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1. Introduction 

Evolutionary Computation (EC) is inspired from by evolution that explores the solution 

space by gene inheritance, mutation, and selection of the fittest candidate solutions. Since 

their inception in the 1960s, Evolutionary Computation has been used in various hard and 

complex optimization problems in search and optimization such as: combinatorial 

optimization, functions optimization with and without constraints, engineering problems 

and others (Adeyemo, 2011). This success is in part due to the unbiased nature of their 

operations, which can still perform well in situations with little or no domain knowledge 

(Reynolds, 1999). The basic EC framework consists of fairly simple steps like definition of 

encoding scheme, population generation method, objective function, selection strategy, 

crossover and mutation (Ahmed & Younas, 2011). In addition, the same procedures utilized 

by EC can be applied to diverse problems with relatively little reprogramming. 

Cultural Algorithms (CAs), as well as Genetic Algorithm (GA), are evolutionary models that 

are frequently employed in optimization problems. Cultural Algorithms (CAs) are based on 

knowledge of an evolutionary system and were introduced by Reynolds as a means of 

simulating cultural evolution (Reynolds, 1994). CAs algorithms implements a dual 

mechanism of inheritance where are inherited characteristics of both the level of the 

population as well as the level of the area of belief space (culture). Algorithms that use social 

learning are higher than those using individual learning, because they present a better and 

faster convergence in the search for solutions (Reynolds, 1994). In CAs the characteristics 

and behaviors of individuals are represented in the Population Space. This representation 

can support any population-based computational model such as Genetic Algorithms, 

Evolutionary Programming, Genetic Programming, Differential Evolution, Immune 

Systems, among others (Jin & Reynolds, 1999).  

Multidimensional Knapsack Problem (MKP) is a well-known nondeterministic-polynomial 

time-hard combinatorial optimization problem, with a wide range of applications, such as 

cargo loading, cutting stock problems, resource allocation in computer systems, and 
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economics (Tavares et al., 2008). MKP has received wide attention from the operations 

research community, because it embraces many practical problems. In addition, the MKP 

can be seen as a general model for any kind of binary problems with positive coefficients 

(Glover & Kochenberger, 1996).  

Many researchers have proposed the high potential of the hybrid-model for the solution of 
problems (Gallardo et al., 2007). The algorithms presented in this work to solve MKP are a 
combination of CAs with a Multi Population model. The Multi Population model is the 
division of a population into several smaller ones, usually called the island model. Each 
sub-population runs a standard sequential evolution proceeds, as if it were isolated from 
the rest, with occasional migration of individuals between sub-populations (Tomassini, 
2005). 

In order to conduct an investigation to discover improvements for MKP, this work is 
centered in the knowledge produced from CAs through the evolutionary process that 
utilizes a population-based Genetic Algorithm model, using various MKP benchmarks 
found in the literature. In addition, there is an interest in investigating how to deal with the 
Cultural Algorithms considering a population-based in Genetic Algorithms.  

So as to compare test results, we implemented the follows algorithms: the standard cultural 
algorithm with Single Population (also known as standard CA or CA-S) and Cultural 
Algorithm with Multi Population defined as CA-IM with two versions: CA-IM_1 which has 
fixed values for genetic operators (recombination and mutation) and CA-IM_2 which does 
not have fixed values for genetic operators because these values are generated randomly. In 
order to evaluate the performance of the CA-IM algorithms, some comparison testing will 
be conducted with other two algorithms based on Distributed GA, called DGA and DGA-
SRM (Aguirre et al., 2000). 

The outline of the paper is as follows: in Section 2, a description with formal definition of the 
MKP problem and an overview of Cultural Algorithms are presented. Section 3 shows an 
alternative approach that explores the multi population model with Cultural Algorithms 
and explores how the interaction process occurs among various sub-populations. Our 
experimental results are shown in Section 4 and finally we show some conclusions in 
Section 5.  

2. Background 

Since the introduction of the Knapsack problems some algorithm techniques such as brute 
force, conventional algorithms, dynamic programming, greedy approach and 
approximation algorithm have been proposed (Ahmed & Younas, 2011). 

Evolutionary algorithms (EAs) have been widely applied to the MKP and have shown to be 
effective for searching and finding good quality solutions (Chu & Beasley, 1998). It is 
important to note that MKP is considered a NP hard problem; hence any dynamic 
programming solution will produce results in exponential time. In the last few years, 
Genetic Algorithms (GAs) have been used to solve the NP-complete problems and have 
shown to be very well suited for solving larger Knapsack Problems (Fukunaga & Tazoe, 
2009; Gunther, 1998; Sivaraj & Ravichandran, 2011). For larger knapsack problems, the 
efficiency of approximation algorithms is limited in both solution quality and computational 
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cost (Ahmed & Younas, 2011). Spillman’s experiment, which applies the GA to the knapsack 
problem, shows that the GA does not have a good performance in relatively small size 
problem, but works quite well in problems that include a huge number of elements 
(Spillman, 1995). There are many packing problems where evolutionary methods have 
been applied. The simplest optimization problem and one of the most studied is the one-
dimensional (zero–one or 0-1) knapsack problem (Ahmed & Younas, 2011), which given a 
knapsack of a certain capacity, and a set of items, each one having a particular size and 
value, finds the set of items with maximum value which can be accommodated in the 
knapsack. Various real-world problems are of this type: for example, the allocation of 
communication channels to customers who are charged at different rates (Back et al., 
1997).  

During a study of 0-1 knapsack, a number of extensions and variants have been developed 

such as (Ahmed & Younas, 2011): Multiple Knapsack Problems (MKP), Multidimensional 

Knapsack Problems (MDKP), Multi Choice Knapsack Problems (MCKP) and Multiple 

Choice Multidimensional Knapsack Problems (MMKP). It is also important to consider other 

extensions such as (Chu & Beasley, 1998): Multiconstraint Knapsack Problem, and also the 

term “Multidimensional Zero-one Knapsack Problem”. Using alternative names for the 

same problem is potentially confusing, but since, historically, the designation MKP has been 

the most widely used (Chu & Beasley, 1998). Consequently, Multidimensional Knapsack 

Problem (MKP) is the designation selected for this work. In our previous research it was 

introduced a Multi Population Model on the cultural structure identified as “Multi 

Population Cultural Genetic Algorithm” (MCGA) (Silva & Oliveira, 2009). In MCGA model 

several sub-populations are connected with as ring structure, where the migration of 

individuals occurs after a generation interval (according to the migration based on 

parameter interval) with best-worst migration policy implementation. The results were 

satisfactory in relation to other algorithms in the literature. In another research two versions 

of Distributed GA (DGA) are presented as follows: standard Distributed GA (DGA) and an 

improved DGA (DGA-SRM), which two genetic operators are applied in parallel mode to 

create offspring. The term SRM represents “Self-Reproduction with Mutation”, that is 

applied to various 0/1 multiple knapsack problems so as to improve the search performance 

(Aguire et al., 2000). Hybridization of memetic algorithms with Branch-and-Bound 

techniques (BnB) is also utilized for solving combinatorial optimization problems (Gallardo 

et al., 2007). BnB techniques use an implicit enumeration scheme for exploring the search 

space in an “intelligent” way. Yet another research utilizes adaptive GA for 0/1 Knapsack 

problems where special consideration is given to the penalty function where constant and 

self-adaptive penalty functions are adopted (Zoheir, 2002). Fitness landscape analysis 

techniques are used to better understand the properties of different representations that 

are commonly adopted when evolutionary algorithms are applied to MKP (Tavares et al., 

2008). Other investigation utilizes multiple representations in a GA for the MKP 

(Representation-Switching GA) know as RSGA (Fukunaga, 2009). Other recent works 

consider two heuristics and utilize them for making comparisons to the well-known 

multiobjective evolutionary algorithms (MOEAs) (Kumar & Singh, 2010). While 

comparing MOEAs with the two heuristics, it was observed that the solutions obtained by 

the heuristics are far superior for larger problem instances than those obtained by 

MOEAs.  
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2.1 Multidimensional Knapsack Problem 

As mentioned earlier, the MKP is a well-known nondeterministic-polynomial time-hard 

combinatorial optimization problem, with a wide range of applications (Tavares et al., 

2008). The classical 0-1 knapsack problem is one of the most studied optimization and 

involves the selection of a subset of available items having maximum profit so that the 

total weight of the chosen subset does not exceed the knapsack capacity. The problem can 

be described as follows: given two sets of n items and m knapsacks constraints (or 

resources), for each item j, a profit pj is assigned, and for each constraint i, a consumption 

value rij is designated. The goal is to determine a set of items that maximizes the total 

profit, not exceeding the given constraint capacities ci. Formally, this is stated as follows 

(Tavares et al., 2008): 

Maximize 
1

n

j j
j

p x
=
 , (1) 

Subject to , ,
1

n

i j j i
j

r x c
=

≤   i =1,…,m  (2) 

 {0,1},jx ∈   j =1,….,n (3) 

With   0jp > , , 0i jr ≥  and 0ic ≥   (4) 

The knapsack constraint is represented by each of the m constraints described in Eq. (2). 

The decision variable is the binary vector x =(x1,...,xn). Each item j is mapped to a bit and 

when xj =1, the corresponding item is considered to be part of the solution. The special 

case of m =1 is generally known as the Knapsack Problem or the Unidimensional 

Knapsack Problem.  

For single constraint the problem is not strongly NP-hard and effective approximation 

algorithms have been developed for obtaining near-optimal solutions. A review of the single 

knapsack problem and heuristic algorithms is given by Martello and Toth (Martello & 

Toth, 1990). Exact techniques and exhaustive search algorithms, such as branch-and-

bound, are only of practical use in solving MKP instances of small size since they are, in 

general, too time-consuming (e.g., instances with 100 items or less, and depending on the 

constraints). 

2.2 Evolutionary approach for the MKP 

In a resolution of specific problems that implements an Evolutionary Algorithm, as for 

example, a simple Genetic Algorithm (GA), it is necessary the definition of five components 

(Agapie et al., 1997). The first component is the genotype or a genetic representation of the 

potential problem (individual representation scheme). The second is a method for creating 

an initial population of solutions. The third is a function verifying the fitness of the solution 

(objective function or fitness function). The fourth are genetic operators and the fifth are some 
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constant values for parameters that are used by the algorithm (such as population size, 

probability of applying an operator, etc.). 

2.2.1 Genotype 

The natural representation of the MKP would be the binary representation, in which every 
bit represents the existence or not of a certain element in the Knapsack. A bit set to 1 
indicates that the corresponding item is packed into the knapsack and a bit set to 0 indicates 
that it is not packed. Hence a typical population of two individuals for a six elements in 
Knapsack would be represented as showed in Figure 1. Thus, each element has an 
identification that is given by the bit index. 

In Figure 1 (a) there are three elements in the knapsack, corresponding to the following 
positions: 1, 4 and 6. In Figure 1 (b) there are four elements in the knapsack, whose positions 
are: 2, 3, 5 and 6. 

 

Fig. 1. Knapsack example for two chromosomes. 

2.2.2 Initial population 

The population is the solution representation that consists of a set of codified chromosomes. 
There are many ways to generate the initial population such as random chromosome or 
chromosome with the solution closer to the optimum. In most applications the initial 
population is generated at random. 

2.2.3 Evaluation function 

In GA each individual is evaluated by fitness function. Some individuals produce more 
children than others due to their fitness. By this mechanism, individuals that have 
chromosomes with better fitness have better chances of leaving their genes. This leads to 
better average performance of the whole population as generations proceed (Ku & Lee, 
2001). A feasible vector solution x needs to satisfy constraint (2), otherwise it is infeasible. 
Hence, a penalty is applied to all infeasible solutions in order to decrease their 
corresponding “fitness”. Therefore, the two types of evaluation functions used in this 
research are based on static (constant) and adaptive penalty functions. The standard 
evaluation function for each individual is given by the following expressions: 

 Evaluation (x) = 
1

( [ ] [ ]) ( )
i n

i

x i p i Pen x
=

=

× −   (5) 

 Maximum Profit Possible (MaxP) = 
1

[ ]
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i

p i
=

=
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A vector solution x is optimal when Evaluation (x) =MaxP. 
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2.2.4 Genetic operators 

To implement the GA process, many factors should be considered such as the representation 

scheme of chromosomes, the mating strategy, the size of population, and the design of the 

genetic operators such as selection, mutation and recombination (Ku & Lee, 2001). 

i. Selection - is an operator that prevents low fitness individuals from reproduction and 

permits high fitness individuals to offspring more children to improve average fitness 

of population over generations. There are various selections types, such as stochastic 

remainder, elitism, crowding factor model, tournament, and roulette wheel.  

ii. Recombination or Crossover - is an operator that mixes the chromosomes of two 

individuals. Typically two children are generated by applying this operator, which are 

similar to the parents but not same. Crossover causes a structured, yet randomized 

exchange of genetic material between solutions, with the possibility that the “fittest” 

solutions generate “better” ones. A crossover operator should preserve as much as 

possible from the parents while creating an offspring. 

iii. Mutation - introduces totally new individuals to population. It helps extend the domain 

of search and will restrain the diversity of the population. Mutation involves the 

modification of each bit of an individual with some probability Pm. Although the 

mutation operator has the effect of destroying the structure of a potential solution, 

chances are it will yield a better solution. Mutation in GAs restores lost or unexplored 

genetic material into the population to prevent the premature convergence of the GA. 

The tournament is the selection type chosen for this work since it is more used and it 

presents good performance. For a binary representation, classical crossover and mutation 

operators can be used, such as n-point crossover or uniform crossover, and bit-flip mutation. 

In CAs the influence of information from Belief Space on recombination and mutation 

process such as: best chromosome or set of best chromosomes information is expected. 

2.2.5 Constant values parameters 

An Evolutionary Algorithm involves different strategy parameters, e.g.: mutation rate, 

crossover rate, selective pressure (e.g., tournament size) and population size. Good 

parameter values lead to good performance. There are three major types of parameter 

control (Eiben & Smith, 2008): 

• deterministic: a rule modifies strategy parameter without feedback from the search 
(based on some type of a counter);  

• adaptive: a feedback rule based on some measure monitoring search progress (quality); 

• self-adaptative: parameter values evolve along with the solutions; encoded onto 
chromosomes they undergo variation and selection. 

The implementation of a deterministic parameter control is easier, provided that the 

parameter values used are tested to verify the best performance. 

2.3 Cultural algorithms 

Cultural Algorithms (CAs) have been developed so as to model the evolution of the cultural 
component of an evolutionary computational system over time as it accumulates experience 
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(Reynolds & Chung, 1996). As a result, CAs can provide an explicit mechanism for global 
knowledge and a useful framework within which to model self-adaptation in an EC system. 
The CAs are based on knowledge of an evolutionary system that implements a dual 
mechanism of inheritance. This mechanism allows the CAs to explore as much 
microevolution as macroevolution. Microevolution is the evolution that happens in the 
population level. Macroevolution occurs on the culture itself, i.e. the belief space evolution. 
The belief space is the place where the information on the solution of the problem is refined 
and stored. It is acquired through the population space over the evolutionary process. The 
belief space has the goal to guide individuals in search of better regions. In the CAs 
evolution occurs more quickly than in population without the mechanism of 
macroevolution. The characteristics and behaviors of individuals are represented in the 
Population Space and as mentioned earlier the population space can support any 
population-based computational model such as Genetic Algorithms among others (Jin & 
Reynolds, 1999). The communications protocols dictate the rules about individuals that can 
contribute to knowledge in the Belief Space (function of acceptance) and how the Belief 
Space will influence new individuals (Function of Influence), as shown in Figure 2.  

 

Fig. 2. Framework of Cultural Algorithm (Reynolds & Peng, 2004). 

The two most used ways to represent knowledge in the belief space are (Reynolds & Peng, 
2004): Situational Knowledge and Normative Knowledge. Situational Knowledge represents 
the best individuals found at a certain time of evolution and it contains a number of 
individuals considered as a set of exemplars to the rest of the population. The number of 
exemplars may vary according to the implementation, but it is usually small. For example, 
the structure used to represent this type of knowledge is shown in Figure 3. Each individual 
is stored within its parameters and fitness value (Iacoban et al. 2003). 

 

Fig. 3. Representation of Situational Knowledge. 

The Situational Knowledge is updated when the best individual of the population is found. 
This occurs when its fitness value exceeds the fitness value of the worst individual stored. 
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Normative Knowledge represents a set of intervals that characterize the range of values 

given by the features that make the best solutions (Iacoban et al., 2003).  

Figure 4 shows the structure used by Reynolds and his students, where are stored the 

minimum and maximum values on the individual’s characteristics. 

 

Fig. 4. Representation of Normative knowledge 

These intervals are used to guide the adjustments (mutations) that occur in individuals. 

With these minimum values, (li) and maximum (ui), the fitness values are also stored. This 

value results from the individuals that produced each extreme Li and Ui respectively. 

The adjustment of the range of Normative Knowledge varies according to the best 

individual. That is, if the individual was accepted by the acceptance function and its range is 

less than the range stored in the belief space, the range is adjusted, and vice versa. 

The resolution of problems produces experiences from individuals in the population space, 

which are selected to contribute to the acceptance by the belief space, where the knowledge 

is generalized and stored. In the initial population, the individuals are evaluated by the 

fitness function. Then, the information on the performance of the function is used as a basis 

for the production of generalizations for next generations. The experiences of the 

individuals selected will be used to make the necessary adjustments on the knowledge of 

the current belief space. 

2.4 Parallel Genetic Algorithms  

The definition of Parallel Genetic Algorithms (PGAs) is related with execution of various 

GAs in parallel mode. The main goal of PGAs is to reduce the large execution times that are 

associated with simple genetic algorithms for finding near-optimal solutions in large search 

spaces and to find better solutions. 

The PGAs can be implemented through two approaches (Sivanandam, 2007): standard 

parallel approach and the decomposition approach. In the first approach, the sequential GA 

model is implemented on a parallel computer by dividing the task of implementation 

among the processors. The standard parallel approaches are also known as master-slave GAs. 

In the decomposition approach, the full population exists in distributed form. Other 

characteristic in the decomposition approach is that the population is divided into a number 

of sub-populations called demes. Demes are separated from one another and individuals 

compete only within a deme. An additional operator called migration is used to move the 

individuals from one deme to another. If the individuals can migrate to any other deme, the 

model is called island model or Multiple-population GAs when implemented in parallel or 

distributed environments (Braun, 1991). Migration can be controlled by various parameters 
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like migration rate, topology, migration scheme like best/worst/random individuals to 

migrate and the frequency of migrations (Sinvanadam, 2007). 

Other authors classify Parallel Genetic Algorithm in four main categories (Aguirre & 
Tanaka, 2006): global master-slave, island, cellular, and hierarchical parallel GAs. In a global 
master-slave GA there is a single population and the evaluation of fitness is distributed 
among several processors. The important characteristic in a global master-slave GA is that 
the entire population is considered by genetic operators as selection, crossover and 
mutation. An island GA, also known as coarse-grained or distributed GA, consists of several 
sub-populations evolving separately with occasional migration of individuals between sub-
populations. A cellular category also known as “fine-grained GA” consists of one spatially 
structured population, whose selection and mating are restricted to a small neighborhood. 
The neighborhoods are allowed to overlap permitting some interaction among individuals. 
Finally, a hierarchical parallel GA category, combines an island model with either a master-
slave or cellular GA. The global master-slave GA does not affect the behavior of the 
algorithm and can be considered only as a hardware accelerator. However, the other parallel 
formulations of GAs are very different from canonical GAs, especially, with regard to 
population structure and selection mechanisms. These modifications change the way the GA 
works, affecting its dynamics and the trajectory of evolution. For example, the utilization of 
parameters as sub-population size, migration rate and migration frequency are crucial to the 
performance of island models. Cellular, island and hierarchical models perform as well as or 
better than canonical versions and have the potential of being more than just hardware 
accelerators (Aguirre & Tanaka, 2006). A new taxonomy about PGAs is also presented by 
Nowostawski and Poli (Nowostawski & Poli, 1999). 

In recent studies about MKP Silva and Oliveira (Silva & Oliveira, 2009) have shown that 
good results are reached in the benchmark tests when taking into consideration the 
implementation of sub-populations and the migration process from the island model. The 
results presented were better than canonical version of Cultural Algorithm in most cases. 

2.5 Island model (Multi Population Genetic Algorithms)  

Multi population Genetic Algorithms (MGAs) or Island Model, is an extension of traditional 
single-population Genetic Algorithms (SGAs) by dividing a population into several sub-
populations within which the evolution proceeds and individuals are allowed to migrate 
from one sub-population to another. Different values for parameters such as selection, 
recombination and mutation rate can be chosen for each sub-population. Normally, the 
basic island model uses the same values for these parameters in all sub-populations.  

In order to control the migration of individuals, several parameters were defined such as: (i) 
the communication topology that defines the connections between sub-populations, (ii) a 
migration rate that controls how many individuals migrate, and (iii) a migration interval 
that affects the frequency of migration. In addition, migration must include strategies for 
migrant selection and for their inclusion in their new sub-populations (Aguire, 2000). 

The sub-populations size, communication topology (its degree of connectivity), migration 
rate and migration frequency are important factors related to the performance of 
distributed GAS. In general, it has been shown that distributed GAs can produce solutions 
with similar or better quality than single population GAs, while reducing the overall time 
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to completion in a factor that is almost in reciprocal proportion to the number of processors 
(Aguire, 2000). 

In the island model GA, the sub-populations are isolated during selection, breeding and 
evaluation. Islands typically focus on the evolutionary process within sub-populations 
before migrating individuals to other islands, or conceptual processors, which also carry out 
an evolutionary process. At predetermined times, during the search process, islands send 
and receive migrants to other islands. There are many variations of distributed models, e.g. 
islands, demes, and niching methods, where each requires numerous parameters to be 
defined and tuned (Gustafson, 2006).  

An example of the communication topology, can be defined as a graph in which the sub-
populations Pi (i = 0, 1,..., K - 1) are the vertices and each defined edge Li,j specifies a 
communication link between the incident vertices Pi and Pj (neighbor sub-populations) 
(Aguire, 2000). In general, assuming a directed graph for each defined link Li,j we can 
indicate the number of individuals Ri,j that will migrate from P to Pj (migration rate) and the 
number of generations M between migration events (migration interval). The 
communication topology and migration rates could be static or dynamic and migration 
could be asynchronous or synchronous. 

Various strategies for choosing migrants have been applied. Two strategies often used to 
select migrants are selection of the best and random selection. For example, the migration 
can implement a synchronous elitist broadcast strategy occurring every M generation. Each 
sub-population broadcasts a copy of its R best individuals to all its neighbor sub-
populations.  

Hence, every sub-population in every migration event receives migrants. Figure 5 illustrates 
a communication topology +l+2 island model in which each sub-population is linked to two 
neighbors (L = 2). In this example, the sub-population P0 can send individuals only to P1 
and P2 and receive migrants only from P4 and P5. 

 

Fig. 5. +1+2 communication topology. 

3. Cultural Island Model (CA-IM) 

In this section is presented an approach about the communication topology for migration 
process implemented in a Cultural Algorithm based on the island model. As noted earlier in 
the classical island model implementation, there are sub-populations connected with as ring 
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structure. Individuals in classical island model are migrated after every migration-interval 
(M) among generations and the best-worst migration policy is used.  

The approach utilized in this work is an adaption and implementation of the island model 
on the cultural structure here identified as “Cultural Island Model” (CA-IM), briefly 
introduced in Silva & Oliveira (Silva & Oliveira, 2009). The implementations have become 
simple because the same CAs structures were used as much the evolutionary structure as 
the belief space that is the main characteristic present in CAs. 

 The main characteristic present in CA-IM is the link between main belief spaces (from main 
population) and secondary belief space (from multi population). They store information 
about independent evolution for main population and sub-populations respectively, i.e. the 
cultural evolutions occur in parallel among the main population and the sub-populations of 
the islands. The link of communication between two Belief Spaces, allows migration between 
the best individuals stored in the cultural knowledge structure implemented. Figure 6 
shows the framework correspondent to the proposed structure. 

 

Fig. 6. Framework of model proposed 

Migrations from islands occur through Belief Space Multipopulation structure that perform the 
communication process among sub-populations and send the best individuals through 
Accept Migration. It occurs in a predefined interval whose parameter is M (every M 
generation) where the best individuals are evaluated by acceptance function and updated in 
each belief space. The migration from Belief Space Multipopulation to Main Belief Space is 
implemented as a number of individuals which are considered as a set of exemplars to the 
rest of the population (Situational Knowledge).  

It is important to note that CA-IM provides a continuous verification between the last 
solution (optimum value) found and the current solution. Then, it computes the number of 
generations where don't occur improvements. Thus, if the distance between the last 
generation, where the current solution was found, and the current generation is high then 
the sub-populations are eliminated and recreated randomly. As for CA-IM, there is a fixed 
difference for this occurrence in the range of 60 to 100 generations. If a new solution is not 
found in this range, then the sub-populations of the islands (Multipopulation Space) as well 
as the cultural information about all sub-populations (Belief Space Multipopulation) are 
recreated randomly by algorithm.  
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3.1 Mutation and recombination 

In mutation operation the cultural knowledge (such as situational knowledge) as well as the 
standard binary mutation operation (known as “bit-flip mutation”) is utilized. If the cultural 
knowledge is utilized during the mutation process, the mutated chromosome genes are 
replaced by the best genes from chromosome stored in situational knowledge with PM 
probability, otherwise, the genes are inverted by bit-flip mutation. The chromosome chosen 
among a set of chromosomes from situational knowledge can be the best chromosome or a 
random chromosome. 

The bit-flip mutation is a common operation applied in evolutionary algorithms to solve a 
problem with binary representation. Consequently, each bit from current mutated 
chromosome is flipped, i.e. the value of the chosen gene is inverted also with probability of 
mutation PM. Figure 7 shows the pseudo-code of mutation utilized by CA-IM. 

 

Fig. 7. Mutation pseudo-code. 

In recombination operation the cultural knowledge as well as the standard binary 
recombination operation (known as “uniform recombination”) is also utilized. In the 
uniform recombination the bits are randomly copied from the first or from the second 
parent to genes in the offspring chromosomes, in any sequence of ones and zeros. Figure 8 
shows the pseudo-code of CA-IM recombination. 

If the cultural knowledge is utilized during the recombination process, the chromosome 
genes are replaced by the best genes from chromosome stored in situational knowledge with 
PR probability. Otherwise, the genes are replaced with genes from their parents. Here only 
the best chromosome is chosen from situational knowledge during the recombination 
process. 
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Fig. 8. Recombination pseudo-code. 

4. Experimental results and discussion 

To evaluate the performance of the proposed algorithm CA-IM, a comparison of various 
tests with Distributed Genetic Algorithms utilizing the same knapsack problems was carried 
out. To make a comparison two kinds of algorithms based in Distributed GAs (Aguirre et 
al., 2000): (i) A Distributed canonical GA (denoted as DGA), and (ii) a Distributed GA-SRM 
(denoted as DGA-SRM) were utilized. The SRM term means “Self-Reproduction with 
Mutation”, and introduces diversity by means of mutation inducing the appearance of 
beneficial mutations. 

For the CA-IM algorithm there are two versions: CA-IM_1 and CA-IM_2. The only 
difference is that CA-IM_1 has a fixed rate for mutation and recombination, while CA-IM_2 
has a random rate for mutation and recombination. The standard CA (CAs) is the Cultural 
Algorithm with single population. 

4.1 DGA and DGA-SRM  

The DGA works with various 0/1 multiple knapsack problems (NP hard combinatorial) 
which from previous efforts seem to be fairly difficult for GAs (Aguirre et al., 2000). Those 
algorithms were evaluated on test problems which are taken from the literature. The 
problem sizes range from 15 objects to 105 and from 2 to 30 knapsacks and can be found in 
OR-Library (Beasley, 1990). The knapsack problems are defined by: problem (n, m) where n 
represents the number of objects and m represents the number of knapsacks. Each knapsack 
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has a specific capacity as well each object has a specific weight. For example, Weing7 (105, 2) 
represents a MKP with 105 objects and 2 knapsacks. 

Every experiment presented here has a similar capacity to the work described in DGA and 
DGA-SRM (Aguire et al., 2000) such as: population size, number of function evaluations in 
each run and a total of 100 independent runs. Each run uses a different seed for the random 
initial population. To improve understanding of DGA and DGA-SRM algorithms, some 
parameters and symbols are presented:  

• The maximum size of the population is represented by totalλ (fixed in 800); 

• The parent and offspring population sizes are represented by µ  and λ  respectively; 

• The parameter K represents the number of sub-populations (partitions). Hence,  

λ *K= totalλ  (maximum=800); 

• The parameter M is the number of generations between migration events (migration 

interval) ; 

• The symbol N represents the number of times the global optimum was found in the 100 

runs; 

• The symbolτ represents a threshold (utilized for control of a normalized mutant’s 

survival ratio).  

• The symbol T represents the number of function evaluations in each run; 

• Average is the average of the best solutions and Stdev is the standard deviation around 
Average, respectively; 

In DGA and DGA-SRM, each sub-population broadcasts a copy of its R best individuals to 

all of its neighbor sub-populations. Hence, every sub-population in every migration event 

receives mλ = L x R migrants, where L is the number of links. When there is no migration 

and the sub-populations evolve in total isolation, the values corresponding to such a 

characteristic are denoted by X in the table. The results for knapsack problem Weing7 for 

DGA and DGA-SRM is shown in the Table 1 (Aguirre et al., 2000). 
 

K /mλ λ  DGA DGA-SRM 

L R λ  M N Average Stdev µ λ  M N Average Stdev 

8 0.10 5 2 100 5 0 1094423.4 433.38 50 100 80 63 1095421.44 30.84 

8 0.05 5 1 100 5 0 1093284.95 733.24 50 100 100 66 1095423.58 29.84 

8 0.01 1 1 100 5 0 1089452.96 1082.41 50 100 80 77 1095430.51 26.51 

8 X X 100 X 0 1087385.56 1729.4 50 100 X 60 1095419.80 30.86 

Table 1.The best results for Weing7 (105, 2) by DGA and DGA–SRM ( totalλ =800; T=8x105 ). 

According to Table 1 the best value found in Average is equal to 1094423.4, for DGA and 

1095430.51 for DGA-SRM. Table 1 also indicates that the DGA-SRM improves the results 

in relation to DGA. Table 2 shows the results found for others knapsack problems by 

DGA and DGA-SRM. In order to simplify the results shown in Table 2, the following 

configuration parameters should be considered: K = 16 sub-populations and 25µ =

(Aguirre et al., 2000). 
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Problem (n, m) /mλ λ DGA DGA-SRM (τ =0.35) 

LR λ M N Average Stdev λ M N Average Stdev 

Petersen6 (39,5) 0.01 1 1 50 5 0 10506.90 26.11 50 140 77 10614.82 5.82 

Petersen7 (50,5) 0.10 5 1 100 5 0 1093284.95 733.24 50 40 89 16535 5.94 

Sento1 (60, 30) 0.10 5 1 100 5 0 1089452.96 1082.41 50 40 98 7771.78 1.54 

Sento2 (60, 30) 0.10 5 1 100 5 0 1087385.56 1729.4 50 40 84 8721.32 2.11 

Table 2. The best results for other problems by DGA and DGA-SRM ( totalλ = 800; T=4x105).  

4.2 CA-IM_1  

For the algorithm proposed (CA-IM) various parameters and symbols are also considered 
such as: 

• The parameter P is the size of main population; 

• The parameter PM is the probability of mutation and PR probability of recombination. 

• The number of islands is K (number of sub-populations); 

• The parameter α  is the percentage which defines the size of the population of each 

island at function of P.  

• The sub-population size in each island is SI, since SI = α *P.  

• The percentage of best individuals in Situational Knowledge on population space is 
represented by SKP and the percentage of best individuals in Situational Knowledge on 
multi population space is represented by SKM.  

• The parameter M is the number of generations between migration events (migration 
interval). Here M determines the interval of influence from the islands population 
through the Situational Knowledge. 

• The symbol T represents the number of function evaluations in each run; 

• The symbol N represents the number of times the global optimum was found in the 100 
runs.  

• Average is the average of the best solutions and Stdev is the standard deviation around 
Average; 

• Average of generations is the average of the generations whose best solution was found in 
each run. 

For the tests carried out for CA-IM_1, the selection chosen was tournament, whose value is 
3, the mutation rate (PM) is 0.025 and recombination rate (PR) is 0.6. The situational 
knowledge configurations are: SKP=0.2 and SKM=0.5. Table 3 shows the results found by 
CA-IM_1, whose best value found in Average is 1095445 (the optimal value) and in the 
Average of Generations is 44.49. All values reached have optimum value. However, if Average 
of Generations is low in relation to total of generations, then this means that the optimum is 
found in few generations. 

As it is shown in Table 3, it is possible to observe that CA-IM outperforms DGA-SRM for 
any configuration such as the number of sub-populations (islands) and size of sub-
population. Similarly, CA-IM also exhibits higher convergence reliability than DGA-SRM 
with higher values for N and Average with smaller Stdev. These results show that the CA-IM 
produces higher performance for all utilized parameters.  
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P K α SI M N Average of Generations Average Stdev 

400 8 0.125 50 20 100 52.9 1095445 0.0 

400 8 0,125 50 05 100 44.49 1095445 0.0 

100 7 1.0 100 05 100 68.87 1095445 0.0 

Table 3. The best results for Weing7 (105, 2) by CA-IM_1 ( totalλ =800 and T=8x105). 

A new result “Average of Generations” was introduced so as to evaluate other type other 
type of performance whose value represents the average of generations that the optimum 
value was found for 100 independent runs for each problem presented. Particularly, it 
occurs when M is low and K is high (see result for Average of Generations). This means that 
a larger number of islands with small populations produce better convergence.  

According to Table 3 the best value found in Average is 1095445 (the optimal value) while 
the Average of generations is 44.49 that means a low value, considering that 500 generations 
was utilized in each run which T=4x105. This represents 500 generations with a population 
size equal to 800 (including all subpopulations). Table 4 shows the results for others MKPs 
found by algorithm CA-IM_1.  
 

Problem (n, m) P K α SI M N Average of 
Generations

Average Stdev. 

Petersen6 (39,5) 400 8 0.125 50 20 100 30.22 10618.0 0.0 

Petersen6 (39,5) 400 4 0,25 100 05 100 26.29 10618.0 0.0 

Petersen7 (50,5) 400 8 0.125 50 20 100 78.49 16537.0 0.0 

Petersen7 (50,5) 400 4 0,25 100 05 100 71.51 16537.0 0.0 

Sento1 (60,30) 400 8 0.125 50 20 100 100.21 7772.0 0.0 

Sento1 (60,30) 400 4 0,25 100 05 100 87.44 7772.0 0.0 

Sento2 (60,30) 400 8 0.125 50 20 99 185.19 8721.81 0.099 

Sento2 (60,30) 400 4 0,25 100 05 100 166.12 87722.0 0.0 

Table 4. The best results for other problems by CA-IM_1 ( totalλ = 800, T=4x105). 

Thereby, it is possible to observe that CA-IM_1 outperforms DGA-SRM. Similarly, CA-IM_1 
also exhibits higher convergence reliability (higher values of N and Average with smaller 
Stdev) than DGA-SRM. These results show that the CA-IM_1 is able to find global optimal 
for MKP, taking into consideration the tests results with 100% success. 

The problem that presented greater difficulty was Sento2, that presented in some cases 
optimal values near to 100% such as N=98 and N=99. Even with results of N < 100 they are 
still better than the results obtained in the chosen benchmarks. In the meantime, the 
implementation of some adjustments allows CA-IM_1 to reach N=100 for Sento2. 

4.3 CA-IM_2  

For the tests carried out for CA-IM_2 the selection chosen was tournament whose value is 3. 
The mutation rate (PM) is a random value in a specific interval: PM= [0.01, 0.5]. The 
Recombination rate (PR) is also a random value in an interval: PR= [0.1, 0.99]. The situational 
knowledge configurations are: SKP=0.2 and SKM=0.5. The CA-IM_2 results are presented in 
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Table 5 that shows the results for Weing7 and in Table 6 that shows the results for others 
knapsack problems. 
 

P K α  SI M N Average of Generations Average Stdev 

400 8 0.125 50 20 100 70.48 1095445 0.0 

400 8 0,125 50 05 100 72.72 1095445 0.0 

100 7 1.0 100 05 100 107.11 1095445 0.0 

Table 5. The best results for Weing7 (105,2) by CA-IM_2 ( totalλ =800, T=8x105). 

Problem (n, m) P K α  SI M N 
Average of 

Generations
Average Stdev. 

Petersen6 (39,5) 400 8 0.125 50 20 100 37.89 10618.0 0.0 

Petersen6 (39,5) 400 4 0,25 100 05 100 33.39 10618.0 0.0 

Petersen7(50,5) 400 8 0.125 50 20 100 81.46 16537.0 0.0 

Petersen7(50,5) 400 4 0,25 100 05 100 74.38 16537.0 0.0 

Sento1(60,30) 400 8 0,25 50 20 98 112.55 7771.75 1.7717 

Sento1(60,30) 400 4 0,25 100 05 100 126.46 7772.0 0.0 

Sento2(60,30) 400 8 0.125 50 20 71 183.35 8720.0 3.7199 

Sento2(60,30) 400 4 0,25 100 05 88 173.53 8721.38 2.1732 

Table 6. The best results for other problems by CA-IM_2 ( totalλ = 800, T=4x105). 

The implementation of random rate for mutation and recombination in CA-IM_2 doesn’t 
produce satisfactory results in comparison to CA-IM_1, as it is shown in Table 6. In 
addition, the Average of Generations from algorithm CA-IM_2 is greater than CA-IM_1 for all 
knapsack problems. However, in comparison to CA-IM_1, there are few differences in 
results for Weing7 as is shown in Table 3 and Table 5. 

4.4 CA-S (Standard CA) 

For CA-S we also utilized the same configuration such as: tournament value=3, PM= 0.025 
and PR = 0.6. The situational knowledge configuration is equal to 0.2 (SKP=0.2). Every 
experiment presented here also consists of 100 independent runs and each run uses a 
different seed for the random initial population.  
 

Problem (, m) P N Average Stdev. 

Petersen6   (39,5) 800 97 10617.58 2.4002 

Petersen7   (50,5) 800 81 16533.7 6.8703 

Sento1        (60,30) 800 100 7772.0 0.0 

Sento2        (60,30) 800 82 8721.14 2.4495 

Weing7      (105,2) 800 100 1095445.0 0.0 

Table 7. The best results for all knapsack problems by CA-S (T=4x105). 
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Table 7 shows the results from standard Cultural Algorithm (CA-S) that utilizes single 
population. According to results, the CA-S reaches optimum average for 100 runs only for 
Sento1 and Weing7. However, the results from CA-S for Petersen6, Pertersen7 and Sento2 
outperform the results presented by DGA-SRM. 

5. Conclusion 

This work presented a Cultural Algorithm (CA) with single population (CA-S) and multi 
population (CA-IM) in order to improve the search performance on MKP. It was observed 
that CA-S improves the convergence reliability and search speed. However, CA-S is not 
enough to reach global optimum for most problems presented. Our cultural algorithm 
implementation with island model (CA-IM_1 and CA-IM_2) allows the migration among 
islands sub-populations and main population through belief space structures that represent 
the cultural knowledge available in Cultural Algorithms. 

The results have shown that the CA-IM_1 is better than CA-IM_2 for the benchmarks 
selected. The results have also shown that the CA-IM_1 and CA-IM_2 perform the optimum 
search and reach optimum values equally or above the ones reached by algorithms DGA 
and DGA-SRM that were chosen for comparison. The positive results obtained, give support 
the idea that this is a desirable approach for tackling highly constrained NP-complete 
problems such as the MKP. In addition, it is possible that the hybridization of cultural 
algorithms based on population of GA with local search techniques improves the results 
obtained by standard CAs. In a future work, a study will be done about the behavior of the 
sub-populations that are eliminated and recreated randomly. In addition a local search will 
be implemented to CAs as much for standard CA (single population) as for CA-IM (multi 
population) so as to verify improvements on these algorithms. 
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