In the case of studying water main failures, one year intervals could be used 
to start the analysis. This interval is called time step. The tool will compare trends in the number 
of failures per time step. The horizontal size of the bins (x,y) represent a geographical area. It is 
recommended to test different sizes to select the optimum clustering intensity. If the bin dimensions 
are too small, no clusters would be detected because the count of failures within each bin would be 
low (Figure 14.8 left). If the dimensions are too large, no spatial variance would be detected as most 
of the bins would have a high number of failures (Figure 14.8 right). There is not a recommended bin 
size and different sizes should be tested depending on the type of water district (urban, suburban, 
rural), water main density and district size. Based on analysis previously carried out, we recommend 
starting with dimensions 2000 × 2000 ft (610 × 610 m) for the districts with low density of water mains 
(suburban areas) and 1000 × 1000 ft (305 × 305 m) districts with higher density of water mains (urban 
areas, city centers).

Once the space time cube is created, the tool calculates the number of failures within each bin and 
the Getis-Ord-Gi* statistic as described in the previous section. The only difference is that the Gi* 
statistic is calculated for each time step. To categorize a bin as either a hot spot or a cold spot, the tool 
also evaluates the failure count of neighboring bins using two parameters: neighborhood distance and 
neighborhood time. These two parameters define the extension of each bin’s neighborhood both in 
space (x,y dimensions) and time (z dimension).

Again, there are no specific recommended values for these parameters, but we advise starting with 
an additional bin in each direction. Also, a good starting point is to let ArcMap decide an automatic 
configuration and then explore increasing or decreasing both parameters. Caution should be taken if 
the neighborhood distance parameter is too large because the tool will evaluate a very similar area to 
the entire area of study, and it may not detect any hot spots.

For example, given a water main failure dataset, it was decided to create space time cube where 
spatial bin dimensions are 400 × 400 m. Then, it was decided to divide the cube temporally in intervals 
of 1 day (Figure 14.9 left). The total extension of the cube would be 1600 × 1600 m and 4 days in the 
vertical dimension. For the middle bin, if you set the neighborhood distance to 801 m, the spatial 
neighbors (gray) will extend two bins to each direction and one bin diagonally as shown in Figure 
14.9. In addition, there are temporal neighbors (dark gray). If we set up the neighborhood time step 
to 2, the temporal neighbors will be all bins in the same location as the target bin and its spatial 
neighbors (gray bins on top of the cube) for the two preceding time periods as shown below (Figure 
14.9 right, dark gray bins).

Figure 14.8 Examples of different bin size for the same distribution of point events.
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After the space time cube is created, within each bin (column), the events or points are counted 
and the trend for bins across time at each location is measured using the Mann–Kendall statistic. The 
Mann–Kendall trend test is performed on every location with data as an independent bin time-series 
test (ESRI, 2021). This test compares the number of events per bin for the first time period against the 
second one. If the second period count is larger, the result is a +1 (increasing water main failures), 
if the second period is smaller, the result is a −1 (decreasing water main failures). If the counts are 
similar between time periods, the result is zero. The hypothesis for this test is that the expected sum 
is zero, meaning that there is no trend in the count over time. The observed sum is compared to the 
expected sum to determine if the difference is statistically significant or not (ESRI, 2021). The trend 
for each bin is recorded as a z-score and a p-value (ESRI, 2021). A small p-value indicates the trend is 
statistically significant. The sign associated with the z-score determines if the trend is an increase in 
bin counts (positive z-score) or a decrease in bin counts (negative z-score) (ESRI, 2021).

With the resultant trend z-score and p-value for each location with data, and with the hot spot 
z-score and p-value for each bin, the Emerging Hot Spot Analysis tool categorizes each study area 
location in 16 different groups (ESRI, 2021). The description of the groups is available on the 
ArcGIS website; https://pro.arcgis.com/en/pro-app/2.7/tool-reference/space-time-pattern-mining/
learnmoreemerging.htm. Depending on the type of variable that you are analyzing each of these 
categories may be helpful to study. Figure 14.10 shows a typical example of the results of the Emerging 
Hot Spot Analysis tool. The purple dots represent water main failures and the black lines represent 
water mains. The cells created using the ‘Create Space Time Cube’ can be seen as well. Depending on 
the temporal pattern of cold and hot spots, ArcGIS automatically categorized the bins in one of the 16 
groups mentioned earlier. Let us take a look at the categories in the following section

14.5.3 Interpretation of results
Among all the categories that the tool offers, the following categories are the most useful to analyze 
water main failures because they provide information about increasing failure patterns:

• New Hot Spot: A location that was identified as a statistically significant hot spot for the final 
time step but has never been identified as a statistically significant hot spot before. This category 
would allow identification of an area with recent water main failures.

• Consecutive Hot Spot: A location where the last bins in the time series are identified as 
statistically significant hot spots but historically has not been a hot spot.

Figure 14.9 Extent of neighborhoods based on a neighborhood distance of 801 m (gray bins) and a neighborhood 
time of 2 (dark gray bins).

https://pro.arcgis.com/en/pro-app/2.7/tool-reference/space-time-pattern-mining/learnmoreemerging.htm
https://pro.arcgis.com/en/pro-app/2.7/tool-reference/space-time-pattern-mining/learnmoreemerging.htm
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• Intensifying Hot Spot: A location that has been a statistically significant hot spot for 90% of 
the time-step intervals (ESRI, 2021), including the final time step. In addition, the intensity of 
clustering of high counts in each time step is increasing overall and that increase is statistically 
significant (ESRI, 2021).

• Persistent Hot Spot: A location that has been a statistically significant hot spot for 90% of the 
time-step intervals with no discernible trend indicating an increase or decrease in the intensity 
of clustering over time (ESRI, 2021).

Figure 14.10 Emerging hot spot analysis results for a water distribution district.
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To help you to understand these definitions, Figure 14.11 (Martínez García et al., 2019) explains six 
different bin locations that were classified using the definitions above. The time series was 25 years 
(1990–2015) and the time-step was one year.

On most occasions, the definitions above may not provide enough information to study 
spatiotemporal trends in the area. The Emerging Hot Spot Analysis tool provides a summary table 
with attributes related to each location. The results are compiled for all time steps for each of the bins 
in space, therefore each row in the results table provides a summary of all the time series for a location 
(Figure 14.12). The attributes of the table are:

(a) FID: Identification of bin.
(b) Shape: Type of object, for this tool it will be a polygon representing a bin.
(c) Shape length: Size of each bin.
(d) Shape area: Area of each bin.
(e) Category and pattern: Classification made by ArcMap based on the definitions above.
(f) Trend_Z: Z-score of the trend for each bin. If positive means that the number of failures is 

increasing through time for that bin. Depending on the magnitude it will indicate if the trend 
is statistically significant.

(g) Trend_P: Probability associated with the trend p-value based on the normal distribution.

A final step to help understand what these patterns mean is to utilize the Visualize Cube in the 3D 
tool. This tool allows the user to see a three-dimensional model of the results from the emerging hot 
spot analysis. The user can see the bins created along the area of study extruded to vertical (z-axis) to 
represent time. Each vertical partition represents a time step. For each individual location the tool will 
indicate if for a time step the bin was classified as hot spot or cold spot. The cube can be visualized in 
ArcScene, where the size of each bin can be adapted a user-defined figure, size and color. In Figure 
14.13, the left image shows an example of the Emerging Hot Spot Analysis for a city. The image on 
the right shows the same layer along the extruded time series with its respective bins. Each column 
represents a location. The Space Time Cube can be represented as a series of extruded columns to 
identify each location separately. ArcScene allows the user to rotate the view to better understand 
clustering patterns (Figure 14.13).

Figure 14.14 shows an isometric view of the ‘Space Time Cube’ viewed as a series of extruded 
columns that represent time. For example, in the map, the red cells represent Consecutive Hot Spots, 

Figure 14.11 Visualization of six categories of patterns detected by the emerging hot spot analysis tool.
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which if you remember the definition referred to areas where the last bins were hot spots (red), meaning 
that in recent time steps the location has seen hot spots, in our case a significant number of water 
main failures. If you take a look at the red bins, the extruded columns are gray in the bottom, because 
at the beginning the location was not identified as a hot spot but as we move in time (vertically) we see 
a consecutive run of hot spots at the end (top of the column).

Figure 14.12 Typical result table of the emerging hot spot analysis tool.

Figure 14.13 Example of the emerging hot spot analysis tool and 3D visualization of the space time cube (refer to 
online version of the book to visualize colors).
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14.6 SPATIOTEMPORAL BASED BUSINESS RISK EXPOSURE ANALYSIS

A business risk exposure (BRE) is an approach that can be adopted to generate a risk prioritization 
ranking for individual water main segments. This method can be used in any water distribution system 
that applies a BRE based integrity program.

The BRE concept is the product of the probability or likelihood of failure (LOF) and the 
consequence of failure (COF). In this case, applied to water main failures. The likelihood of failure 
can be estimated based on historical data using one of the methodologies presented in previous 
sections. The consequence of failure can be estimated using a variety of factors depending of the water 
utility needs. Some examples of consequence of failure include, but are not limited to, environmental 
concerns, proximity to critical infrastructure, number of customers affected, failure to meet hydraulic 
requirements, water quality performance concerns, and so on.

14.6.1 Likelihood of failure
To calculate the Likelihood of Failure (LOF) we can utilize the Space-Time Pattern Mining tool in 
ArcGIS. The outcome of this step is to identify consecutive/increasing hot spot areas which are zones 
with a high concentration of failures during the analyzed times, which are likely to fail again.

The hypothesis of this analysis is that in an area identified as a consecutive or increasing hot spot, 
there may be an underlying phenomenon that is negatively affecting the integrity of water mains. Since 
the external factors that caused these failures (type of soil, weather, pressure, operations) are likely 
to remain the same, it is probable that as water mains age, more failures could appear in these areas. 
Figure 14.15 shows an example of the results of the Emerging Hot Spot Analysis for a water distribution 
district. The colors indicate the z-score for the entire time series. We can identify two areas with hot 
spots. The bin size for this example is 1000 ft (305 m). Then, each water main is assigned the z-score 
of the bin where it is located.

14.6.2 Consequence of failure
To estimate the consequence of failure, we are going to utilize a set of critical facilities in the study 
area. In more refined analysis other parameters could be used to evaluate the consequence of failure 

Figure 14.14 Isometric view of the ‘Space Time Cube’ for a water district (refer to online version of the book to 
visualize colors).
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such as number of impacted customers, asset value, pressure or water quality. As a starting point we 
will work with critical facilities that could be affected by water service loss such as airport boundaries, 
roads, highways, railroads, backyard easement, emergency centers, fire stations, hospitals, police 
stations, schools, and so on. Another group of critical infrastructure could be marine protection areas 
and water bodies such as lakes, reservoirs and groundwater contaminated areas to prevent water 
quality degradation from surface or groundwater leaching into potable water mains.

These data can be gathered as shapefiles (points, lines or polygons) from public databases. Figure 
14.16 shows example of these datasets. The point features refer to critical facilities such as hospitals, 
schools and fire stations. The line features represent highways, important streets and railroads which 
can be negatively affected by a water main failure.

Figure 14.15 Emerging Hot spot analysis z-scores to be used as LOF. Blue bins represent lower z-scores and red 
bins higher z-scores (refer to online version of the book to visualize colors).

Figure 14.16 Critical facilities shapefiles. Dark lines represent highways and railroad tracks, dots represent critical 
infrastructure and light gray lines represent water mains.
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Once the spatial locations of these facilities were identified, the next step is to create a buffer 
around each water main segment. This step will help to count the number of critical facilities located 
in the zone of influence near each pipe segment. The size of the buffer can be determined based on 
the average lengths of the service lines connecting the water mains with the facilities or the distance 
between the longitudinal axis of the pipe and each facility’s property line (Martínez García, 2019b). 
Consultation with a water utility (who are very well versed in the unique characteristics of the systems) 
will be very helpful. Figure 14.17 shows each water main with the count of critical facilities within the 
created buffer.

14.6.3 BRE matrix integrating LOF/COF
With the COF and LOF results, we could create a matrix to prioritize water main repairs and 
replacements. For example, Table 14.4 shows a categorization (Martínez García, 2019b) where it 
is proposed to categorize all water mains within a water district into six groups depending on the 

Figure 14.17 Count of critical facilities per water main. Green 0–4, Yellow 5–8 and Red 8–10 (refer to online version 
of the book to visualize colors).

Table 14.4 COF/LOF prioritization scheme (Martínez García et al., 2018).

LOF Consecutive Hot 
Spot – High z-score

Low priority, Re-assess 
individual cases 4

Close monitoring and 
maintenance 2

Immediate Risk Mitigation 1

Consecutive Hot 
Spot – Lower 
Z-score

Low priority, Re-assess 
individual cases 4

Medium priority
Re-assess indidivudal 
cases 3

Close monitoring and 
maintenance 2

Other Hot Spot 
Categories

Minimum priority 5 Low priority, Re-assess 
individual cases 4

Medium priority
Re-assess individual cases 3

No pattern detected Minimum Priority 6 Minimum priority 5 Low priority, Re-assess 
individual cases 4

Category No critical facilities 0 to 10 critical facilities 11 or more critical facilities

COF
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combination of LOF/COF. Group 1 represents the water mains which should be prioritized because 
their probability of failure is high (failures occurring in nearby areas) and the number of affected 
facilities in case of water service stops is high. The categories in this table will be particular for each 
case depending on the water district and the available resources to perform the recommended water 
main replacements.

The final result would be to add the ratings into the water main pipelines as a new attribute for 
easier visualization (Figure 14.18). By incorporating this concept, water utilities can obtain significant 
new insights into enterprise asset management program design and management, deployment, 
implementation and execution. Implementing this type of programs to focus on maintaining water 
main integrity can save water utilities significant resources in avoided failures, reduced water loss, 
energy savings and customer service benefits. In particular, this methodology could be useful for 
water utilities that are expanding their water mains replacement programs for future budgets to allow 
for future replacements of pipelines identified as high risk.

14.7 PRACTICE PROBLEMS

14.7.1 R linear regression model
Let us develop a model that predicts pipe longevity using R given a dataset of water mains failure 
datasets. The attribute table for the water main set is included below. The variables include: diameter, 
material, reported date of failure, installation date of water main and length.

Step 1. Calculate the observed pipe longevity in Excel by subtracting the year of installation to the 
year of the failure: =YEAR(Failure)-YEAR(Installation).

Step 2. Sort all the data by Reported Date and add a column called ‘Season’, depending on the 
season add the corresponding name to each row in the database.

Step 3. Save the spreadsheet as a CSV (comma separated value) file (see table in Online Repository).
Step 4. Review the dataset. It is always recommended for any regression problems to review the 

data that will be used to see if it is complete, accurate and correct. Another factor to review, with 
categorical variables, is to make sure a certain variable takes more than a value. For example, a 
regression cannot be run if all water mains have the same diameter.

Step 5. In addition to step 4, we must make sure that there is enough sample size when carrying out 
the regression for all combinations. A recommendation could be to create a pivot table between 
material and diameter at least, to analyze how many elements are there for each combination 

Figure 14.18 Water mains classified based on the rating when combining COF/LOF.
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(Table 14.5). The pivot table will count the number of water mains for each combination of 
diameter and material. Some combinations are more extensive than others. In the table, remove 
the combinations with a small sample size (typically n less than 10). Results from this pivot table 
indicate that ductile iron elements must not be included in the dataset as well as transient pipes. 
It is also suggested to remove elements with diameters 10 and 20 in due to smaller datasets. 
Doing this prior to running the R model is highly recommended to avoid problems (i.e. unreliable 
modeling!) when running the regression.

Step 6. Open R and create a new Directory to start a new project. It is recommended to save the 
backup data and the R project in the same folder.

Step 7. Create a new R Script and save it into the same folder.

Table 14.5 Summary of data.

Count of diameter Column labels

Row labels 2 4 6 8 10 20 Grand total

AC 13 48 17 2 80

CI 35 11 21 2 2 71

DI 2 1 3

STL 5 18 8 4 2 37

TRANS 6 1 7

Grand total 40 42 85 25 4 2 198

Figure 14.19 ‘R’ welcome page.
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Step 8. Let us start going through a simple R code to develop the model. The first step is to set a 
working directory. It is recommended to create a separate folder for the previously created.
csv file and the R model. To call the directory type ‘setwd("C:/…..)’. Each time you type an 
instruction, click on the ‘Run’ button.

Step 9. Install the library ‘dplyr’ by inserting the following command: ‘install.packages(‘dplyr’)’. 
Once installed, this command can be deleted. After installation, the library will need to be 
called by typing ‘library(dplyr)’.

Step 10. Then below insert ‘rm(list = ls())’. This will erase any previous data.
Step 11. Name the model and all the file with the data to be used. In this case we are going to name 

the model ‘Exampledata’ and the.csv file where the data is stored is called ‘rexampledataQAQC.
csv’. These names will be set by the user:

 Exampledata = data.frame(read.csv(‘rexampledataQAQC.csv’))

Step 12. Review the file data by typing ‘head (…)’. Insert the name of your model, in this case 
‘head(Exampledata) ’. The Console area below the code will show an extract of the water main 
failure data in the spreadsheet. Verify the data is accurate. In our example, the Console will 
show the following information:

Figure 14.20 Opening a new file in ‘R’.

Figure 14.21 Extract of the data in ‘R’.
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Step 13. Define the categorical variables in the model. Remember these variables cannot take 
continuous levels and rather take categorical levels by using the function ‘factor’. For this 
example, the categorical variables that we identified are diameter, material and season. The 
names should be similar to the names in the.csv file and the table from the previous step. The 
instruction will look like this:

 Exampledata$Diameter = factor(Exampledata$Diameter)
 Exampledata$Season = factor(Exampledata$Season)
 Exampledata$Material = factor(Exampledata$Material)

Step 14. Set up levels for the intercept. When working with categorical variables we need to define 
reference levels which will be taken by the intercept. All the coefficients in the model will be 
referenced to these levels. It is recommended to use the most common water main group. From 
the analysis on Step 5, we can see that AC pipes with a diameter of 6 in (150 mm) are the most 
common. To define the reference levels, we use the instruction ‘relevel’:

 Exampledata$Diameter = relevel(Exampledata$Diameter,ref = ‘6’);
 Exampledata$Material = relevel(Exampledata$Material,ref = ‘AC’);
 Exampledata$Season = relevel(Exampledata$Season,ref = ‘Spring’)

Step 15. Set up the regression model using the function ‘lm’. The regression model should look like this:

 Pipe longevity = αi + β1*material + β2*diameter + β3*season + β4 * length + residual.

In R, the model is going to look like this:

 RegExampledata < lm(Exampledata$Age∼Exampledata$Diameter + Exampledata 
$Material + Exampledata$Season + Exampledata$Length)

Step 16. Call the regression model results with the ‘summary’ function by typing summary 
(RegExamp ledata).

Figure 14.22 Regression results in ‘R’.
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14.7.2 Create grid to extract aggregated data
Step 1. Pipeline leak data in GIS is checked to see if it has a time attribute (date, time of leak) 

associated with each leak in the shape file’s attribute table.

Step 2. The Measure tool in ArcMap is used to measure the distance between each pipeline leak/
break for a few selected leaks to get an estimate of how spatially separated the leaks are. More 
examination is to be done to estimate the average distance between the leaks to decide on the 
distance for creating buffers for identifying clusters of spatial data.

Step 3. Assigning leaks to a spatial cluster/group is done by grouping pipeline leaks within a certain 
specified distance of each other. To perform spatial clustering of pipeline leak data in GIS, we 
will create a grid. Separately, we could use the buffer tool in ArcMap 10.3.1, to create buffers of a 
certain specified distance say 300 ft (91 m) (assumed based on step 2) with the pipeline GIS data 
with the leak data information along with their spatial coordinate as the input feature. Then, a 
second step is to find clusters of leaks. This is to be done using the spatial join tool in ArcMap 
which can be used to find the number of leaks within each 300 ft (91 m) buffer.

Figure 14.23 Water main failure attributes.
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Step 4. Use the Create Fishnet tool to create a grid. The template extent should be similar to the 
extent of the analysis area (see Figure 14.24). The size of each cell will depend on the findings of 
step 2. In this case we will use 100 m or 300 ft.

Figure 14.24 Creation of fishnet.
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Step 5. Use the Create Fishnet tool to create a grid. In the Geometry Type choose polygon to 
generate a grid.

Figure 14.25 Creation of fishnet.
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Step 6. To find clusters of leaks we will use the Spatial Join tool. The shapefile to be joined (water 
main failures) needs to have a count so the tool can add the failures. In this case, we should add 
an attribute and assign the number 1 to all the features. To do that, open the attribute table then 
click on ‘table properties’ and then ‘Add Field’. Once the Field Calculator opens, add a new field. 
For example, ‘WaterMainFailuresCount’ and in the box below add number 1.

Figure 14.26 Adding a field with a value of 1 to count the number of failures.
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Step 7. To find clusters of leaks we will use the Spatial Join tool. The target features are the bin that 
we just created, and we will join the water main failures. The target feature layer is the fishnet 
grid we created in last steps. The ‘Join Features’ will be the water main failure shapefile.

Step 8. End Result using a 50, 100 and 200 m grid size. Note how the count of failures per increases 
as the bin size increase. The color scheme can be edited using the ‘Layer Properties’ menu when 
you right-click on the layer name.

Figure 14.27 Spatial join tool.
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Figure 14.28 Fishnet results with a size of 20 m.

Figure 14.29 Fishnet results with a size of 50 m.
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14.7.3 Hot spot analysis of water main failure
Step 1. Using the same dataset and the grid created in the last example, let us run the Hot Spot 

Analysis tool. Open the Hot Spot Analysis tool and use the shapefile created in the previous 
example as the ‘Input Feature Class’.

Step 2. Select as ‘Input Field’ the count of failures created in the last example. Let us leave the other 
parameters as optional.

Figure 14.30 Fishnet results with a size of 100 m.

Figure 14.31 Hot spot analysis tool.
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Step 3. Final results are shown below for the three bin sizes (50, 100 and 200 m).

14.7.4 Create space time cube of water main failures
Step 1. Pipeline leak data in GIS is checked to see if it has a time attribute (date, time of leak) 

associated with each leak in the shape file’s attribute table.

Figure 14.32 Hot spot analysis tool results with bin sizes of 50, 100 and 200 m (refer to online version of the book 
to visualize colors).

Figure 14.33 Water main grid.



367Water mains replacement decision using GIS analytics

Step 2. Each leak record is assigned/identified its lat/long coordinate in GIS as an attribute in the 
pipeline GIS shape file consisting of leaks/breaks information.

Step 3. The distance tools in ArcMap is used to measure the distance between each pipeline leak/
break using the spatial coordinate information. This will help determine distance parameters 
when creating the Space Time Cube.

Step 4. The Space Time Pattern Mining tool in ArcMap will be used to create spatio-temporal 
clusters. The Space Time Pattern Mining tools are used for analyzing data distributions and 
patterns in the context of both space and time. By specifying the time interval in the Create 
Space Time Cube, spatio-temporal clusters of pipeline leak/failure data.

Figure 14.34 Water main grid with water main failures.

Figure 14.35 Create space time cube tool in ArcMap.
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Step 5. Fill the requested fields as follows:
Input features – Water main failure shapefile
Output Space Time Cube – Create your own file
Time field – Reported data in this case
Time step – Six months
Define Interval – 100 m

Step 6. Summary of the tool after running the Space Time Cube Tool. See bold text information that 
could be of interesting for our purposes. Confirm that the cube has the appropriate dimensions 
(see text in italics).

Executing: CreateSpaceTimeCube WaterMainFailures

Start Time: Sat Apr 17 09:40:12 2021

Running script CreateSpaceTimeCube…

The space time cube contains point counts for 165 locations over 64 time 

step intervals. Each location is 100 meters by 100 meters spanning an 

area 1100 meters west to east and 1500 meters north to south. Each of 

the time step intervals is 1 year in duration so the entire time period 

covered by the space time cube is 32 years. Of the 165 total locations, 81 

(49.09%) contain at least one point for at least one time step interval. 

These 81 locations comprise 2592 space time bins of which 142 (5.48%) have 

point counts greater than zero. There is not a statistically significant 
increase or decrease in point counts over time.

---------- Space Time Cube Characteristics -----------

Input feature time extent     1990-01-01 00:00:00

to 2021-12-21 00:00:00

Number of time steps    64

Time step interval 6 months

Time step alignment    End

First time step temporal bias       3.01%

First time step interval   after

 1989-12-21 00:00:00

 to on or before

 1990-12-21 00:00:00

Figure 14.36 Create space time cube tool in ArcMap.
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Last time step temporal bias 0.00%

Last time step interval after

 2020-12-21 00:00:00

 to on or before

 2021-12-21 00:00:00

Cube extent across space     (coordinates in meters)

Min X 479856.4037

Min Y  2140594.7895

Max X 480956.4037

Max Y 2142094.7895

Rows 15

Columns 11

Total bins 5280

------------- Overall Data Trend – COUNT -------------

Trend direction Not Significant
Trend statistic 0.4413

Trend p-value 0.6590

14.7.5 Emerging Hot spot analysis of water main failures
The outcome of the cluster analysis is to identify areas which are more prone for leaks and are at a high 
risk of pipeline failure warranting pipeline replacement in place of repair. The outcome of emerging 
hot spot analysis is the identification of areas which are in high risk of pipeline failure which may 
warrant replacement.

Step 1. Emerging hot spot analysis is to be done by using the existing spatio-temporal clusters 
created in ArcMap in the last example and using the Emerging Hot Spot Analysis tool in ArcMap. 
This tool makes use of user defined neighborhood distance, and neighborhood time steps for 
identifying new hotspots, intensifying existing hot spots, and also diminishing hot spots.

Figure 14.37 Emerging hot spot analysis tool in ArcMap.
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Step 2. To start visualizing the behavior of this data, let us run the Emerging Hot Spot Analysis tool 
using automatic defined parameters by ArcGIS.

 Input Space Time Cube – Select the file created in the previous exercise with bin size 100 m 
and time step of six months.

 Analysis Variable – Count
 Output Feature – Insert a name of the newly created shapefile
 Neighborhood Distance and Neighborhood Time Step – leave blank for now. In next steps see 

how ArcGIS sets automatic parameters for you.

Step 3. Results
Start Time: Sat Apr 17 09:54:13 2021

Running script EmergingHotSpotAnalysis…

WARNING 110020: The default Neighborhood Distance is 174.557277 meters.

WARNING 110021: Setting the Neighborhood Time Step to: 1.

------------ Input Space Time Cube Details -------------

Distance interval 100 meters

Time step interval 6 months

Number of time steps 32

Number of locations analyzed 81

Number of space time bins analyzed 5184

% non-zero 0.00%

--------------------------------------------------------

---------------- Analysis Details ---------------

Neighborhood distance 174.557277 meters

Neighborhood time step intervals 1

(spanning 1 year)

-------------------------------------------------

--------- Summary of Results ---------

HOT COLD

New 3 0

Consecutive 0 0

Intensifying 0 0

Persistent 0 0

Diminishing 0 0

Sporadic 1 0

Oscillating 0 0

Historical 0 0

--------------------------------------

All locations with hot or cold spot trends: 4 of 81

Step 4. Let us visualize the trend z-scores (high z-scores reflect that there is an increasing number of 
failures in that location). Let us choose ‘Layer Properties’, then select ‘Quantities’ and ‘Graduated 
Colors’. The map will show in red the areas with high z-scores.
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Step 5. ArcMap also allows the user to directly visualize trends. Let us choose ‘Layer Properties’, 
then select ‘Quantities’ and ‘Graduated Colors’. However, now change the variable to ‘Trends’. 
The map will show areas where the number of failures is increasing or decreasing and with 
which probability.

Figure 14.38 Visualization of emerging Hot spots z-scores (refer to online version of the book to visualize colors).

Figure 14.39 Visualization of emerging Hot spots trends (refer to online version of the book to visualize colors).
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Step 6. Let us reduce the bin distance of the cube to 50 m to visualize patterns. Let us create a new 
cube with smaller bin size similar to Problem 14.7.

Step 7. Let us run the Emerging Hot Spot Analysis tool using automatic defined parameters by 
ArcGIS.

 Input Space Time Cube – Select the file created in the previous exercise with bin size 50 m 
and time step of six months.

 Analysis Variable – Count
 Output Feature – Insert a name of the newly created shapefile
 Neighborhood Distance and Neighborhood Time Step – Leave blank for now.

Figure 14.40 Create space time cube tool.

Figure 14.41 Visualization of emerging hot spots z-scores (refer to online version of the book to visualize colors).
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Once emerging hot spots and densely clustered pipeline leaks areas are identified, it is proposed to 
analyze the repair cost versus replacement cost. If the replacement cost is 50% higher or more than 
the repair cost, then repair is a best option when compared to replacement.

14.7.6 Spatiotemporal based business risk exposure
Step 1. Using the same water main and water main failures shapefile, let us start by creating a buffer 

around each water main using the ‘Buffer’ tool. The parameters in the tool are:

 Input Features – Water mains where buffers will be based on
 Output Feature Class – Choose a name and folder to save the buffer shapefile
 Distance – Size of the buffer starting from the centerline. As recommended, set it up as 150 ft 

or 50 m
 Other parameters – Leave them as they appear in the tool

Step 2. Find datasets for critical facilities. This step requires getting shapefiles with facilities 
where the consequence of failure is high, such as hospitals, schools, airports, and so on. For the 
purposes of this example, we created a shapefile with these facilities.

Step 3. Once the critical facilities shapefiles are loaded in ArcMap, run the ‘Spatial Join’ tool to 
obtain the count of these facilities within each water main’s buffer. This will give us the number 
of critical facilities that could lose water supply in case of a water main failure. The parameters 
to run the tool are:

 Input Features – Water mains buffer shapefile
 Join Features – Shapefile that we want to join to the buffers, in this case the critical facilities
 Output Feature Class – Choose a name and folder to save the spatial join shapefile
 Join Operation – One to one

Figure 14.42 Buffer results around each water main.
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Step 4. Visualize the ‘Spatial Join’ tool results. Red buffers have four or more critical facilities. 
Critical facilities are depicted in purple and water mains in green.

Figure 14.43 Spatial join tool.

Figure 14.44 Buffer results depicting the number of critical facilities (refer to online version of the book to visualize 
colors).
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Step 5. Run for a second time ‘Spatial Join’ tool to assign the count of critical facilities within the 
buffer distance to the water mains themselves. This will give us the number of critical facilities 
that could lose water supply in case of a water main failure. The parameters to run the tool are:

 Input Features – Water mains
 Join Features – Shapefile that we want to join to the buffers, in this case spatial join from the 

previous step
 Output Feature Class – Choose a name and folder to save the spatial join shapefile
 Join Operation – One to one
 Match Option – Select Within

Step 6. Visualize the ‘Spatial Join’ tool results. Now water mains are assigned the critical facility 
count from their respective buffers. Critical facilities are depicted in purple and water mains in 
green. 

Figure 14.45 Spatial Join tool.
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Step 7. Visualize the consequence of failure (COF) results. Water mains are assigned the critical 
facility count from their respective buffers. Critical facilities are depicted in dark blue, water 
main failures in light blue and water mains in green.

Figure 14.46 Spatial Join tool showing the number of failures per water main (refer to online version of the book 
to visualize colors).

Figure 14.47 COF results (refer to online version of the book to visualize colors).
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Step 8. Visualize the consequence of failure (COF) results and (LOF). LOF results are shown as the 
z-score from the Emerging Hot Spot Analysis

Step 9. Visualization of water mains that need to be prioritized based on high COF and LOF.

Water Main A has eight failures and was categorized as a high z-score area which means there is a 
high likelihood of failure, in addition it has more than four critical facilities within the 150 ft (46 m) 
buffer. Therefore, this water main is a candidate for replacement.

Figure 14.48 LOF results (refer to online version of the book to visualize colors).

Figure 14.49 Example of COF/LOF analysis for two water mains (refer to online version of the book to visualize 
colors).
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Water Main B does not have any reported failure so its LOF is low, however it has more than 
four critical facilities within the 150 ft (46 m) buffer. Probably, is not a candidate for replacement but 
definitely has to be constantly monitored.

Water Mains C and D have 11 and eight failures respectively and were categorized as a high z-score 
area which means there is a high likelihood of failure Although they do not have critical facilities 
around, a failure in these water mains is probable and still would affect customers. Therefore, this 
water main is a candidate for replacement.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Explain nonmarket valuations.
(2) Perform contingent valuation and conjoint analysis in Excel.
(3) Explain pair-wise comparison to perform a rational decision making.
(4) Perform AHP in Excel.

15.1 NONMARKET VALUATION

Nonmarket valuation is a method that is used to estimate the total willingness to pay (WTP) for 
goods or a service that is not traded in the market. For goods that are traded in the market, the total 
willingness to pay can be easily estimated by the area under the demand curve (the demand curve 
represents the relationship between the price of a good or service and the quantity consumers are 
willing and able to purchase). However, this is a more challenging task in the case of nonmarket 
goods. Because these goods and services are not sold in the market, the demand curve does not 
exist. Instead, the willingness to pay is either revealed through consumers’ choices or directly elicited 
through surveys.

There are two broad categories of valuation methods, revealed preference methods and stated 
preference methods. Revealed preference methods are based on actual choices that individuals make 
which in turn directly indicate the values that they may place on the good or service of interest. For 
example, by calculating how much households spend on bottled water, filters and water treatment 
devices in a given time period, a revealed preference method may infer the value that households 
place on clean water. The cost of such treatments and devices is directly incurred by households and 
is observable through the prices they pay. Stated preference methods elicit willingness to pay directly 
from consumers through surveys. Consumers are directly or indirectly asked to state their willingness 
to pay for a good or service. In this section, we will examine two widely used stated preference 
methods, contingent valuation and conjoint analysis.

Chapter 15

Decision Analysis
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15.2 CONTINGENT VALUATION

The contingent valuation method is a direct stated preference method. It uses a survey format to 
directly asks respondents about their willingness to pay contingent on a hypothetical scenario or 
market. The reliability of the contingent valuation results depends mainly on the design of the survey 
and the analysis of the data; thus, it is important to carefully consider these aspects.

There are five main components in a contingent valuation study. The first component is to identify 
the changes to be valued. This step includes defining the quality or quantity of the good before the 
policy change and after the policy change and the values to be estimated. This will be helpful when 
describing the good to respondents.

The second component is the selections of the data collection mode and the sample size. The data 
collection surveys can be conducted in person, via phone, via mail or web-based. While in person 
interviews are recommended by the NOAA panel (NOAA, 1993) and Mitchell and Carson (1989), they 
tend to be the most expensive mode for data collection. The survey should then be administered to the 
largest possible sample size given the resources available. According to Mitchell and Carson (2013), 
this is necessary given the large variance present in willingness to pay (WTP) responses.

The third component is choosing an elicitation method and designing the contingent valuation 
question. Generally, a detailed description of the good or market and the change that is taking place 
is provided before the elicitation question is asked. The information describes the good together with 
how it will be offered, how consumers would pay for it and for how long. Then the willingness to pay 
question is asked by choosing an elicitation format. The main formats that are used in the literature 
include the open-ended format, the payment card method and the dichotomous choice question. 
Below are some examples of the same question (adopted from Tanellari et al. 2015) asked in different 
formats.

 Open-ended: the respondents are directly asked to state a dollar amount that represents their 
willingness to pay, for example What is the maximum amount you are willing to pay, through 
an increase in your quarterly water bill to upgrade the water distribution infrastructure in your 
utility service area?

 Payment card: this method provides respondents with a series of dollar values using a card 
and asks them to choose the value that best represents their maximum willingness to pay. The 
values presented are preselected by the researchers, for example Which of the values below 
best represents the maximum amount you are willing to pay, through an increase in your 
quarterly water bill to upgrade the water distribution infrastructure in your utility service 
area?

 

Dichotomous choice: respondents are simply asked if they are willing to pay a given amount 
in a yes or no format. The dollar amount asked is varied randomly among respondents, for 
example Would you be willing to pay $10 (the bid amounts asked are not arbitrary; e.g., in 
Tanellari et al. (2015) they are based on the actual quarterly water bill values for residents in the 
study area), through an increase in your quarterly water bill to upgrade the water distribution 
infrastructure in your utility service area?

There are other variations of these formats such as double bounded or multiple bounded 
questions (see Boyle, 2003 for more detail). Each of the above response formats have advantages 

$0 $10 $100

$1 $25 $150

$3 $50 $200

$5 $75 More than $200
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and disadvantages, however, the dichotomous choice format is generally the most widely used one. 
Regardless of which response format is used, respondents should have the choice of answering with 
$0. In addition, the survey may include follow up questions to the contingent valuation question to 
distinguish any protest answers.

The fourth component is the design of the survey. Besides the elicitation question, the survey 
should also include other relevant questions to collect information needed for the regression analyses 
of the data as well as socio-demographic questions that serve as explanatory variables.

The fifth and the last component is the collection and analysis of the data. Once the data are 
collected, the analysis of the willingness to pay will depend on the elicitation format used. Since 
dichotomous choice questions are the most commonly used method, we will focus on the analysis of 
data collected using this method. For more information on how to analyze data using other elicitation 
formats please see Boyle (2003).

Contingent valuation has proven valuable in estimating non-use values of a good or service and 
when revealed preference methods cannot be used. It is a very flexible valuation method and can be 
applied to a wide number of scenarios and range of goods by simply asking respondents about their 
willingness to pay. Although widely used, contingent valuation is not without faults as a method. 
One of the main weaknesses is the potential for biased responses. There are several potential biases 
that may affect the validity of the results. Respondents may have little incentive to answer the survey 
truthfully or consider their answers carefully, particularly since the choices presented are of a 
hypothetical nature. Others may intentionally answer in a way that may influence policy decisions 
towards a particular outcome. Biased results may also arise when respondents are not familiar with 
the good being evaluated or not enough information has been given at the beginning of the survey. 
The survey instrument used can also introduce bias. Consumers may be sensitive to the dollar values 
presented by the payment card and the dichotomous choice. In addition, the payment vehicle bias 
can result when respondents refuse to pay any amount, not because they do not value the good but 
because they do not like the means by which the WTP will be collected, generally increase in taxes or 
utility bills, donations, and so on. Careful survey design and data collection are important in reducing 
some of these biases and providing more reliable and valid results that can be useful in policy analysis. 
Several reports have provided guidelines and best practices in conducting a contingent valuation 
study (Boyle, 2003; Mitchell & Carson, 1989; NOAA, 1993) and should be carefully reviewed when 
considering such studies.

15.2.1 Analysis of CV data
In this section, we will focus on the analysis of a dichotomous choice WTP question. Once the data 
are collected, they need to be coded and prepared for the analysis. Questions with choices of ‘yes’ or 
‘no’ produce discrete variables and are coded as ‘1’ or ‘0’. Categorical variables are coded similarly by 
assigning dummy variables for each category while continuous variables are left as they are. Then the 
data needs to be checked for outliers and missing values. Imputation or mean substitution can be used 
in the case of missing data, whenever possible. Any outliers present in the data should be examined 
carefully and excluded only if they are in fact inaccurate.

Dichotomous choice data are generally analyzed using a logistic model. First we input the data in 
Excel. Respondents answered ‘yes’ (WTP = 1) or ‘no’ (WTP = 0) to the varying bid amounts offered. 
The data is arranged as presented in Table 15.1.

Before we run the regression analysis, we can conduct a descriptive analysis and cross-tabulation 
analysis of the data. The descriptive analysis can be conducted in Excel by using the multiple regression 
tool which is accessible when the Analysis Toolpak add-in is installed. To obtain the descriptive 
statistics, go to Data→Analyze→Data Analysis and choose Descriptive Statistics. Make sure the 
‘Summary Statistics’ output option is checked. The summary statistics of the data are presented in 
Table 15.2.
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The summary statistics indicate that 65% of the respondents answered ‘yes’ to the bid amount they 
were presented with and the mean bid amount asked is $53.4. In addition, we can cross-tabulate the 
WTP responses by bid amount as presented in Table 15.3 to get a better understanding of the survey 
responses.

The data can then be used to run a regression analysis. The model we are trying to estimate is:

Υ = + +β β ε0 1( )Bid  (15.1)

where Y is the WTP response, β0 is the intercept, β1 is the parameter we are trying to estimate and ε 
is the error term.

The regression analysis can be conducted in Excel by using the multiple regression tool which is 
accessible through the Analysis Toolpak. To do this, go to Data → Analyze → Data Analysis and choose 
Regression. Specify ‘WTP Responses’ as the dependent variable and the ‘Bid’ as the independent 

Table 15.1 CV coded data in Excel.

ID Bid WTP 
Responses

1 10 1

2 25 0

3 50 1

4 100 0

5 1 1

6 100 0

7 50 1

8 1 1

9 25 1

10 150 0

11 50 0

12 100 1

13 10 1

14 5 1

15 1 1

16 5 1

17 200 0

18 25 1

19 150 0

20 10 1

Table 15.2 Summary statistics of CV data in Excel.

Bid WTP Responses

Mean 53.4 0.65

Median 25 1

Standard Deviation 59.69 0.49

Minimum 1 0

Maximum 200 1
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variable. In addition to the bid values, other explanatory variables can be added to the analysis that 
may help explain WTP responses, for example socioeconomic variables (gender, education, income, 
etc.). The regression results are presented in Table 15.4.

Based on the regression results the regression line is:

WTP bid= 0 97 0 006. . *( )−  (15.2)

The estimated coefficients indicate how the explanatory variables are related to the dependent 
variable. For example, a $1 increase in the bid amount will decreases the probability that a respondent 
will answer ‘yes’ by 0.6%.

Table 15.3 Cross-tabulation of CV data in Excel.

Bid WTP Number of Responses

No = 0 Yes = 1

1 0 3 3

5 0 2 2

10 0 3 3

25 1 2 3

50 1 2 3

100 2 1 3

150 2 0 2

200 1 0 1

20

Table 15.4 CV regression analysis results in Excel.

Summary Output

Regression Statistics

Multiple R 0.72289

R Square 0.52257

Adjusted R Square 0.49604

Standard Error 0.3474

Observations 20

ANOVA

df SS MS F Significance F

Regression  1 2.377682 2.3777 19.702 0.00032

Residual 18 2.172318 0.1207

Total 19 4.55

Coefficients Standard Error t Stat P-value

Intercept 0.96647 0.105441 9.166 3×10−8

Bid −0.0059 0.001335 −4.4387 0.0003
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The standard errors for the regression coefficients indicate the accuracy of the estimated coefficients 
and the R2 indicates the goodness of fit for the model. In this case about 50% of the variation in WTP 
is explained by the bid amount included in the regression model.

The significance of the F-value of shows the significance of the model results. If this value is less than 
0.05 (like in this case) than the results are significant. Similarly, the P-value indicates the significance 
of each coefficient estimate. These values should also be below 0.05 for most or all coefficients to 
indicate significance. If the F or P-values are not below 0.05, the explanatory variables should not be 
used and the regression should be rerun with a different set of variables.

The regression results can then be used to calculate the mean WTP per person.

MeanWTP = –( )β β0 1/  (15.3)

Finally, the nonuse value for the good can be estimated by multiplying the mean WTP per person 
by the total number of people, as follows:

NonuseValue MeanWTP Total Population= ×  (15.4)

15.3 CONJOINT ANALYSIS

Conjoint analysis, also referred to as an attribute-based method, is an indirect stated preference 
method used to elicit the economic value of a good through surveys. Conjoint analysis, unlike 
contingent valuation, elicits willingness to pay indirectly by asking respondents to choose among 
different bundles of goods. Each bundle includes different attributes with different levels where one of 
the attributes is the price. By choosing a bundle, respondents are indirectly indicating their willingness 
to pay for the good described.

There are several components in designing a conjoint analysis study. Similar to contingent valuation 
studies, the first component is to identify the changes to be valued. Any changes in the quality of a 
good and the values that are affected as a result of these changes should be identified. For example, 
valuation of the benefits from improving the drinking water quality in an area should include all the 
relevant changes associated with the water attributes, such as taste, clarity, odor, and so on.

The second component includes selecting the data collection mode and the sample size. The data 
can be collected by using in-person surveys, phone surveys, mail or web-based surveys. The survey 
should be conducted to the geographical site(s) that is/are affected by the proposed change while the 
mode of collection can depend on the type of survey as well as budget limitations.

The third component involves identifying the attributes and determining the experimental design. 
Researchers have to identify the most important attributes that may impact the use of the good and 
determine the number of attributes to include as well as the different levels of each attribute. The 
attribute bundles are then constructed using an experimental design. Because the number of possible 
combinations of attributes may be high, not all of them can be included in the bundles presented to 
respondents. An experimental design can be used to identify the optimal bundles to use in the survey. 
The main designs that can be used to create the optimal bundles are full factorial design, fractional 
factorial design or randomized design. For more details on strategies of experimental designs, please 
see Holmes and Adamowicz (2003).

The fourth component is the selection of the response format and the design of the survey. The 
three most popular response formats are ratings, rankings and choice (Holmes & Adamowicz, 2003). 
An example of a rating response format is provided in Table 15.5.

An example of a choice format questions is provided in Table 15.6. This represents only one choice 
set and respondents usually are presented with several different choice sets. In general, researchers 
recommend no more than eight choice sets be used (Holmes & Adamowicz, 2003).

The ranking response format is similar to the choice format but instead of picking one alternative, 
respondents are asked to rank the alternatives presented to them from the most preferred to the least 
preferred.
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The fifth and the last component is the collection and analysis of the data. Once the data are 
collected, the analysis will depend on the response format that was used in the survey. Depending on 
the assumptions that are made about the distribution of the error term, a binary probit, a conditional 
logit or a multinomial logit model can be used to analyze the data. Other explanatory variables that 
may explain respondents’ choices are also included in the analysis.

15.3.1 Analysis of CA data
In this section, we will focus on the analysis of attribute-based methods. Similar to the CV method 
when the data are collected, they need to be coded and prepared for the analysis.

Consider a conjoint analysis problem with three attributes and different levels as indicated in Table 
15.7. We are trying to evaluate different attributes of drinking water plumbing materials.

A full factorial design will lead to a total combination of 18 different alternatives or profiles for the 
plumbing materials, as shown in Table 15.8.

Table 15.5 A CA rating response format example.

How would you rate each of the following attributes of corrosion resistance for drinking water plumbing materials? 

(Please circle one number for each item)

Very  
Undesirable

No  
Opinion

Very  
Desirable

Don’t  
Know

May corrode under select conditions 1 2 3 4 5 6

Not susceptible to corrosion 1 2 3 4 5 6

Resists corrosion and oxidation 1 2 3 4 5 6

Table 15.6 A CA choice set example.

Assuming that the plumbing materials below were the only material available on the market, which of the 

plumbing materials would you purchase for your house? Please check only one box.

Plumbing Material A Plumbing Material B

• Not susceptible to corrosion
• Compounds released from this 

material may give a bitter or 
metallic taste or odor to the water.

• $10 for 2 cm diameter pipe

• May corrode under select 
conditions

• Compounds released from 
this material may give a 
bitter or metallic taste or 
odor to the water.

• $5 for 2 cm diameter pipe

I would stay with the 
product currently 
installed in my house

Table 15.7 CA attributes and levels example.

Attributes/
Levels

Corrosion 
Properties

Taste and Odor Properties Price for 2 cm 
Diameter Pipe

1 Not susceptible to 
corrosion

Compounds released from this material may give 
a bitter or metallic taste or odor to the water.

$5

2 May corrode under 
select conditions

Compounds released from this material may give 
a chemical or solvent taste and odor to the water.

$10

3 No adverse taste and odor to the water $30
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2 3 3 18  /  corrosion taste odor price× × =  (15.5)

Let us assume that consumers are asked to rank the different alternatives by assigning a value from 
0 to 10, from the least preferred to the most preferred.

We can use Excel to analyze the data from a conjoint analysis study. First, we input the data in an 
Excel spreadsheet as presented in Table 15.9.

Next, we have to code the data where each level of each attribute is listed as a variable. Then 
we code these as discrete variables by assigning a value of ‘1’ if the characteristic is present in that 
particular alternative and ‘0’ if it is not, as shown in Table 15.10.

Table 15.8 CA full factorial experimental design example.

Alternatives Corrosion 
Properties

Taste and Odor Properties Price for 2 cm 
Diameter Pipe

1 Not susceptible to 
corrosion

Compounds released from this material may give 
a bitter or metallic taste or odor to the water

$5

2 Not susceptible to 
corrosion

Compounds released from this material may give 
a bitter or metallic taste or odor to the water

$10

3 Not susceptible to 
corrosion

Compounds released from this material may give 
a bitter or metallic taste or odor to the water

$30

4 Not susceptible to 
corrosion

Compounds released from this material may give 
a chemical or solvent taste and odor to the water

$5

5 Not susceptible to 
corrosion

Compounds released from this material may give 
a chemical or solvent taste and odor to the water

$10

6 Not susceptible to 
corrosion

Compounds released from this material may give 
a chemical or solvent taste and odor to the water

$30

7 Not susceptible to 
corrosion

No adverse taste and odor to the water $5

8 Not susceptible to 
corrosion

No adverse taste and odor to the water $10

9 Not susceptible to 
corrosion

No adverse taste and odor to the water $30

10 May corrode under 
select conditions

Compounds released from this material may give 
a bitter or metallic taste or odor to the water

$5

11 May corrode under 
select conditions

Compounds released from this material may give 
a bitter or metallic taste or odor to the water

$10

12 May corrode under 
select conditions

Compounds released from this material may give 
a bitter or metallic taste or odor to the water

$30

13 May corrode under 
select conditions

Compounds released from this material may give 
a chemical or solvent taste and odor to the water

$5

14 May corrode under 
select conditions

Compounds released from this material may give 
a chemical or solvent taste and odor to the water

$10

15 May corrode under 
select conditions

Compounds released from this material may give 
a chemical or solvent taste and odor to the water

$30

16 May corrode under 
select conditions

No adverse taste and odor to the water $5

17 May corrode under 
select conditions

No adverse taste and odor to the water $10

18 May corrode under 
select conditions

No adverse taste and odor to the water $30
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Table 15.9 CA data in Excel.

Alternatives Corrosion Taste/Odor Price Ranking

1 1 1 1 7

2 1 1 2 5

3 1 1 3 4

4 1 2 1 7

5 1 2 2 5

6 1 2 3 5

7 1 3 1 10

8 1 3 2 9

9 1 3 3 8

10 2 1 1 6

11 2 1 2 5

12 2 1 3 2

13 2 2 1 6

14 2 2 2 5

15 2 2 3 2

16 2 3 1 8

17 2 3 2 6

18 2 3 3 4

Table 15.10 CA coded data in Excel.

Alternatives No 
Corrosion

May 
Corrode

Bitter/
Metallic

Chemical/
Solvent

No Effect 
Taste/Odor

$5 $10 $30 Ranking

1 1 0 1 0 0 1 0 0 7

2 1 0 1 0 0 0 1 0 5

3 1 0 1 0 0 0 0 1 4

4 1 0 0 1 0 1 0 0 7

5 1 0 0 1 0 0 1 0 5

6 1 0 0 1 0 0 0 1 5

7 1 0 0 0 1 1 0 0 10

8 1 0 0 0 1 0 1 0 9

9 1 0 0 0 1 0 0 1 8

10 0 1 1 0 0 1 0 0 6

11 0 1 1 0 0 0 1 0 5

12 0 1 1 0 0 0 0 1 2

13 0 1 0 1 0 1 0 0 6

14 0 1 0 1 0 0 1 0 5

15 0 1 0 1 0 0 0 1 2

16 0 1 0 0 1 1 0 0 8

17 0 1 0 0 1 0 1 0 6

18 0 1 0 0 1 0 0 1 4
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In this setup, there is a linear dependence problem because there are sets of variables that be 
expressed as a linear combination of each other, for example by knowing the value of ‘no corrosion’ we 
can predict the value of ‘may corrode’. In regression analysis, this creates problems due to singularity, 
so there is no unique solution to estimate the regression coefficients. To solve this issue, we omit one 
column from each group of attributes and it is not important which level is excluded. Doing so will 
make that attribute the reference category without excluding it from the regression analysis. For this 
example, we have omitted ‘no corrosion’, ‘no effect taste/odor’ and ‘$5’ and the dataset is transformed 
as shown in Table 15.11.

The data is now ready to run a regression. The model we are trying to estimate is:

Υ = + + +β β β β0 1 2 3( ) ( ) (may corrode bitter metallic chemical solve / / nnt) ( ) ( )$ $+ + +β β ε4 510 30  (15.6)

where Y is the ranking by respondents, β0 is the intercept, β1 to β5 are the parameters we are trying to 
estimate and ε is the error term. The coefficients for the reference categories (‘no corrosion’, ‘no effect 
taste/odor’ and ‘$5’) are zero.

The regression analysis can be conducted in Excel by using the multiple regression tool which 
is accessible through the Analysis Toolpak. To run a regression analysis, go to Data → Analyze → 
Data Analysis and choose Regression. Specify ‘Ranking’ as the dependent variable and the other five 
attribute columns as the independent variables. The regression results are presented in Table 15.12.

Based on the regression results, the regression line is:

Ranking maycorrode bitter metallic= 9 94 1 78 2 67 2 5. . *( ) . *( ) . *− − −/ (( )

. * ($ ) . *($ )

chemical solvent/

− −1 5 10 3 17 30  
(15.7)

Table 15.11 CA regression data in Excel.

Alternatives May Corrode Bitter/Metallic Chemical/Solvent $10 $30 Ranking

1 0 1 0 0 0 7

2 0 1 0 1 0 5

3 0 1 0 0 1 4

4 0 0 1 0 0 7

5 0 0 1 1 0 5

6 0 0 1 0 1 5

7 0 0 0 0 0 10

8 0 0 0 1 0 9

9 0 0 0 0 1 8

10 1 1 0 0 0 6

11 1 1 0 1 0 5

12 1 1 0 0 1 2

13 1 0 1 0 0 6

14 1 0 1 1 0 5

15 1 0 1 0 1 2

16 1 0 0 0 0 8

17 1 0 0 1 0 6

18 1 0 0 0 1 4
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The estimated coefficients indicate how the explanatory variables are related to the dependent 
variable. For example, if the pipes may corrode under select conditions, ranking decreases by 1.78 
points. These results are also useful in predicting the ranking based on different values of the 
explanatory variables.

The standard errors for the regression coefficients indicate the accuracy of the estimated coefficients 
and the R2 indicates the goodness of fit for the model. In this case 90% of the variation in ranking is 
explained by the independent variables included in the regression model.

Similar to the CV regression analysis, the value of Significance F shows the significance of the 
model results, and the P-value indicates the significance of each coefficient estimate.

15.3.2 Analytical Hierarchical Process (AHP)
The Analytical Hierarchical Process (AHP) determines the preference for a decision-making unit 
using a pair-wise comparison of attributes. Assessing pair-wise preferences enables the decision maker 
to concentrate his/her judgment on two elements with regards to a single property. So, the decision 
maker does not need to think of other properties or elements while comparing and deriving the final 
decision. The formal process includes the following steps (Lee, 2008, 2015; Lee et al., 2009, 2013):

Step 1 [Use the standard preference table]: A scale (1–9) of pair-wise preference weights are given 
in Table 15.13 (Saaty, 1980).

Step 2 [Develop the pair-wise preference matrix]: Instead of assessing the weight for attribute, i, 
directly, the relative weight aij = wi/wj between attribute i and j is assessed, which is why we call 
it pair-wise comparison. Each participant is asked to fill in an n × n attribute matrix of pair-wise 
preferential weights using standard numerical scores (Tables 15.14 and 15.15).

Table 15.12 CA regression analysis results in Excel.

Summary Output

Regression Statistics

Multiple R 0.94809

R Square 0.89888

Adjusted R Square 0.85674

Standard Error 0.8165

Observations 18

ANOVA

df SS MS F Significance F

Regression  5 71.11111 14.2222 21.333 1.4 × 10−5

Residual 12  8 0.66667

Total 17 79.11111

Coefficients Standard Error t Stat P-value

Intercept 9.94444 0.471405 21.0954 7 × 10−11

May Corrode −1.7778 0.3849 −4.6188 0.0006

Bitter/Metallic −2.6667 0.471405 −5.6569 0.0001

Chemical/Solvent −2.5 0.471405 −5.3033 0.0002

$10 −1.5 0.471405 −3.182 0.0079

$30 −3.1667 0.471405 −6.7175 2 × 10−5
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= { }=  required global preference vector (of weights). Note that Table 15.14 is a 

reciprocal matrix in that the off diagonal elements are reciprocals of each other, Numerical score,

Table 15.13 Standard numerical score.

Preference Level Numerical Score, a(i,j) 
1–9 Scale

Equally preferred 1

Equally to moderately preferred 2

Moderately preferred 3

Moderately to strongly preferred 4

Strongly preferred 5

Strongly to very strongly preferred 6

Very strongly preferred 7

Very strongly to extremely preferred 8

Extremely preferred 9

Table 15.14 Pair-wise preference weight matrix [A].

Attribute 1 Attribute 2 … Attribute n

Attribute 1 w1/w1 w1/w2 … w1/wn

Attribute 2 w2/w1 w2/w2 … w2/wn

… … … … …

Attribute n wn/w1 wn/w2 … wn/wn

Sum X/w1 X/w2 … X/wn

in which: X = (w1 + w2 + … + wn).

Table 15.15 Rescaled pair-wise preference matrix [Anorm].

Attribute 1 Attribute 2 … Attribute n Average

Attribute 1 w1/X w1/X … w1/X Ave(w1/X)

Attribute 2 w2/X w2/X … w2/X Ave(w2/X)

… … … … … …

Attribute n wn/X wn/X … wn/X Ave(wn/X)

Sum 1 1 1 1 1

in which: X = (w1 + w2 + … + wn).
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a i j i w j wi i( , ) [ , ] [ , ]= weight for criterion weight for criterion,, / ==1/ ( , )a j i  

Step 3 [Evaluate the re-scaled pair-wise preference matrix]: A rescaled preference matrix is 
generated by dividing each column entry in Table 15.14 by that column’s sum yielding Table 
15.15. The last column of Table 15.15 (average column) shows the ranking of the attributes 
which is the relative preference vector between criteria 1, 2, and n obtained by averaging the 
columns of the rescaled pair-wise matrix.

Step 4 [Preference evaluation for piping materials]: Each participant is asked to complete an m × m 
material matrix of pair-wise preferential weights using standard numerical scores (Table 15.16). 
Results for (n–1)th attribute are shown in Table 15.16. Table 15.17 is the rescaled matrix in which 
the weights sum to 1. The procedure is iterated for n attributes. The results are shown in Table 
15.18 as the m × n matrix. Multiplying the pipe material preference matrix (Table 15.18) and the 
attribute preference vector (Table 15.19) yields Table 15.20.

 Based on the relative preference score in Table 15.20, final ranks are determined. It is critical that 
participant’s comparison results be consistent enough to provide reliable estimates of his/her 
preferences. In Step 5, the consistency checks for both all matrices are performed. Participants 
should reassess the pair-wise weights if the consistency check failed.

Table 15.17 Rescaled matrix for the (n–1)th attribute.

Mat. 1 Mat. 2 … Mat. m Average

Mat. 1 y1/Y y1/Y … y1/Y Ave(y1/Y)

Mat. 2 y2/Y y2/Y … y2/Y Ave(y2/Y)

… … … … … …

Mat. m ym/Y ym/Y … ym/Y Ave(ym/Y)

Sum 1 1 1 1 1

in which: Y = (y1 + y2 + … + ym).

Table 15.18 Average ranking of materials for each attribute (pipe material preference matrix).

Attribute 1 Attribute 2 … Attribute (n–1) Attribute n

Mat. 1 Ave(y(1,1)/Y) Ave(y(2,1)/Y) … Ave(y((n–1),1)/Y) Ave(y(n,1)/Y)

Mat. 2 Ave(y(1,2)/Y) Ave(y(2,2)/Y) … Ave(y((n–1),2)/Y) Ave(y(n,2)/Y)

… … … … … …

Mat. m Ave(y(1,m)/Y) Ave(y(2,m)/Y) … Ave(y((n–1),m)/Y) Ave(y(n,m)/Y)

in which Ave (y(n,m)/Y) is the averaged value for material m regarding attribute n.

Table 15.16 Pair-wise matrix for the (n–1)th attribute.

Mat. 1 Mat. 2 … Mat. m

Mat. 1 y1/y1 y1/y2 … y1/ym

Mat. 2 y2/y1 y2/y2 … y2/ym

… … … … …

Mat. M ym/y1 ym/y2 … ym/ym

Sum Y/y1 Y/y2 … Y/ym

in which: Y = (y1 + y2 + … + ym).
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Step 5 [Perform consistency check]: The maximum eigenvalue in Table 15.14 ([A]) is:

λmax = n (15.9)

where n is number of attributes. The eigenvalue of A can be found by solving:

Ax x= λ  (15.10)

where x: n × 1 matrix x (eigenvector). If the actual eigenvalue is different from n, there are 
inconsistencies in the weight assignments. Saaty (1980) defines a consistency index as:

C.I.=
−

−

λmax n

n 1  
(15.11)

Table 15.21 contains the Random Index (R.I.) values calculated from randomly generated weights 
as a function of the pair-wise matrix size (number of criteria). Based on many randomly simulated 
outcomes, Saaty (1980) suggests that if the ratio of C.I. to R.I.:

C I

R I

. .

. .
.< 0 1

 
(15.12)

the preference assessments should be taken as consistent.

Table 15.20 Final preference matrix.

Preference

Mat. 1 Ave(y(1,1)/Y)* Ave(w1/X) + Ave(y(2,1)/Y)* Ave(w2/X) + … + Ave(y(n,1)/Y)* Ave(wn/X)

Mat. 2 Ave(y(1,2)/Y)* Ave(w1/X) + Ave(y(2,2)/Y)* Ave(w2/X) + … + Ave(y(n,2)/Y)* Ave(wn/X)

… …

Mat. m Ave(y(1,m)/Y)* Ave(w1/X) + Ave(y(2,m)/Y)*Ave(w2/X) + … + Ave(y(n,m)/Y)* Ave(wn/X)

Table 15.19 Attribute preference vector.

Average

Attribute 1 Ave(w1/X)

Attribute 2 Ave(w2/X)

… …

Attribute n Ave(wn/X)

in which: X = (w1 + w2 + … + wn).

Table 15.21 Random Index (R.I.)

Matrix Size (n) R.I.

3 0.58

4 0.9

5 1.12

6 1.24

7 1.32

8 1.41

9 1.45

10 1.49
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15.3.2.1 Example
Figure 15.1 shows the pair-wise preference weight matrix [A] for the criteria that we consider. In 
this problem, we consider price, corrosion, fire resistance, health, longevity, resale, and taste odor of 
different pipe materials. We obtain the rescaled [Anorm] matrix (Figure 15.1).

The pair-wise weight matrices for the three different pipe materials are also obtained (Figure 15.2).
We obtain the final ranking of the three different materials for the seven criteria. The average 

ranking of the criteria is shown in Figure 15.3. We also perform the consistency check as follows. CI/
RI ratio is less than 0.1, so the decision maker’s preference elicitation is consistent.

Figure 15.1 Attribute comparisons.

Figure 15.2 Materials comparisons for each attribute.
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15.4 CONCLUSIONS

This chapter covered the three popular decision analysis methods – conjoint analysis, contingent 
valuation, and analytical hierarchical process in the context of water infrastructure. This type of 
decision modeling efforts can help make better informed decisions in water infrastructure systems.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Install and run R.
(2) Run a plm package for panel data.
(3) Interpret the fixed effects results and their interpretations in terms of explaining Non-Revenue-

Water (NRW).
(4) Assess results based on model interpretability.

16.1 INTRODUCTION

Around the world, more than $14 billion per year is lost due to water loss (Kingdom et al., 2006), 
and these losses are primarily covered by paying customers. Water loss is a huge challenge for water 
utilities, which require fundamental understanding of the influencing factors (Güngör-Demirci et al., 
2018a). The Organization for Economic Co-operation and Development (OECD) found out that water 
loss can go up to 65% for developing countries (OECD, 2016). It is a challenging task to reduce the 
water loss, even in highly developed countries as well (Thornton et al., 2008). For an effective water 
loss reduction program, it is critical to have a deep understanding of the causal factors as well as why 
its reduction is so challenging (van den Berg, 2015).

Many literatures cited environmental, managerial, physical, sociological, and technical factors. 
The examples include system age, pipe length/layouts of the systems, hydraulic conditions, external 
soil characteristics and topography, traffic loading, and service connection densities (Güngör-Demirci 
et al., 2018a, 2018b, 2018c). A more realistic water loss target program can be developed once these 
factors are understood at each system level.

To accurately measure water loss in water distribution systems, the International Water Association 
(IWA) Task Forces on Water Losses and Performance Indicator recommended use of the term non-
revenue water (NRW). NRW is defined as the difference between the input water volume (into water 
distribution systems) and the billed total volume of water (Alegre et al., 2006). The IWA Water Balance 
Standard can be used to conduct water loss volume estimation in the network, and Figure 16.1 shows the 
overall framework for water balance. In the following is the mathematical formulation to understand 
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the factors in explaining the NRW for water systems. We believe that this type of study will help reduce 
NRW and set realistic targets for the water utilities that consider water loss reduction program.

16.2 REGRESSION MODEL SPECIFICATION

In this chapter, we will use the fixed effects panel regression model to understand the impacts of 
independent variables on the NRW. As covered in Chapter 2, the fixed effects model attempts to 
control for unobservable factors among each district by assigning unique time-invariant identifiers. A 
simplified form of a fixed effects model is as follows (Hsiao, 2003):

y xit i it it= + +α β µ  (16.1)

where yit is the dependent variable observed for district i (i = 1….N) at time t (t = 1…T); αi is the 
unknown intercept for each district (i.e., N entity-specific intercepts); xit is the independent variable; 
β is the coefficient for that independent variable; and µit, is the error term. In this case, the intercept 
value, αi, depends on omitted factors specific to each district i that are possibly correlated with the 
chosen independent variables, xit. Any time-invariant variables that may have an effect on NRW 
are thus absorbed into the intercept term. The error term µit represents effects from unique district 
factors that were not accounted for or are uncorrelated with identified independent variables. District 
heterogeneity is assumed to have an influence on water loss, hence a fixed effects model is adopted. 
In addition, the Hausman test was performed to justify the adoption of fixed effects model over the 
random effects model (Tanverakul & Lee, 2015). The statistical program R was used to perform the 
analysis (Croissant et al., 2016).

We set the model as follows:

NRW_CON_DAY NETLEN CON_DENS

LEAK NET_

( ) ( )

( )

= + +

+ +

it iα β β

β β

1 2

3 4

( )

OOPREV( )+ µit  
(16.2)

where (NRW_CON_DAY) is expressed as m3 of water lost/connection/day, as a dependent variable. 
Four explanatory (i.e., independent) variables are included on the right-hand side of the panel regression 
equation (Equation 16.2). The calculated coefficients measure the elasticity of NRW, revealing how 
much NRW varies in response to a change in the various drivers.

Figure 16.1 IWA Standard International Water Balance (adopted from Farley & Trow, 2003).
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16.2.1 Example
plm package. ‘lm: Linear Models for Panel Data’ is an R package including a set of estimators and 
tests for panel data econometrics (Croissant et al., 2021). In this chapter, we will see an example run 
for having fixed effects panel regression analysis.

Let us start with installing plm in RStudio by typing the following line of code (Figure 16.2):

 install.packages(‘plm’)

Package ‘plm’ Version 2.4-1 is installed on RStudio (RStudio Desktop 1.4.1717) as shown below. 
The RStudio is run on R 4.1.0 for Windows (86 megabytes, 32/64 bit).

16.2.2 Water utility example
Now that the plm package is installed, let us move on to our example. The data used for this example 
is considered to be panel data as it includes time series observations of a number of individual water 
utilities. In other words, the data structure involves two dimensions: a time series dimension and 
a cross-sectional dimension. For more information about the analysis of panel data, you can check 
Hsiao (2003). The example data belongs to five different utilities for the period from 1998 to 2014. 
The data set contains a total of 76 year-utility combinations since some utilities do not have data for 
some years.

In our fixed effects panel regression model, non-revenue water (NRW), expressed as m3 of water 
lost/connection/day (NRW_CON_DAY), is selected as the dependent variable. Our independent 
variables are: (1) network length (NET_LEN), expressed as km of network, (2) connection density 
(CON_DENS), expressed as number of connections per km of network, (3) the number of pipe failures 
per year (LEAKS), and (4) the difference between operating revenue and operation and maintenance 

Figure 16.2 Installing plm package.
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cost per cubic meter of water sold (NET_OPREV). The final regression equation that we solve here is 
represented as follows:

NRW_CON_DAY NET_LEN CON_DENS

LEAK NET

( ) ( ) ( )

( )

= + +

+ +

it iα β β

β β

1 2

3 4 __OPREV( )+ µit  
(16.3)

Here, i represents utility (i.e., 1 to 5) and t represents time (i.e., 1 to 17). αi is the unknown intercept 
for each utility (i.e., five utility-specific intercepts); β is the coefficient for the independent variable; and 
µit is the error term. The calculated coefficients, β, will measure how much NRW varies in response to 
a change in these four different factors.

In this case, the intercept value, αi, depends on omitted factors specific to each utility, i, that are 
possibly correlated with the chosen independent variables. Any time-invariant variables that may have 
an influence on NRW are thus incorporated into the intercept term. The error term, µit, represents 
impacts derived from unique utility factors that were not accounted for or are uncorrelated with the 
independent variables.

Our data file is called ‘NRW_data.txt’ and includes columns for year, ID_no (the ID number of the 
water utility; 1 to 5), NRW_CON_DAY, NET_LEN, CON_DENS, LEAKS and NET_OPREV.

Before we start, let us make sure that your plm package is active (Figure 16.3).
First, we need to read our txt file as a data table by typing the following line of code (Figure 16.4):

 nrw <-read.table (‘NRW_data.txt’, header = TRUE, sep = ‘\t’)

Remember, in this case, the data file is in the default working directory. If your data file is not in 
your default working directory, you can change it by typing:

 setwd (‘C:/(name of your data folder)’)

Before starting our analysis, we should check multicollinearity. In other words, we have to make 
sure that there is no linear correlation among the independent variables we use. For this purpose, we 

Figure 16.3 Checking plm package.
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need to find the variance inflation factor (VIF) and it should be less than 5 to show an acceptable level 
of collinearity. For more information on VIF, please check Chapter 2.

To find VIF, we should first install the package ‘car’ by typing:

 install.packages(‘car’)

Then, we can write the following two lines of code (Figure 16.5):

 nrw.lm <- lm(NRW_CON_DAY∼NET_LEN + LEAKS + NET_OPREV + CON_DENS, data = nrw, 
x = TRUE)

 vif(nrw.lm)

Figure 16.4 Data loading.

Figure 16.5 VIF calculation.
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Since all VIFs are less than 5, we can use all these independent variables in our fixed effects model. 
Now, let us convert our data table (i.e., nrw) to panel data frame by typing (Figure 16.6):

 nrw.df <- pdata.frame(nrw, index = c(‘ID_no’, ‘year’), drop.index = TRUE, row.names = TRUE)

‘pdata.frame’ is a data.frame with an index attribute that describes its individual and time 
dimensions. As you see in the below screenshot, utility ID numbers are now matched with the year to 
construct the panel data.

Now it is time to run our fixed effects model by typing the following line of code:

 fixed_effects <- plm(NRW_CON_DAY∼NET_LEN + CON_DENS + NET_OPREV + LEAKS, 
data = nrw.df, model = ‘within’)

We can see the summary of the results by typing (Figure 16.7):

 summary(fixed_effects)

According to Endsley (2016), the R-squared value given by the plm does not represent the goodness-
of-fit statistic for the full model. So, to find the R-squared value of our full model, let us write the 
following lines of code as follows (Figure 16.8):

Figure 16.6 Conversion to panel data.
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 sst <- with(nrw.df, sum((NRW_CON_DAY – mean(NRW_CON_DAY))̂ 2))
 fixed_effects.sse <- t(residuals(fixed_effects)) %*% residuals(fixed_effects)
 (sst – fixed_effects.sse)/sst

16.2.3 Interpretations

Results obtained by the fixed effect model run above shows CON_DENS and LEAKS as statistically 
significant variables. The overall fit of the model (i.e., R2 value) is found be 0.40. The negative 
correlation between NRW_CON_DAY and CON_DENS is explained as the loss of less water in more 
densely connected areas because of the lower network maintenance cost per connection (González-
Gómez et al., 2012). The positive sign of LEAK indicates that the number of pipe failures each year 
is correlated with NRW per connection per day as fewer pipe failures indicate a higher quality of 
maintenance and network integrity and hence a lower level of NRW.

It is important to note that any other utility using this model may get a different correlation result 
due to their unique physical/mechanical characteristics of water distribution systems as well as 
socioeconomic issues/status, utility’s private–public structure, political situations, and so on. However, 
this approach/method can be applied to any water utilities to further understand the fundamental 
nature/determinants of NRW.

Figure 16.7 Summary of fixed effect model.
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16.3 CONCLUSION

A utility is committed to managing water resources that is vital to the communities and customers 
they serve. Many water utilities are also enhancing the business processes that support their Water 
Audit and Loss Control Program. These improvements will provide a more accurate picture of the 
components that make up NRW, including unbilled authorized consumption, apparent losses, and 
real losses. As water infrastructure ages and continues to deteriorate, it is expected that NRW will 
continue in the field, so close monitoring and improvements to the utility’s infrastructure renewal/
maintenance programs, business processes, as well as technology should be further developed. 
We believe that ongoing research efforts will be able to optimize all these efforts to efficiently and 
effectively reduce NRW.
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LEARNING OBJECTIVES

At the end of this chapter, you will be able to:

(1) Explain the water utility performance.
(2) Install and run the R and rDEA.
(3) Assess rDEA results based on interpretability and practical implications.

17.1 INTRODUCTION

Efficient water utility management practices have become more vital than ever because of the large 
gap between available water supply and rising customer demand, as well as unpredictable climate 
patterns due to changing climate. However, not all water utilities are functioning at the same level 
of efficiency in their operations. In this chapter, we will develop a useful performance measurement 
tool and apply it to individual water utility’s operations. Measurement of performance assessments for 
each water utility will identify the opportunities to improve their management deficiencies/economic 
performances. Also, the performance measurements will provide in-depth insights toward a fully 
efficient water utility.

Data Envelopment Analysis (DEA) is an optimization tool for measuring efficiencies of organizational 
subunits, for example, production centers or departments. In addition to conventional DEA methods, 
we will explore two additional stages to examine the exogenous variables’ impacts on the individual 
water utility’s performance: double bootstrap truncated regression and Tobit regression. This chapter 
is based on previously published works (Güngör-Demirci et al., 2017, 2018).

17.2 METHODS

17.2.1 Efficiency calculation by DEA
DEA is based on nonparametric linear programming (LP) and it measures the efficiencies of each 
unit/entity that we consider. This model was developed assuming constant return to scale (CRS) and 
input orientation. In other words, an increase in inputs will lead to a proportional increase in outputs. 
Alternatively, an output-oriented model minimizes inputs for a given or constant output. In the case 
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of water utility’s performances, it is more practically reasonable to use input-oriented models because 
water utilities must serve all customers that they are responsible for!

Input oriented CRS can be described as follows. For a sample of N Decision Making Units (DMUs) 
having K inputs and M outputs, the dataset consists of an input matrix of X = K × N and an output 
matrix of Y = M × N. For the nth DMU, the inputs and outputs are represented by the column vectors 
xn and yn, respectively. The problem can be formulated as follows:

Minimize

y Y x Xn n

θ λθ

λ θ λ λ

,

: , ,subject to − + ≥ − ≥ ≥0 0 0 
(17.1)

where θ = the scalar measure of technical efficiency, λ = the N × 1 constants (weights) with non-
negativity, yn = the M × 1 vector of outputs produced by the nth DMU, xn = the K × 1 vector of inputs 
used by the nth DMU, Y = the M × N matrix of outputs of N DMUs in the sample, and X = the K × N 
matrix of inputs of the N DMUs (Coelli et al., 2005).

Although the above CRS model may be valid under the condition of all DMUs operating at optimal 
conditions, this is usually not possible from a practical perspective. So, variable returns to scale (VRS) 
work better in terms of mimicking reality. VRS assumes that a given increase in inputs will result in a 
disproportionate output. The linear programming equation of VRS model is written as:

Minimize

y Y x X Nn n

θ λθ

λ θ λ λ λ

,

: , , ,subject to ’
− + ≥ − ≥ = ≥0 0 1 1 0  

(17.2)

where N1 = the N × 1 vector of ones. The efficiency value calculated through VRS model (Equation 
17.2) gives the pure technical efficiency, without taking scale efficiency into account. Therefore, in this 
study, the VRS based DEA was performed with an R package ‘rDEA: Robust DEA for R’ Version 1.2-4 
(Simm & Besstremyannaya, 2020).

17.2.2 Input and output variables
A comprehensive literature review revealed that the major input/ouput variables for water water 
utility’s performance measurements are as follows:

• Input Variables: operating expenses, capital expenses, network length, number of employees, 
energy expenses, staff expenses, and material expenses.

• Output Variables: operating revenue, the number of connections, the volume of water distributed, 
measures of water quality, and population served.

In this study, a stepwise procedure using a backward approach was used as the primary selection 
method (Wagner & Shimshak, 2007). All input and output variables were mean-normalized to remove 
any imbalance in the data magnitudes as well as a variety of processing of output/reporting problems 
(i.e., algorithmic/numerical convergence, and round-off errors; Ananda, 2014).

17.2.3 Bias correction for efficiency scores by bootstrapping
The overall deterministic nature of DEA can lead to limitations with respect to interpreting results. 
This shortcoming can be overcome by applying a bootstrap method in which empirical distributions 
of efficiencies are derived. The bootstrapping performs resampling with replacement from a given 
sample and then calculates the statistics from many iterative samples (Mirzaei et al., 2015).

17.2.4 Exogenous variables
Exogenous variables can affect the technical efficiencies of DMUs but are not under control of the 
managers that are responsible for the operations of each utility. Exogeneous variables are location 
specific (Marques et al., 2014). In this chapter, five exogenous variables are considered: (1) number of 
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connections, (2) customer density, (3) ratio of groundwater volume to total water production, (4) total 
number of leaks in the given year, and (5) total annual precipitation.

17.3 EXAMPLES

rDEA is an R package to perform a Data Envelopment Analysis and estimate robust DEA scores 
with or without environmental variables. In this chapter, we will see example runs for estimating 
DEA scores with conventional DEA, meaning without bias correction and without considering 
environmental variables, as well as with considering those.

Let us start with installing rDEA in RStudio.
‘rDEA: Title Robust Data Envelopment Analysis (DEA) for R’ Version 1.2-6 is installed on RStudio 

(RStudio Desktop 1.4.1717) as shown in Figure 17.1. The RStudio is run on R 4.1.0 for Windows 
(86 megabytes, 32/64 bit).

Next, let us move on to our water utility performance assessment example. However, before that, it 
is better to clean the environment that is still filled with data and values from our previous example. 
We can do this using the following line of code:

rm(list = ls())

For our water utility example, we first upload our data file ‘water_utility_data.txt’. This is a tab-
delimited text file. We have data for 22 different utilities in our dataset. Our actual data are all mean-
normalized before creating this final data file since any imbalance in the data magnitudes can lead to 
a variety of processing and output/reporting problems (i.e., overall software execution, algorithmic/
numerical convergence, and round-off errors).

We use an input oriented, VRS model by having inputs (X) as energy expenditures (ENERGY) 
and other operating expenditures (OPEX) and output (Y) as operating revenue (OPREV). Our 

Figure 17.1 RStudio and rDEA installation.
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environmental variables are: (1) number of connections (NOCON), (2) customer density (CUSDEN), 
(3) ratio of groundwater volume to total water production (GROUND), (4) total number of leaks in the 
given year (LEAKS), and (5) total annual precipitation (PRECIP).

First, we need to read our data by typing the following line of code (Figure 17.2):

data <-read.table (‘water_utility_data.txt’, header = TRUE, sep = ‘\t’)

Remember that in this case the data file is in the default working directory. If your data file is not 
in your default working directory, you can change it by typing:

setwd (‘C:/(name of the data folder’)

Let us load our inputs and outputs as (Figure 17.3):

X = data[c(‘ENERGY’, ‘OPEX’)]
Y = data[c(‘OPREV’)]

When we run the ‘dea’ function in rDEA by typing below lines, we get the naïve (or in other words, 
conventional) DEA scores shown in Figure 17.4.

conv_dea_Score = dea(XREF = X, YREF = Y, X, Y, model = ‘input’, RTS = ‘variable’)
conv_dea_Score$thetaOpt

Now, with our input (X) and output (Y) matrices already loaded, let us load our environmental variables 
matrix (Z) by using variables NOCON, CUSDEN, GROUND, LEAKS, and PRECIP (Figure 17.5):

Figure 17.2 RStudio and data upload.
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Z = data[c(‘NOCON’,‘CUSDEN’,‘GROUND’, ‘LEAKS’,‘PRECIP’)]
We have data belonging to 22 utilities in this data set and we do our analysis for all of them. The 

total number of bootstrap iterations is taken as 2000 for both loops (L1 = 2000, L2 = 2000) while the 
confidence interval is 95% (i.e., alpha = 0.05). Let us input the lines of code below to calculate bias 
corrected DEA scores and its upper and lower bound:

second_stage_dea = dea.env.robust(X = X[utility,], Y = Y[utility,], Z = Z[utility,], model = ‘input’, 
RTS = ‘variable’, L1 = 2000, L2 = 2000, alpha = 0.05)

second_stage_dea$delta_hat_hat
second_stage_dea$delta_ci_low
second_stage_dea$delta_ci_high

It may take a few seconds for rDEA to finish the run. Figure 17.6 shows the reciprocal of bias 
corrected DEA scores found by using the delta_hat_hat function along with the vector of the lower 
and upper bounds of confidence interval for delta_hat_hat (bias corrected reciprocal of DEA score). 
You need to take the reciprocals of these to find the bias corrected DEA scores.

Now it is time to see the effect of environmental variables by finding the regression coefficients 
and their upper and lower bounds. You will use beta_hat_hat and beta_ci functions for this purpose 
as shown in Figure 17.7. To find statistical significance of these environmental variables on utilities’ 
efficiencies, you can refer to the article by Altman and Bland (2011).

Figure 17.3 Loading input and output data.

Figure 17.4 Conventional DEA score.
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17.3.1 Results and interpretations
The seven utilities with a conventional DEA score of 1 are technically fully efficient compared to the 
remaining 15 utilities with a conventional DEA score of less than 1. These seven technically efficient 
districts constitute the best practice frontier. The average of conventional DEA scores is 0.958 with 
a standard deviation of 0.045. This means that, on average, the utilities can decrease their inputs 
by 4.2% (i.e., (1.00 – 0.958) × 100) while keeping their output (their operating revenue in this case) 
constant. Among all the utilities, the most inefficient utility has a conventional DEA score of 0.858.

To deal with the uncertainty of the conventional DEA scores, bias-corrected DEA scores, as well 
as 95% confidence intervals, were calculated (i.e. results obtained by delta_hat_hat, delta_ci_low and 
delta_ci_high functions). The average efficiency decreased to 0.920, which can be translated as an 8% 
(0.080 = 1.000 − 0.920) input reduction requirement while holding output constant. The rankings of 
the utilities (in terms of efficiency scores) also change after bias correction. This is likely due to some 
degree of measurement noise in the initial conventional DEA, as later evidenced by the bootstrap.

Figure 17.5 Loading environmental exogenous variables.

Figure 17.6 Bias corrected DEA scores.
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Exogenous variables are selected to fully account for the variations in the DEA scores, with the 
goal being to explain factors that affect the utilities’ efficiency that are beyond each water utility’s 
control. The dependent variable used in the regression computations is greater than or equal to 1, so 
a positive sign for the estimated coefficient indicates a negative correlation. Similarly, a negative sign 
for the estimated coefficient indicates a positive correlation. The number of connections (NOCON) 
has a negative impact on efficiency, showing that an increase in the number of connections results in 
a decrease in efficiency. Precipitation (PRECIP) also has a negative correlation with efficiency. This is 
likely because a reduction of water used (sales) often accompanies patterns of increased rainfall (wet 
periods).

17.4 CONCLUSIONS

The findings of these type of studies are expected to be useful in guiding managerial improvement 
initiatives and actions at water utilities to help operational optimization efforts and provide better 
service to the utility customers. It is also worth noting that DEA can be very data-intensive and this 
requires not only analytical skills but also good communication with utility personnel to obtain the 
quality data which is useful for the analysis.
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