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1. Introduction     

Flow in an enclosure driven by buoyancy force is a fundamental problem in fluid 
mechanics. This type of flow is encountered in certain engineering applications within 
electronic cooling technologies, in everyday situation such as roof ventilation or in academic 
research where it may be used as a benchmark problem for testing newly developed 
numerical methods. A classic example is the case where the flow is induced by differentially 
heated walls of the cavity boundaries. Two vertical walls with constant hot and cold 
temperature is the most well defined geometry and was studied extensively in the literature. 
A comprehensive review was presented by Davis (1983). Other examples are the work by 
Azwadi and Tanahashi (2006) and Tric (2000). 
The analysis of flow and heat transfer in a differentially heated side walls was extended to 
the inclusion of the inclination of the enclosure to the direction of gravity by Rasoul and 
Prinos (1997). This study performed numerical investigations in two-dimensional thermal 
fluid flows which are induced by the buoyancy force when the two facing sides of the cavity 
are heated to different temperatures. The cavity was inclined at angles from 20° to 160°, 
Rayleigh numbers from 103 to 106 and Prandtl numbers from 0.02 to 4000. Their results 
indicated that the mean and local heat flux at the hot wall were significantly depend on the 
inclination angle. They also found that this dependence becomes stronger for the inclination 
angle greater than 90°. 
Hart (1971) performed a theoretical and experimental study of thermal fluid flow in a 
rectangular cavity at small aspect ratio and investigated the stability of the flow inside the 
system. Ozoe et al. (1974) conducted numerical analysis using finite different method of 
two-dimensional natural circulation in four types of rectangular cavity at inclination angles 
from 0° to 180°. Kuyper et al. (1993) provided a wide range of numerical predictions of flow 
in an inclined square cavity, covered from laminar to turbulent regions of the flow behavior. 
They applied k - ε turbulence model and performed detailed analysis for Rayleigh numbers 
of 106 to 1010. 
A thorough search of the literature has revealed that no work has been reported for free 
convection in an inclined square cavity with Neumann typed of boundary conditions. The 
type of boundary condition applied on the bottom and top boundaries of the cavity strongly 
affects the heat transfer mechanism in the system (Azwadi et al., 2010). Therefore, it is the 
purpose of present study to investigate the fluid flow behaviour and heat transfer 
mechanism in an inclined square cavity, differentially heated sidewalls and perfectly 
conducting boundary condition for top and bottom walls. 
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The current study is summarized as follow: two dimensional fluid flow and heat transfer in 
an inclined square cavity is investigated numerically. The two sidewalls are maintained at 
different temperatures while the top and bottom walls are set as a perfectly conducting wall. 
In current study, we fix the aspect ratio to unity. The flow structures and heat transfer 
mechanism are highly dependent upon the inclination angle of the cavity. By also adopting 
the Rayleigh number as a continuation parameter, the flow structure and heat transfers 
mechanism represented by the streamlines and isotherms lines can be identified as function 
of inclination angle. The computed average Nusselt number is also plotted to demonstrate 
the effect of inclination angle on the thermal behaviour in the system. Section two of this 
paper presents the governing equations for the case study in hand and introduces the 
numerical method which will be adopted for its solution. Meanwhile section three presents 
the computed results and provides a detailed discussion. The final section of this paper 
concludes the current study. 

2. Numerical formulation 

In present research, the incompressible viscous fluid flow and heat transfer are studied in a 
differentially heated side walls and perfectly conducting boundary conditions for top and 
bottom walls. Then the square enclosure is inclined from 20° to 160° to investigate the effect 
of inclination angles on thermal and fluid flow characteristics in the system. The governing 
equations are solved indirectly: i. e. using the lattice Boltzmann mesoscale method (LBM) 
with second order accuracy in space and time.  
Our literature study found that there were several investigations have been conducted using 
the LBM to understand the phenomenon of free convection in an enclosure (Azwadi & 
Tanahashi, 2007; Azwadi & Tanahashi, 2008; Onishi et al., 2001). However, most of them 
considered an enclosure at 900 inclination angle and adiabatic boundary conditions at top 
and bottom walls. To the best of authors' knowledge, only Jami et al. (2006) predicted the 
natural convection in an inclined enclosure at two Rayleigh numbers and two aspect ratios. 
In their study, they investigated the fluid flow and heat transfer when an inclined partition 
is attached to the hot wall enclosure and assumed adiabatic boundary condition at the top 
and bottom walls. Due to lack of knowledge on the problem in hand, therefore, the objective 
of present paper is to gain better understanding for the current case study by using the 
lattice Boltzmann numerical method. To see this, we start with the evolution equations of 
the density and temperature distribution functions, given as (He et al., 1998) 

 ( ) ( ) ( ) ( )( )1
, , , ,eq

i i i i ii
f

f t t t f t f t f t F
τ

+ Δ + Δ − = − − +x c x x x  (1) 

  ( ) ( ) ( ) ( )( )1
, , , ,eq

i i i i i
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g t t t g t g t g t
τ

+ Δ + Δ − = − −x c x x x  (2) 

where the density distribution function ( ),f f t= x  is used to calculate the density and 
velocity fields and the temperature distribution function ( ),g g t= x  is used to calculate the 
macroscopic temperature field. Note that Bhatnagar-Gross-Krook (BGK) collision model 
(Bhatnagar et al., 1954) with a single relaxation time is used for the collision term. For the 
D2Q9 model (two-dimension nine-lattice velocity model), the discrete lattice velocities are 
defined by 
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Here, c is the lattice spacing. In LBM, the magnitude of ic  is set up so that in each time step 
tΔ , the distribution function propagates in a distance of lattice nodes spacing xΔ . This will 

ensure that the distribution function arrives exactly at the lattice nodes after tΔ . The 
equilibrium function for the density distribution function eq

if  for the D2Q9 model is given by 

  ( )2 29 3
1 3

2 2

eq
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c u c u u  (4) 

where the weights are 0 4 9ω = , 1 9iω =  for i =1 - 4 and 1 36iω =  for i =5 - 8.  
According to Azwadi and Tanahashi (2006) and He et al. (1998), the expression for 
equilibrium function of temperature distribution can be written as 
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Regroup Eq. (5) to avoid higher order quadrature gives 
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It has been proved by Shi et al. (2004) that the zeroth through second order moments in the 

last square bracket and the zeroth and first order moments in the second square bracket in 

the right hand side of Eq. (6) vanish. The exclusion of the second order moments in the 

second square bracket in Eq. (6) only related to the constant parameter in the thermal 

conductivity which can be absorbed by manipulating the parameter fτ  in the computation.  

Therefore, by dropping the terms in the last two square brackets on the right hand side of 

Eq. (6) gives 
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After some modifications in order to satisfy the macroscopic energy equation via the 
Chapmann-Enskog expansion procedure, the discretised equilibrium function for the 
temperature distribution can be expressed as   

  ( )2 29 3
1 3

2 2

eq
i i iig Tω ⎡ ⎤= + ⋅ + ⋅ −⎢ ⎥⎣ ⎦

c u c u u  (8) 

where the weights are 0 4 9ω = , 1 9iω =  for i =1 - 4 and 1 36iω =  for i =5 - 8.  
The macroscopic variables, density ρ , and temperature T can thus be evaluated as the 
moment to the equilibrium distribution functions as 

  ,eq eq
i ii i

f T gρ = =∑ ∑  (9) 

Through a multiscaling expansion, the mass and momentum equations can be derived for 
D2Q9 model. The detail derivation of this is given by He and Luo (1997) and will not be 
shown here. The kinematic viscosity of fluid is given by 

 
2 1

6

fτυ
−

=  (10) 

The energy equation at the macroscopic level can be expressed as follow 

 ( )2T T T
t

∂ ρ ρ χ ρ
∂

+∇ ⋅ = ∇u  (11) 

where χ  is the thermal diffusivity. Thermal diffusivity and the relaxation time of 
temperature distribution function is related as 

 
2 1

6

gτχ
−

=  (12) 

3. Problem physics and numerical results 

The physical domain of the problem is represented in Fig. 1. The conventional no-slip 
boundary conditions (Peng et al., 2003) are imposed on all the walls of the cavity. The 
thermal  conditions applied on the left and right walls are T(x = 0, y) = TH and T(x = L, y) = 
TC. The top and bottom walls being perfectly conducted, ( )( )H H CT T x L T T= − − , where TH 
and TC are hot and cold temperature, and L is the width of the enclosure. The temperature 
difference between the left and right walls introduces a temperature gradient in a fluid, and  
the consequent density difference induces a fluid motion, that is, convection. 
The Boussinesq approximation is applied to the buoyancy force term. With this 
approximation, it is assumed that all fluid properties can be considered as constant in the 
body force term except for the temperature dependence of the density in the gravity term. 
So the external force in Eq. (1) is 

  ( )3 eq
i iF f= −G c u  (13) 

where G is the contribution from buoyancy force. 
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Fig. 1. Physical domain of the problem 

The dynamical similarity depends on two dimensionless parameters: the Prandtl number Pr 
and the Rayleigh number Ra, 

 
3

0Pr ,Ra
g TLβυ

χ υχ
Δ

= =  (14) 

We carefully choose the characteristic speed 0cv g LT=  so that the low-Mach-number 
approximation is hold. Nusselt number, Nu is one of the most important dimensionless 
numbers in describing the convective transport. The average Nusselt number in the system 
is defined by 

 ( )2 0 0

1
Nu , dxdy

H H

x

H
q x y

T Hχ
=

Δ ∫ ∫  (15) 

where ( ) ( ) ( ) ( ), , ,xq x y uT x y x T x yχ ∂ ∂= −  is the local heat flux in x-direction.  
In all simulations, Pr is set to be 7.0 to represent the circulation of water in the system. 

Through the grid dependence study, the grid sizes  of 251 × 251 is suitable for Rayleigh 
numbers from 105 to 106. The convergence criterion for all the tested cases is 

 ( ) ( )
1 1

1 2 22 2 2 2 7Max 10
n n

u v u v
+ −⎛ ⎞ ⎛ ⎞+ − + ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (16) 

 1 7Max 10n nT T+ −− ≤  (17) 

where the calculation is carried out over the entire system. 
Streamlines and isotherms predicted for flows at Ra = 105 and different inclination angles 
are shown in Figures 2 and 3. As can be seen from the figures of streamline plots, the liquid 
near the hot wall is heated and goes up due to the buoyancy effect before it hits the corner 
with the perfectly conducting walls and spread to a wide top wall. Then as it is cooled by 
the cold wall, the liquid gets heavier and goes downwards to complete the cycle. At low value 
of inclination angle, θ = 20, two small vortices are formed at the upper corner and lower corner 
of the enclosure indicates high magnitude of flow velocity near these regions. The presence of 
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these two corner vortices compressed the central cell to form an elongated vortex. The 
isotherms show a good mixing occurring in the center and relatively small gradient indicating 
small value of the local Nusselt number along the differentially heated walls.  
 

 

 

 

Fig. 2. Streamlines plots at Ra = 105 
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Fig. 3. Isotherms plots at Ra = 105. 
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Fig. 4. Streamlines plots at Ra = 5 × 105. 
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Fig. 5. Isotherms plots at Ra = 5 × 105. 
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Fig. 6.  Streamlines plots at Ra = 106. 
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Fig. 7. Isotherms plots at Ra = 106. 
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Fig. 8. Effect of inclination angles on averaged Nusselt number 

Further increment of inclination angle θ = 40° leads to the size reduction of small corner 
vortices. At θ = 60°, the small corner vortices completely disappear and the central cell 
pointing towards the corners because high magnitude of gravity vector drag the outer 
vortex along the vertical walls of the enclosure. Denser isotherms lines can be seen from the 
figure indicate higher value of local and average Nusselt number compared to previous 
inclination angles. Further inclination of enclosure separates the main central vortex into 
two smaller vortices. As we increase the inclination angle, these two vortices grow in size 
indicates that some fluid from the hot or cold wall returns back to the same wall. For 
inclination angles of θ = 80° to θ = 120°, the isotherms line are parallel to the perfectly 
conducting walls indicates that the main heat transfer mechanism is by convection. Denser 
isotherms lines can be seen near the bottom left and top right corners demonstrate high local 

Nusselt number near these regions. However, at high inclination angles, θ ≥ 140°, the 
isotherms lines are equally spaced indicates low averages Nusselt number in the system. 

For Rayleigh number equals to 5×105 and low inclination angles, the central vortex is more 
rounded indicates equal magnitude of flow velocity near all four enclosure walls. At angle 
equals to θ = 60°, the central cells splits into two before the corner vortices disappear. The 
velocity boundary layer can be clearly seen for inclination angles of θ = 60° and above. The 
isotherm patterns are similar to those for Ra = 105 at all angles. However, the thermal 
boundary layers are thicker indicating higher local and average Nusselt number along the 
cold and hot walls. 
For the simulation at the highest Rayleigh number in the present study Ra = 106, the 
formation of corner vortices can be clearly seen at low value of inclination angles. At angle 
equals to θ = 20°, the complex structure of upper corner vortices indicates the instability of 
the flow in the system. This flow instability is confirmed when we were unable to obtain a 
steady solution even for a very high iteration number. The isotherms plots also display a 
complex thermal behavior and good mixing of temperature in the system. The flow becomes 
steady again when we increase the inclination angle to θ = 60°. The central vortex is 
separated into two smaller vortices and vertically elongated shaped indicates relatively high 
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value of flow velocity near the differentially heated walls. Most of the isotherms lines 
becomes parallel to the perfectly conducting walls indicates the convection type dominates 
the heat transfer mechanism in the system.  
For θ > 80°, the central vortex is stretched from corner to corner of the enclosure and 
perpendicular to the gravitational vector, developed denser streamlines near these corners, 
indicating the position of maximum flow velocity for the current condition. On the other 
hand, similar features of isotherms to those at lower Ra are observed. 
The effect of the inclination angle on the average Nusselt number is shown in Figure 8 for all 
values of Rayleigh numbers. One common characteristic which can be drawn from the 
figure; the Nusselt number increases with increasing the Rayleigh number. However, the 
computed Nusselt numbers are lower than those for the case of adiabatic types of boundary 
condition (Peng et al., 2003) because the heat is allowed to pass through the top and bottom 
walls. Interestingly, the minimum value of average Nusselt number is found converging to 
the same value and when the inclination angle approaching θ = 180° for every Rayleigh 
number. On the other hand, the maximum value of average Nusselt number is determined 
at inclination angle between θ = 60° to θ = 80°. These can be explained by analyzing the 
isotherms plots which demonstrating relatively denser lines near hot and cold walls leading 
to high temperature gradient near these regions. Lower value of average Nusselt number at 
lower inclination angle was due to the presence of small corner vortices which contributes 
smaller local heat transfer along the hot and cold walls. For the computation at higher 
inclination angles, where the hot wall is close to the top position, the magnitude of the 
gravity vector is reduced results in low magnitude of flow velocity along the hot wall. Due 
to this reason, the heat transfer rates are small resulted from the reduction in the driving 
potential for free convection. 

4. Conclusion 

The free convection in an inclined cavity has been simulated using the mesoscale numerical 
scheme where the Navier Stokes equation was solved indirectly using the lattice Boltzmann 
method. The result of streamlines plots clearly depicting the flow pattern and vortex 
structure in the cavity. The primary vortex is transformed from a single cellular to a double 
cellular as the inclination angle increases. These demonstrate the lattice Boltzmann 
numerical scheme of passive-scalar thermal lattice Boltzmann model is a very efficient 
numerical method to study flow and heat transfer in a differentially heated inclined 
enclosure. 
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