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Preface

The purpose of this book is to introduce ‘analytics’ to practicing water engineers so that they can
incorporate the covered subjects, approaches, and detailed techniques within their daily operations,
management, and decision-making processes. Also, undergraduate students as well as early graduate
students who are in water and environmental systems concentration areas will be exposed to
established analytical techniques, along with many methods that are currently considered to be new
or emerging and maturing.

This book covers a broad spectrum of water industry analytics topics in an easy-to-follow manner.
The overall background and context are motivated by (and directly drawn from) actual water utility
projects that we have worked on over numerous recent years. Many chapter authors are the editor’s
previous students and collaborators that have worked together. We strongly believe that the water
industry should embrace and integrate data-driven fundamentals and methods into their daily
operations and decision-making process(es) in an effort to replace more traditional and established
‘rule-of-thumb’ and (arguably) weaker heuristic approaches - and an analytics viewpoint, approach,
and culture is key to this industry transformation. Analytics can support numerous aspects of water
utility planning, operations, and management, and the organization of this book naturally follows
pace by including three principal sections - planning, operations, and management.

Water is essential for human well-being and survival, and throughout the water industry, it is
becoming increasingly imperative that in-house analytics capability and championship be developed
and integrated to address the current and transitional challenges we face. Again, one of our main
contentions is that analytics will contribute substantially to future efforts aimed at providing
innovative solutions that make the water industry more sustainable and resilient. We sincerely hope
that this book provides a range of learning experiences that help to share and expand this view.

Juneseok Lee, Editor
Manhattan College
Jonathan Keck, Editor
Water First, LLC

© 2022 The Editors. This is an Open Access book chapter distributed under the terms of the Creative Commons Attribution Licence
(CC BY-NC-ND 4.0), which permits copying and redistribution for noncommercial purposes with no derivatives, provided the original
work is properly cited (https:// creativecommons.org/licenses/by-nc-nd/4.0/). This does not affect the rights licensed or assigned
from any third party in this book. The chapter is from the book Embracing Analytics in the Drinking Water Industry, Juneseok Lee
and Jonathan Keck (Editors).
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Chapter 1
Introduction

Jonathan Keck' and Juneseok Lee?*

Foundet/Principal, Water First, LLC, Naperville, IL
2Department of Civil and Environmental Engineering, Manhattan College, Riverdale, NY 10471
*Corresponding author: juneseok.lee@manhattan.edu

Two decadesinto the 21st century, the water industry landscape is going through a major transformation
brought about by the confluence of a number of powerful forces, including: (1) exposure to an
increasingly complex and interdependent set of regulations and standards; (2) challenges in climate,
environmental, and socio-economic patterns and processes (including citizen expectations); and (3)
growing computational capacities paired with the accumulation of large amounts of performance data
(from cheaper and more distributed sensors) coinciding with the fourth industrial revolution (IR4)
of the internet of things (IoT), and data analytics. We strongly believe that water industry needs a
paradigm shift that is commensurate with these rapid transformations.

Recent advances in analytics have the potential to fundamentally impact water industry planning,
operations, and maintenance processes, particularly in complex interdependent infrastructure
systems. Advanced analytics can be used to holistically identify and address problems at the system(s)
level. This approach is particularly desirable in the case of complex infrastructure projects with
multiple interdependent and interacting components. Successful system identification relies on the
availability of abundant data for training algorithms such as artificial neural networks. Understanding
data structures and the systematic storage and classification of data, particularly in the context of
advanced data analytics/science methods such as machine learning (ML) and artificial intelligence
(AI), are crucial skillsets that will be in high demand.

1.1 WHAT IS ANALYTICS?

Analytics is the process by which meaningful insights are extracted from available data. While
analysis refers to the process itself, analytics includes the science behind the analysis and all the
steps that precede (data needs, data collection, etc.) and follow (recommendations, implications, etc.)
the analysis. The deep insights gained through analytics are primarily used for decision support, that
is, recommending specific policies or actions. Analytics has evolved over the years from descriptive
(What has happened?) to diagnostic (Why did it happen?) to predictive (What could happen?) to
prescriptive (What action could be taken to promote/preempt a particular outcome?) (Keck & Lee,
2021). As many researchers and industry leaders have noted (see, e.g., Chastain-Howley, 2018; Karl
and Wyatt, 2018; Lunani, 2018), the next significant paradigm shift will be towards cognitive analytics,
which will exploit recent advances in high-performance computing (HPC) by combining Al and ML

© 2022 The Editors. This is an Open Access book chapter distributed under the terms of the Creative Commons Attribution Licence
(CC BY-NC-ND 4.0), which permits copying and redistribution for noncommercial purposes with no derivatives, provided the original
work is properly cited (https:// creativecommons.org/licenses/by-nc-nd/4.0/). This does not affect the rights licensed or assigned
from any third party in this book. The chapter is from the book Embracing Analytics in the Drinking Water Industry, Juneseok Lee
and Jonathan Keck (Editors).
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techniques. In particular, Karl and Wyatt (2018) pointed out that industries are reviewing or using less
than 10% of their data, often overlooking key insights and opportunities to become more efficient in
terms of operations and management. They concluded that society would benefit from the greater use
of analytics to transform data into systems-level and actionable intelligence.

To cope with existing and emerging problems more effectively, our 21st-century infrastructure
and quality of life goals and challenges demand a paradigm shift towards innovative approaches.
According to the Engineer’s Creed (first adopted by the National Society of Professional Engineers
in June 1954), professional engineers should dedicate their professional knowledge and skill to the
advancement and betterment of human welfare. This is, of course, especially true for water engineers
who deal with our fundamental infrastructure, as these systems have a direct and significant impact
on public safety, health, and welfare.

1.2 HOW CAN ANALYTICS HELP THE WATER INDUSTRY?

With sensors becoming less expensive and ubiquitous, many of the nation’s water infrastructure
elements are now being monitored in real-time, with vast amounts of data being collected. To augment
this data, end-to-end simulations are being developed (e.g., digital twins) that have the predictive power
to characterize region-wide performance of various systems under rare events for which observational
data does not exist. These extensive datasets are waiting to be mined by system condition diagnosis
tools that can be used to prioritize, plan, and carry out mitigative actions, including repairs and
replacements, with sustainability and resilience becoming core objectives.

Drinking water industries protect public health and improve social wellbeing by operating and
maintaining water infrastructure to provide safe and reliable water to customers. Having a better
understanding of causality in drinking water infrastructure systems can help utilities and the entire
water industry address gaps in the knowledge base and identify research needs. We strongly believe
that analytics can support many aspects of drinking water industry planning, operations, and
management. We also believe it is imperative that water utilities have in-house analytics championship
as well as capacity to be integrated into their daily work to face the emerging challenges in the drinking
water industry. In this vein, analytics will contribute significantly to providing innovative solutions
toward more sustainable and resilient water industries. Therefore, it is critical that our drinking water
industry adopt and integrate water-centered analytics practices, culture, and perceptions in-house.
And finally, we strongly believe that the opportunity cost of not keeping up with these new industry
trends will be extremely high in terms of missed opportunities for better systems management and
improved public health and safety.

1.3 EFFECTIVE UTILITY MANAGEMENT

In May of 2006, the Association of Metropolitan Water Agencies (AMWA), the American Public Works
Association (APWA), the American Water Works Association (AWWA), the National Association
of Clean Water Agencies (NACWA), the National Association of Water Companies (NAWC), the
United States Environmental Protection Agency (USEPA), and the Water Environment Federation
(WEPF) all entered into a Statement of Intent to ‘formalize a collaborative effort among the signatory
organizations in order to promote effective utility management’. These ‘Collaborating Organizations’
chartered the Effective Utility Management Steering Committee (Committee) to advise them on a
future joint water utility sector management strategy applicable to water sector utilities across the
country. The Committee found that water sector utilities across the country face numerous common
challenges, such as rising costs and workforce complexities, and need to focus attention on these
areas to deliver quality products and services and sustain community support. Within this context,
the Committee identified four primary building blocks of effective water utility management, which
would later become the basis of a future water utility sector management strategy. These foundational
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elements are listed next, and also described in more detail below: (1) Attributes of Effectively Managed
Water Sector Utilities; (2) Keys to Management Success; (3) Water Utility Measures, and; (4) Water
Utility Management Resources (USEPA, 2007).

1.3.1 Foundational element #1 - attributes of effectively managed water sector utilities

The Committee identified ‘Ten Attributes of Effectively Managed Water Sector Utilities’ (Attributes)
that provide a focused overview of where effectively managed utilities should be active, and what they
should strive to achieve. Further, the Committee recommended that the water utility sector adopt and
utilize these Attributes as a basis for promoting improved management within the sector. The Ten
Attributes further detailed in Table 1.1 are as follows: (1) Product Quality; (2) Customer Satisfaction;
(3) Employee Leadership and Development; (4) Operational Optimization; (5) Financial Viability; (6)
Operational Resilience; (7) Community Sustainability; (8) Infrastructure Stability; (9) Stakeholder
Understanding and Support, and; (10) Water Resource Adequacy. The Ten Attributes can be viewed
as a continuum of management improvement opportunities, and are not listed in any particular order,
since utility managers will determine their relative and weighted importance and applicability based
on individual utility circumstances (USEPA, 2017).

1.3.2 Foundational element #2 - keys to management success

As a complement to the Ten Attributes, the Committee also identified five ‘Keys to Management
Success’, which are considered to be approaches and systems that foster and continually support
utility management success. The Committee recommended that the Keys to Management Success be
referenced and promoted with the Attributes to enable more effective utility management within the
sector.

1.3.2.1 Leadership

Leadership plays a critical role in effective utility management, particularly within the context of
driving and inspiring change within an organization. In this context, the term ‘leaders’ refers to both
individuals who champion improvement, and also to leadership teams that provide resilient, day-to-
day oversight, management continuity, and direction. Effective leadership ensures that the utility’s
direction is understood, embraced, and followed on an ongoing basis throughout the management
cycle.

1.3.2.2 Strategic business planning

Strategic business planning helps utilities balance and drive integration and cohesion across the
Attributes. It involves taking a long-term view of utility goals and operations and establishing an
explicit vision and mission that guide utility objectives, measurement efforts, investments, and
operations.

1.3.2.3 Organizational approaches

A variety of organizational approaches can be critical to management improvement. These approaches
include establishing a ‘participatory organizational culture’, which seeks to actively engage employees
in improvement efforts, deploys an explicit change management process, and uses implementation
strategies that seek early, stepwise victories to build momentum and motivation.

1.3.2.4 Measurement

A focus and emphasis on measurement is the backbone of successful continual improvement in
management and strategic business planning. Successful measurement efforts are reasonably viewed
on a continuum, starting with basic internal tracking.
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Table 1.1 Ten attributes of effectively managed water sector utilities.

Product quality

Customer satisfaction

Produces potable water, treated effluent, and process
residuals in full compliance with regulatory and reliability
requirements and consistent with customer, public health,
and ecological needs

Employee and leadership development

Provides reliable, responsive, and affordable
services in line with explicit, customer-accepted
service levels. Receives timely customer feedback
to maintain responsiveness to customer needs and
emergencies

Operational optimization

Recruits and retains a workforce that is competent,
motivated, adaptive, and safe-working. Establishes a
participatory, collaborative organization dedicated to
continual learning and improvement. Ensures employee
institutional knowledge is retained and improved upon over
time. Provides a focus on and emphasizes opportunities for
professional and leadership development and strives to create
an integrated and well-coordinated senior leadership team

Financial viability

Ensures ongoing, timely, cost-effective, reliable,
and sustainable performance improvements

in all facets of its operations. Minimizes
resource use, loss, and impacts from day-to-day
operations. Maintains awareness of information
and operational technology developments

to anticipate and support timely adoption of
improvements

Operational resiliency

Understands the full life-cycle cost of the utility and
establishes and maintains an effective balance between
long-term debt, asset values, operations and maintenance
expenditures, and operating revenues. Establishes
predictable rates that are consistent with community
expectations and acceptability, and are adequate to recover
costs, provide for reserves, maintain support from bond
rating agencies, and plan and invest for future needs.

Community sustainability

Ensures utility leadership and staff work together
to anticipate and avoid problems. Proactively
identifies, assesses, establishes tolerance levels for,
and effectively manages, a full range of business
risks (including legal, regulatory, financial,
environmental, safety, security, and natural
disaster-related) in a proactive way consistent
with industry trends and system reliability goals

Infrastructure stability

Is explicitly cognizant of and attentive to the impacts its
decisions have on current and long-term future community
and watershed health and welfare. Manages operations,
infrastructure, and investments to protect, restore, and
enhance the natural environment; efficiently use water and
energy resources; promote economic vitality; and engender
overall community improvement. Explicitly considers a
variety of pollution prevention, watershed, and source
water protection approaches as part of an overall strategy
to maintain and enhance ecological and community
sustainability

Stakeholder understanding and support

Understands the condition of and costs associated
with critical infrastructure assets. Maintains
and enhances the condition of all assets over the
long-term at the lowest possible life-cycle cost
and acceptable risk consistent with customer,
com- munity, and regulator-supported service
levels, and consistent with anticipated growth
and system reliability goals. Assures asset repair,
rehabilitation, and replacement efforts are
coordinated within the community to minimize
disruptions and other negative consequences

Water resource adequacy

Engenders understanding and support from over- sight
bodies, community and watershed interests, and regulatory
bodies for service levels, rate structures, operating budgets,
capital improvement programs, and risk management
decisions. Actively involves stakeholders in the decisions
that will affect them

Ensures water availability consistent with

cur- rent and future customer needs through
long-term resource supply and demand analysis,
conservation, and public education. Explicitly
considers its role in water availability and manages
operations to provide for long-term aquifer and
surface water sustainability and replenishment

1.3.2.5 Continual improvement management framework

A ‘plan, do, check, act’ (PDCA) continual improvement management framework typically includes
several components, such as conducting honest and comprehensive self-assessments, establishing
explicit performance objectives and targets, implementing measurement activities, and responding to
evaluations through the use of an explicit change management process (Figure 1.1).
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Figure 1.1 Ten attributes and five management keys of effectively managed water sector utilities.

1.3.3 Foundational element #3 — water utility measures

The Committee strongly affirmed measurement as a critical element of effective utility management.
The Committee also noted that utility measurement is complicated and needs to be done carefully in
order to be useful. The challenges presented by performance measurement include deciding what to
measure, identifying meaningful measures, and making sure that data is collected in such a way as to
support meaningful analyses and comparisons. Consideration of these factors is important if the data
are to be used to make real improvements and to communicate accurate information. Careful scrutiny
here also helps to ensure that the resulting information is interpreted correctly.

Within this context, the Committee identified a set of high-level, illustrative example water utility
measures related to the Ten Attributes, and recommended that, to get started on simple terms,
these or similar utility measures become part of a first-level assessment. These preliminary example
measures included, for instance, under Operational Optimization, the amount of distribution
system water loss, while under Operational Resiliency, whether the utility has in place a current
all-hazards disaster readiness response plan (yes/no?). A further example under Stakeholder
Understanding and Support, includes whether the utility regularly consults with stakeholders
(ves/no?). The Committee also recommended a longer-term initiative to identify a cohesive set
of targeted, generally applicable, individual water sector utility measures. The goal would be to
provide robust measures for individual utilities to use in gauging and improving operational and
managerial practices and for communicating with external audiences such as boards, rate payers,
and community leaders.

1.3.4 Foundational element #4 - water utility management resources

Based on the overall findings of the Statement of Intent Workshop, the Committee believed that water
utilities are interested in tools that can support management progress, and that many utilities would
benefit from a ‘helping hand’ that can guide them to useful management resources, particularly in
the context of the Attributes. Therefore, the Committee recommended that the future sector strategy
include a ‘resource toolbox’ linked to the Attributes and submitted a preliminary list of management
resources that could be used as a starting point. One of the key deliverables in this regard was to
develop a ‘primer’ to help utility managers understand the background and objectives of the initiative
and help them use the Attributes and apply the Keys to Management Success.
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1.4 EFFECTIVE UTILITY MANAGEMENT (EUM) AND WATER ANALYTICS

Water utilities protect public health and improve social well-being by operating and maintaining
drinking water infrastructure to provide safe and reliable water to customers. Having a better
understanding of causality in drinking water infrastructure systems can help utilities and the entire
water industry address gaps in the knowledge base and identify research needs. Williams (2013)
introduced the term ‘information engineering’ in water management - that is, the holistic application of
information technology (IT) to the water industry via integration of data and optimization. Neemann
et al. (2013) emphasized the importance of transforming data into information, then into knowledge
and wisdom, which will have a large strategic impact on the utility as well as customers. The authors
also recommended that utilities start by identifying business domains that increase insights that can
yield high value and return on investment. A strong EUM viewpoint and orientation, combined with
knowledge and appreciation of the power of water analytics, clearly shows that analytics has the
potential to enhance all of the important aspects of EUM. Having stated this, a handful of domain
areas are highlighted below in order to provide examples and illustrative detail.

1.4.1 Supply and demand management

When applying analytics to automated metering infrastructure to establish demand characterization
and management strategies, the basic objective has been to understand the factors driving water
demand in conjunction with conservation and sustainability goals (e.g., incentive programs), along
with making reliable forecasts. However, this barely scratches the surface of what is possible - internal
information about customer demand as well as data from utility commissions, state and local data
repositories, local boards, and other stakeholders can also be used (added) to develop more robust
local and regional models that can better predict future service levels over wider scales, thus providing
greater insight into the hydrologic, socio-economic, and infrastructure performance dependencies
naturally present in many of our more developed cities and regions. Relative to these regional — and
even national or world-wide water supply questions — block-chain technology has the ability to support
a far-reaching and secure transactional ecosystem around water rights, allocations, and transfers, and
can even help to better illustrate ‘true’ resource quality and availability by virtue of its underlying
distributed design and ledger transparency (The Water Network, 2020; Zuckerman, 2018). Analytics
can also be used to shed new light on a broad spectrum of nonrevenue water issues in conjunction
with a number of asset management and modeling applications that are explored in the following
sections.

1.4.2 Enterprise asset management

According to the 2021 State of the Water Industry Report prepared by AWWA, aging infrastructure is
the most critical challenge facing the water industry, followed by financing for capital improvements,
long-term water supply availability, emergency preparedness, and a host of other concerns related to
utility/system integrity as well as public views and outreach. Analytics can be used to improve the
understanding of key physical processes related to water utility system integrity, including performance-
driven screening and assessment (e.g., capacity, efficiency, and level of service), failure modes and
effects (e.g., mortality and outage consequence), operations and maintenance, risk identification and
characterization, and capital investment allocation and prioritization. Performance management is
particularly crucial because it encompasses every aspect of a utility’s asset management program,
typically defined by the quantity, quality, and reliability levels achieved, along with short- and long-
term environmental standards. A strong analytics-based understanding in these areas will lead to
better life-cycle planning, analysis, design, and operational decision-making because of improved
business/enterprise intelligence. Given that asset management activities generally entail sizable
amounts of transactional data (travel, works orders and repair activities, invoices, etc.), here again a
future move to block-chain technology can (conceptually) yield many of the same data architectural
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benefits noted above for water management (though in this case, through asset-activity tracking and
linking, in addition to ledger transparency). This overall tracking and linking construct will also
support improved life-cycle cost accounting, auditing, and other forms of corporate/organizational
governance.

1.4.3 Distribution system modeling

Analytics can also support hydraulic, energy, and water quality modeling in a multitude of ways. Many
of these ultimately link to a powerful and granular data ecosystem built upon pressure and water
quality surveys, surface and groundwater reservoir profiling, pump tests and energy audits, district
metering areas (DMA) and other forms of subzone monitoring, SCADA, and advanced metering
infrastructure (AMI), and so on. with the following benefits:

- Agreater ability to develop systems-level integrated views of environmental boundary conditions,
control inputs, dynamic stresses and loading, and resulting system behavior;

- More effective planning, deployment, and implementation of pressure management, leak
detection, and water quality monitoring programs — say through sensor placement and central
event management (CEM) platforms;

- Improved capacity to more effectively manage system-wide energy consumption and efficiency
(intensity), as well as water quality. Advanced analytics, when lock-stepped with robust modeling
and optimization processes, can support ‘a new era’ relative to distribution system energy and
water quality management systems (EWQMS);

- Improved emergency planning, response, and recovery — say through extended period simulation
(EPS) of flow and pressure, along with source tracing and other forms of water age and quality
forecasting;

+ Better business risk assessments linked to improved estimations of likelihood of failure (LOF)
and consequence of failure (COF). More specifically, well-calibrated hydraulic models now
enable rich assessments of network outages, thus adding a much-needed layer of dynamic and
operational insight to risk characterizations that have (to date) not considered the full hydraulic
and water quality impacts of network failure;

+ More robust, streamlined, and accurate processes to create, calibrate, validate, and maintain
system models, which ultimately lead to wider application and higher confidence in modeling
program outcomes.

In addition, real-time modeling provides a continuous baseline to facilitate operational optimization
decisions as well as troubleshoot and reconcile problems, while SCADA data can support a more-or-
less continuous form of model calibration/validation. Juxtaposing these two considerations leads to
the now well-known ‘digital twin’. In the short term, this can simply help utilities better characterize
and observe assets and their performance (through formalized and programmatic linkages to asset
management), while in the long term, the digital twin framework can be used to optimize broad and
high-impact enterprise programs like energy and water quality management, water loss, and capital
investment, renewal, and prioritization. Such an approach will also make it possible for decision
makers to account for a broader set of value-engineering factors when considering topics such as long-
term capital expenditures, emergency response planning, and level-of-service definitions and metrics.

1.4.4 Long-range planning

It is beneficial to establish a formal system to analyze and optimize the underlying decision space of a
project - the span of options that go into a utility’s long-range and enterprise-level planning portfolios
and submittals. Doing so will increase opportunities to rationally plan, while also making the best use
of capital and operational projects and programs. Successful long-range planning programs generally
encompass the following:
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- Holisticknowledge and vision of resource availability, customer demands, water and energy supply
portfolio attributes, product quality and quality control levers, operational characterizations,
energy use, and carbon footprint considerations;

« Frameworks and programs for project planning, justifications, approval, design, and delivery;

- Asset management information that supports life-cycle cost-benefit analyses, including
programmatic repair and replacement programs, as well as risk control;

- Financial considerations such as rate design and advanced budgets;

- Considerations of customer service and industry reputation.

Other issues to consider in long-range planning are formal regulatory criteria (including emerging
regulations and legislation), non-regulatory criteria (which still should consider best practice and
technology), enterprise goals and mandates, triple-bottom-line considerations, customer confidence,
affordability, environmental considerations (including climate variation), and infrastructure and
utility level resilience. From this starting point, there are at least five dimensions where an analytics
viewpoint and approach can both drive, and positively affect, long-range planning outcomes:

+ Aresulting need for rigorous problem formulation and structure;

- Formalized and standardized goals, objectives, constraints, and analytical processes;

- Improved articulation and transparency around governing assumptions, processes, and results;

« More powerful and efficient means of confronting large decision spaces, as well as solving
the technical and computational challenges associated with them (i.e., creating and assessing
options - lots of them);

+ An enhanced ability to perform sensitivity analyses, which produces a deeper understanding of
underlying or embedded trade-offs, as well as a greater appreciation of the range of outcomes
and potential impacts that accompany current and future decisions and actions.

1.4.5 Systems optimization

Modeling as previously described can be enlarged and synthesized using an analytics perspective to
include systems-level multi-objective problem definitions that balance the cost of investment against the
net benefits gained to establish effective prioritization models. To do this, it is first necessary to clearly
define level of service goals, assumptions, and key performance indicators, all of which necessarily
include a careful consideration of reliability, customer satisfaction, and other strategic variables. A
vastly improved organizational arrangement of water utility IT systems, which can often be highly
fragmented, can help to streamline the many disparate databases, systems, and processes involved
in operating the water utility’s system. The important step of establishing a data-driven objective and
constraint model, the utility’s common operating picture or framework, will first augment and then
slowly replace various aspects of ‘ad-hoc’ and ‘rule-of-thumb’ engineering judgments that currently
drive utility decision-making. Over time, this will allow water distribution systems to operate at
greater levels of efficiency and with higher levels of confidence and transparency (Figure 1.2).

1.5 RECOMMENDATIONS

To create the conditions necessary for water utilities to fully implement analytics and maximize their
associated benefits, actions in the following areas are recommended (Figure 1.3).

1.5.1 Analytics leadership

Exemplary enterprise-level analytics requires leadership, which should start at the highest levels of
the organization, for example, board and council members, C-suite representatives, department heads,
and directors. Analytics leadership should have, or take the form of, articulating and adopting a strong
and explicit charter or mission statement that underscores the value of data, and the utility’s long-
term commitment to use data within the context of decision-making. In some water organizations, it
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may even make sense to designate a chief data officer (CDO) or chief analytics officer (CAO), whose
supervisory mandate spans engineering, information technology (IT), and operational technology
(OT), to carry this message and array of tasks. Finally, a sustained managerial commitment to these
charter elements and other day-to-day analytics principles should be fully evident and should permeate
all divisions, departments, and groups within the utility.

1.5.2 Cultural importance

A second significant building block, which ultimately ties to analytics leadership, is helping people at all
levels and functions within the utility understand the importance of data, data integrity, and the
value/ability of being able to extract insights out of data — otherwise known as level setting on cultural
importance. Once a cultural/organizational norm of this nature is set, other (downstream) efforts
around capacity planning, system structure, tool and skill set choices, and so on. will become more
congenial and efficient by virtue of this common viewpoint and frame of reference.

1.5.3 Capacity planning

A third key building block to more fully embrace an analytics culture within water utilities rests
on planning. This view means that utilities should periodically review their ‘people, process, and
technology’ chain to ensure that their overall suite/foundation of analytics architecture, processes,
tools and technology, and skill sets are of sufficient bandwidth, and also properly link to mission-
centric outcomes in both current and forecasted settings (goals identification, process mapping, and
needs assessment). This effort will ultimately identify functional areas where a stronger analytics view
can unlock additional value, while also helping to find duplicate processes and capacities that can be
suitably consolidated to make them more efficient, and without loss of performance. The enterprise
analytics planning effort is also an ideal place where analytics leadership tenants can be reinforced
and deployed in both current and go-forward settings, while also (simultaneously) maintaining a
consistent cultural message about the importance of an analytics orientation being an integral part of
the utility’s future.

1.5.4 Systems and structure

A fourth key building block to more fully embracing an analytics culture within water utilities rests
on recordkeeping, appropriate systems analysis, and timely renewal of facilities. To instill confidence
in methods used to assess risk and plan for sustainable programs, institutional structures should
ensure data management integrity, that is, data collection, processing, interpretation, and integration,
that establishes a coherent database. Data management standards and protocols must be set and
maintained at all levels, including in the field, office, and laboratory, along with appropriate-cost data
acquisition procedures. This requires regular communications across departments to improve overall
data flow and maintain a consistent data structure and architecture. With suitable analytics protocols
applied, accumulated data should yield valuable insights that facilitate better predictions and support
logical decisions. Also, technical as well as non-technical staff will benefit from a better understanding
of the overall data ecosystem and architecture, including any downstream and case-specific decision-
modeling sensitivity. Finally, network and database cyber security concerns and factors should figure
prominently here, and right-sized mitigation responses should be thoroughly woven into any and all
subsequent systems architecture efforts.

1.5.5 Tools and technology

Tools and technology are a fifth major building block of an analytics culture and orientation within
water utilities. More specifically, through an analytics capacity planning and needs assessment
exercise, utilities must determine which core tools it will be using so that it can align this array
against current and future skill sets and training expectations, data systems and structures, hosting
and dissemination architecture, computational power, as well as rights, permissions, owners, and
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gatekeepers. Considerations of day-to-day as well as long-term maintenance of this toolbox and
software stack should also figure prominently in the selection and stand-up process.

1.5.6 Professional development and collaborative research

Finally, linking back to the norm of organizational importance, in order to establish in-house analytics
capabilities and champions, it is vitally important to provide professional development opportunities
with regard to analytics training. Having sufficiently trained staff will help utilities more effectively
incorporate analytics elements into their culture and operations. In particular, collaboration with
university and laboratory researchers, regulatory representatives, and other technical and professional
organizations (both public and private) is often rewarding, and therefore strongly recommended.
In addition, the outreach to (and inclusion of) young professionals (YP) within a utility-analytics
culture is also vitally important, as YPs are often ‘early adopters’ and ‘profound innovators’ within
the overall analytics and data science realm(s), and they also constitute the next generation of water
industry practitioners. Collectively, collaborations, such as the ones outlined here, enable industry
representatives across a range of backgrounds and experience levels to work together to explore issues
facing water utilities, while also improving the means with which to develop tangible and deployable
technology (Keck & Lee, 2015).

1.6 A CLEAR FUTURE FOR ANALYTICS

Analytics can support numerous aspects of water utility planning and operations. Throughout the water
industry it is becoming increasingly imperative that in-house analytics capability and championship
be developed and integrated to address the current and transitional challenges we face. Analytics will
contribute substantially to future efforts aimed at providing innovative solutions that make the water
industry more sustainable and resilient.

1.7 ROADMAP OF THE BOOK

This book is composed of 17 chapters categorized into three sections: Planning, Operations, and
Management. The Planning section covers Chapters 2-5, the Operations section covers Chapters
6-12, and the Management section covers Chapters 13-17.

1.7.1 Planning section

The planning section covers the context of water demand management as well as cost-benefit analysis
for water infrastructure. Specifically, in Chapter 2, ‘Water Demand Analysis | Regression’, Tanverakul
discusses advanced regression analysis to explore the relationships between water demand and their
influencing factors. Water supply and demand problems, and their solutions, are often rife with unique
challenges involving many aspects of hydraulics, environmental science, socioeconomics, finance,
laws and regulations, and politics. Because water is difficult and expensive to transport, available
water sources are often relatively near their users and tied to local conditions such as local climate
and level of treatment necessary. Modeling water demand is modeling human behavior by evaluating
how water use is influenced by user characteristics and various external factors like weather, price,
or other constraints. Also, future water demand estimates are key inputs in water resources planning
and management. Ensuring a sufficient and reliable volume of water is available to meet demand is a
core function of all water suppliers and distributors. Accurate future forecasts are critical since water
supply availability is highly variable and water infrastructure projects, often large and expensive, are
designed and constructed with long useful lives typically upwards of 50+ years. For these reasons,
the ability to make accurate future water demand estimates has long-term consequences. Regression
is a popular and well-demonstrated choice and has been chosen for this discussion because of its
ability to produce valuable insights on water demand behavior and to provide practical results. The
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chapter notes the challenging aspect of regression as the set-up and interpretation of which requires
knowledge and intuition of water use, and careful consideration of the theories behind regression
analysis.

In Chapter 3, ‘Water Demand Forecasting | Machine Learning,’ Xenochristou discusses a basic
machine learning (ML) pipeline for water demand forecasting. ML is a subfield of artificial intelligence
(AI), where algorithms are recognizing and assimilating patterns from data. In this chapter, we focus
on supervised learning, a field of ML where an algorithm learns how to map an input to an output,
given a set of examples. Each training example constitutes a sample in our dataset and includes a set
of features (predictors/independent variables/explanatory variables), as well as one or more target
variables (i.e., dependent variables). In water demand forecasting problems, the target variable is often
water demand at a given temporal (e.g., daily or monthly) and spatial (e.g., at the household or city
level) scale, while the features are variables that are suspected to influence water demand, such as air
temperature or day of the week. ML methods have recently dominated the water demand forecasting
literature, due to their superior accuracy compared to traditional statistical methods. This chapter
introduces basic ML concepts and describes a ML pipeline, from data collection to deployment.

In Chapter 4, ‘Water Demand Forecasting | Time Series,” Sanneh et al. discuss the vital role of water
demand forecasting in many aspects of Water Distribution Systems (WDS) because it helps minimize
cost, optimize operations, and provide strategies for water conservation. Demand forecasting also
plays a vital role in the planning, operations, and management of physical assets for water utilities
such as pumping stations, treatment plants, tanks, and distribution networks, which rely on future
consumption forecasts. In this chapter, traditional time series forecasting methods such as Auto-
Regressive Moving Average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA) and
Seasonal Auto-Regressive Integrated Moving Average (SARIMA) are introduced to forecast water
demand using time series historical data. In addition, various ML techniques are introduced to time
series-based water demand forecasting problems. They have the advantage of being able to forecast
nonlinear relationships between response variables and their predictors in time series models with
the presence of noisy data. The increasing use of smart water metering in the water sector has made
available a great amount of data which cannot be processed with traditional methods. Therefore, the
need to identify new data analysis techniques able to extract valuable information from available data
and support water utilities in their decision systems has proven to be paramount. Analytics in the
Drinking Water Industry illustrates how to improve demand side management and water distribution
network efficiencies, which can lead to significant water savings, promote sustainable customer
behaviors, identify peak hours of use, and facilitate water forecast demand modelling.

In Chapter 5, ‘Cost-Benefit Analysis for Water Infrastructure,” Chaudhry discusses Cost-Benefit
Analysis (CBA) as one of the most prominent and widely used policy evaluation and decision-making
tools in public policy. CBA has played a key role in water infrastructure project analysis, and at the
same time, application of CBA tools and methods in water industry have also contributed to the
development and refinement of tools and approaches now used in CBA. This chapter gives an overview
of the methods within CBA, with a brief outline of the history and the regulatory requirements of using
CBA in the water industry. CBA is an economic tool for helping decision-makers assess the economic
efficiency of a policy or a project. As this chapter shows, CBA does this by quantifying all the benefits
and costs of the project for the relevant population. Although it seems straightforward to fill in the
empty cells and determine the benefits and costs, a CBA is more than just net present value (NPV) for
several reasons: First, it can be quite hard to reduce all of the impacts (costs or benefits) of a project
to a single metric. For practical reasons an NPV will not include all important project consequences.
However, a well-done CBA includes determination and disclosure of all project impacts, not just those
that can be readily quantified in dollar terms. Therefore, the researcher often must make decisions
on which impacts to include in the calculation of NPV and which to leave aside. Also, the choice of
the discount rate to convert future benefits and costs to present values is an important choice. These
decisions can lead to substantial impacts on the calculated NPV. It is imperative that researchers and
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practitioners clearly disclose all assumptions and make modeling decisions transparent so that the
audience understands the true scope of the analysis and results (including limitations).

1.7.2 Operations section

The Operations section covers diverse aspects of water utility operations. In Chapter 6, ‘Water
Quality Analysis | Modeling and Optimization,” Palmegiani and Lee discuss water quality modeling
and calibration for water distribution systems. Water quality within water distribution systems is a
highly complex, and rapidly changing issue that is driven by many factors and is difficult to intuitively
predict. This is because it depends on many factors such as the pipe materials, system layout, incoming
water to the system, water use patterns, corrosion levels, flowrates, and other hydraulic factors.
Also, variations of water quality due to seasonal temperature have been previously observed. Many
Opportunistic Premise Plumbing Pathogens (OPPPs) and complex chemical species can exist within
a building water system, which can expose communities to waterborne diseases such as Legionnaire’s
disease and cause outbreaks. Issues often occur as the water ages in the plumbing system. Drinking
water is often treated with a chlorine disinfectant to prevent growth of harmful chemical and
microbial contaminants, as well as corrosion control inhibitors to prevent metal leaching from the
pipes. However, as the water age increases, the system experiences decay of both the disinfectant and
the corrosion control inhibitors, allowing for contaminants and pathogens to grow inside the system
and biofilm. It is critical to perform in-depth water quality modeling to understand the complex
dynamics of the system.

In Chapter 7, ‘Hydraulic Analysis | Calibration and Uncertainty Analysis, Moradi et al. discuss
calibration and uncertainty issues in hydraulic modeling. Today, hydraulic models play an undeniable
facilitating role in various stages of design/development, rehabilitation, operation and management of
urban water distribution networks. Models represent an estimate of the behavior of Water Distribution
Networks (WDNs), not their entire reality, and this is because hydraulic models are prone to different
sources of uncertainty. Uncertainties due to incomplete understanding of the dynamics of phenomena,
uncertainties in the structure of models and uncertainties in data and parameters are the most
important types of uncertainty associated with modeling WDNs. In WDNs modeling, parameters
are unknowns (constants or non-constants) that appear in the governing equations describing the
system dynamics, mainly as coefficients or exponents that can be spatiotemporal variable. Roughness
coefficients of pipes, nodal demand patterns, bulk and wall reaction rate coefficient of chemicals and
so on., are examples of parameters in WDNs modeling. Parameters may be estimated by laboratory
tests (e.g., new pipe roughness coefficients) or by analysis of field measurements (e.g., demand patterns
or pipe roughness coefficients for systems under operation) or by a combination of them. Calibration
of water distribution models is a process that adjusts network parameters to minimize the differences
between simulation results in the model and real measurements in the network. Any parameter
calibration is prone to inaccuracy since we just have to make an estimate of the parameters. Hence,
parameter calibration is generally accompanied by an uncertainty analysis. Uncertainty analysis is
performed to quantify to what extent the inaccuracies of parameter estimation make the model results
imprecise (e.g., nodal heads, velocity in pipes, concentration of chemicals etc.). Such analysis is called
parameter ‘uncertainty quantification’ or ‘uncertainty analysis’ (UA). An important function of UA for
operators could be awareness of the expected range of fluctuations in model results. In this chapter
we are going to review the concepts of WDNs calibration and UA, and represent how to apply these
concepts on practical examples.

In Chapter 8, ‘Optimal Pump Operations | Optimization,” Moradi ef al. discuss pump operations
within the WDN using optimization concepts. Specifically, this chapter presents the framework
and requirements for a WDN modeling with optimal pump operations/scheduling. At the end of
the chapter, an example of EWQMS is also provided. Pumps are the beating hearts of many civil
and industrial projects around the world, and without these critical elements, proper performance of
many civil infrastructures such as irrigation and drainage networks, water and wastewater treatment
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plants, sewer and storm water collection systems, urban and industrials water/oil/gas supply systems,
and so on. could not be conceivable. The structural, geometric and mechanical features of pumps
are designed considering a variety of hydraulic performance expected in operation. Although in the
design stage of a pumping station taking variable demands would result in a more flexible system with
more realistic insight into operational variation, designers classically consider the most conservative
data to size system’s components. Operators, however, are generally more interested in managing
the systems in a way that they have an optimum operation condition to achieve the best system
performance (e.g., minimum energy consumption, improving water quality etc.).

Optimum operation could have different meanings based on defined objectives. For an aged WDS
that suffers from a high rate of leakage, optimum system operation may be defined as maintaining
pressure of the network as low as possible to minimize water loss, while meeting the minimum
pressure requirements. For a network having a substantially high rate energy tariff over the peak
water demand hours of the day, optimum system operation relates to setting the pumps schedule
to have the minimum energy cost. Moreover, a multi-purpose approach may consider the optimum
operation of network to find the trade-off among different conflicting objectives such as energy
consumption and/or energy cost, and water quality measure. Today, challenges with key resources
including water shortage, limitations on energy and finance, environmental pollutions and other
aspects of sustainable development have compelled decision-takers to inevitably adopt an integrated
approach to make better informed decisions in practice. Hence, water organizations should invest
in novel multi-objective approaches such as EWQMS to better understand and efficiently resolve
problems, covering different concerns associated with available resources.

In Chapter 9, ‘Hydraulic Transients | Numerical Analysis,” Lee et al. discuss hydraulic transients
and a modeling framework in addition to phenomena within the systems. Many water utilities have
in-house hydraulic modeling capacities to analyze their systems in terms of planning, design, operations,
and management. However, many of the modeling efforts are geared toward or limited to steady state
or extended period simulations, which assume that the water is completely incompressible, and that
pipe materials are inelastic. Clearly, the mass continuity and energy equations neglect to explain rapid
changes that should be described by momentum equations (i.e., transient pressure waves generated
due to sudden changes in flow). As is well known, the resulting pressure can result in pipe bursts and
structural damage to other critical appurtenances. In addition, low flow due to transients can induce
contamination intrusion in the systems. This chapter introduces basic theories and TSNET, so readers
can run and see the impacts of hydraulic transients in the system.

In Chapter 10, ‘Network Partitioning,’ Di Nardo et al. discuss one of the most effective ways to
reduce WDN complexity within the context or paradigm of ‘divide and conquer’, which exploits the
property that complex systems can be better analyzed if they can be split into many sub-parts. This
technique was proposed in England in the early 1980s and is now implemented in many countries.
It consists of defining smaller water districts or sectors, defined as district meter area (DMA),
obtained with the permanent insertion of boundary valves and flow meters along properly selected
pipes. This can significantly improve the management, the maintenance and, specifically, the water
balance estimation for water leakage detection, along with supporting/enhancing potential pressure
control and emergency response strategies to reduce water losses and water security from intentional
contaminations. This technique provides a series of interventions on the WDN that require a careful
economic planning by the managing authority; furthermore, it envisages the use of modern monitoring
systems (remote control, etc.) which no longer have a prohibitive cost and which, to be implemented,
only await a new management policy. It is evident that having a network divided into smaller sub-
regions makes it easier to study and manage the system.

In Chapter 11, ‘Pipe Network Reliability Analysis | Optimization,” Chandramouli discusses the
linking of EPANET tool kit functions within the MATLAB Dynamic Link Library, use of a genetic
algorithm tool in MATLAB, the concepts of fuzzy logic, as well as optimization and reliability.
Reliability of water distribution networks is another aspect on which considerable research has been
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carried out. Reliability of water distribution systems is concerned with the ability of the network to
provide an adequate supply to the consumers under both normal and abnormal operating conditions.
The chapter develops a reliability-based optimization model for design of water supply pipe networks
in MATLAB by combining EPANET toolkit functions and the readers will be able to appreciate the
difference between binary logic and fuzzy logic in terms of reliability achievement for the water supply
pipe networks by working with different types of networks of water supply for their design.

In Chapter 12, ‘Resilience | WNTR, Chu-Ketterer et al. discuss: (1) the challenges that disasters
pose on WDN infrastructure and how WNTR can be used to assess these challenges; (2) steps to
install WNTR; (3) types of disasters that can be currently modeled; (4) available resilience metrics;
and (5) tutorials. WNTR is actively being used and extended within the Water Distribution Systems
Analysis community for a variety of topic areas. Resilience has many different definitions, but it can
be described as the capability of an object to recover or adjust after a source of strain or change. In
the context of drinking WDN, resilience is the ability of the system to continue delivering water in a
damaged state or how fast the system can return to service after damage. Predicting and measuring
resilience in WDN is helpful to prioritize strategies to improve resilience, perform cost-benefit analyses,
measure progress, and clarify what is meant by resilience. Tools that can quantify system resilience
are important and help improve system security and general operations even when confronted with
natural or other disruptions. Simulation analysis can be used to evaluate and potentially improve
response actions through failure planning exercises and to develop more effective mitigation strategies
for the future. WNTR can also be used to run more routine modeling exercises such as fire flow
analysis to access WDN ability to respond to everyday incidents.

1.7.3 Management section
The management section covers critical aspects of effective utility management. In Chapter 13, ‘Water
Mains Optimal Replacement Time | Optimization,” Lee discusses optimal replacement analysis using
historical failure data. Asset management (AM) is defined as ‘maintaining a desired level of service
for what you want your assets to provide at the lowest life-cycle cost. Lowest life-cycle cost refers to
‘the best appropriate cost for rehabilitating, repairing or replacing an asset’. In a water distribution
system, the repair/replacement cost and possible water damage cost must be balanced by the water
utility when deciding at the time of a leak/break whether to repair or replace the system. Accelerated
replacement refers to replacing the system well in advance of the optimal replacement time, while
delaying replacement beyond the optimal replacement time will lead to consequences through
neglecting repairs, which may effectively amount to the utility paying a penalty to compensate for the
high replacement cost. To manage the integrity of water main infrastructure through its entire life-
cycle, we introduce a replacement program for water utilities in this section. This program is expected
to ensure affordability, manage risk, and support a high level of confidence in the decisions reached.
In Chapter 14, ‘Water Mains Replacement Decision | GIS Analytics,” Martinez Garcia discusses water
infrastructure asset managementissues using GIS. Depending on the number of served customers, large
water utilities can manage hundreds of miles of water mains made of different materials and diameters.
When water mains fail, utilities are affected by the loss of treated and energized water. Additionally,
rising failure rates in distribution systems increase the capital improvement and maintenance budgets
which likely lead to higher bills to their customers and a negative public perception. Although an
aggressive capital program to repair or replace all affected water mains will reduce the amount of
revenue loss, economic and financial constraints make it impossible to replace all failed water mains
at the same time. Therefore, supporting water utilities to make informed decisions about the time and
location to perform water mains repairs or replacements has attracted attention from researchers in
the water industry. The tools presented in this chapter can provide valuable information about the
spatiotemporal trend of water main failures. By applying these techniques, water utilities can save
economic resources in avoided failures, reduced water loss and energy savings. In addition, an asset
management program (or water mains integrity program) can help select improved materials and
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sizing can provide other benefits to customers such as improvement in water supply reliability, overall
system resilience, and overall levels of service.

In Chapter 15, ‘Decision Analysis | CA, CV, and AHP, Tanellari and Lee discuss critical decision
analysis tools that can be used for water resources in general. First, nonmarket valuation is a method
that is used to estimate the total willingness to pay for a good or a service that is not traded in
the market. For goods that are traded in the market, the total willingness to pay can be easily
estimated by the area under the demand curve. However, this is a more challenging task in the case
of nonmarket goods. Because these goods and services are not sold in the market, the demand curve
does not exist. Instead, the willingness to pay is either revealed through consumers’ choices or directly
elicited through surveys. There are two broad categories of valuation methods, revealed preference
methods and stated preference methods. Revealed preference methods are based on actual choices
that individuals make which in turn reveal the values that they may place on the good or service
of interest. For example, by calculating how much households spend on bottled water, filters and
water treatment devices in a given time period, a revealed preference method may infer the value
that households place on clean water. The cost of such treatments and devices is directly incurred by
households and is observable through the prices they pay. Stated preference methods elicit willingness
to pay directly from consumers through surveys. Consumers are directly or indirectly asked to state
their willingness to pay for a good or service. In this section, we will examine two widely used stated
preference methods, contingent valuation and conjoint analysis. In addition, the chapter covers AHP,
which determines the preference for a decision-making unit by pair-wise comparison of attributes.
Assessing pair-wise preferences enables the decision maker to concentrate his/her judgment on two
elements with regards to a single property. So, in this case, the decision maker does not need to think
of other properties or elements while comparing and deriving the final decision. We will introduce all
steps using spreadsheet.

In Chapter 16, ‘Non-revenue water, Gungor Demirci and Lee discuss one of the critical management
issues for the water utilities, namely, non-revenue- water. Around the world, more than $14 billion per
year is lost due to water loss, and these losses are covered by paying customers. Water loss is a huge
challenge for water utilities, which require fundamental understanding of the influencing factors.
The Organization for Economic Co-operation and Development (OECD) found that water loss can
be as high as 65% for developing countries. It is a challenging task to reduce the water loss even in
highly developed countries as well. For an effective water loss reduction program, it is critical to
have a deep understanding of the causal factors as well as why its reduction is so challenging. Many
literatures cited environmental, managerial, physical, sociological, and technical factors. The chapter
examples include system age, pipe length/layouts of the systems, hydraulic conditions, external
soil characteristics/topography, traffic loading, service connection densities. The problem is solved
using R.

In Chapter 17, ‘Performance Assessment of Water Industry | DEA; Gungor Demirci and Lee
discuss water utility performance and performance measurement methodologies. A water utility’s
efficient management practice has become more vital than ever because of the large gap between
the available water supply and the rising demand, as well as unpredictable climate patterns due
to changing climate. Not all water utilities are functioning at the same level of efficiency in their
operations. In this chapter, we will develop a useful performance measurement tool and apply it to the
individual water utility’s operations. Measurement of performance assessments for each water utility
will identify the opportunities to improve their management deficiencies and economic performances.
Also, the performance measurements will provide in-depth insights toward a fully efficient water
utility. Data Envelopment Analysis (DEA) is an optimization tool for measuring efficiencies of the
units in any organization. In addition to conventional DEA methods, we will explore two additional
stages to examine the exogenous variables’ impacts on the individual water utility’s performance:
double bootstrap truncated regression and Tobit regression. This chapter is based on our previous
publications.
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All chapters are independent, so you can study based on your interests and needs. We hope you
enjoy reading and practicing each chapter!
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LEARNING OBJECTIVES

(1) At the end of this chapter, you will be able to:

(2) Apply regression methods to forecast water demand.

(3) Discuss the practical aspects and implications of using ordinary least squares estimation in
regression analysis.

(4) Build and run a regression model with panel data in R.

(5) Interpret linear regression results.

2.1 INTRODUCTION

Future water demand estimates are key inputs in water resources planning and management. Ensuring
a sufficient and reliable volume of water is available to meet demand is a core function of all water
suppliers and distributors. Meeting demand requires knowing how much water is needed now and will
be needed in the future. Accurate future forecasts are critical since water supply availability is highly
variable and water infrastructure projects, often large and expensive, are designed and constructed
with long useful lives upwards of 20-50+ years. For these reasons, the ability to make accurate future
water demand estimates has long-term consequences.

Water demand forecasts can be derived from various sources. Historical use data, where available,
can be useful in projecting demand under certain circumstances. However, changes from differing
housing and commercial development patterns, changing demographics, and shifting weather patterns
will often alter water demand patterns reducing the confidence of projections based on historical use
alone. Understanding what factors influence demand can help project future demand with greater
+accuracy.

Water supply and demand problems, and their solutions, are often localized with unique challenges
involving many aspects of hydraulics, environmental sciences, socioeconomics, finance, laws and
regulations, and politics. Because water is difficult and expensive to transport (think of density/specific
weight of water!), available water sources are most often near their users and tied to local conditions
such as local climate and level of treatment necessary. The uniqueness of water use behavior by location
is relevant, even critical, for forecasting water demand when determining the scope and application
of the demand model. A demand model using residential water demand data from a city in California
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will likely not be appropriate to use for a city in New York. Also, models of regional demand for the
agriculture region of Iowa would not be useful to use in a heavy industrial region. Modeling water
demand must always consider how water use volume and behavior differs by user type and location.

Modeling water demand is modeling human behavior by evaluating how water use is influenced
by user characteristics and various external factors like weather, price, or other constraints.
Unfortunately, for building the models, behavior is often not straightforward or linear. There may
be user-specific characteristics that determine water demand. For example, a factory may have a set
volume requirement for their process water and other functioning needs, or a residential home with
a minimum amount for essential needs and additional uses of lawn irrigation. Combined with those
factors are other variables like weather or water price that may affect the amount of water needed
or influence the amount of discretionary use. For example, residential customers with outdoor water
needs tend to increase water use during dry months and decrease during wet months, but may choose
to reduce irrigation water use if requested by their utility to do so during drought periods, or a factory
or business may change their processes if water prices rise enough. Another example can be during
COVID-19. Overall residential demand increased (due to lifestyle changes) while commercial demand
decreased due to lockdown. So, identifying these types of factors that impact water use is a principal
step in setting up water demand forecast models.

This chapter discusses regression analysis as a useful method to explore the relationships between
water demand and influencing factors. Over the previous decades, numerous studies have been
performed measuring and modeling water demand using many different techniques (Arbués et al.,
2003; Donkor et al., 2014; Gracia-de-Renterfa & Barberdn, 2021). Regression is a popular and well-
demonstrated choice and has been chosen for this discussion because of its relative simplicity to
perform with (free) software programs (e.g. R, Python, etc.), and its ability to produce valuable insights
on water demand behavior and to provide practical results. With that said, the challenging aspect
of regression is the set-up and interpretation which require knowledge and intuition of water use,
and careful consideration of the theories behind regression analysis. The ease of running regression
models can easily lead to misinterpretation!

The basics of regression are presented here and are applied to water demand forecasting with the
objective that you will be able to perform and understand their own analysis. The theories behind
regression can get very complicated quickly and this chapter does not touch upon every aspect. You
are encouraged to consult other econometric sources, particularly if deviating far from the examples
discussed herein.

The structure of the chapter begins with an introduction to regression analysis with an example
problem, followed by discussions on model specification, model estimation, and ends with model
interpretation.

2.2 PRINCIPLES OF REGRESSION

2.21 What is regression?

Regression methods can help answer how different factors affect one variable of interest. In the case
of estimating water demand, regression methods can be used to characterize relationships between
demand and influencing factors such as weather, demographics, pricing, and other identified factors.
Water demand is the variable of interest, taken as the dependent variable. All other factors used
to characterize demand are the explanatory, or independent variables. A simple linear regression
example using residential water demand and one explanatory variable is used in the next subsection
to introduce the regression equation.

2.2.2 Basic regression equation — water demand and lot size example
Simple linear regression deals with a single explanatory variable, and its relationship with the
dependent variable. When estimating residential water demand, one variable that may be useful to
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estimate demand is lot size. A larger lot size may be assumed to explain higher water use since a lot size
is correlated with a large yard and larger yards may have increased use of irrigation water. Choosing
appropriate variables to explain the dependent variable (i.e. water demand) is further discussed in the
next section and is an important decision in performing a good regression analysis.

Plotting water demand data with lot size is a useful first step to check the assumption that lot
size may assist in explaining water demand. Figure 2.1 plots all the data from a fictionalized data set
containing household water demand (in liters per day (Ipd) and household lot size (in square meters).
It appears there is strong correlation between the demand and lot size, and on average, water demand
is higher on larger lot sizes. Using only a visual assessment, a trend line could be drawn demonstrating
the increasing trend.

The trend line follows the equation of a line: y=b+ mx, where m represents the line slope and b is
the y-intercept. Applying this to the example, the equation becomes:

Water demand (Ipd) = intercept + m * [lot size, sq meters| (2.1)

The slope, m, in Equation (2.1) represents how much water demand changes with a change in lot
size. It can also be deduced that a steeper slope means a larger change in water demand from a smaller
change in lot size. This concept is referred to as elasticity. The y-intercept has less direct meaning here
since it would not be useful to know the water demand on lot sizes of zero.

Moving towards a more rigorous analysis to estimate a trend line is simple linear regression. The
ordinary least squares (OLS) estimator is used to estimate the slope by minimizing the difference
between each data point and the average of all points. Figure 2.2 illustrates this difference. This can
be calculated by hand, but can also be done quickly with a spreadsheet like Microsoft Excel’s trend
line feature, which was done for this fictionalized example to produce the following:

Water demand (Ipd) = 114.08 + 3.05 * [lot size, sq meters] (2.2)

The interpretation of Equation (2.2) is that water demand will, on average, increase by a factor
of 3.05 for every square meter increase in lot size. The equation is useful to determine average water
demand patterns from house lot sizes, but there are several caveats to consider. The first being the
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Figure 2.1 Water demand versus lot size, fictionalized data example.



24 Embracing Analytics in the Drinking Water Industry

1200
Actual observed water use value for lot size of 97 .5sqm @ Y ®
. o "e o0
° } °® o0 ® ® S
1000 L1 ] ® ® 2
- - [ ] ‘ ’ o ® a e ®
Difference between observed be ® ® e
and estimated value @ [ 1 ]
o~
g 8% o ..' e 4:1
‘é'. ® @ ® ® ®
E 600 ote o I, °% ®
-
a e 8°
8 b ® o0
g e L L ® ‘ f pe
400 @ ® L=
KA A
’ ® @ ® r L
® 2 o ® ®
b ] % ® YL oo
200 ® & oo
Trend line gives estimated water demand for lot size of 97.5sgm
0
50 100 150 200 250 300 350

Lot Size, square meters

Figure 2.2 Water demand versus lot size, observed versus estimated difference.

equation is only adequate to determine water demand from the range of lot sizes that were used to
develop the equation. In this case, the range of lot sizes were between 84 and 296 square meters.
Estimating demand for a 500 square meter lot would not be appropriate. Another consideration is
time. The data was from a single point in time. The data may be significantly different depending on
the season or location. If this data came from a rural, dry region, it would not be appropriate for an
urban city with high precipitation. The equation is only appropriate for locations at a certain time
with other similar characteristics (e.g. socioeconomic status, temperature, etc.).

A serious consideration when evaluating the analysis is that lot size may not be the strongest single
factor to estimate residential water demand. This puts the validity of the equation into question and
should always be considered. The r-squared value is often estimated to measure the strength of the
relationship between the two variables. For this equation, r-square (shown in Figure 2.1) was 0.28,
meaning 28% of the variability in water demand could be explained by lot size. An r-squared value of
1.0 would signal a perfect linear relationship. This is never observed with collected data except for a
perfectly controlled laboratory setting. The r-squared value here could be considered adequate for the
given data type but the relationship could still be questioned. It could be reasoned that larger lot sizes
would have larger homes with multiple stories, more water-intensive appliances, and more occupants.
Temperature is another possible variable that could explain higher water use in place of lot size, since
higher water use may be expected during summer months, assuming higher temperatures require
more water used in irrigation. Is it larger lot sizes, or perhaps higher temperature that influences
higher water use during summer months? Higher temperatures may have a stronger relationship to
water use in locations with houses with large yards compared to highly dense urban neighborhoods.
Considering all these additional factors, perhaps the number of people per house, the number of
bathrooms, or a weather variable would produce a stronger correlation with water demand. This
process is a central challenge to the validity of regression equations.

Before moving on, looking at the generalized simple regression equation may be helpful:

Yi=a+ 38X +e (2.3)
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where Y, is the dependent variable, «; is the intercept, 3, is the regression coefficient, X; is the
independent variable, and ¢; is the residual, or error term. This holds for individual observation, i=1,
..., n. The equation is the same as the line for an equation used above with the addition of ¢ to express
the residuals, or the error term. The error term accounts for the differences between the predicted
values of Y versus the actual observed values of Y. Shown in Figure 2.2, this difference is the distance
between the predicted regression line and each observed individual data point. This difference partly
arises because X (lot size) is not the single, perfect predictor of Y (residential water demand). Lot size
alone cannot provide a perfect estimate of water demand. There are many other factors influencing
demand. In this way, the error term can be thought of as the amount of variability in water demand
(Y) that cannot be explained by lot size (X). The error term also absorbs other errors that may exist
such as errors in how the data was measured. For the example of the lot size, questions to be asked
would be how the data was collected; was it taken from an online repository, or was it self-reported by
homeowners? Any of these options could have incurred mistakes/errors. invalidating some values. If
there are significant outliers, the errors could have an impact on the regression model as well.

2.2.3 OLS assumptions

OLS has a vast decades-long precedence of being used across different disciplines. At the core of
OLS is estimating parameters that minimize the sum of squares of distance between a predicted
regression line and sample observations, while seemingly simple to correctly use OLS requires certain
assumptions be met. These assumptions have a deeper theoretical and mathematical foundation, but
the focus here will be on the practical implications of what the assumptions mean and how violating
the assumptions can affect the model results.

2.2.3.1 Assuming linearity
The general multiple regression model, shown in Equation (2.3), has a linear form. The linear form is
defined as each of the explanatory variables (the X’s) multiplied by a parameter (3’s) which are then
added together with the addition of the constant term. In this form, the model is ‘linear in parameters’.
Note this is a bit different than the assumption that the relationship between an explanatory
variable and water demand is linear. If that relationship is not linear, the variables can be transformed.
In this manner, the linear model can fit a non-linear relationship between variables. Logs, inverses, or
squares can be used to satisfy the linear assumption, for example, the following Equations (2.4) and
(2.5) use non-linear transformation, but the equation is still linear:

Log(y) = a; + 61Xy + B2 Xo + -+ 8. X, + €1 (2.4)
Or
Log(y) = a; + 6. Xy + 52 IOg(XZt) +oo At Bu Xy g (2.5)

If the data is not linear and OLS is used without first transforming the data to achieve linearity, the
results will not be reliable. To check for linear relationships in the model once results are produced, a
graph of observed data versus predicted values is helpful. If linearity is not observed in the plot (45°
line should be clear) a non-linear (e.g. log) transformation can be performed on the independent/
dependent variables. The model can then be re-estimated and checked for linearity once again.
Figure 2.3 shows a plot of the actual versus predicted values from the demand versus lot size
example. A perfect predictive model would show all point along the 45° plotted line. Within the
middle ranges of 150 and 200 (circled in Figure 2.3) there is good linearity. Both below and above
this range, however, the predictions are higher and lower, respectively. Performing a transformation
on the data and replotting can be performed to check if a better estimate of the relationship may be
possible first, without changing other aspects of the model. Figure 2.4 shows the example data with a
log transformation. The predicted values appear closer to the 45° line for values above 175. Below 175
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Figure 2.3 Predicted versus actual value plot.

350
300

250

Predicted xalue
o
o

0 50 100 150 200 250 300 350
Actual Observation

Figure 2.4 Log-transformation - predicted versus actual value plot.

the predicted values are all much higher than the actual observation. In this case, the transformation
helps with the higher values but does not fully provide a solution.

2.2.3.2 Assuming independence between explanatory variables (multicollinearity)
In multiple regression, the intent is to estimate how individual variables (independent variables) help
explain water demand changes (dependent variable). What is being estimated is the marginal one-unit
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change in an independent variable, holding all other variables constant. For this to be most accurate, all
independent variables must be independent of each other. If the independent variables are correlated
with each other, it can create an incorrect model! For example, rainfall and evapotranspiration (ET)
are both variables that could be used to estimate water demand. However, rainfall is used to estimate
ET. In this case, it would be impossible to discuss the marginal change in ET, holding all other variables
constant since rainfall is a factor of ET and the two variables move together.

Correlation between independent variables is referred to as multicollinearity. Possible relationships
between the explanatory variables should be explored. If any variables are strongly related, then
they should not be used together. If multicollinearity does exist, it can decrease the reliability of the
estimated parameters and lead to incorrect interpretation. Multicollinearity may be a suspected cause
if the expected sign of a regression coefficient () is reversed in the regression results. For example,
high temperatures are (generally) expected to increase water demand. If temperature was used an
explanatory variable and its coefficient was negative, it would imply that high temperatures decrease
water demand. Since this goes against intuition, it would be important to further investigate what else
is happening with the equation. One item to check is whether another included explanatory variables,
likely another weather variable correlated with temperature, was affecting the temperature coefficient.

Correlation matrices between variables are useful in checking for strong correlation. One type of
correlation matrix is discussed in Section 2.4 and shown in Figure 2.7. While plotting water demand
with each explanatory variable is helpful to check if that single explanatory variable should be added to
the model, plotting the explanatory variables with one another can cause multicollinearity concerns.

Variable inflation factor (VIF) is a tool used to detect multicollinearity. VIF compares the amount
of inflation to variance from the addition of a single explanatory variable compared with the total
model with all explanatory variables included. VIF is estimated for each explanatory variable in
a regression model. A high VIF would mean the variable could be highly correlated with another
explanatory variable:

1

2.6
- (2.6)

VIF, =

If multicollinearity is suspected using one of the tools above, removing one of the explanatory variables
from the model may help. Thinking through whether an explanatory variable is important may provide
an argument for removing or keeping a variable. Combining the variables to create a new variable
can also be a solution or there are other methods that can be used besides OLS. Key takeaways are
to always explore the data and understand how variables are expected to impact water demand. For
presenting and discussing regression results, it is often good practice to include all variables that were
removed. This can be done by presenting more than one set of results with and without variables that
were removed.

2.2.3.3 Independent observations

The coefficients in the regression model are only estimates of the actual sample parameters. In essence,
data is collected as a random sample of a population. The sample is used to estimate/infer population
properties. An objective is to minimize the difference between estimated and actual parameters.
Random sampling helps to ensure the differences are not skewed in one direction (i.e. that could cause
errors in one direction). We want to make sure that sample estimates/inferences are representing the
whole population.

2.2.3.4 Several assumptions dealing with error term

The error term in the model accounts for the residual, or the difference between the actual observation
and the predicted. It is the variability of Y that is not explained by the explanatory variables. There are
several assumptions that deal with the error term that are all concerned with checking that the model
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is correctly designed. The assumptions involving the error term are listed below. Again, each of these
assumptions have a deeper mathematical or theoretical underpinning in regression modeling with
OLS estimation. The objective in this chapter is to highlight the practical aspects to verify the model
specification and interpret results.

1)

2

No systematic errors. The error term, on average, should equal zero. This will ensure that the
error in the model is random and there are not systematic errors. If there are systematic errors,
then it can be assumed that the residuals are predictable. If the residuals are predictable then
that means there is predictable variation that could have been captured with the model.
Homoscedasticity. Errorsshould have the samevariance acrossall the observed values. Constant
variance in the errors is referred to as homoscedasticity, or having no heteroscedasticity. A
problem with hetferoscedasticity can uncover that the model is putting too much importance to
one range of observations. When interpreting regression results, heteroscedasticity can impact
the test for variable significance and result in an explanatory variable appearing significant
in influencing water demand, when in reality it has no impact (see Section 2.5.2). A plot like
the one in Figure 2.5 showing residuals versus the predicted values can be used to check for
heteroscedasticity. When heteroscedasticity is present, a discernable pattern can be seen, such
as the diamond shape in Figure 2.5. Another easily spotted sign of heteroscedasticity is a cone
shape with the residuals fanning out or fanning in.

If there was no heteroscedasticity, the expectation would be what is shown in Figure 2.6, where
no discernable pattern is seen with the plotted dots, and they appear to be roughly even around the
zero-residual line.

Heteroscedasticity is commonly seen with small data sets with large variation or when one
explanatory variable has a wide range of input values. A possible method to reduce heteroscedasticity
includes transforming a suspected explanatory variable by taking the log or square root, for example.
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Figure 2.5 Predicted versus residual plot.
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Figure 2.6 Predicted versus residual plot - no heteroscedasticity.

Changing a variable in this manner can often eliminate or reduce heteroscedasticity, and thereby
also strengthen the model.

(3) No autocorrelation. Errors should be independent of each other, which is known as having no
autocorrelation. Autocorrelation is often a problem with time series data, when each subsequent
observation is correlated with the previous (see Chapter 4’s Time series analysis). Seasonal
correlation is an example that would be solved by adding seasonal dummy variables to the
model. This is done by including the season as an explanatory value as a number. For example,
summer would be 1, winter would be 2, and so forth. The idea is to add an additional variable
that accounts for the seasonal pattern. Another solution is adding a time-lagged variable to the
regression model. A time-lagged variable would be an additional variable added to the model
representing a lag of one time period, for example.

(4) Random error. Errors should be uncorrelated with the explanatory variables. When there is
correlation, this is called endogeneity bias. Endogeneity is a problem because it violates the
random error assumption because the correlation implies it is possible to predict a part of the
error term with that explanatory variable. The result is it biases the coefficients. The cause of
endogeneity is often due to measurement errors in the explanatory variable or omitted variables.
Omitted variables are important factors influencing water demand that were not included in
the model. Also, error terms should follow a normal distribution. This can be checked with
a normal probability plot, or g-q plot for the errors. If the linearity assumption is violated,
then error terms may not follow a normal distribution. The consequence to the results is large
confidence intervals that are too wide or too narrow which make interpretations less reliable.

2.2.4 Panel data regression

In this section, we would like to explore more real-world datasets. Observation data is often categorized
as time-series, cross-sectional, and panel. Time-series data consist of one data point being measured
over time. This could be one customer’s water use measured monthly. Cross-sectional data refers
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Time-Series Cross-Sectional Panel
Time Period Value Individual ID Value Individual Time Value
ID Period
112020 96 1 120
1 1/2020 143
2/2020 105 2 123
1 2/2020 141
3/2020 115 3 178
1 3/2020 150
4/2020 17 4 145
2 1112020 210
5/2020 125 5 163
2 2/2020 243
2 3/2020 212
1212020 92 1,900 124
n t
n t

Figure 2.7 Example of data type.

to data that represents a swatch of different measurements at a single point in time. This could be
a single reading of average monthly water use for 20 000 customers, for example. Panel-data is the
combination, where many readings are available over time for different entities. Figure 2.7 presents
example data types for time-series, cross-section, and panel. Our experiences taught us that panel-data
is the most useful for accurate water demand forecasting

The use of panel data expands the regression Equation (2.3) into:

Y=o+ 38Xy +ei (2.7)

where Y, is the dependent variable for individual i at time period ¢, « is the intercept, 3, is the regression
coefficient, X}, is the independent variable, and ¢, is the residual, or error term. This holds for time
period, =1, ..., t and individual, i =1, ..., n.

Estimating panel data regression models can be done using different estimation methods. We will
consider pooled, fixed, and random effects for panel data in the Estimation Section.

2.2.5 Multiple regression
Multiple regression expands on the case of one explanatory variable to include more than one variable
to describe change in water demand. The general equation expands on Equation (2.7) and becomes:

Yio = a+ B Xy + BoXos 4+ BuXu + €4 2.8)

where Y}, is the dependent variable, «;is the individual intercept, 3,, 3,, 8, are the regression coefficients,
X1 X, X5, are the independent variables, and ¢, is the residual, or error term. This holds for time
period, t=1, ..., t and individual, i =1, ..., n.

The estimation of the multiple regression equation quickly increases in complexity from the
simple linear regression example. With multiple regression, the dependent variable of interest is
being explained by more than one variable. Each of the added explanatory variables are assumed
to be independent of each other and the dependent variable, so that the individual impact of each
explanatory variable on the dependent variable can be estimated.
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Problem 1

The provided file Regression Chapter — Ex1.xls contains monthly water demand and rainfall data for
a period of six years. Using Excel spreadsheet, plot demand and rainfall, add a tread line (regression)
in Excel. (Excel uses the least square estimator.) Answer the following questions:

What type of data is this? Cross-sectional, time-series, panel? Are there limitations to using
this data to estimate water demand? Explain.

Is there visible correlation between the water data and weather data? Would you expect to see
correlation between water demand and the weather data? Why or why not? What questions
could be asked about the data to further investigate your assumptions?

What other analysis could be done with these data to further evaluate the data trends?
Interpret what the regression equation means. Does the weather variable help to explain water
demand in the data?

2.2.5.2 Brief suggested solutions

(2)

(b)

Average Monthly Demand, Ipd

What type of data is this? Cross-sectional, time-series, panel? Are there limitations to using
this data to estimate water demand? Explain.

Data is time-series, characterized by observations over time for one entity (labeled Customer_
Group). This data is aggregated to the level of only one entity and as such, cannot account for
differences across entities; the data only provides the water demand trend across time.

Is there visible correlation between the water data and weather data? Would you expect to see
correlation between water demand and the weather data? Why or why not? What questions
could be asked about the data to further investigate your assumptions?

Visually there does appear to be negative correlation between the average monthly water
demand and total monthly rainfall. Plot is shown in the figure below. The negative correlation
could be attributed to lower water use when there is precipitation, perhaps from reduced
outdoor water use for plant and lawn irrigation. Further investigation into the water demand
source may support or refute the irrigation assumption. Is the data from a rural or urban area?
Do the houses have large lots? What are other weather conditions? Do the temperatures rise
during the summer months?

See Section 2.3.4 for discussion on the zero precipitation values.

Group 1 - Water Demand vs. Precipitation
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(c) What other analysis could be done with these data to further evaluate the data trends?
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Plotting the water demand over time (figure below) can visually provide seasonal trend
information. In this example, higher demand is observed annually between July and October.
Although the annual trend appears steady over the entire time period (2015-2020), the peak
does appear to slightly change between the years.

Group 1 - Water Demand vs. Precipitation
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(d) Interpret what the regression equation means. Does the weather variable help to explain water
demand in the data?

Using excel, the regression line follows the equation: water demand (Ipd) =-4.54 (precipitation,
cm) +353.08. The r-squared value is 0.39. The negative value on the precipitation coefficient
represents a negative impact on water demand. For every one unit increase in precipitation,
a 4.54 decrease in liters per day is expected. The intercept for this simple regression can be
interpreted as the average monthly water demand when there is no precipitation in the month.
Unlike the water demand versus lot size example, the intercept value holds importance since
the data has several demand observations with zero precipitation.

2.3 MODEL SPECIFICATION

Model specification involves deciding what explanatory variables (e.g. X,,, X,,, X5, to include in the
regression model. This is an iterative process and requires an understanding of what factors influence
water use. However, specification or model structure depends on what data is readily accessible and
of sufficient quality, time length, and number of observations.

Data availability continues to grow with new technologies making it easier and cheaper to invest,
deploy, and collect large amounts of information. The deployment of more water meters (e.g. AMI -
Advanced Metering Infrastructure) has provided the opportunity to measure and therefore, forecast
use in more water sectors. Further, finer resolution data (e.g. time interval of seconds) has allowed for
more detailed information on how water is used for specific end uses. For residential water demand
this has translated to understanding water use by end use for particular appliances (e.g. kitchen
sink, bath shower, etc.). More data also means more time spent on investigating the data quality and
patterns.

In the next section, we will delve into choosing the best variables starting with fundamental
theories of water use, method of exploring available data, and ending with common mistakes around
misspecification/interpretation on regression models.
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Table 2.1 Factors possibly influencing water demand.

Category Factor
Social-demographic Income

Education level

Number of adults and children in household

Level of environmental concern (e.g. water conservation, recycling, energy saving)
Utility or supplier Water rates
controlled Rate structure (e.g. increasing tiered rate)

Mandatory conservation measures

Voluntary conservation measures

Metering

Detailed water use information available
Location Population growth

Population density

Neighborhood characteristics and average demographics

Environmental Temperature
Precipitation
Evapotranspiration
Droughts

House/building Lot size

Building square meters
Number of bathrooms
Number of water intensive appliances/high efficient fixtures
Age of house
User type Mix of residential, commercial, industrial, agriculture

2.3.1 Water use relationships

The best starting point in identifying explanatory variables is to review the question that needs to
be answered. The objective of analysis will help shape what should be included in the regression
model. The form of the dependent water demand variable may also change based on the intended
analysis. For water utilities, per capita daily information by customer type may be most useful; and for
wholesale suppliers, monthly or yearly information may be more practical.

Previous literature review studies can provide useful information and support arguments
for choosing explanatory variables. A few review studies that can be helpful are the following:
Worthington and Hoffman (2008), Sebri (2014) and Tanverakul and Lee (2016). Table 2.1 provides a
list of possible factors that have been explored as possibly influencing water demand. There may be
many more factors that could potentially impact water demand and some of the listed factors may not
be impactful. You should give careful consideration in determining what factors make sense for the
given objective and region.

For every factor that may influence water demand, an explanation should be given as to how
that factor influences demand. This is important when interpreting and using the regression results
since the model itself is easy to run with software programs and it may be tempting to add in
all variables that may possibly affect water demand. As discussed in the next section, not being
selective with the explanatory variables can cause problems with the model results and violate key
model assumptions. The challenge is constructing an appropriate model and making reasonable
and fair interpretations.
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Thinking through potential causal relationships can aid in narrowing down the important explanatory
variables to include in the model and check for correlation between explanatory variables. Correlation
between explanatory variables can obscure and invalidate the impact of each individual explanatory
variable on water demand. One example is including house size and number of bathrooms. Both of these
variables could reasonably be used to explain household water demand. However, house size could also
be correlated with number of bathrooms since larger houses could be expected to have more bathrooms.
Because of this relationship, the regression equation would not be able to accurately predict the impact
of the number of bathrooms on water demand because some of that impact could be absorbed into the
impact from lot size. Correlation between explanatory variables is referred to as multicollinearity (as
mentioned earlier in this chapter) and is a violation of a key assumption of regression analysis.

2.3.2 Data exploration

In this section, we will look at ways to explore and choose available data. You should be careful to not
pick data only to fit a model and vice versa. Many common issues with data can be prevented through
utilizing the considerations and tools further discussed below.

2.3.2.1 Data collection
A major consideration of available data is how the data is collected. Measures to avoid bias and
correlation in data collection is ensuring that the data is representative of the entire population being
explored. If data on the entire population is not available and a sample of demand data must be used,
the sampled data often must be randomly collected to be representative of the entire population.
Also, there are other issues that can affect the accuracy and precision of data. Some of these
items are the source, unsuitable method of collection, instrument measurement errors, or mistakes
in manual data inputting into databases. Certain methods of collection, such as self-reported use
or beliefs, carry a level of uncertainty of whether accurate answers were given, intentionally or
unintentionally. Errors in measurement, as possible with metering for example, should be expected
and investigated for obvious errors that can be further evaluated. Since it is practically impossible
to accurately measure natural systems and collect flawless data on large samples, the importance is
not to attempt to fully remove all errors, but to be aware and make appropriate interpretations by
considering the involved uncertainties.

2.3.2.2 Data time series length

For water demand estimation, the length of available record is important to consider because of the
longer cyclical nature of demand over monthly weather changes and annual patterns of higher and
lower temperatures and weather event frequency changes. Other examples besides weather could be
development growth and density patterns, or long stretches of mandatory conservation measures
during drought periods. Having a long enough period of record will determine whether the model can
pick up on these changes and offer predictions that will include these variations. If not possible then
any significant events that could have impacted the analysis should be noted so any use of the results
will be able to consider and use caution when necessary.

2.3.2.3 Data management and cleaning
A decent assumption is that raw data will always require some sort of cleaning. Documenting any
changes to raw data is critical for model accountability. Being able to clearly describe any changes to
model and the reasoning for doing so is necessary for a full understanding of the model results. If the
model is ever to be reproduced or applied to different situations, these notes will be required. Note
that many of the academic journal articles strongly recommend open access and data transparency,
which will help increase the accuracy/transparency of analytical processes and research outcomes.
Looking through time series water data may have zeros or missed readings. This is not uncommon
with metered data. Whether to include or exclude these readings will have implications for the model



Water demand analysis | regression 35

and interpretation. Questions to consider are whether the zeros are accurate and are representative of
shutoffs or a missed reading (e.g. electrical/mechanical failures).

Demographic data can have errors or missing information based on collection methods. Self-reported
data has an added layer of inaccurate information that cannot be checked often. In large data sets, the
data input process may have added errors. Some of these mistakes can be spotted easily through data
exploration methods but they can also go unnoticed or may sometimes be a true outlier. Noting these
points is a good practice and deciding how to handle them can be done in later steps, if the outliers are
making significant impacts to the data set and the results. Depending on the model objective, arguments
to remove these outliers may be justified, but again, always should be noted as exceptions.

2.3.2.4 Descriptive statistics and visualizations

Various methods should be employed to explore the available data. Initial exploration assists in
understanding the data patterns and helps with model estimation and interpretation. Being able to
describe the collected data (i.e. what is the story from the data?) provides context for the model results
and helps make important choices such as what explanatory variables should be included in the model.

Combining basic statistical and visual tools can present an overall, summary view of all information.
These tools provide a benchmark, or gut check, to interpret model results and can provide valuable
insight on their own. Often, interesting, and important information can be seen by initial data plots,
basic statistics, and mapping if geographical is available (see Chapter 15 for use of GIS).

Water demand data can quickly be plotted against suspected influencing factors to determine if
there is an observable relationship and the strength of that relationship. A simple correlation graph can
explain a lot without much expended effort. These plots are also useful in inspecting the data for possible
errors or outliers. One type of correlation plot is discussed in Section 2.4 and shown in Figure 2.7. Plots
should be done for each considered explanatory variable against the water demand dependent variable.

Preparing time series plots of water demand unveils patterns and cycles that may need to be
included in the model specification (Chapter 4 will discuss the water demand in time series and their
forecasting). Figure 2.8 presents an example of average monthly water demand plotted over time. Any
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Figure 2.8 Average monthly water demand by group.
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Figure 2.9 Cohort example.

large changes may require further investigation as to the cause and whether it can be captured in the
model. Plotting multiple variables across time can also show correlation through time. A seasonal
peak during summer months is discernable in the time series. There does not appear to be much
variation across the years, except for a slightly noticeable decrease in the final year.

Figure 2.8 also plots water demand data from four separated neighborhood areas, identified in
the graph as cohorts A, B, C, and D. By separating out the demand data in this manner, different use
is observed. Cohort C appears to have significantly higher average use than Cohort A, for example.
Looking at only the combined average line erases the differences between neighborhoods.

Since water use is often localized and may vary greatly between cities or regions, water use data
should be explored spatially when possible. Mapping the water demand points can be useful for
specific characteristics about location. This type of spatial clustering is a specific occurrence that
should be included in the model. For example, if demand data is heavily concentrated in clusters in
different neighborhoods, it may be necessary to include neighborhood indicators in the regression
model. Figure 2.9 presents a fictionalized example of how useful information can be revealed through
mapping. The available water demand information is concentrated in two areas on the map. One area
appears to be in a dense, downtown location and the other in a residential area. Since these two types
of locations often have different house characteristics, the water demand uses may be different as well.

Descriptive statistics include averages, quartiles, medians, ranges, standard deviations and any
other statistic that may be of interest. These calculations can create a picture of the entire data set
and can be useful in further investigating data features such as the possible neighborhood specific
demand as identified with the time series plotting. Separating the data and running basic statistics
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helps to quantify the use variation between the neighborhoods. The table within Figure 2.8 shows the
variation in average and number of observations between the four cohorts.

Spatial clustering or significant difference between groups in the data can be included in the
regression model in different ways. Due to these differences, it may be useful to separate the data
into separate models or include a grouping (or cohort) indicator in a single model as an explanatory
variable. One way is to run separate models for each group. Another method is to add an indicator
variable, sometimes referred to as dummies, for each cohort, or localized area. Since different locations
or groups may have unobservable or unquantifiable characteristics affecting use, dummy variables
work to capture the expected mean of water demand for that group relative to one group, holding all
other variables constant. More details will be explained in Section 2.5.

2.3.3 Level of aggregation

The level of data aggregation may shape what information can be input and what we can extract from
the model. It may be necessary to separate data and run separate models for different regions or it may
be best to aggregate available data to use for regional or state models. Depending on the objective, it
may be necessary to distinguish between different sectors (e.g. agriculture, residential, industrial, or
environmental) or scale (e.g. individual household, census block, city, or state), as was evident in the
above example of water demand by neighborhood cohorts.

2.3.4 Data range and variation

Regression methods estimate the change in one variable based on changes on other chosen variables.
To quantify this change accurately, there must be enough change in the data set. Deciding if data
is sufficient and appropriate can be very subjective at times and judgment and experience must be
used.

Using the data from Example Problem 1 can help illustrate problems that can arise from lack of
data variation. Average monthly water demand was provided along with total monthly precipitation.
The precipitation data contained many zeros and many small values. The range of precipitation was
zero to 23.9 cm but with an average of 4.57. Out of 72 observations, 15 (20%) were zero. Depending
on location, zero precipitation values would be expected so they should arguably not be removed
from the data set. If precipitation is the only explanatory variable being used, there will likely be a
lot of variation in water demand values associated with zero precipitation. Since all the precipitation
values are zero, the variation in those water demand values cannot be explained with a change in
precipitation, diminishing the strength of predicative power in the model.

In the case of Example Problem 1, there was enough variation in precipitation to get a regression
model with a decent r-squared value. The variation of water demand observations in zero precipitation
months was low and there was sufficient variation and correlation in the other values. This may not
always be the case and should be considered if the available data has many expected zeros or a small
value range. Possible mitigations are adding additional or different explanatory variables, if possible.
Transforming the data, such as taking the log of the variable, may also help if the range is small.

2.3.5 Misspecification
When important factors are left out of a regression model then the model is not clearly a ‘good or
reliable’ model (i.e. mis-specified model). Natural systems and human behavior are both challenging
to accurately predict. Since a model is only ever an approximation, the objective should be to get as
close to the actual phenomena as possible. It may be helpful to remember that it will likely never be
possible to precisely explain water demand patterns even if data for all identified influencing factors
were available.

If we accept that most models are mis-specified in some manner, we must consider what that means
for model interpretation and application. A thorough understanding of the system being modeled helps
to appropriately assess and consider the limitations of the model results. The growing availability of
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large data sets (e.g. ‘big data’) is a good example of how disciplinary expertise is critical for drawing
appropriate conclusions. With big data it can be easy to find correlation between variables that have
zero causality. For example, residential water demand tends to peak during the summer months, but
so do ice-cream sales. Of course, it would not stand-up to reasoning that to reduce summer water
demand, we should restrict ice cream sales.

It can be tempting to add in as many explanatory variables as likely to explain water demand
accurately. However, more variables are not always better. Including all possible variables could have
an effect that would do more harm than good. Using the above example of water demand and ice cream
sales, we should all remember that the common refrain correlation does not mean causation. You
should always have a reasonable argument for how each variable influences demand. There are several
problems that occur if too many explanatory variables are included in the model without reason. One
problem is it makes the model appear to have a stronger explanatory power than it actually does.
Another is the increased chance of including explanatory variables that interact with other. When this
occurs, the impact of each individual variable on the dependent variable is no longer straightforward.
The model may over- or underestimate the impact of the related explanatory variables. On the other
hand, omitting important variables is another problem with serious consequences. We will go over
this important topic in the following section.

Specifying a model is an iterative process. As discussed in the next section on estimating parameters,
running the model and testing the model may lead to further investigation of the data, the model
set-up, and may even require reframing of the initial research question.

2.3.5.1 Problem 2

Using water demand as the dependent variable, discuss the reasoning why it was chosen (e.g. would
like to project future water supply under changing weather patterns, or evaluate residential water use
under drought conservation measures). What are 3-5 explanatory variables that could influence the
chosen dependent variable? Find previous literature to support the choice of explanatory variables.
Are there factors that could be a strong influencer on the dependent variable but would be difficult
to find good data? For the chosen explanatory variables, are there any mechanisms or relationships,
showing correlation, between the individual explanatory variables chosen? For the objective, what
time period of data would be ideal? Explain your reasoning.

2.4 ESTIMATING PARAMETERS

For regression models considering only one explanatory variable, a simple line could be drawn to
estimate the regression line. As mentioned earlier, this type of initial visual estimation can provide
a quick snapshot of a linear relationship between two variables. However simple, this method is
highly subjective and tends to ignore outliers. Therefore, we need a systematic method to estimate
parameters. When multiple explanatory variables are considered, there is no simple graphical method.
Ordinary least squared method (OLS) is a widely used for linear models that we will discuss herein.
It can be computationally quick and simple to execute with various software programs (e.g. Excel, R,
Python, etc.). It is great that we can easily access them, but care should be taken to understand the
assumptions behind the method to ensure reliable results/interpretations.

2.4.1 Panel regression - pooled, fixed effects, and random effects

When working with panel data, there are three types of regression: pooled, fixed, or random effects. A
summary of each is given in Figure 2.10. The pooled OLS estimator does not consider the panel nature
of the data and is what was described in the first example estimating water demand using lot size. Also,
the data used in that example is considered cross-sectional since there was only a single time period.
If panel data is used with the pooled OLS estimator, all the data is pooled together and there would
not be any way to track how an individual household water demand changed over time. The intercept
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Pooled Fixed Effects Random Effects
* Panel data is pooled and » Controls for uncbserved » Controls for unobserved
ignores individual identifier individual-specific effects effects that vary with time
(panel data effectively that are constant over time
becomes cross-sectional (time invariant) = Assumes unobserved effects
data) are random and drawn from a
« Bias still possible from time normal probability distribution
« Estimates a single constant varying unobserved and effects are not tied
intercept characteristics specifically to individual
characteristics
Ye=a+8.X,+e;, Y=o+ B X+ €, Yo=a+B8X,+u,+€,
« This is the equation + Individual-specific intercept, a, + Common intercept, a
presented as equation (2.3)
+ Additional error term, u,
accounts for the random
individual residual

Figure 2.10 Panel data regression method summary.

would be a constant value for all entities. The regression intercept in this case would be the average of
all water demand for every individual over time. If one individual had a significant different demand
pattern, pooling all the data together would ignore the variation within that one individual. Using the
neighborhood cohort example from above, this pooled method would ignore specifics about each cohort.

In a fixed effects model, individual intercepts are estimated for each individual. In this manner, all
unobserved characteristics about a single customer (that would not change with time) is absorbed into
an individual-specific intercept. Fixed effects attempt to control for unmeasurable variables that are
constant over time, but may vary between individuals. An assumption is that there are characteristics
of each household, or group, that effect the amount of water used and for which these characteristics
cannot be observed and added to the model as an explanatory variable. A household specific example
could be that some houses have older service lines which may be prone to leaks leading to higher
water use recordings. This is not something easily known so cannot be included in the model as an
explanatory variable. Another example could be household-specific behaviors and attitudes such as
frequency of clothes washing or bathing. These behaviors are difficult to accurately model but do
account for household specific water use patterns. For the neighborhood cohort example this would
be the assumption that there are specific aspects of the neighborhood that cannot be measured or
added as an explanatory variable, but there are features, perhaps a conservation culture or a shared
love of green lawns, that is not easily measurable or observed.

Lastly, a random effects model assumes unobserved individual-specific variables are random,
or follow a certain probability distribution, rather than assuming there is some individual-specific
characteristics that are correlated with the explanatory variables. Using random effects assumes there
is no related individual specific effects. Because of this assumption and the difficulty of proving it, a
fixed effects model is most often proposed and will be discussed herein.

2.4.2 Estimation example walk-through problem in R

In this section, a water demand regression problem will be estimated and evaluated using the R
program. We would like to estimate a forecasting equation given household-level water utility data
consisting of monthly residential water demand over a period of five years. The resulting regression
equation can be used to forecast demand for short-term planning and operations of the water
distributer. Data for this example is provided in the file: ‘Demand_Data_Ex.csv’.
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Figure 2.11 RStudio environment - create R scripts.

To begin, let us explore the provided data. The file has already been structured in a format that is
ready to use with popular regression packages in the software program R. R can be downloaded freely
from The R Project for Statistical Computing website ( www.r-project.org). R Studio is an additional
product that provides a useful editor and tools for R.

Once R Studio is downloaded, there are a few quick steps recommended for set-up. R Studio default
layout includes the console where code can be directly run, or code can be written and saved in
scripts. Scripts are useful to save, share, and keep a neat record of what is being done. One way a new
R script can be opened is through File > New File >R Script (Figure 2.11). Figure 2.12 is a screenshot
of the first lines of commands for set-up as written in an R script. The first line has been added to
ensure a clean directory and removes data from previous sessions. This is helpful to ensure previous
data and objects do not interfere with the current session. The second line sets a working directory
so that all files later can be called in reference to that default location. R is case-sensitive so take note
of command capitalization and when setting object names. The hashtag on the lines shown in Figure
2.12 represent notes that can be added for reference and will not be executed. Each of the lines in the
R script can be run individually with ctrl + enter.

R has default base commands but has many packages that can be installed and loaded. For this
problem, we will load several packages. The next few command lines shown in Figure 2.13 show
which programs to install and load for this example. Documentation on each of these packages is
available and recommended to learn their full capabilities (e.g. Croissant et al. 2021). R programmers
are constantly improving and writing new packages. The ones shown here are suggestions to use
but other packages, including writing your own packages, can be used to achieve the same results
presented in this example.

rm(list = 1s())
setwd("C: /Users/Steph/Desktop™)

#resets environment of objects
#set working directly

Figure 2.12 R example set-up commands.
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#install packages
install.packages("pIm")
install.packages("tidyverse")
install.packages("corrplot")

#load packages
Tibrary(pim)
Tibrary(tidyverse)
Tibrary(corrplot)

Figure 2.13 R package install and load.

Importing the data file is shown in Figure 2.14. The file is being read into R and is named data. The
lines below show several ways to explore the data file and its structure. The file has been structured
to import as a data.frame in R as noted with the str() command. There are eight variables and 57 060
variables. With the head() command, the column names and first few rows are shown. The Summary()
command provides basic statistics on each of the variables. Combined, these commands present a
quick view of the provided data. In summary, there are five years (60 months) of monthly water

#data plots
hist(Demand) #histogram - check for normal distribution

#more plots

demandbygroup <- ggplot(data-data, aes(x=Time,y=Demand,group=Group))+
stat_summary(aes(color=Group), geom="Tine", fun=mean, size=1)

plot(demandbygroup)

#plot average demand across all observations

matrix <- as.matrix(tapply(Demand,Time,mean))

plot(row.names(matrix) ,matrix, type="1", main="Average Monthly Demand",
x1ab="Time", ylab="Monthly water Demand, gpd", col="blue")

> summary(data) #basic statistical summary
10 Time Oemand Temp Rainfall ET sath
Min. : 1 Min. : 1.00 Min. : 84.0 Min, :48.70 Min. : 0.000 Min. :1.520 Min. :1.000
1st Qu,.:238 1st Qu,:15.75 1st Qu.:lBl.D 1st Qu.:56.60 1st Qu.: 0.000 1st Qu.:2.822 1st Qu.:1.000
Median :476 Median :30.50 Median :239.0 Median :61.40 Median : 0.075 Median :4.535 wedian :2.000
Mean  :476 Mean :30.50 Mean :239.7 Mean :62.96 Mean : 1.913 Mean :4.438 Mean :2.478
3rd Qu.:714  3rd Qu.:45.25 3rd Qu.:281.0 3rd Qu.:69.12 3rd Qu.: 1.000 3rd Qu.:5.822 3rd Qu.:3.000
Max, :951 Max. :60.00 Max, :449.0 Max, :78.30  Max. :74.000  Max. :7.830  max, :4.000
> :olnms(data) #view column names
m" “Time" “pemand”  “Group” "Temp" “Rainfall” “eT" “ath"
> head(dnta) #view first few rows of data
ID Time Demand Group Temp Rainfall ET Bath
11 1 146 1 50.7 0.03 2.44 4
27 2 1 122 150.7 0.03 2.44 1
3 3 1 189 150.7 0.03 2.44 1
4 4 1 124 1 50.7 0.03 2.44 2
55 1 104 150.7 0.03 2.44 4
6 6 1 166 1 50.7 0.03 2.44 4
> stri{data) #view data structure
‘data.frame": 57060 obs. of 8 varub‘les
$ 10 :int 12345678910,
$ Time tdint 1111111111.
§ Demand : int 146 122 189 124 104 156 160 180 94 184 ...
$Group :int 1111111111...
§ Temp : num 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7 .
$ rRainfall: num 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 .
$ ET Donum 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44 |
§ sath :int 4112442231 ...

Figure 2.14 R import.csv file.
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#data plots
hist(Demand) #histogram - check for normal distribution

#more plots

demandbygroup <- ggplot(data=data, aes(x=Time,y=Demand,group=Group))+
stat_summary(aes(color=Group), geom="1ine", fun=mean, size=1)

plot(demandbygroup)

#plot average demand across all observations

matrix <- as.matrix(tapply(Demand,Time,mean))

plot(row.names(matrix) ,matrix, type="1", main="Average Monthly Demand",
xlab="Time", ylab="Monthly water Demand, gpd", col="blue")
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Figure 2.15 R select commands and plots.

demand (Ipd) for 951 individuals. For each individual, the number of household bathrooms is provided.
Accompanying weather data includes monthly average temperature (degrees Celsius), monthly average
rainfall (cm), and monthly average adjusted evapotranspiration (cm). The remaining column, Group,
is an identifier categorizing the individual household as being in one of four geographic groups.

Graphing is another way to explore the data as shown in a few selected commands in Figure 2.14.
The first is a histogram of the demand variable to check for normal distribution and to view the range
of demand data. The next command plots all the demand data for all individuals over time.

In the next plot, only the average monthly average is plotted and is divided into the four groups.
The next command lines show a method to check for correlation among all the variables as well as a
method to individual check correlation between two variables (Figure 2.16).

As shown in the bottom plot in Figure 2.15, Group 3 demand is significantly higher than the other
groups. Because of this notable difference, we will run regression models separately for the groups to
capture this difference. For this example, we will show the regression analysis for Group 3 which can
be replicated for the other three groups.

A pooled regression is performed first. The plm function is used in this example (Figure 2.17).
Within this function, pooling is denoted with specifying the model and the data being called is a
subset of the larger data file. In the first regression model, called Pooled_all, all weather variables
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#check for correlation between all variables
cor = cor(data)

view(cor)

#check correlation between individual variables
cor(Temp,ET)

cor(ET,Rainfall)

cor(Rainfall, Temp)

“ Time Demand Group Temp Rainfall ET Bath

D 1.000000e+00 0.000000e+00 -0.06410828 9.455899e-01 -5.236192e-19 0.0002351120 1.775682e-19 3.670335e-02
Time 0.000000e+00 1.000000e+00 005211628 2.50230%e-21 1.824468e-01 0.1391279794  1.146822e-01  0.000000e+00
Demand -5410828e-02 5.211628e-02  1.00000000 -4.326933e-02 3.731991e-01 -0.0175914152 3.374287e-01 -1.455826e-02
Group 9.45589%9e-01 2.502309%-21 -0.04326933 1.000000e+00 -2.379971e-19 0.0002835507 5.462671e-19 2.863275e-02
Temp -5.236192e-19 1.824468e-01 037319913 -2379971e-19 1.000000e+00 -0.0040395614 8.731471e-01 3.150541e-21
Rainfall 2351120e-04 1.391280e-01 -0.01759142 2.835507e-04 -4.039561e-03  1.0000000000 -9.482133e-02 -1.844205e-04
ET 1.775682e-19 1.146822e-01 033742867 5462671e-19 8731471e-01 -0.0948213278 1.000000e+00 -2.671779%-20

Bath 3.670335e-02 0.000000e+00 -0.01455826 2.863275e-02 3.150541e-21 -0.0001844205 -2.671779¢-20 1.000000e+00

Figure 2.16 R correlation plots.

and the number of bathrooms is used. From the results, bathroom is not significant (p-value greater
than 0.05) so the next model, named Pooled?2, is run without the bathroom variable. Temperature has
also been removed, recalling that there was strong correlation between temperature and ET in the
correlation matrix which violates one of the basic OLS assumptions. Results in Pooled2 show rainfall
is not significant so another model is run with the remaining explanatory variable, ET. Regression
results for the final pooled model are shown in Figure 2.18.

Next, a fixed effects (FE) model is estimated to account for individual-specific effects that do not
change over time. Since bathroom is a time invariant individual specific characteristic, it would not be
included as an explanatory variable in an FE model. If it was added to the equation shown in Figure
2.19, a coefficient could not be estimated.

A few tests are shown next in Figure 2.20. The first tests for time-fixed effects to check if the pooled
or fixed effects model would be most appropriate. For this example, time-fixed effects were observed
(p-value less than 0.05 for this test), making an argument that the fixed-effects model should be used.
The next lines are selected commands to test the model based on the OLS assumptions. The errors
appear relatively normally distributed, and the residual variance appears mostly random.

Further interpretation of these results are discussed in the next section on interpretation.

#Pooling Model (Group 3)
pooled_all<- pIm(Demand-ET+Rainfall+Temp+Bath,data=subset(data,Group==3), model="pooling'
summary (Pooled_all)

Pooled2<- pIm(Demand-ET+Rainfall,data=subset(data,Group==3), model="pooling")
summary (Pooled2)

Pooled3<- pim(Demand-ET,data=subset(data,Group==3), model="pooling")
summary (Pooled3)

Figure 2.17 R pooled regression.
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> Pooled3<- p'lm(Demand-—ET,data=subset(dafa,Gr'oup==3), model="pooling")
> summary(Pooled3)
Pooling Model

call:
pIm(formula = Demand ~ ET, data = subset(data, Group == 3), model = "pooling")

Balanced Panel: n = 340, T = 60, N = 20400

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-164.9757 -38.3587 -5.7707 34.5033 155.4185

Coefficients:
Estimate Std. Error t-value Pr(>|t])
(Intercept) 209.10309 0.97800 213.807 < 2.2e-16 #**%*

ET 18.85678 0.20533 91.835 < 2.2e-16 ##**

signif. codes: 0 ****' 0,001 ‘**' 0.01 **' 0,05 *.” 0.1 * "1
Total sum of Squares: 74261000

Residual Sum of Squares: 52539000

R-Squared: 0.29251

Adj. R-Squared: 0.29248
F-statistic: 8433.68 on 1 and 20398 DF, p-value: < 2.22e-16

Figure 2.18 R pooled regression results.

#Fixed Effects Model
FE<- plm(Demand-ET, data=subset(data,Group==3), model="within")
summary (FE)

summary (fixef(FE,type="dmean')) #Individual effects, deviating from overall intercept

> FE<- pIm(Demand~-ET, data=subset(data,Group==3), model="within")
> summary(FE)
Oneway (individual) effect within Model

call:
pIm(formula = Demand ~ ET, data = subset(data, Group == 3), model = "within")

Balanced Panel: n = 340, T = 60, N = 20400

Residuals:
Min.  1st Qu. Median  3rd Qu. Max.
-113.1550 -38.0036 -5.5821 34.1413 159.2319

coefficients:
Estimate Std. Error t-value Pr(>|t|)
ET 18.8568 0.2054 91.806 < 2.2e-16 =**

Signif. codes: 0 *#**' 0,001 ‘**' 0.01 **' 0.05 *." 0.1 * ' 1

Total Sum of Squares: 73421000

Residual Sum of Squares: 51699000

R-Squared: 0.29586

Adj. R-Squared: 0.28393

F-statistic: 8428.31 on 1 and 20059 DF, p-value: < 2.22e-16

Figure 2.19 R fixed effects regression results.
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#Test for time-fixed effects
pFtest(FE,Pooled3) #test for individual effect; p-value < 0.05 then use fixed-effects

#normally distributed errors
hist(residuals(FE), xlab="Residuals')

#fitted values
fitted <- as.numeric(FESmodel[[1]]-FESresiduals)
plot(fitted, residuals(FE))

Figure 2.20 R fixed effects regression results.

2.5 INTERPRETATION

Regression methods can be employed in various ways. The example in Section 2.4.2 was centered
on creating a forecast model. Interpreting those results will be presented next, followed by the
presentation of a real example problem that uses regression techniques to evaluate the impact of
metering on residential water demand.

2.5.1 Regression example - forecasting

The results from the regression analysis in Section 2.4.2 is shown in Figure 2.14. From the fixed effects
model, the regression equation that can be used to represent and forecast average monthly water
demand for households within the geographic Group 3 is:

Monthly Water demand, Ipd = 791 + 28.1 x adjusted ET (cm)

Holding everything else constant, fora 1 cmincrease in adjusted ET, monthly water demand is expected
to increase by 28.1 Ipd. This is a rather simple equation that can be quickly used to provide estimates of
water demand as it changes on a monthly level. The caveat of its simplicity is the equation provides only
an average and would not be useful to predict individual household use. Finer resolution data of end-use
appliances as input would be needed to build a finer resolution model for individual households.

ET was estimated to have a significant relationship with water demand but there may be other
variables that were not evaluated but could be more meaningful to predict water demand. An example
of this could be the price of water. Omitting water price may be relevant if large changes in price occur,
for example, since this equation essentially assumes no changes in water price will occur. If forecast
equations such as these are consistently used, the models should be updated as more data is collected.

2.5.2 Regression example - metering impacts

A real example problem will be discussed and evaluated in this section to walk through how regression
methods can be used to evaluate impacts to water demand over time with changes to particular
variables. In this example, the research question involved whether residential water demand would be
impacted by the installation of water meters and associated volumetric pricing on previously unmetered
residential households. This is following Tanverakul and Lee (2015). Monthly data was collected over
10 years for 1572 residential customers; some of which underwent metering while others did not. The
metered group was considered as a treatment group and the non-metered households were considered
as a control group. The control group was utilized as a proxy to account for variation in water demand
that would have occurred regardless of the meter installation. All data was collected within one
California city with above average demand for the state. A fixed effects regression model was chosen
to be able to account for individual household effects.

To deal with the question of pre- and post-metering time periods, three time periods were
differentiated and added to the regression model as explanatory variables. A pre-metering period was
distinguished, and post-metered time periods were divided into two periods, accounting for a first
post-metered period of two billing cycles past metering and a second post-metered period including
two later billing cycles. This was done to evaluate whether metering had a short- and longer-term
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impact to water demand. Of importance is that the time period of metering was not identical for all
households as the metering installation program occurred over time. To account for the seasonal
effects that could mask changes from metering, a weather variable was added to the model.

The specified regression equation was:

Monthly water demand (gpd);; = o; + 5, (Pre-metered)eatment
+ (2(Post-metered Time Period 1) eatment + 33(Post-metered Time Period 2)ircatment
+ B4 (Pre-metered).onior + 35(Post-metered Time Period 1)control
+ Bs(Post-metered Time Period 2)conrol
+ B;(Evapotranspirationininches,ET); + ¢;

This example problem uses dummy variables to identify whether the observed data is from the
control or treatment group and what time period matches the observed data. The dummy variable
takes on a value of either zero or one. In the way this regression equation was built, a value of one
represents a single time period and group (either treatment or control). For example, when pre-metered
water demand in the treatment group is wanted, that variable becomes one in the above equation and
all other variables representing time and group are zero. The evapotranspiration variable was used to
account and control for monthly and seasonal weather fluctuations.

The equation is estimating monthly water demand based on if a household was metered, time length
after being metered (if metered), and ET. The assumption is water demand can be predicted based on
these influencing factors. Using fixed effects will allow individual household effects to be controlled.
In the above equation, the fixed effects are represented by the intercept value. An individual intercept
value will be estimated for each household. We also tested lot sizes, number of bathrooms, and house
age for their explanatory strength, but found they were not significant. Significance was evaluated as
further discussed below.

The results of the regression model are shown in Table 2.2.

The estimates shown for each explanatory variable represent the impact on water demand. For the
ET coefficient estimate of 19.4, average monthly water demand can be expected to increase by a factor
of 19.4 gpd (73.4 Ipd) with a one-unit change in ET. The rest of the estimates show the average amount

Table 2.2 Regression results.

Estimate Standard Error t-value Pr(>|t))
Pre-metered treatment 721.2 37.886 25.703 <2.2x10°16
Post-metered treatment 510.2 34.033 14.386 <2.2x1016
Second-post-metered treatment 501.2 33.900 13.733 <2.2%10-16
Pre-metered control 592.9 35.55 17.068 <2.2x10-16
Post-metered control 498.7 34.909 9.193 <2.2x 1016
Second-post-metered control 465.2 34.909 9.242 <2.2%x10-16
Adjusted ET (inches) 19.4 5.847 2.155 0.03127
Total sum of squares 1615700 000
Residual sum of squares 1408900 000
R-squared 0.128
Adjusted R-squared 0.127
F-statistic 81.25
p-value 2.2x 1016

DF 3773
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of water demand for the given group (metered or unmetered) and in what time period (relative to the
time of metering).

From the estimates, the difference in demand between the control and treatment groups was
128 gpd (=721.2-592.9) (484.5 Ipd), showing that the treatment group used more water on average
than the control group. After having a meter installed and moving to volumetric pricing, the treatment
(metered) households decreased use by 211 gpd (=721.2-510.2) (798.7 Ipd) in the first post-metered
time period and 220 gpd (721.2-501.2) (832.8 Ipd) by the second time period. Accounting for the
decrease in demand that also occurred in the control group, the decrease in demand from metering
after six months had a 13% decrease (=((721.2-501.2) - (592.9-465.2))/721.2).

The rest of the information in the table can be used to verify the model. The final column lists
two-tail p-values that tests whether each coefficient is different from zero. A zero coefficient would
indicate no significant influence of the explanatory variable on water demand. It is common to set
the significance level at less than 0.05, so if it is less than 0.05 then the explanatory variable has a
statistically significant influence on the dependent variable. The F-statistic does something similar but
for the entire model. If the p-value for the F-statistic is less than 0.05 then all regression coefficients
on the explanatory variables are significant. Significance here can be thought as the values for all
coefficients are different than zero, representing some effect.

2.5.3 Presentation of results

Presentation of the results depends much on the objective of the analysis. At a minimum, basic statistics,
regression results, and any statistical tests to validate the regression model should be included for a
complete picture of the regression equation and results.

Since all models are approximations, they are riddled with limitations. Including the known
limitations as discussed through this chapter is good practice. For most water demand models,
because water can be a local affair, acknowledging the demographics and other regional uniqueness
is helpful to know where the results and model predictions would have the most appropriate and
accurate application.

After the model and results have been presented, critical remaining questions are: What could
be done in the next model? What could be improved? Are more or better quality data observations
available? Is there a way to improve modeling or understanding of weather patterns?

2.5.3.1 Problem 3

Describe the following results from a fixed effects regression model and write the general regression
equation. The dependent variable is average monthly demand given in liters per day. What do the
estimates represent? How can you test if each explanatory variable is significant and are there
recommendations for deciding to rerun the model with less or different variables? What other
information would be helpful to determine if these results were from a properly specified model? How
could these results be useful for policy related decisions?

Estimate Standard Error t-Value Pr(>|t))
Number of bathrooms 25.1 55.887 19.901 0.071
House age 0.003 102.03 11.511 0.111
Total bill price 7.59 33.900 14.444 <2.2x10-10
Adjusted ET (cm) 16.12 4.899 1.015 0.025
R-squared 0.09
Adjusted R-squared 0.011
F-statistic 101.25

p-value 2.2x 10716
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2.5.3.2 Brief suggested answer
The general regression equation is as follows:

Water demand (Ipd) = 9.1 (number of bathrooms)
+0.003 (house age, year) + 3.39(total bill price, $) + 4.89 (ET,cm)

The average monthly demand is positively influenced with the number of household bathrooms,
the age of the house, the total household water bill, and ET values. A greater number of bathrooms,
older houses, higher water bills, and higher ET values are expected to increase average monthly water
demand. An increase in any of these variables will produce an expected increase in monthly average
water demand.

Number of bathrooms, total bill price, and ET values are all significant. House age is not significant.

Holding everything else constant, for every additional bathroom, water demand in Ipd is expected
to increase, on average, by 25.1 Ipd. For every dollar increase in total monthly bill price, expected
monthly water demand will increase by 7.59 Ipd. An increase in ET of 1 cm is expected to increase
monthly water demand by 16.12 Ipd.

2.6 CONCLUSION

Water resource management requires a thorough understanding of the significant factors that
influence demand. How much water is needed by different sectors and regions is necessary for
planning water sources supply, future capital infrastructure programs, water agreements, and
alternative and emergency planning. Knowledge of what factors can influence demand, and for
what sectors, can be helpful for strategizing conservation programs and other management policies.
Regression techniques have a well-demonstrated history of being useful in estimating water demand.
This chapter focused on some of the significant aspects of specifying a regression model, estimating,
and interpretation. Emphasis throughout the chapter focuses on the importance of understanding
how factors influence demand and key things to consider during model estimation and caveats
during interpretation.

The multiple linear regression models estimated with ordinary least squares can be simply performed
with software programs, making it an ideal choice to perform analysis. The greater challenge is building
the regression model and appropriately interpreting results. The mathematical underpinnings of the
models should be understood, but the OLS method and fixed effects panel regression was specifically
reviewed here to highlight the practical use and effectiveness of these model in providing powerful
predictions to manage critical water resources now and for future generations.
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