
Chapter 6

Nanosynthesis Techniques of Silica-Coated

Nanostructures

Kwok Wei Shah

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74097

Abstract

Core-shell nanomaterials are fast-emerging hybrid nanocomposites in area of nanotechnology,
materials science and biochemistry, which are fast attracting research attention. Nanostruc-
tured nanomaterials are utilized inwide industry fields such as electronics, biopharmaceutical,
biomedicine, optics and biocatalysis. Owing to the additional exterior shell-coating material,
the primary core material’s functionality, biocompatibility, chemical stability and colloidal
dispersibility can be greatly enhanced. Silica, in particular, is found to be an excellent exterior
shell-coating material, has been widely researched for the synthesis of core-shell nanocom-
posite materials. So far, there have been numerous publications devoted to silica-coating
techniques using hydrophobic silanes, such as tetraethylorthosilicate (TEOS) or tetramethyl
orthosilicate (TMOS), via the classic Stober method. Recently, there has been strong interest in
the use of water-soluble silanes such as MPTMS (3-(mercaptopropyl)-trimethoxysilane),
MPTES (3-(mercaptopropyl-triethoxysilane), MTMS (3-(methyltrimethoxysilane)) and sodium
silicate for water-based silica-coating techniques have gained much attention, due to the fast-
growing need to focus on process simplicity, large-scale fabrication and environmental-
friendly synthesis techniques of silica-based core-shell nanomaterials. Hence, this chapter
focuses on the recent development on silica-coating techniques for colloidal nanoparticles,
particularly on water-based techniques and morphologies. In summary, we emphasize the
importance of advanced nanomaterials in today’s world and envisage there will be more
breakthrough research on aqueous silica-coating techniques for silica-encapsulated core-shell
nanomaterials.
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1. Introduction

Core-shell nanomaterials are considered as highly functional hybrid nanomaterials with dual

properties, originating from either core or shell materials. Core-shell nanomaterials have been

widely researched due to its extraordinary ability to exhibit distinctive properties of both core

and shell materials combined to deliver a wide spectrum of industry applications and require-

ments. Core-shell nanomaterials are commonly applied in different industries such as biomed-

ical, bio-electronics, pharmaceutical applications, bio-catalysis, photoluminescence imaging,

creating photonic crystals, etc. Especially for bioscience and medical research, the core-shell

particles are mainly used for cell detection, bioimaging, targeted drug delivery, controlled

drug release and bioengineering applications [1].

The benefits of an exterior shell-coating on a core particle are that surface reactivity and

thermal stability can be greatly enhanced, while colloidal stability and dispersibility are vastly

improved. Core-shell nanostructure itself can allow controlled release of center material,

reduced usage of precious materials, hollow-core templating, etc. Hollow particles can be

prepared using as a template by utilizing core-shell nanoparticles and after removing the core

either by dissolution or calcination. These hollow-core nanoparticles are useful for various

applications such as biocatalytic agent, biosupports, bioadsorbents, super light-weight struc-

ture, miniature vessels and thermal/electric insulative materials [1].

Silica is one of the most widely researched as exterior shell-coating material for encapsulat-

ing all sorts of core nanomaterials. Silica coating of nano-sized metals, semiconductors,

magnetic and ceramic nanomaterials can enhance its large surface area, quantum confine-

ment and photocatalytic, optical and magnetic properties. Silica is often chosen as the ideal

shell material to encapsulate core nanomaterials in order to modify its exterior surface

properties. Silica is also a favorite choice for core-shell nanostructures to enhance colloidal

stability. The main advantages of silica as an excellent candidate for shell-encapsulation

material predominantly lies in its exceptionally good colloidal stability, especially in water-

based media, easy controllability of the synthesis, chemical inertness, controlled porosity,

high processability and optical transparency. Silica possesses other advantages such as

(i) lower Van der Waals interactions compared to bare core particles (Hamaker constant

is smaller for core-shell) and (ii) charged molecules that can be grafted onto silica shell

at silica/water interfaces under alkaline conditions. Thus, silica shell can provide effective

steric-hindrance and electrostatic protection on its core material, as well as function as

excellent dispersant to provide electrostatically stable colloids. Furthermore, silica shell

allows core nanoparticle to be biocompatible and easily bioconjugated with functional

groups, which is necessary for biomedical, diagnostic and therapeutic applications (mag-

netic resonance imaging, MRI) [2].

However, the simple large-scale production and environmental-friendly fabrication of silica-

coated core-shell nanomaterials currently remain a great challenge/bottleneck for practical

commercialization [3]. The effective growth of homogenous silica shells on core nanoparticles

faces problems of low chemical compatibility between both components [4]. Most existing

silica-coating methods are dependent upon prior priming the surface of core material with
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coupling agents, surfactants or polymers. The purpose of surface priming is to increase the

compatibility of the core surface with silica, while providing particles with sufficient colloidal

stability, so that colloids can be transferred into alcohol-based medium and classical Stober

method [5] (using hydrophobic TEOS or TMOS in ethanol-water medium under alkaline

conditions) is applicable for growing uniform silica shells on metal cores. A seminal publica-

tion on silica-coating gold nanoparticles was published by Liz-Marzán et al. [6]. Liz-Marzán

et al. proposed silica-coating gold colloids in ethanol medium using a modified Stöber process.

To achieve this, the authors surface-primed the nanoparticles with ATPMS before stabilizing

the gold colloids by silica coating with a thin silica layer using sodium silicate in water

medium, so that they can be stably transferred into ethanol medium. Since Liz-Marzán’s

pioneering work in 1996, many research studies have been carried out to simplify and shorten

the tedious multiple steps procedure [7].

Recently, there has been an increasing number of studies on aqueous synthesis techniques of

silica-coating nanoparticles due to its process simplicity, large scalability and environmental

friendliness. The key advantage of synthesizing silica in aqueous solution will be that the

problem of poor colloidal stability of core nanoparticles in alcohol mediums, due to reduced

surface charges, can be resolved and, thus, obviates any need to perform tedious surface

stabilization procedures [7]. Essentially, any aqueous synthetic route will allow users to over-

come a key challenge of colloidal instability faced by existing silica-coating techniques, which

occurs when metal colloids are transferred into organic solvents such as ethanol or isopropanol

for silica coating via classic Stober synthesis techniques.

Water-based techniques enable scale-up production of silica-coated nanomaterials by harne-

ssing the excellent colloidal stability of water-soluble nanoparticles in aqueous medium. The

water solubility of silane precursors presents a highly attractive property to directly coat

nanoparticles with silica in few simpler steps. Another advantage of an aqueous synthesis is

that it promotes green chemistry in material synthesis through the use of inexpensive, non-

toxic and ecologically friendly solvents such as water, in place of toxic solvents such as ethanol

or isopropanol. By adopting a water-based silica-coating strategy, users can stably produce

large quantities of core-shell nanostructures via simpler one-pot synthetic route. Essentially, by

using water-soluble silane precursors, a water-based technique will allow fast and extensive

silica coating of nanoparticle cores within a shorter time; without any need for transfer into

alcoholic medium, dialysis or a change in reaction mixture, which are necessary for existing

techniques such as Stöber process or reverse microemulsion techniques. A general synthetic

route promotes green chemistry through sustainable material synthesis through the use of an

inexpensive, non-toxic and ecologically friendly water medium, in place of organic toxic

solvents such as ethanol or isopropanol. Furthermore, another important advantage of aque-

ous silica coating is that it is relatively neutral pH and lack of alcohol, thus being more suitable

for encapsulating sensitive biomaterials such as enzymes and cells [8]. Aqueous silica-coating

techniques are relatively straightforward processes that are less toxic, more cost-efficient and

more environment-friendly. Hence, aqueous silica-coating techniques are not only less com-

plex but also highly upscalable for commercial/industrial productions. These are the key

reasons that motivated this chapter into summarizing the latest developments of new water-

based techniques for direct silica coating of core nanoparticles.
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Since water-based silica-coating of core-shell nanoparticles is a fast broadening field that is

presently seeing remarkable developments, we summarized a collection of up-to-date work

related to a variety of water-based silica core-shell nanomaterials and their synthesis tech-

niques. In this chapter, four main types of aqueous synthesis routes related to water-soluble

silane precursors have been widely used in recent publications, namely sodium silicate,

MPTMS (3-(mercaptopropyl)-trimethoxysilane), MPTES (3-(mercaptopropyl-triethoxysilane)

and MTMS (3-(methyltrimethoxysilane)). These silane precursors possess high water solubil-

ity. For example, the alkoxy group of MPTMS has been replaced with a sufficiently polar

group. The substitution of the methoxy group in water-insoluble tetramethyl orthosilicate

(TMOS) with a mercaptopropyl group (‘MP’) results in MPTMS that can be hydrolyzed in

water prior to condensation to form core-shell structures at the nanoscale.

Table 1 summarizes the pros and cons of aqueous silica coating (using water-soluble silanes,

namely sodium silicate, MPTMS, MPTES and MTMS) and solvent-based silica coating (using

water-insoluble silanes, such as TEOS), which will be discussed in subsequent sections.

2. Sodium silicate-assisted silica coating

Silanization of diverse metal-core and semiconductor-core nanomaterial into core-shell sys-

tems has gathered much research attention due to enhancement of surface properties. Silica-

shell encapsulation was useful in inhibiting particle growth, agglomeration and photo-induced

Pros Cons

“Aqueous-

based”

silica-coating

techniques

1. Facile one-step synthesis

2. Precisely controllable shell

thickness

3. Shell growth is generally faster

than non-aqueous routes

4. Functional groups may be

intrinsically incorporated

5. Mild and less toxic,

environmentally friendly

6. Most cost-effective and

upscalable technique

1. May still require a small amount of acidic and/or basic

catalysts

2. May require new surface functional groups.

3. Relatively new field, hence limited literature available.

Generally applicable to hydrophilic core-materials only

“Solvent-

based”

silica-coating

techniques

1. Shell thickness adjustable

through reactant conditions

2. Extensively researched and

mature technology

3. Mild, ambient temperature,

low-pressure conditions

4. Nanometric resolution control of

core/shell morphology

5. Structures and morphologies

easily reproducible and tunable

6. Generally fast hydrolysis and

condensation of silica

1. Complex reactions, multiple precursors, solvents, controls

2. Multiple reactants increase costs, time and environmental

pollution, limited scale

3. Alcoholic and extreme pH conditions are cytotoxic

4. Processes to remove alcohol require evaporation and buffer

solutions, increasing time, cost and complexity

5. Need surface functionalisation

Table 1. Pros & cons of aqueous and non-aqueous silica-coating routes.
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decomposition. For example, synthesizing silica coatings encapsulating gold nanoparticles

with Raman-active dye molecules was proven to be useful as a surface-enhanced Raman

scattering (SERS) nanoprobes. Inert and biocompatible silica-shell coatings are useful for bio-

conjugation of quantum dots (QDs). Silica core-shell inhibits agglomeration of nanoparticles,

hinders foreign biospecies from contaminating the nanoparticles’ surface and aids to enhance

the high photoluminescence for biosensing. Surface functionalisation of the silica outer

shell with any various types of functional groups, such as carboxylate COOH, amine NH2,

phosphate, thiol SH and poly(ethyleneglycol) (PEG) groups, enables enhanced control in

bioconjugation techniques [9].

A primary work on silica-coating gold nanoparticles was published by Liz-Marzán et al. [6]

in 1996. The authors proposed silica-coating gold colloids in ethanol-based medium using a

modified Stober process [5]. First, the gold colloidal surface must be activated with a surface-

coupling agent, 3-aminopropyltrimethoxysilane (APTMS), to render the gold nanoparticle

surface vitreophillic (that is receptive toward silica monomers or oligomers) before proceeding

to coat them with water-soluble sodium silicate due to the low affinity between gold

nanoparticles and sodium silicate. After APTMS treatment, the vitreophilic Au nanoparticles

are coated with a thin inhomogenous silica shell (thickness < 2 nm) using sodium silicate in

water at a low pH to stabilize the gold colloids, so that they can be stably transferred into

alcoholic medium (Figure 1). However, the critical step of silanization with sodium silicate is

poorly reproducible, which requires an extended time duration, typically from a few days to

weeks, before a sufficient layer silica shell can be formed to stabilize the nanoparticles in the

alcohol solution [10]. Using Stober process as the last step, Liz-Marzán coated a thicker

homogenous silica layer (thickness > 5 nm) in ethanol-water mixture using silane precursor

TEOS and the silanol groups provided by sodium silicate as anchor points.

Zhou et al. in 2005 [11] synthesized, based on a simple chemical precipitation, nano-sized

CdSe quantum dots at normal temperature in slightly alkaline conditions. Also, silica encap-

sulation onto these QDs via a slow polymerization of SiO2 using sodium silicate is done

by adding ethanol. Cadmium selenide (CdSe) quantum dots were thinly encapsulated with

a 1–2 nm thin silica in an aqueous sodium silicate at pH 10.5 over 5 days of vigorous stirring

(Figure 2). However, despite the absence of aggregates proving improvement to disper-

sity, the coated particles were hardly monodispersed and without a distinctive core-shell

Figure 1. (Left) Schematic of aqueous synthesis procedure used by Liz-Marzán to coat thin silica shell on Au nanoparticles.

(Right) TEM images of 15 nm-sized gold nanoparticles coated with 2 nm silica shells after addition of sodium silicate [6].
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structure. The authors attributed the success of silica-coating to the mercapto-groups present

in the MPTMS, which are used to bridge the low affinity between CdSe core and silica shell.

This principle would be repeated by Wolcott et al. [9] in the following year in their reported

attempt to coat cadmium telluride (CdTe) quantum dots as they primed the CdTe

nanoparticles with MPTMS prior to gradual silica growth under stirring over 72 h in aque-

ous sodium silicate solution.

Hunyadi et al. in 2006 [12] synthesized silver nanowires coated with a silica shell. Simona uses

an indirect coating method that involved the use of a bifunctional linker, (HS(CH2)3Si(OCH3)3,

3-mercaptopropyltrimethoxysilane), so that the thiol SH groups bind Ag to the core surface

[12]. Simona’s approach is essentially seedless, surfactantless approach. Different volumes of

sodium silicate Na2O(SiO2)3 were added in alkaline pH and left overnight to allow formation

of well-controlled layers of silica. The silica thickness was precisely controlled from �10 to

�150 nm. The uniform silica coating over the whole surface of the nanowire is subjected to

initial sodium silicate concentrations. Simona also found that MPTMS is critical to make a

uniform layer of silver. When the MPTMS dosage exceeded 8.08 mM, the silica shell became

undulating and inhomogenous (Figure 3). The reference experiment to synthesize SiO2 on

silver nanowires without the silane primer proved that the maximum shell thickness achieved

was 5–10 nm only, regardless of the starting dosage of the silicate precursor. This outcome

proves that silane performs a critical “surface-primer” function at interface of core-shell mate-

rials in the encapsulation process as a molecular binder.

Figure 2. (Left) Schematic of aqueous synthesis procedure used by Zhou et al. to coat thin silica shell on CdSe

nanoparticles using sodium silicate. (Right) TEM of CdSe NPs before (A) and after (B) encapsulation [11].

Figure 3. (Left) Schematic of 3-mercaptopropyltrimethoxysilane is binded via the sulfur to the nanowire surface with Ag,

leaving three free –OCH2 methoxy groups facing the water medium. Addition of sodium silicate produces silica, SiO2.

(Right) TEM images of Ag nanowires and silica-encapsulted Ag nanowires. Scale bar is 500 nm (g) and 100 nm (h). For

thick layers of silica shells, the coating becomes inconsistent (h) [12].
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Kobayashi et al. in 2007 [13] carried out silica encapsulation of nano-sized copper prepared

from water-based solutions of copper salts. The silica shells chemically stabilized Cu colloids.

Hydrazine and citric acid were used to reduce Cu salts and CTAB surfactants to stabilize

50 nm Cu metallic core particles. Then, silane-coupling agent, ATPMS, is added for surface

functionalisation, and then Cu nanoparticles were coated with sodium silicate. Cu@SiO2 core-

shell nanoparticles are synthesized with ~10 nm silica layer. The mixed solution was left for

15 min for APTMS to attach on the surface of the core particles. Then, sodium silicate was

added to the colloid, followed by tuning to pH 10 using CTAB resin for cation exchange. The

synthesis time for the silica shell was 24 h. The key problem for using Cu-based particles is

their fast oxidation in air environment. This arises from their instability toward oxygen to form

CuO. To improve stability and reduce oxidation of copper nanoparticles, surfactant capping

surrounding the copper particles inhibits oxygen molecules found inside the water-based

medium from reacting with the copper. Previously, Kobayashi performed chemical stabiliza-

tion by silica protection of cobalt nanoparticles prepared through reducing of Co salts in water-

based medium. The silica shell forms a homogenous protection layer habiting O2 molecules

from reacting with the metallic cobalt nanoparticles. The nanoparticles were stable and chem-

ically unchanged under high temperature in O2 environment. This method has benefits such as

(i) extraordinary colloidal stable dispersions in water, (ii) facile surface functionalisation to

synthesize colloids for non-aqueous mediums and (iii) facile control of particle-to-particle

interactions.

Hu et al. in 2009 [14] synthesized Fe3O4@SiO2 magnetic composite nanospheres for fast and

recyclable removal of lead and mercury from water (Figure 4). The Fe3O4@SiO2 nanospheres

were synthesized with the dissolution of sodium silicate in deionized water, into which Fe3O4

was added. HCL was added as a catalyst to adjust pH to 6.0 and the mixture stirred for 3 h at

80�C. A thin layer of silica coating visibly encapsulates the iron oxide spheres; the deposition

of silica was also confirmed through XRD.

Wang et al. in 2010 [15] demonstrated a slightly different route starting with a suspension

of Fe3O4 in deionized water at 80�C under a nitrogen flow, the pH was adjusted to 6.0 with

Figure 4. (Top row) Schematic of aqueous synthesis procedure used by Hu et al. to coat thin silica shell on Fe3O4

nanoparticles using sodium silicate. (Bottom row) SEM images of bare Fe3O4 microspheres (A, B) and (C) TEM images

of Fe3O4@SiO2 composite microparticles [14].
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hydrochloric acid. Sodium silicate precursor was then added dropwise under strong stirring.

The coating process was carried out for 5 h and the Fe3O4@SiO2 nano particles collected via

magnetic separation (Figure 5). In both Hu’s and Wang’s experiments, the silica shell was thin

(<2 nm) and only just barely discernible under high-magnification TEM.

Li et al. in 2013 [16] proposed a shell-isolated nanoparticle-enhanced Raman spectroscopy

(SHINERS) technique using core-shell structured gold@silica nanoparticles in aqueous solu-

tion with sodium silicate. The authors synthesized shell-isolated nanoparticles (SHINs) of

sphere (55 and 120 nm diameter) finding that a 90�C reaction temperature accelerates the

formation of silica shell on the gold nanoparticles. Gold nanoparticles were surface-primed

using APTMS and coated with a 4 and 1 nm layer of silica using sodium silicate. Additionally,

Figure 5. (Top row) Schematic of aqueous synthesis procedure used by Wang et al. to coat thin silica shell on Fe3O4

nanoparticles using sodium silicate. (Bottom row) TEM image showing (A) Fe3O4, (B) Fe3O4@SiO2 particles and

(C) Fe3O4@SiO2–NH2 [15].

Figure 6. (Left) Schematic of aqueous synthesis procedure used by Li et al. to coat thin silica shell on Au nanoparticles

using sodium silicate. (Right) TEM photos of gold@SiO2 nanoparticles. (a–d) Various pH levels are used to grow silica

shells and using APTMS as surface primer. High pH of 11 and low pH of 8 conditions with 1 h. heating using sodium

silicate solution were used to prepare the SHINs (a and b). (c and d) gold@SiO2 NPs were synthesized of ~10.2 for 0.5 and

1 h, respectively, at pH 10 [16].
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the authors noted that excessively high pH conditions (>11) resulted in a thin silica layer with

pinholes and low conditions (pH < 8) resulted in thicker silica shells. The shell will be dissolved

by sodium hydroxide interfering with the silica growth if the pH is too high, e.g. pH greater than

11. This results in holes of nano to micron sizes within the thin silica shells. The silica shell grows

too fast and thickens quickly for a low pH of 8 for the sodium silicate medium (Figure 6).

Therefore, plasmonic field enhancement from the metal surface cannot extend beyond the shell,

and no signal is acquired.

Shin et al. 2015 [17] demonstrated that a single layer of self-assembled core metal particles with

silica shells can produce 1~2 nm empty nano-gaps by assembling silica-gold nanoparticles

(Au@SiO2) and chemical etching on different substrates. Colloidal silica shell gold-core nanopa-

rticles were prepared by adding 5% v/v (3-aminopropyl)trimethoxysilane to gold nanoparticle

seed solution. The gold colloid reacted with aqueous APTMS solution under vigorous stirring

for 30 min at room temperature. After mixing, sodium silicate aqueous solution was added. A

5 nm silica layer is grown by placing in 90�C hot bath for 1 h under fast stirring and allowing the

solution to cool to normal temperature. By reacting for 0.5 h in hot bath, the silica layer is grown

to thickness of 2.5 nm only.

3. MPTMS-assisted silica coating

Silanization methods have also been developed for surface stabilization of core nanoparticles

using sodium silicate, attaching artificial resin polymers (e.g., polyvinylpyrrolidone) or substitut-

ing the depleted sodium citrate on the surface of core nanoparticle adding extra fresh sodium

citrate to metal cores. After surface stabilization steps, traditional Stober method is used for thick

silica coating of the core. This requires conventional silane precursors (TMOS, TEOS) to be

dissolved in ethanol-water mixture, which facilitates its hydrolysis and condensation. As these

hydrophobic precursors are insoluble in aqueous medium and cannot undergo hydrolysis, large

amount of alchohol is used to dissolve hydrophobic silanes prior to silica condensation process.

Besides using such hydrophobic silane precursors, there arises strong interest to discover water-

soluble silane precursors for silica encapsulation in aqueous-based medium, which allows silica-

coating process to be much simpler, cost-efficient and environmentally friendly for various

applications [18].

Recently, several research groups have reported the use of 3-mercaptopropyl-trimethoxysilane

(MPTMS) as a water-soluble silane precursor to synthesize thick silica shells in fully aqueous

medium. Previously, Niu [19], Nakamura [20], Lee [21], Shah [22] and Shang [23] successfully

silica-coated metal nanoparticles, quantum dots and iron-oxide nanoparticles using water-

based MPTMS in aqueous solution under mild conditions. Using MPTMS as a water-soluble

silane precursor, direct alcohol-free silica coating in water-based medium becomes possible.

This straightforward, one-pot method uses MPTMS as (i) surface primer, which renders

particle-surface vitreophilic, (ii) a silane-precursor, which provides a thick silica shell layer

>10 nm for particle stabilzation, (iii) surface modifier, which provides Thiol SH groups and

(iv) a negative surface charge for dispersibility. Furthermore, speed, thickness and uniformity
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can be easily controlled through the concentration of precursor, reaction times and reaction

temperatures, making aqueous routes far less complex than classic Stober method.

Niu et al. in 2010 [19] reported a facile route to fabricate homogenous, monodisperse, accu-

rately size-tunable, SH-functionalized and magnetic silica-shell nanocomposite nanospheres

(SHSSCNs) with sizes less than 100 nm. These nanocomposite nanospheres are synthesized

based on the self-assembly of magnetic nanoparticles and a surface-priming copolymer

polystyrene-block-poly(acrylic acid) (PS-b-PAA) in aqueous medium, followed by an easy

silanization reaction with a silane precursor MPTMS to grow a silica shell on the interface of

magnetite micelles at ambient temperature. (Step 1) Hydrophobic magnetite (Fe3O4) nanocores

with a dimension of 5 nm were added to form magnetite-based micelles through their self-

assembly in water with an amphiphilic block copolymer, PS-b-PAA. After filtration with

deionized water, (Step 2) MPTMS was used to grow a hybrid silica layer by hydrolyzing and

condensing the silane onto surface of the magnetic micelles under alkaline conditions. At the

same time, SH groups were functionalised onto the surface of the nanocomposite particle in

situ by using MPTMS silane as precursor, which is obviously distinct from traditional silica-

encapsulation techniques reported to date. This is possible due to the fact that the core particles

are encapsulated by a layer of polymeric shell, which allows the MPTMS silane to attach easily

and directly onto the polymer shell’s abundant surface hydroxyl groups. During the silica-

encapsulation procedure, MPTMS performs as the silane precursor, thiol-functional linker and

surface-capping stabilizers for the magnetite micelles and also for SH-modification of the

nanoparticles in the silanization step.

Nakamura et al. in 2011 [20] used MPTMS for surface modification of quantum dots and

synthesis of the silica shell to grow a layer of organosilica dense shell. MPTMS, quantum dot

QD605 and NH4OHwere added and then heated for 3 h to grow the silica layer at 100�C. Extra

steps like filtration or exchanging the reacting medium or adding alcohol were required.

The growth of the silica shell was easily done in 3 h (Figure 7). The procedure is fast and easy,

and the thiol groups inherent in silica shell enable easy surface bioconjugations to produce

functionalised multiluminescent bioimaging markers. MPTMS and ammonia NH4OH were

mixed and then incubated to grow the silica layer. Fluorescent markers such as QD 605 and

Figure 7. (Left) (a) Synthesis of dual fluorescent thiol-OS-QDs by Nakamura et al. to coat thin silica shell on Au nanorods

using sodium silicate. Synthesis scheme for a single-step fabrication of double fluorescent thiol-OS-QDs. (Right) TEM

images of thiol-OS-QDs with different silica shell thickness regulated by MPTMS dosage (b and c) [20].
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rhodamine B were added. After reaction, the solution was centrifuged to discard unreacted

contents. The aqueous silica encapsulation using Nakamura’s ultra-fast technique took only

3 h, as opposed to using conventional reverse emulsion technique, which requires 1 day or

using water-based sodium silicate, which requires 3 days. In addition, the presence of intrinsic

thiol SH groups allows conjugation with thiol-reactive dyes or biomolecules, without the need

for additional surface functionalization steps.

Lee et al. in 2011 [21] reported that for in vivo applications, such as biological imaging and

medicine, nanoparticles must be safe in cell toxicity. Gold nanorods are often surface-capped

and stabilized with CTAB cetyltrimethylammonium bromide, which will disrupt cell biology

and cell growth as a cytotoxic surfactant. Silica coating and surface encapsulation of single

nanoparticles can provide a safer substitute to surface CTAB for both decreasing cytotoxicity

and improving colloidal stability. Lee synthesized silica-coated gold nanorods in aqueous

medium. In his synthesis technique, Au nanorods were mixed to a solution of (3-aminopro-

pyldimethylethoxysilane) and MPTMS for 12 h under stirring after which NH4OH was added

to form silica shell thickness < 2 nm. The authors found that the amount of amino-silane

affected the growth of silica layer surrounding gold-NRs (Figure 8).

Shah et al. in 2014 [22] reported a novel direct silica coating in water-based silica-coating

routes, which is alcohol-free one-step method using “pre-hydrolysed” MPTMS making silica

coating far less complex than classic Stober method. This technique presents a facile, scalable,

environmentally friendly process for thick coating of metal particles with a thick (5–30 nm)

silica shell. The success of the process is using “pre-hydrolysed” MPTMS as silane precursor.

Silica coating could be directly attributed to the strong and direct metal-thiol bond. Briefly,

metal nanoparticles were washed and re-dispersed in deionized water before being combined

into a pre-hydrolysed MPTMS in DI water. Ammonia was added as catalyst. While growth

was easily scalable, the growth rate of the silica shell is controllable to 25, 11.7 and 10 nm/h.

during condensation. The process slows down owing to eventual consumption of hydrolysed

MPTMS. Different metal NPs (i.e., gold, silver, platinum) are successfully encapsulated with a

silica layer under a completely alcohol-free environment, whose shell thickness can be easily

and precisely synthesized by changing the growth duration (Figure 9). This novel water-based

procedure is used for the fabrication of SERS-enhanced silver@SiO2 nanoparticles without the

Figure 8. (Left) (a) Schematic of aqueous synthesis procedure used by Lee et al. to coat thin silica shell on Au nanorods

using sodium silicate. (Right) Images of AuNRs sized 50 nm, (b) SEM image of core-shell Au nanorods and (c) TEM image

of silica shell (<2 nm) AuNRs [21].
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fluorescence background, which is used for bioimaging as SERS markers. The facile silica-

encapsulation procedure developed here presents a highly potential encapsulating method

and protection for the metallic core nanoparticles. The resulting highly negatively charged

and SERS-enhanced metal@SiO2 nanoparticles with thiol-functionalised surfaces hold great

potential for biomedical applications. Such as fluorescence-free SERS-enhanced nanoparticles

are useful for ultrasensitive bioimaging and biodetection applications.

Shang et al. in 2016 [23] synthesized iron oxide Fe3O4 nanoparticles coated with 10–20 nm

thick silica shells using the same method reported by Shah et al. [22] after reacting for 2 h at

room temperature with constant stirring (Figure 10). Hydrolysed MPTMS is formed by adding

MPTM into deionized water and stirred [22]. Thereafter, Fe3O4 spheres were added into pre-

hydrolysed MPTMS solution followed by adding ammonium hydroxide. Fe3O4@SiO2-SH

spheres (0.1 g) were dispersed in H2O2, in order to oxidize SH groups to SO3H groups to form

Fe3O4@SiO2-SO3H sulfonic acid-functionalised spheres. When Fe3O4@SiO2 spheres and PdCl2
solution were added, Pd2+ ions could be surface immobilized onto the surface of silica shell via

coordination interaction between SO3H groups and Pd2+ ions. Pd2+ ions immobilized on the

Figure 9. (Top row) Schematic of aqueous synthesis procedure used by Shah et al. to coat thin silica shell on Ag

nanospheres using MPTMS. (Bottom row) Ag@SiO2 (A) and Ag@SiO2 after coating for (B) 1 h, (C) 3 h and (D) 5 h [22].

Figure 10. (Left) Schematic of aqueous synthesis procedure used by Shang et al. to coat thin silica shell on Ag

nanospheres using MPTMS. (Right) (A, B) TEM micrographs of resulting Fe3O4@SiO2-SH spheres [23].
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surface of Fe3O4@SiO2 particles oxidized the pyrrole monomer to give PPy-Pd layer surround-

ing Fe3O4@SiO2-SO3H spheres. The nanocomposite Fe3O4@SiO2-SO3H@PPy-Pd nanoparticles

reduced 4-nitrophenol and undergo Suzuki coupling reactions as a nanocatalyst.

4. MPTES-assisted silica coating

Cui et al. in 2011 [24] proposed that highly stable Au@SiO2 nanoparticles with functional

groups were easily fabricated by pre-hydrolysis of MPTES in a water together with gold

nanoparticles. In the preparation of organosilica shell, heterofunctional poly(ethyleneglycol)

(SH-PEG-COOH) solution was added into solution containing Au nanoparticles and then

MPTES is added. The solubility of MPTES in the aqueous solution is very low and tends to

form an emulsion. NH4OH was then added to adjust the solution pH to 8.5–9. The synthesis

performed under static conditions for 48 h without stirring or shaking is the unique advantage

of simplicity of the present method. The size of organosilica outer layer can be easily tuned by

controlling the MPTES added. Steric hindrance caused by SH-PEG-COOH polymers, which

are formed on gold surface, can inhibit gold particles aggregation, and therefore, polymer

brushes perform a critical role in core-shell nanoparticles. Without any SH-PEG-COOH steric

hindrance, gold particles will agglomerate and nucleate from the mixture even in MPTES

solution. Au@SiO2 particles appear to be rounded in shape and singular in nature. Every

particle is sized about 55 nm and has a single gold core. The silica layer is about 15–75 nm in

thickness (Figure 11). The silica thickness could be simply tuned by the concentration of

MPTES. The surface charge of these Au@SiO2 core-shell particles was measured to have

51.7 mV in zeta potential. Conventional Au@SiO2 core-shell particles are measured to have

38 mV in zeta potential. These zeta measurements confirm the improved stability of the

Au@SiO2 nanoparticles upon organosilica shell coating.

Gao et al. in 2015 [25] synthesized multifunctional gold nanostars through the direct silica

coating in aqueous solution using “pre-hydrolyzed”MPTES. Organosilica shells are synthesized

by first hydrolyzing 3-mercaptopropyltriethoxysilane (MPTES) as silane precursor in water. Due

to the large amount of SH groups provided byMPTES, the tedious step of surface modification is

avoided, and the synthesis technique is easily controlled and simple. Gao reported this simple

synthesis of highly functional anisotropic Au nanostars via directly coating silica on the surface

Figure 11. (Left) Proposed growth mechanism of Au@organosilica nanoparticles by Cui et al. using MPTES in water

medium. (Right) TEM images of gold@silica core-shells with the 55 nm gold particles and varying silica thicknesses:

(a = 15 and b = 20 nm) [24].
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of nano-sized star-shaped gold cores and subsequently immobilization of gadolinium chelates.

Highly dispersed and uniformly sized Au-Gd nanostars@SiO2 absorb strongly within the NIR

spectrum and give out strong SERS waves which can strengthen magnetic resonance imaging.

More silica coating was grown by adding MPTES and NH4OH to the water-nanostars mixture

and stirring for 1–2 min. The suspension was left for half a day to produce star-shaped Au@Si-

lica. Obviously, 60 nm Au@SiO2 nanostars and 20 nm silica shell, which are highly homogenous,

are seen under TEM imaging (Figure 12). In addition, using this one-step procedure, in situ

surface immobilization of SH groups onto Au@SiO2 nanostars on the outer surface can be easily

done for subsequent bioconjugation. This nanocomposite with distinct core-shell structure pre-

serves the star shape and as a result gives efficient conversion from photo to thermal effect.

The silica outer coating could prevent Raman markers from detachment loss. This ensures that

Au nanostars@SiO2 has greater Raman signals strength and sensing ability. A facile way via

aqueous-coating silica directly on Au star-shaped cores to fabricate functional nanoparticles for

applications in bioimaging and detection of cancer supports future research in silica-coated

nanostructures for cancer therapy and diagnosis applications.

5. MTMS-assisted silica coating

Core-shell nano/microcapsule is a fast expanding area of research because of their wide

applications, such as effective storage, controlled release and strong adsorption. Batch produc-

tion of oil-loaded nano/microcapsules favors facile one-step fabrication methods.

Fei et al. in 2006 [26] synthesized monodisperse functionalised silica microcapsules using a one-

pot procedure at room temperature. Silica encapsulation of oil microdroplet is reported. This is

done without using anymediating agent or surfactant. Fei synthesized silica nano/microcapsules

using self-silanization reaction at water-oil interface. N,N-diethyl-m-toluamide (DEET, Aldrich)

was chosen as PCM to be silica-encapsulated. A water-oil solution of methyltrimethoxysilane

(MTMS) and DEET was mixed into water and 3-aminopropyltrimethoxysilane (APTMS) and

sonicated to get a white dispersion. When MTMS and APTMS are mixed, sol-gel reaction takes

place and the solution reacts to give white-colored suspension. Adding MTMS or APTMS alone

into water, there is no whitening or sol-gel reactions to be observed. Ottenbrite et al. [27] reported

similar sol-gel effect. Monodisperse spheres are about 900 nm in diameter. The spheres had sizes

Figure 12. (Left) Illustration of the design of gold nanostars@SiO2 coated using MPTES in water medium by Gao et al.

(Right) TEM images of synthesized gold nanostars@SiO2 (a) Scalebar 50 nm (b) Scalebar 200 nm [25].
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of 900 nm and shell layer of 70 nm thick (Figure 13). During the hydrolysis and sol-gel reactions

between MTMS and APTMS, MTMS diffused from micro-droplet to the oil surface. Microparti-

cle size and shell dimensions can be easily adjusted by tuning the precursors dosage and

concentrations, subjected to oil loading and sphere hardness requirements. In summary, silica-

coated nanospheres were synthesized in a facile way [26]. In this one-step sol-gel technique, no

use of intermediate agents or surfactant were required.

Jin et al. in 2010 [28] presented a one-step “sol-gel” method for the formation of silica-coated

core-shell microcapsules of phase change materials (PCM) in aqueous medium without using

surfactants or dispersants. The main issues associated with the use of polymeric shell materials

for encapsulating core PCM materials are their low thermal conductivity and undesirable

residues such as formaldehyde. Silica shell material has a much higher thermal conductivity

and chemical stability than the polymeric materials. There have been many reports on the use

of silica as the shell material of microcapsules or nanocapsules for controlled release and

targeted drug delivery, and protecting active agents. Various methods have been proposed

for making silica-shelled PCM microcapsules, including Pickering stabilization, water/oil/

water emulsion templating using sodium silicate as the precursor, water/oil or oil/water emul-

sion templating using tetraethylorthosilicate (TEOS) as the precursor under acidic or basic

conditions and hydrolysis-condensation reactions using tetraethylorthosilicate (TEOS) as the

silica precursor with surfactants. Jin silica-coated nonadecane using methyltrimethoxysilane

(MTMS) and 3-aminopropyl trimethoxysilane (APTMS) as silica precursors without any sur-

factants in an aqueous solution of distilled water. The synthesis was done under magnetic

stirring to produce clear spherical, core-shell microparticles. A clear core-shell microstructure

of few microns and a shell thickness about 500 nm (Figure 14). Positively charged amine

groups of the APTMS suggest that MTMS in the oil phase diffuses to the oil-water interface

where it reacts with the APTMS in the water phase to form a silica shell around the oil droplet.

This effect was also observed by Ottenbrite [27] in their synthesis of organosilica nanoparticles,

using aminopropyltriethoxysilane as the silica precursor. Jin found that increasing the volume

of APTMS in water above 2% results in gelling, and no microcapsules were formed.

Figure 13. (Left) Illustration of the design of gold nanostars@SiO2 coated using MPTES in water medium by Fei et al. SEM

images of monodisperse organosilica nanocapsules of 900 nm diameter and 70 nm thick. (Right) SEM images of

organosilica nanocapsules containing DEET about 300 nm diameter and 30 nm thickness (a) Scalebar 1 µm, (b) TEM

image, and (c) Scalebar 160 nm [26].
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6. Conclusion

In this chapter, we summarize up-to-date the four major water-based silica-coating strategies

for a variety of core nanomaterials. Currently, there are four successful water-based routes

using different water-soluble silane precursors, namely sodium silicate, MPTMS, MPTES and

MTMS. We reviewed these techniques in aqueous condition and their final core-shell morphol-

ogies. Their effective silica encapsulation leads to improved colloidal properties and creates

new emerging materials based on silica-coated core-shell nanostructures. In particular, these

simple large-scale aqueous synthesis techniques for silica-coated nanoparticles and their mor-

phologies are important for paving new and practical applications. Four major water-based

routes for silica-coating core-shell nanostructures are analyzed and their findings relating to

sodium silicate, MPTMS, MPTES and MTMS are summarized below:

1. Sodium silicate as a precursor and its resultant shells are highly dependent on pH condi-

tions and coating process requires a long period of time, lasting a few days.

2. Sodium silicate precursor is suitable for very thin silica-shell coatings (<2 nm), whose

resultant silica-shell surface is often uneven, irregular and inhomogeneous.

3. Sodium silicate can be precipitated into silica-shell coatings under fully aqueous condi-

tions (thin coat <6 nm), as well as under ethanol-water conditions (thick coating >10 nm).

4. Sodium silicate provide only –OH groups, which may demand extra functionalisation step

to provide additional groups, such as –SH, –NH2, –CHO, –COOH for conjugation.

5. MPTMS and MPTES precursors are effective in silica-coating metallic and semiconductor

nanomaterials of different morphologies (nanospheres, nanorods, nanostars)

6. “Pre-hydrolysis” of MPTMS and MPTES is an essential step to successful silica coating.

7. MPTMS and MPTES precursors produce silica-coated core-shell nanomaterials that are

highly monodispersed, spherical and uniform with smooth outer surfaces. Thickness can

be easily controlled and thick dense shell can be coated within a few hours.

8. MPTMS and MPTES precursors provide intrinsic thiol –SH and silanol –OH functional

groups, without any need for extra step of surface modifications.

Figure 14. (Left) Illustration of the design of silica-coated nonadecane using MTMS in water medium by Jin et al. (Right)

SEM images of PCM microencapsulated spherical capsules: (a) an intact microcapsule and (b) a broken microcapsule of

core-shell microstructure [28].
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9. MPTMS and MPTES are proven effective for metals and semiconductors-based core-mate-

rials.

10. MTMS is proven effective in silica encapsulation of oil-based nano/microstructures.

11. MTMS is used in tandem with APTMS as a catalyst under oil/water emulsion.

This chapter reviewed a series of potentially reliable and reproducible synthesis techniques for

high-quality silica-encapsulated core-shell nanomaterials. We compared and provided insights

into the development of four water-based techniques to fabricate novel silica-encapsulated

nanocomposites with unique core-shell architecture. These synthesis routes take place under

mild reaction conditions, at ambient temperature and pressure, which are potentially applica-

ble for large-scale production. The facile synthesis of silica shell under aqueous environment

allows greater repeatability, facile steps for silanization, as compared with alcohol-based

conventional Stober methods. They possess great potential to upscale batch production and

present a biocompatible system that can be utilized for biomedical applications. The univer-

sality of these techniques were experimentally proven and demonstrated using a wide variety

of core materials including Ag, Au, Pt, Fe2O3, CdTe, Gd, PCM, DEET and many others. In

future, we hope to update the scientific community with more up-to-date research studies on

the development of similar useful techniques for a simple one-pot aqueous synthesis of silica-

encapsulated core-shell nanomaterials.
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