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Abstract

The distribution of the financial return series is unsuitable for normal distribu-
tion. The distribution of financial series is heavier than the normal distribution. In
addition, parameter estimates obtained in the presence of outliers are unreliable.
Therefore, models that allow heavy-tailed distribution should be preferred for
modelling high kurtosis. Accordingly, univariate and multivariate stochastic vola-
tility models, which allow heavy-tailed distribution, have been proposed to model
time-varying volatility. One of the multivariate stochastic volatility (MSVOL)
model structures is factor-MSVOL model. The aim of this study is to investigate the
convenience of Bayesian estimation of additive factor-MSVOL (AFactor-MSVOL)
models with normal, heavy-tailed Student-t and Slash distributions via financial
return series. In this study, AFactor-MSVOL models that allow normal, Student-t,
and Slash heavy-tailed distributions were estimated in the analysis of return series
of S&P 500 and SSEC indices. The normal, Student-t, and Slash distributions were
assigned to the error distributions as the prior distributions and full conditional
distributions were obtained by using Gibbs sampling. Model comparisons were
made by using DIC. Student-t and Slash distributions were shown as alternatives of
normal AFactor-MSVOL model.

Keywords: Bayesian analysis, heavy-tailed, financial markets, stochastic volatility
models, MCMC

1. Introduction

In recent years, multivariate time series analysis has become an in important
research field due to the positive improvements in both methodological and analytical
computations. Based on these developments, it has been possible to assess the esti-
mations of parameters in the models of multidimensional and complex time series.
Parallelly with these developments, it has been a necessity to model datasets that
have simultaneous and frequently changing together. Besides the increase of dataset
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dimensions, multidimensional volatility models have gained importance in respect
of both economic and econometric parameter estimations due to the temporal
fluctuations and changes. The information provided by the correlation structures of
multidimensional volatility models has contributed a lot especially in optimal
portfolio management, risk management, asset allocation and financial decisions.
Moreover; as the volatility between different assets and markets can move together,
multivariate analysis contributes statistical efficiency [1].

GARCH and stochastic volatility (SVOL) models, which are widely used in the
estimation of volatility, are developed, analysed, and applied within the frame of
multivariate the analysis. While multivariate GARCH (MGARCH) models are
widely used, MSVOL models are often used in recent years. In his study [2],
juxtaposed the most important studies on analysis and development of these models
by comparing univariate and multivariate GARCH and SVOL models.

MSVOL models vary in different structures. These structures can be sorted as
alternative specifications such as asymmetric models, factor models, time-varying
correlation models and matrix exponential transformation, Cholesky decomposi-
tion, Wishart autoregressive models [1]. The reason for the limited use of MSVOL is
the problems faced in the method of estimation in these models. The most impor-
tant one among these problems is the problem of high dimension in multivariate
analysis and this problem has been eased by using latent factor structures.

Factor-MSVOL models are divided into two groups according to how the factors
involved in the mean equation. The first of these structures is additive Factor-
MSVOL (AFactor-MSVOL) in which the factors are added summatively and the
second one is multiplicative Factor-MSVOL in which the factors are added multi-
plicatively [3].

AFactor-MSVOL models are firstly offered by Harvey et al. [4]. Afterward, it
was developed by [5-9]. The basic idea is taken from factor multivariate ARCH
models; additionally, it is a more general state of factor decomposition of covariance
structures in multivariate analysis. Returns are divided into two additive compo-
nents. The first component involves a limited number of factors. The factors cap-
ture the information related to the pricing of the whole assets. The other component
is the term of an error on the model and it captures the specific information of the
asset [1].

Factor-MSVOL models derive from the field of financial econometrics. These
models are often preferred to define the terms uncertainty and risk correctly.

Asset allocation and asset pricing can be given as an example here. Additionally, it is
also used in the arbitrage pricing theory and financial asset pricing model [10].

In comparison with other multivariate stochastic volatility models, Factor-MSVOL
models can be estimated with lesser parameters. In this respect, they are parsimo-
nious models in terms of parameters [11]. Factor models both reduce the number of
parameters and allow the changing variance structure, it considerably explains the
correlation.

Factor-MSVOL models aim to combine a plain, flexible, and robust structure.
Like classical factor models, these models are easier in respect of degrading high-
dimensioned observation area into low-dimensioned orthogonal latent factor area
[10]. Moreover; in the long term data, it is assessed with lesser deviation thanks to
its being robust in case of unusual observations.

This study aims to model parameter estimations concerning AFactor-MSVOL
models with normal distribution, Student-t distribution, Slash distribution assigned
on the error within based on the Bayesian approach. For this purpose; S&P500
(Standard & Poor’s 500) and SSEC (Shanghai Compound Index) index daily return
series, involving the period between 10.20.2014 and 10.17.2019, were used. Among
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the models, the error was scaled out by normal, Gamma, and Beta distributions; the
first one is AFactor-MSVOL-NOR model with normal distribution, the second one
is AFactor-MSVOL-St model with Student-t distribution, and the last one is
AFactor-MSVOL-SI robust model with Slash distribution. Estimated AFactor-
MSVOL models are bivariate and one-factor structure. Usage of Student-t and Slash
distributions, while handling skewness and kurtosis features of returns, enabled a
flexible approach as an alternative of normal distribution.

2. Model

Latent factor models prove the notion that high-dimensioned systems are just led
by some random resources. Some factors are controlled by these random resources
and these factors explain the interaction among the observations. Moreover; latent
factor models are an efficient way of estimation of a dynamic covariance matrix.
These models enable a decrease in the number of unknown parameters [12].

This model has several attractive features, including parsimony of the parameter
space and the ability to capture the common features in asset returns and volatil-
ities. Basic idea of Factor-MSVOL models was taken from multivariate ARCH
models. In these models, returns are divided into two additive components. The
first component has few factors that capture information about the pricing of all
assets, while the other component is the error term that captures asset-specific
information.

2.1 Multiplicative Factor-MSVOL model

Stochastic discount Factor-MSVOL, which is also called as multiplicative Factor-
MSVOL model, was offered by [13]. He offered Bayesian analysis of structured
dynamic factor models. Returns are divided into two multiplicative components in
one-factor multiplicative model. As shown below, the first of these components is
scalar common factor and the other one is idiosyncratic error vector:

y, = exp (ht/Z)gt, & ”'\6/1 N(O, 25) (1)
heyi = p+ @b —p) + 1, u %N(O’l) @)

The first one Z, is accepted as 1 for identification. Compared to the MSVOL
model, this model involves lesser parameters and it eases calculation. Different
from AFactor-MSVOL model, correlation does not change according to time.
Additionally, correlation in log-volatility is always equal to 1. The cross dependence
among the returns derives from the dependency in &;.

In [14] developed the one-factor model as k-factor. In their studies, [14]
researched both the persistence amount of daily stock returns and the factors
affecting common persistence components in volatility. In this study, the one-factor
multiplicative MSVOL model is expanded as k-factor.

2.2 Additive Factor-MSVOL model
The Factor-MSVOL model is one of the MSVOL approaches allowing the change

of implicitly conditioned correlation matrix in time and producing time-varying
correlation. Factor models and factors follow a stochastic volatility process. A kind
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of Factor-SVOL model that does not allow time-varying correlations was offered by
[13]. On the other hand, Harvey et al. [4] introduced a common factor in the
linearized state-space version of the basic MSVOL model. In this context, the most
basic MSVOL model specification is by:

y, = ex(exp{hi})?i=1,..,Nt =1,...,T (3)

y,, refers to the observation values in t period of i serial. & = (ey;, ..., ent) is the
error vector which shows normal distribution with X, covariance matrix and 0
mean. Diagonal elements of X, covariance matrix are unity and off-diagonal
elements are defined as p;;. Variance of this model is produced by AR(1) process:

hic =y, + @hir1 +nyi =1, .., N (4)

Here, 7, = (11445 .-, ;). With 0 mean and multivariate of >, matrix is normal.
This model, Eq. (4), N x 1A;, can be generalised as multivariate AR(1) and even
ARMA process. If we handle the multivariate random walk model of k,, which is its
special case:

wy = —127i +h, + & (5)
ht =hi1+ un (6)

w; and &, elements are N X 1 yectors in case Wit = log yizt and & = loge? +1.27i =
1,...,N.iis N x 1 vector which is composed of unit values.

Common factors can be included in multivariate stochastic variance models;
they are unobservable components of time series models. In [4] modelled with a
multivariate random walk by considering the persistence in volatility. According to
this, Eq. (4) is by:

wy = —127i +6h, +h + &, 7)
hy =hi1 + N (8)
Var(n,)= Zﬂ

as O k<N, N x k parameter matrix, &, and 7, k x 1 vectors, X, k x k positively

defined matrix, % is an N x 1 vector in which the first k elements are zeros and the
last N — k elements are unbounded, Harvey et al. [4] estimated this model with
QML method. Common factors are transformed as 0* = 0R' and h," = Rh, to
evaluate the factor loading [4].

Following the model offered by [15], another kind of MSVOL factor model was
handled by [8] as below:

y, = Bf, + Vi &8 ~ N, (0, 1) 9)

fo =Dy ~ Ny(0,1) (10)

hevr = p+ @(he — ) +np ~ Ny (0, Zw) (11)
V= diag( exp (hi), ..., exp (hpt)) (12)

D, = diag( exp (th,t), weey EXP (hp+q,t)) (13)
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D= diag((pl, vy qop+q> (14)
L = diag (61,m» - Opiqm) (15)
O = diag(rpl, s (pp+q> (16)
L = diag (61,m» > Cpiqum) (17)

and h; — (hlt, S h)

Bisap x g matrix of factor loadings. For i <j,i <j b; = 0, for i <gb;; = 1, and all
remaining elements are unconstrained. Therefore, each of the factors and errors in
this model develops according to SVOL models. Similar to this model, except the
fact that V; does not change in time under restriction, another model was handled
in [6] and [16]. In [6] estimated their models with Markov Chain Monte Carlo
(MCMC) method. On the other hand, [16] showed how to assess MLE with the
Efficient Importance Sampling method. Presented by [17], a more generalised ver-
sion of these models allows spikes in observation equations and the errors are
distributed by heavy-tailed-t [18].

In [3] showed that additive factor models are by both time-varying volatility and
correlations. In this context, they offered two varieties one-Factor SVOL model and
they showed that the correlation between two return series is related to the volatil-
ity of the factor. According to this, logarithmic returns observed in t period are

expressed as 'y, = ()’1:’ th)/. Additionally, when it is showed as & = (e, SZt),; n, =

(N> 12g) > e = (faps o) and By = (h1y,h;)', two varieties one-Factor MSVOL
models are such as below:

v, = Df, + eie, S N(0, diag(?, 65)) (18)
hevr = p+ @(hept) + o1 n = N0, 1) (19)

and /¢ = 0. This model is offered by [5, 6]. The first component that takes place
in return equation involves a small number of factors which includes the informa-
tion related to the pricing of the whole assets. The second term is error term
peculiar to equation; it involves specific information of the asset. A Factor-MSVOL
model allows high kurtosis and volatility cluster. It also enables cross dependency in
both returns and volatility. h; represents the log-volatility of the common factor (f;)
which takes place in A Factor-MSVOL model. The conditional correlation between
¥4, and y,, is as below:

dexp (h;)
V (exp () + o) (@ exp () + 02)
B d
\/1 + % exp (=he) (d* + o exp (—hy))

(20)

(21)

0%, = 6%, = 0 is not, so correlation coefficient changes in time. Correlation
dynamics is dependent on the dynamics of hy; likewise, the correlation is an
increasing function of hy. It refers that the correlation will be high as much as the
common factor volatility is high.

Offered by [3], specification of two varieties one-factor AFactor-MSVOL model,
which allows heavy-tailed distribution, is as below:
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v, = Df, + &#, (0, diag(?, 6%), v) (22)
£, = exp (h/2)ugur 2 £(0,1, ), (23)
her = i+ @) + oy, 2 N(0,1) (24)

hg =, v = (v1,v2)". In this model, heavy-tailed Studentt distribution is used for
return shocks. The conditional correlation between y,, and y,, is as below:

d

\/1 + %ogl exp (—hy) (d2 + ﬁoﬁz exp (—ht))

(25)

In addition to these models, AFactor-MSVOL-SI model in which error
distribution is scaled with Slash distribution is defined as:

The error for the AFactor-MSVOL-SI model is shown as Slash distribution
(&|vg) ~ slash (0, ", v) with 6% ~ beta(a, f§) prior distribution.

y, = Df, + &, ¢ ~ slash (0, diag(aﬁl, 632), v) (26)
f, = exp (he/2)us,u; ~ slash(0,1, w) (27)
hea = o+ @heept) + oy n, = N(0, 1) (28)

Philipov and Glickman [19] offered high-dimensioned additive factor-MSVOL
models in their studies. In this study, factor covariance matrix is led by Wishart
random process. On the other hand, it is known that daily return series are
leptokurtic. In context of stochastic volatility, [20] and [21] presented empirical
proofs on the usage of heavy-tailed distribution in conditioned mean equation.
Moreover, [22] analysed SVOL models with Student-t distribution and GED. Daily
data analysis of JPY/Dollar and TOPIX were carried out by the method of MCMC.
Comparison of distributions, in respect of accordance, was calculated with Bayesian
factor values. It is determined that SVOL-t model assorts with both of the data
compared to SVOL-normal and SVOL-GED models.

In [23] analysed new-class linear factor models. In these models, factors are
latent and covariance matrix is followed with MSVOL process. Wu et al. [24]
proposed dynamic correlated latent factor SVOL model structure in his studies.
According to the results of analysis led by MCMC method, statistically comprehen-
sible results were obtained for financial and economic data.

3. Empirical analysis
3.1 Dataset

This study aims to model parameter estimations concerning AFactor-MSVOL
models with Student-t, Slash and normal distributions assigned to the error. For this
purpose; S&P500 and SSEC index daily return series, involving the period between
10.20.2014 and 10.17.2019, were used. Among the models the error was scaled by
normal, Gamma, and Beta distributions; the first one is AFactor-MSV-NOR model
with normal distribution, the second one is AFactor-MSVOL-St model with
Student-t distribution, and the last one is AFactor-MSVOL-SI robust model with
Slash distribution. Analyses of data were carried out with R and WinBugs
programmes. Daily mean logarithmic return series were determined by:

6
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Y: =100 x (logP;-logP:.1) (29)

_Yt__ZYt (30)

S&P500 index is composed of stocks of the most valuable 500 companies in
USA. On the other hand, SSEC has the most important and the biggest companies of
China. Commercial and financial relations between the USA and China not only
affect themselves but also global economy. Commercial and financial tensions
between them and the anxieties on currency wars can negatively affect Asia and
Europe stock markets. Therefore; index values of two grand economies such as
China and USA are preferred for analyses. In Figure 1, time series plots for S&P500
and SSEC return series are given.

Descriptive statistic values of S&P500 and SSEC series are given in Table 1.
S&P500 and SSEC series have negative mean returns. It seems that SSEC return
series have more volatility. Moreover, both of the series are negatively skew.
Kurtosis level is higher for both S&P500 and SSEC. Jarque-Bera normality test
results show that series do not have a normal distribution.

In Table 2, Ljung-Box and ARCH-LM test results are illustrated in some lags. As
Q statistics of Ljung-Box test are examined, null hypothesis that there is not auto-
correlation is rejected for both of the series in 20th and 50th lags. It refers that
autocorrelation exists in series. According to the ARCH test results, ARCH effect is
seen in the whole series. It shows the necessity of preferring the models allowing
heteroscedastic structures in the analyses of volatility in return series.

variable

y "th‘ﬁr’"'IQH;ﬂ""f N"‘1'*“‘“’r~*’f”* e

3
$ = ::m
> - Date :
Figure 1.
Time series plots for S¢¥Ps00 and SSEC returns.
S&P500 SSEC
Sample size 1177 1177
Mean —0.2784 —0.2862
Maximum 21777 2.3282
Minimum —2.112 —4.1485
Standard deviation 0.39 0.6802
Skewness —0.1463 —0.9852
Kurtosis 4.7226 6.0157
Jarque-Bera (possibility) 1098.0 (3.7495e-239) 1965.2 (0.0000)

Table 1.
Descriptive statistics of S¢»P500 and SSEC veturn series.

7
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S&P500 SSEC
Q(5) 7.0117 [0.2197] 12.8221 [0.0251]
Q(10) 16.1735 [0.0947] 20.6526 [0.0236]
Q(20) 29.5883 [0.0768] 59.9778 [0.0000]
Q(50) 71.0158 [0.0269] 115.200 [0.0000]
Q%(5) 149.806 [0.0000] 262.809 [0.0000]
Q%(10) 198.313 [0.0000] 323.350 [0.0000]
Q%(20) 223.106 [0.0000] 575.391 [0.0000]
Q%(50) 290.457 [0.0000] 937.313 [0.0000]
ARCH-LM(2) 37.195 [0.0000] 52.090 [0.0000]
ARCH-LM(5) 19.487 [0.0000] 31.799 [0.0000]

ARCH-LM(10)

11.359 [0.0000]

16.405 [0.0000]

Table 2.
Ljung-box and ARCH-LM test results.

3.2 Bayesian estimation

The most important factor, which limits the usage of Factor-MSVOL models, is
difficulty in estimating the statistics, whereupon some methods were offered for
estimation. In these methods, quasi maximum likelihood, simulated maximum likeli-
hood, and Bayesian MCMC are offered as the most efficient methods. Bayesian MCMC
method is very efficient against high dimension problems of the dataset [8, 9, 17].

In this study, parameter estimations are obtained by the Bayesian approach. As it
is known, in parameter estimation it is supposed that the error term shows the
normal distribution, but this assumption is not valid in case unusual points exist,
therefore error term has a heterogeneous variance. This case is often faced in
longitudinal datasets. In case unusual points exist in datasets, researchers generally
prefer some strategies such as keeping the outliers, removing outliers, and recoding
outliers. If keeping the outliers is chosen, the heavy-tailed distribution must be
preferred rather than normal distribution. Otherwise, it causes statistical inferences.

In recent years, multidimensional analytical operations in computational science
have become easier thanks to the advances in computer technology. In parallel with
these advances and usage of the Bayesian approach, using more robust models in
analyses has increased in the observation of unusual points. In the Bayesian
approach, model parameters are random variables and it is supposed that it shows a
known distribution. The Bayesian approach relies on the combination of subjective
experiences of the researcher, the prior information obtained from the former
studies, and the likelihood obtained from data. Posterior information is achieved
from the combination with prior information. This information is defined with a
known distribution function and parameter estimations are achieved from the
posterior distribution.

Posterior « Prior X Likelihood

In the Bayesian approach, in obtained of the posterior distribution of parameters
requires multidimensional integral computations in multidimensional and longitu-
dinal datasets. This difficulty is overcome by the development of iterative methods
such as MCMC. MCMC methods are based on the randomly generate parameter
values from posterior distribution; thus, some analytically difficult problems are
easily solved by simulation techniques. In this study, parameter estimations are
obtained by Gibbs sampling which is also a MCMC method. Gibbs sampling is a

8
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method used in case posterior distribution has a closed-form and it is a kind of
iterative method reproducing random values from these values. The full conditional
density function is obtained by Gibbs sampling as all the unknown parameters are
given and parameters are estimated with this method.

In this study, parameter estimations are obtained by modelling three different
prior distributions assigned on the error term. In modelling, error term is scaled
with A variable and normal/independent (or scaled mixture) defined distributions
are used. As y variable, which shows normal/independent distribution, is expressed
in longitudinal model given below [25];

Y=t (31)
VA

Here y is a mean vector, ¢ is error vector and have normal distribution. A variable
that takes place in the model shows different distributions according to the degrees
of freedom of v, and it is defined as random variable with positive valence. As
degrees of freedom goes infinite, A variable is 1 and the error term shows normal
distribution. As A variate shows Gamma (% , %) distribution, it converges Student-t;
and as A variate shows Beta(v, 1) distribution in [0,1] closed interval, it converges
Slash distribution.

3.3 Findings

As an addition to the AFactor-MSVOL offered by [3] and heavy-tailed AFactor-
MSVOL models, bivariate one-factor AFactor-MSVOL model in which the error
term is scaled with Slash distribution is estimated in the analysis.

In Table 3, posterior mean values of the parameters, standard errors and 95%
credible intervals are shown. Using different initial values for each model, two
chains are formed. Total iteration number in each chain is determined as 500,000

AFactor-MSVOL-NOR AFactor-MSVOL-St AFactor-MSVOL-SI
n Mean —-1.59 ~1.586 -3.930
Sd 0.2899 0.292 0.614
%95 CI [~2.208, —1.054] [~2.231, —1.072] [-5.531, —3.102]
o Mean 0.9910 0.991 0.830
Ssd 0,005198 0.006 0.055
%95 CI [0.9788,0.9988] [0.978, 0.999] [0.708, 0.926]
6, Mean 95.68 87.230 0.653
Sd 36.89 36.339 0.076
%95 CI [42.81, 183.0] [39.950,177.002] [0.496, 0.793]
d Mean 0.178 0.158 0.174
Sd 0.02329 0.018 0.052
%95 CI [0.1335,0.2248] [0.123,0.194] [0.074, 0.278]
6 Mean 0.003672 0.001 0.345
Sd 0.006022 0.007 0.042
%95 CI [3.984E-8, 0.0216] [0.000,0.023] [0.260, 0.426]
% Mean 0.1781 0.151 0.309
Sd 0.01054 0.011 0.037
%95 CI [0.1583, 0.1996] [0.131, 0.174] [0.242, 0.387]
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AFactor-MSVOL-NOR

AFactor-MSVOL-St

AFactor-MSVOL-SI

Vi Mean 8.735 8.317
Sd 5.744 4.665

%95 CI [2.396, 24.190] [3.869, 21.360]
vy Mean 4.372 3.652
Sd 0.599 1.702

%95 CI [3.433, 5.780] [2.418, 8.375]
® Mean 7.237 5.299
Sd 1.670 4.727

%95 CI [5.128,11.600] [2.027, 19.570]

Note: Parameter estimations for AFactor-MSVOL-NOR, AFactor-MSVOL-St and AFactor-MSVOL-SI models are Rhat = 1.

Table 3.
Posterior mean values of the pavameters in the AFactor-MSVOL models.

and the iteration number that must be omitted in the burn-in is 250,000. Thus,
when the first burn-in period of 250,000 is omitted, a Gibbs chain of 250,000 is
obtained for each parameter by means of saving each iteration value.

It is seen that for AFactor-MSVOL and AFactor-MSVOL-St models @ parameter
of posterior mean value is so close to the unit value. It refers that latent volatility
had random walk behaviour. On the other hand, factor process for all the models
was highly obtained. It is seen that standard deviation of posterior mean value of &
parameter is too low. According to this, logarithmic volatility of time-varying latent
components shows persistent features. Posterior mean value of @ parameter is
lower in AFactor-MSVOL-S] model in comparison to the other models, while the
posterior means of ¢ are all nearby unity and seem to propose random walk
behaviour for %;. The mean of ¢ is close to unity with a low standard deviation
under all specifications, offering persistent time-varying log-volatility for latent
components. Factor loading for the estimated models are determined as 0.178,
0.158, and 0.17, respectively. The overall variance-covariance is decomposed into a
component which is due to the variation in the common factor and a component
reflecting the variation in the idiosyncratic errors. Diebold and Nerlov [26] suggest
the common factor reflects the flow of new information relevant to the pricing of all
assets, upon which asset-specific shocks represented by the idiosyncratic errors are
superimposed (Figures 2, 3and 4).

density.defaultix = phit)

’ N

density. defaultix = at)

.

— —T— ——

] 018 0z 025 €20 i o y Jus o 100

N=230000 Sarowan=C.00174

Figure 2.
Kernel density estimation of AFactor-MSVOL-NOR model y and @ parameters.
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Gelman-Rubin statistics is an approach to determining convergence. According
to it, convergence takes place in case means of variance within the chain and the
variance values between the chains are equal. In this case, Gelman-Rubin statistics
is about 1. In Table 4, Gelman-Rubin statistics of estimated models for parameter
estimation take place. According to this, it is seen that all the parameters take 1
value of Gelman-Rubin statistics and convergence occurs.

AFactor-MSVOL-NOR

AFactor-MSVOL-St

AFactor-MSVOL-SI

n 1.00 1.00 1.01
o 1.00 1.00 1.00
oo’ 1.02 1.00 1.00
d 1.00 1.00 1.00
6’ 1.01 1.04 1.00

11
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AFactor-MSVOL-NOR AFactor-MSVOL-St AFactor-MSVOL-SI1
62 1.00 1.00 1.00
V1 1.00 1.00
V2 1.00 1.00
® 1.00 1.00

Table 4.
Gelman-Rubin diagnostic test.

DIC allows comparison between the models by taking into consideration the
complexity of the model [27, 28]. pq4 is expressed as efficient parameter number.
pa model gives the approximate value of parameter number and measures the
complexity of the model. DIC can take both negative and positive values. It causes
negative valorisation of both deviation and DIC. In conclusion, the model with the
lowest DIC value must be chosen from alternative models [29]. In Table 5, DIC
values of each three values are given; according to this, the model with the lowest
DIC values should be chosen.

DIC pd
AFactor-MSVOL-NOR 3705.3 316.1
AFactor-MSVOL-St 3657.7 396.0
AFactor-MSVOL-S1 3609.3 183.4

Table 5.
DIC values.

4. Conclusion

In financial applications, modelling the correlation structures of the returns is
important because empirical analyses show that there is time-varying relation
among return-on-assets. In this context, factor-MSVOL models have been pre-
ferred. Thanks to these models, volatility dynamics of financial and economic time
series can be modelled with few latent factors.

In this study, parameter estimations concerning additive factor-MSVOL models
were modelled with normal distribution assigned on the error, Student-t distribu-
tion, and Slash distribution in the frame of Bayesian analysis. Normal, Student-t and
Slash distributions were assigned as prior distribution to the error distributions and
full conditioned posterior distributions were obtained by a kind of MCMC method-
Gibbs sampling. Among the criteria of model choosing, DIC is used for comparison
and it showed that Student-t and Slash distributions can be used as alternative of
normal AFactor-MSVOL models. Provided that the analysis results are evaluated in
respect of DIC criteria and model complexity, it is seen that AFactor-MSVOL-SI
model in which the errors are scaled with Slash distribution is better than the other
models. In case the error terms are modelled with Slash distribution, analysis of
financial return series, which involves deviated and extreme observations, will
provide more correct results. Both Student-t and Slash distributions are robust
distributions. Both of the distributions better adapted to the data compared to
normal distribution. Student-t distribution allows kurtosis in a larger interval for
high degrees of freedom but it is possible to say that Slash distribution is more
robust as it gives better parameter estimations in case there are more unusual
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points. Therefore; it is seen that Student-t and Slash distributions are applicable as
an alternative of normal distribution in the analysis of financial return series.
Moreover, it is possible to say that heavy-tailed distributions can substitute normal
distribution in case deviated observation values are not present.
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