Does Sterilization and Consolidation Method Influence Wear Debris morphology for Crosslinked Polyethylene?

S. Donde¹; S. Buell¹; R. Baez¹; L. Herrera¹ ¹Stryker, Mahwah, NJ

INTRODUCTION

- Sequentially cross-linked and annealed polyethylene (X3, Stryker, Mahwah, NJ) is a highly cross-linked ultra-high molecular weight polyethylene (UHMWPE) that has been available on the market for hip and knee total joint replacements with a successful clinical history^{1,2}.
- This polyethylene is GUR 1020 processed with gamma irradiation to 30 kGy followed by annealing in three sequential steps for a final irradiation dosage of 90 kGy³.
- Sterilization processes used in the industry include gas plasma sterilization (GP) and ethylene oxide gas sterilization (EtO).
- Compression molding (CM) and ram extrusion (RE) are two common consolidation methods for UHMWPE.
- The purpose of this study was to examine whether wear debris generated from knee and hip wear simulation tests are morphologically similar regardless of consolidation and sterilization method processes.

MATERIALS AND METHODS

- Knee and hip wear evaluation was conducted following a walking cycle as per ISO 14243-3 for knees and ISO 14242-3 for hips^{4,5}.
- Used serum samples were collected at 0.5 million cycle intervals for both hips and knees and processed for debris isolation using an acid digestion method⁶.
- Random fields of view for each material were collected using a Quanta 650 Field Emission Electron Microscope and 200 particles were identified for wear debris morphology analysis for both CM-GP X3 and RE-EtO X3 polyethylene for knees and hips.

Aspect ratio distribution for knee wear debris (left) and hip wear debris (right)

stryker

 Statistical analysis was performed on wear debris dimensions using the Student's t-test (p<0.05).

RESULTS

Wear Debris Morphology

	Knee (X3)		Hip (X3)	
	RE-EtO	CM-GP	RE-EtO	CM-GP
Average Length (μm)	0.19 +/- 0.12	0.15 +/- 0.09	0.13 +/- 0.06	0.11 +/- 0.05
Average Width (μm)	0.14 +/- 0.07	0.11 +/- 0.06	0.09 +/- 0.03	0.07 +/- 0.03
Average ECD (μm)	0.18 +/- 0.10	0.14 +/- 0.08	0.12 +/- 0.05	0.10 +/- 0.04

No significant difference in average length, average width, or average ECD between RE-EtO X3 and CM-GP X3 groups.

DISCUSSION

- Results showed no significant difference in wear debris morphology for X3 material, regardless of consolidation and sterilization methods.
- X3 RE with EtO sterilization did not have a significant effect on the wear debris morphology of the inserts when compared to X3 CM with GP sterilization regardless of device.

Austin, TX February 2-5, 2019

Orthopaedic Research Society

Poster # 1011

Stryker # X3-POS-13_19617

 D'Antonio JA, Capello WN, Mesko JW, Ramakrishnan R. Surg Technol Int. 2014; 25: 219-226. [2] Callary SA, Field JR, Campbell DG. Clinical Orthopaedics and Related Research 2013; 471(11): 3596. [3] Dumbleton JH, D'Antonio JA, Manley MT, et al. Clin Orthop Relat Res 2006; 453: 265. [4] International Organization for Standardization. (2014). Implants for surgery – Wear of total knee-joint prosthesis (ISO/DIS Standard No. 14243-3). [5] International Organization for Standardization. (2009). Implants for surgery – Wear of total hip-joint prosthesis (ISO/DIS Standard No. 14242-3). [6] International Organization for Standardization. (2009). Implants for surgery – Wear of total hip-joint prosthesis (ISO/DIS Standard No. 14242-3). [6] International Organization for Standardization. (2011). Wear of implant materials – Polymer and metal wear particles – Isolation and characterization (ISO/DIS Standard No. 17853).