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Abstract

For a complete analysis of vibration, the stiffness of a structure must have two character-
istics: one corresponding to conventional stiffness and the other to the geometric stiffness.
Thus, the total stiffness takes form where the model to be used to represent any behavior
of the material is introduced to the first part via the modulus of elasticity. The second is the
geometric stiffness, through which it is possible to linearize a geometric nonlinear prob-
lem. To consider both aspects, a mathematical model based on the Rayleigh method has
been elaborated. Two systems were numerically studied. First, the occurrence of reso-
nance in the vibration of a prestressed reinforced concrete beam has been investigated.
The results indicated resonant and non-resonant schemes between the natural frequency
of the beam and the frequency of the engine. To the second system, the first natural
frequency of a slender, 40-m-high concrete mobile phone mast, was calculated, and an
evaluation of the structural collapse was performed. To the both systems, the cross section
of reinforced concrete was treated by the theory for the homogenized section in order to
consider the presence of the steel, and the viscoelasticity of the concrete was taken into
account through a three-parameter rheological model.

Keywords: analytical mathematical analysis, numerical simulation, viscoelasticity,
vibration, rheology, Rayleigh method, geometric stiffness, buckling load

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

The dynamic characteristics of a structure depend, basically, on its stiffness and mass. With

these two elements, the natural frequencies and modes of vibration of the system are deter-

mined. However, the initial stiffness of a structure can be affected by the so-called geometric

stiffness, a function of the acting normal force. In the case of compression force, the stiffness of

the structure decreases, also reducing the natural frequencies of vibration. A class of structures

of socio-economic-strategic importance for the national industry are machine bases, which are

subject to vibrations induced by the supported equipment. These vibrations can affect the

safety of the structure itself and generate detrimental effects on the equipment and the quality

of the manufactured product. They can also make the working ambience unsuitable for

operators. All industrial sectors are subject to these problems, including oil exploration, pro-

duction, and refining, mining, wind energy, atomic energy, as well as bridges and viaducts for

road and rail use.

Although equipment support structures are, as a general rule, over-dimensioned, and there-

fore not subject to the effects of geometric stiffness, the tendency of modern structural engi-

neering is towards increasingly slender elements, made possible by materials that are more

efficient and lightweight, and having more and more powerful structural analysis capabilities.

One of these features is prestressed concrete, represented by the presence of a steel bar or cable

inside the structure that compresses it, the purpose of which is to reduce the effects of tension

on flexion. In the case of beams subjected to periodic excitation, it is assumed that the original

design has taken care to distance the natural frequencies of the system from those of the

excitation, considering that, by hypothesis, the prestressing force decreases the stiffness of the

element and, consequently, its natural frequencies, which may lead to unexpected, potentially

dangerous resonance regimes. In the opposite direction, the presence of the prestressing can

provide a form of control of this same vibration, where a resource is available to remove the

structure of the resonant regime, if perceived in the preliminary stages of design. In one way or

another, a satisfactory analysis solution to most engineering problems comes from a consider-

ation that is easily implemented in analytical and numerical-computational formulations: the

geometric stiffness. The influence of geometric stiffness has been studied in several contexts,

both in laboratory tests and in comparison with the finite element method (FEM) [1–4].

The problem is aggravated when the material itself changes its elastic properties, such as in the

case of viscoelasticity, which represents the gradual increase of deformation with time. This is a

typical phenomenon of concrete structures because it is a viscoelastic material. It must be

considered when verifying the stability of slender pieces compressed under the ultimate limit

state (ULS), since these have their stiffness modified in function of the rheology of the material

itself. It is important to consider the viscoelastic behavior of concrete structures relative to the

characteristics of the structural element under study; this is necessary when verifying the

stability of compressed slender pieces, since their stiffness is modified according to the rheol-

ogy of the material. For this reason, in the specific case of columns in that loading condition, a

premature analysis can produce undesired consequences, and the system may even collapse.
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Typically, viscoelasticity representation is based on rheological models that are associated with

deformations that are deferred over time. These models can be included in a static or dynamic

analysis of the structures by relating them to the modulus of elasticity of the material. In the

case of dynamic analysis, the stiffness of the structure must be composed of two terms, one of

which corresponds to the portion of conventional stiffness and the other to the geometric

stiffness parcel [5]. Thus, it is possible to introduce into the first one a modulus of elasticity

that is variable over time, according to the rheological model adopted, keeping the stress level

constant, and, in the second, to consider the normal stress acting on the system, which includes

the self-weight of the structural element. An approximate and satisfactory solution can be

found by considering viscoelasticity through flexural bending over time.

To evaluate these aspects, a numerical simulation has been performed, assuming an idealized

section of a beam as an engine base. A rheological model of the three parameters has been used

to obtain the variable modulus of elasticity. A model, including geometric stiffness, distrib-

uted, and concentrated masses, is derived based on the Rayleigh method and solved for a

range of axial compression load values. The results made it allowed us to verify the resonant

and non-resonant response of the system. A second analysis has been performed to simulate

numerically the variation of the first natural frequency of vibration of an actual structure of

reinforced concrete, axially loaded, and considering also the viscoelasticity by means of the

same rheological model. The loss of stability of the system has been then evaluated.

2. Mathematical solution for representing the viscoelasticity

An increase in strain over time under constant stress is a viscoelastic phenomenon. Mathemati-

cally, viscoelasticity can be represented by a time-dependent function associated with rheological

models capable of describing the phenomenon [6]. The slow deformation for concrete parts is a

phenomenon that is related to loads and deformations but is partially reversible [7]. It is a

phenomenon that is directly related to the movement of moisture inside concrete. When a sample

of concrete is loaded for 90 days and then unloaded, the immediate or elastic recovery is approx-

imately the same magnitude as the elastic deformation when the first load is applied [8].

It is conceptually convenient to consider classic viscoelastic models in which only two types of

parameters, relating to elasticity and viscosity, appear [9]. Classic viscoelastic models are

obtained by arranging springs and dampers, or dashpots, in different configurations. Springs

are characterized by elastic moduli and dashpots by viscosity coefficients. The best known of

these mechanical models are the Maxwell model, containing a spring in series with a dashpot,

and the Kelvin-Voigt model, containing a spring and dashpot in parallel. One model used to

represent the viscoelasticity of solids is the three-parameter model, in which the elastic param-

eter E0 is connected to the viscoelastic Kelvin-Voigt model with parameters E1 and η1, which is

a simplification of the Group I Burgers model, as shown in Figure 1.

The three-parameter model sufficiently describes the viscoelastic nature of many solids and is

often used to study the phenomenon in various scientific fields. The total deformations of the
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Kelvin-Voigt model are given by ε = ε
e + ε

v, where ε
e is the deformation of the elastic model,

and ε
v is the deformation of the Kelvin-Voigt model. When differentiated with respect to time,

the total deformation is obtained as

ε ¼ _ε
e þ _ε

v (1)

which is the constitutive equation of the elastic and Kelvin-Voigt models, respectively. Consid-

ering E1 = E0 as the modulus of elasticity for both parts of the rheological model,

σ ¼ E0ε
e and _σ þ

E0 þ E0

η1

σ ¼ E0 _ε þ
E0E0

η1

ε (2)

are found. From the previous equations, one derives the following differential equation:

σ ¼ E0ε
v þ η1 _ε

v (3)

where σ = 0 for t < 0 and σ = σ0 for t > 0, with t representing the time and t = 0 the instant of loading

application. As the stress remains constant, the stress derivate with respect to time is zero.

Applying the previous stress condition, the following ordinary differential equation is found:

E0 _ε þ
E0E0

η1

ε ¼ σ0 (4)

for which the general solution for t > 0, taking the initial condition ε(0) = σ0/E0, is

ε tð Þ ¼ σ0
1

E0
þ

1

E0
1� e

�
E0
η1
t

� �� �

(5)

Obviously, if the stress level remains constant, the modulus of elasticity should decrease

concurrently with increasing strain:

E tð Þ ¼
1

1
E0
þ 1

E0
1� e

�
E0
η1
t

� � (6)

Figure 1. Viscoelastic model of three parameters.
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The previous solution for consideration of the viscoelastic behavior of materials was used by

[10] to evaluate the stability of a slender wooden column, for example. However, it is of

interest, at this moment, to make clear that the present work is a numerical approximation,

which takes into account the viscoelastic behavior of the concrete by assuming a viscoelastic

rheological model of three parameters or as also is known of the solid standard.

It is important to note that the viscoelastic behavior of the considered material is completely

represented by the temporal modulus of elasticity. Therefore, the solid such behavior is wished

to study should be according that adopted model. Any material can be represented by it,

being, however, its usage conditioned by performing of experimental studies in order to

confirm if it is correct or not. Keeping this in mind, the concrete viscoelastic behavior is

assumed to be represented by the solid standard model, as an approximation of the reality.

However, criteria from regulatory codes can be used in substituting of that model or even any

other rheological models can be adopted.

3. Beam as a basis of supporting

3.1. Basic considerations prestressing in reinforced concrete

A piece can be considered as prestressed reinforced concrete when it is subjected to the action

of the so-called prestressing forces and of permanent and variable loads, so that the concrete is

not subjected to tension or it occurs below the limit of its resistance. As an example, take the

normal stresses beam diagrams of the prestressed beam of Figure 2, where P is the prestressing

force,MP the bending moment due to eccentricity of the load P,Mp is the bending moment due

to uniformly distributed load p and R is the resultant, each one of these with their

corresponding normal stresses. Under the conditions presented, the lower fibers of the beam,

under positive bending moment, will have the tension stresses overturned by the superposi-

tion of those produced by the normal stress of the applied stress eccentrically.

Prestressed concrete was developed scientifically from the beginning of the last century.

Prestressing can be defined as the artifice of introducing, in a structure or a part, a previous

state of stresses, in order to improve its resistance or its behavior in service, under the action of

Figure 2. Normal stresses in a prestressed beam.
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several effects. Due to the characteristics of the concrete as a structural material, the use of

prestressing can bring a great advantage from the economic point of view. When comparing

the cost of a prestressed structure with a similar one of conventional reinforced concrete, there

is a reduction in the final cost of the structure due to the reduction of steel reinforcement [11].

In addition, the prestressing allows the part to overcome large spans, improves the control and

reduction of deformations and fissures. It can also be used for structural recovery and rein-

forcement, as well as for slender systems and prefabricated or precast parts. There are three

types of prestressing systems: (1) prestressing with initial adherence, (2) prestressing with

posterior adherence, and (3) prestressing without adherence. The latter type is composed of a

post-tensioning system characterized by the slipping freedom of the steel reinforcement in

relation to the concrete, along the whole extension of the cable, except for the anchorages.

In a non-adherent prestressing, the cables or chutes are wrapped in two or three layers of

resistant paper. The wires and paper are painted with bituminous paint in order to tension

them after the concrete has hardened. The bitumen avoids the penetration of the cement cream

inside the cable and, in this way, it eliminates adhesion between the concrete and the reinforce-

ment [12]. The prestressed concrete is a composite material of the aggregate mixture and a

cement paste associated with prestressing cables and/or passive reinforcing bars. Because of

the combination of several materials, these structures develop a highly complex behavior,

presenting a non-linear response, which is due, among other factors, to time-dependent effects,

such as the creep of the concrete [13].

3.2. Mathematical model for the nonlinear vibration problem

Consider a rotary machine mounted on a beam subjected to a pre-tensioning force, without

adhesion. It is known that such forces affect the geometric stiffness and, consequently, the

values of the undamped free-vibration frequencies. If the structure is designed, as is usually

the case, to have frequencies farther from the machine’s service speed rotation, the changes in

the frequency due to geometric stiffness may lead to the appearance of potentially dangerous

resonance conditions.

Take a beam model of Bernoulli-Euler applied to a simply supported beam AB of length L and

inertia I, intended to function as the base of an engine Eg, composed of viscoelastic material,

represented by the temporal modulus of elasticity E(t) as shown in Figure 3. A normal force of

compression P reproduces the post-tensioning force, which changes the stiffness, and conse-

quently, the natural frequency of vibration of the structure with time. The eccentricity between

Figure 3. Beam model.
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the engine axis and the part is initially ignored. The vertical displacement of the central joint is

the generalized coordinate of the system.

By using the Rayleigh method [14], the undamped vibration frequency in its first mode consid-

ering viscoelasticity is obtained. It is worth mentioning that Rayleigh assumed that a system

containing infinite degrees of freedom could be associated with another with a single degree of

freedom (SDOF) to approximate its frequency. It is important to note that the technique devel-

oped by Rayleigh aimed at calculating the fundamental vibration frequency of elastic systems, as

its precision is dependent on the function chosen to represent this mode of vibration.

The basic concept of the method is the principle of energy conservation, and can, therefore, be

applied to linear and nonlinear structures. [15] applies the Rayleigh technique to determine the

fundamental period of vibration to verify the stability of mechanical systems. The process is

described in relation to the principle of virtual works and as the appropriate choice of the

generalized coordinate describing the first mode of vibration. At the end of the process, the

generalized properties of the system are obtained as stiffness and mass, necessary for the

calculation of the frequency.

Consider that the vertical displacement of a generic section of the beam in Figure 4 is given by:

v x; tð Þ ¼ ϕ xð Þ q tð Þ, (7)

in which ϕ(x) is a shape function that attempts to define the boundary conditions in the

supports and value 1 in the central section of the beam, whose displacement with time is q(t).

In this case, one adopts the shape function ϕ(x) = sin (πx/L), which is the exact solution of the

problem without the P load. A prime mark will denote a derivative of the function in relation

to x (Lagrange’s notation).

Applying the Rayleigh method, one has the conventional bending stiffness, K0, as a function of

the material behavior and the geometry of the cross, which is equivalent to:

K0 tð Þ ¼

ð

L

0

E tð ÞI ϕ00
� �2

dx ¼
π4E tð ÞI

2L3
(8)

where E(t)I is the known flexural bending with viscoelasticity, represented by multiplication of

the temporal material modulus of elasticity with the inertia of the section in relation to the

considered movement, the vertical vibration mode (1st mode). In turn, the geometric stiffness,

KG, as a function of the normal force of compression (or even tension), is equivalent to:

KG ¼ P

ð

L

0

ϕ0
� �2

dx ¼
Pπ2

2L
(9)

The total generalized mass of the system is found by calculating M =MC + MV where MC is the

concentrated mass at the middle span and MV is the mass coming from the beam self-weight

given by:
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Mv ¼

ð

L

0

mV ϕ xð Þ2dx ¼
mVL

2
(10)

in which mV represents the total mass per length unit. Finally, the frequency of undamped free

vibration (in rad/s) is found by way of Eq. (11):

ω tð Þ ¼

ffiffiffiffiffiffiffiffiffi

K tð Þ

M

r

(11)

Considering the total beam stiffness as K(t) = K0(t) � KG, the free undamped frequency of

vibration of the 1st mode is found, in Hertz, admitting the compressive force as positive, by:

f tð Þ ¼
ω tð Þ

2π
¼

1

2

π2E tð Þ I � PL2

L3 L mV þ 2Mcð Þ

� �

1
2

(12)

For a better understanding of the Rayleigh method and the importance of the geometric

stiffness to the structural analysis, the work [16, 17] should be consulted.

3.3 Numerical simulation 1

The beam gross cross section was estimated with a passive reinforcement arrangement capable

of resisting the predicted load in the simulation, being treated by the homogenized section

method, with geometry as indicated in Figure 5. The modulus of elasticity of the concrete was

calculated according to NBR 6118/2014 [18] recommendations, following Eq. (13), for a con-

crete characteristic compressive strength, fck, equal to 30 MPa.

E0 ¼ αi � 5600
ffiffiffiffiffiffi

f ck
p

¼ 26838:405 MPa;

αi ¼ 0:8þ 0:2 �
f ck

80MPa
¼ 0:875

(13)

The reinforced concrete specific weight γc was obtained for a material density r of 2500 kg/m3

and a gravitational acceleration g of 9.8061 m/s2, therefore γc = 24.52 kN/m3.

Figure 4. Rayleigh method.
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Section data:

• External height: H ¼ 16 cm

• Internal height: h ¼ H � 2 � t ¼ 6 cm

• Wall thickness: t ¼ 5cm

• Concrete cover: c0 ¼ 25 mm

• Reference beam span: L ¼ 3m

• Reinforced bar diameters: db ¼ 8 mm

• Number of reinforcement bars: nb ¼ 4

• Total inertia: I ¼ H
4
�h

4

12 ¼ 5353 cm4

• Gross-sectional area:A ¼ H
2
� h

2
¼ 220 cm2

The concrete section was homogenized by the transformation of the steel bars of the reinforce-

ment, which led to a homogenization factor of 1.061 to be considered in the material and

geometric properties of the beam section. The homogenizing technic is presented in Section

4.2. For the simulation, all the elements that constitute physical parts to be added to the

system, such as the bar used in prestressing systems and an electric induction motor that

represents periodic excitation, were considered as lumped or distributed masses.

Figure 5. Beam section characteristics.
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Figure 6. Frequency of the beam with time with viscoelasticity. (a) Frequency with time for capacity of the section, (b)

Safety factor γ—Collapse at 90th day.
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By fixing the force on the section-resistant capacity, one can observe the variation of the natural

frequency of the beam with time when considering viscoelasticity, as shown in Figure 6(a). A

safety factor of 1.170426 to be applied to the loading can be found,which defines the beam collapse

at the 90th day, as can be seen in Figure 6(b). By varying force P, which represents a non-adherent

post-tension force, from zero to the resistant capacity of the section, the variation of the natural

frequency of the beam is obtained, given in the graph in Figure 7. There, it is possible to see that,

with the increase of the axial compression force, the beam frequency decreases, since the geometric

portion (KG) stiffness is changed, consequently decreasing the total stiffness (K) of the beam.

Since the motor rotation is set at 1200 rpm (20 Hz), represented by the dotted horizontal line,

there is no resonance without consideration of viscoelasticity, but the resonance appears when

the natural frequency of the beam is calculated with the introduction of the viscoelastic behav-

ior of the material. For 10 days after application of load, for example, the resonant regime can

be observed by the intersection of two curves, dotted (horizontal) and dashed (sloped), defin-

ing exactly for which prestressing force the phenomenon occurs at that instant (210 kN).

4. Column as a structure for transmitting system

4.1. Formulation of the undamped vibration problem

Assuming the well-known trigonometric function

Figure 7. Resonant and non-resonant frequencies as a function of axial compression force P.
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ϕ xð Þ ¼ 1� cos
πx

2L

	 


, (14)

where x is an independent variable of the problem originating in the base, in the cantilever

position, and L is length of the column, q(t) is the generalized coordinate, and e(t) is the vertical

displacement of the top due the vibratory movement, as shown in Figure 8. By using the

Rayleigh method, in a similar way as described in the previous Section 3.2, the conventional

stiffness is found by

k0s tð Þ ¼

ð

Ls

Ls�1

E tð ÞIsFs ϕ00
� �2

dx,withK0 tð Þ ¼
X

n

s¼1

k0s tð Þ, (15)

where kos(t) and Fs are the parcel of the stiffness and the homogenizing factor of the concrete

cross section due to the reinforcement steel at the segment s. K0 is the final conventional

stiffness, where n is the total number of intervals given by the structural geometry. E(t)

represents the variable modulus of elasticity on time, according Eq. (6), and Is is the moment

of inertia of each section.

The geometric stiffness is obtained by the following equation:

kgs ¼

ð

Ls

Ls�1

N xð Þ ϕ00
� �2

dx,withKg ¼
X

n

s¼1

kgs, (16)

where kgs is the geometric stiffness at the interval s; Kg is the total geometric stiffness of the

structure, with n as defined before; N(x) is a normal effort function at the respective interval,

Figure 8. Mathematical model of vibration of a column.
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which includes the self-weight of the column on considered part, and the lumped forces from

upper segments, or better

N xð Þ ¼ m0 þms Ls � Ls�1ð Þ � x½ �f gg, (17)

withm0,ms are defined below, and g is the acceleration of gravity. The generalized mass is then

given by M = m0 + m, where m0 is the lumped mass on the top and m is the generalized mass

found with

ms ¼

ð

Ls

Ls�1

ms ϕ xð Þ
� �2

dx,withms ¼ Asr and m ¼
X

n

s¼1

ms, (18)

where ms is the mass to each segment s, found by multiplying the cross-sectional area As to the

density r of the material at the respective intervals, that is, ms, mass per unit length, and m,

generalized mass of the system due the density of the material, with n as defined previously.

The first natural frequency of the structure is calculated:

ω tð Þ ¼

ffiffiffiffiffiffiffiffiffi

K tð Þ

M

r

rd=sð Þ∴f tð Þ ¼
ω tð Þ

2π
Hertzð Þ, (19)

taking into consideration that, for a compressive force being positive, the temporal stiffness is:

K tð Þ ¼ K0 tð Þ � Kg: (20)

It is important to mention that Eq. (14) has been evaluated by [19] as a valid shape for the first

mode of vibration with geometric nonlinear characteristics, applied for actual structures, even

those with variable geometry, being a function valid throughout the entire domain of the

structure.

4.2. Numerical simulation 2

A 40-m-high reinforced concrete pole structure with an external 60-cm hollow circular cross-

sectional diameter, with variable thickness (Figure 9) and a slenderness ratio of 472 was used

for analysis. The properties of the sections change along the length due to the changes in

thickness and variation of the steel area.

The concrete used in the manufacture of the structure had the compression characteristic

strength fck of 45 MPa, viscosity η1 of 51089681149.92 MPa.s, and a density r of 2600 kg/m3.

The concrete cover c’ specified for the reinforcing steel was 25 mm and the steel used in the

construction of the pole was CA-50, with yield strength of 500 MPa and modulus of elasticity

Es of 205 GPa. The secant modulus of elasticity of the concrete Ec is 31931.05 MPa. The

numerical simulation was performed considering that all elastic parameters in Eq. (6) are equal

to the modulus of elasticity of the concrete, E0 = E1 = Ec.
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The structure also has an array of antennas and accessories, such as a platform, stairs, cables, and

mats (characteristics shown in Table 1), which exert compressive forces. It is important to

mention that the viscous parameter was adjusted so that the deformations converged at 90 days

(Figure 10(a)), as observed by [8]. With this, it was possible to obtain the variable modulus of

elasticity E(t) (Figure 10(b)). The gravitational (g) acceleration was assumed to be 9.806650 m/s2.

Since this is a cylindrical concrete reinforcement structure, it is necessary to take into account

the presence of reinforcement bars at the moment of inertia of the cross-sectional area, which

must be done by homogenizing the concrete area. Considering a circular ring cross section

with external diameter D; thickness of the wall ts; s relative to the considerate segment of the

structure; a reinforcement bar bi any occupies a position i in the section defined by Rbi and θi,

Figure 9. A column as a mast transition system.

Dispositive Height Weight

Pole from 0 to 40 m 25.48 kN/m3

Stair from 0 to 40 m 0.15 kN/m

Cables from 0 to 40 m 0.25 kN/m

Platform and supports 40 m 4.90 kN

Antennas 40 m 1.88 kN

Table 1. Structure’s characteristics and devices.
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as shown in Figure 11. Rbi determines the center position of each bar in relation to the section

center. c’ is the concrete cover of the reinforcement and dbi is the diameter of the i bar.

Rbi ¼
D

2
� c

0

�
dbi
2

: (21)

As θi is the independent variable, the distance between the center of each bar relative to the

axis center of inertia of the section is

y θið Þ ¼ sen θið ÞRbi: (22)

The spacing between the center of each bar section was obtained for sp. = 2πRbi/nbi, where nbi is the

number of bars of the reinforcement steel. The angular phase shift between them is Δθ = sp/Rbi.

Figure 10. Deformation and modulus of elasticity over time. (a) Deformation, (b) Elasticity.
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Since the θi varies from 0 to 2π at intervals defined by Δθ, the total inertia of the steel bars in

relation to the section of the structure could be obtained by the theorem of parallel axes with the

expression (14).

Is ¼
X

2π

θ

πdbi
4

64
þ y θið Þ2

πdbi
2

4

� �

: (23)

The homogenized moment of inertia of the steel bars will thus be:

Ishom ¼
X

2π

θ

I θið Þ
Es

Ec
� 1

� �

: (24)

The total homogenized inertia of the section will be obtained by Itot = I + Ishom, with I being the

inertia of the circular section, I = π/64 [D4 - (D - 2ts)
4]. Thus, to find a factor Fs, which multiplies

the nominal inertia of the section in terms of total steel inertia, the homogenized section is

made by Fs = 1 + (Ishom/Itot). Factors of homogenizing, the structural properties and the geom-

etry of the structure are shown in Table 2.

Considering that the actual structure has variable proprieties along the height, the expressions

(16), (17) and (18) must be resolved for each interval defined by structural geometry. The

frequency was calculated for the 90th day according to Eq. (10) (see Figure 12).

Figure 13(a) shows the structural frequency over time, for a height limit of losing stability,

calculated for the 90th day, considering viscoelasticity (L = 50.6975 m). To a height of

57.0000 m, for example, the behavior of Figure 13(b) is found, with the structural collapse

occurring on the 60th day. The height limit without viscoelasticity (instant 0) is 71.29 m, a

frequency of 0.0000 Hz.

Similar simulations for evaluation of the viscoelasticity can be found in [20, 21].

Figure 11. Parameters for homogenizing concrete section.
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Height Ls (m) External diameter D (cm) Thickness ts (cm) Number of bar (nbi) Bar diameter dbi (mm) Factors of homogenizing Fs

40 60 10 20 13 1.0963

39 60 10 20 13

38 60 10 20 13

37 60 10 20 13

36 60 10 20 13

35 60 10 20 13

34 60 10 20 13

33 60 10 20 13

32 60 10 20 13

31 60 13 20 13 1.0869

30 60 12 15 16 1.0995

29 60 11 15 16 1.1029

28 60 11 15 16

27 60 11 15 16

26 60 11 15 16

25 60 11 16 16 1.1091

24 60 11 17 16 1.1153

23 60 11 18 16 1.1214

22 60 11 19 16 1.1274

21 60 11 20 16 1.1334

20 60 14 20 16 1.1230

19 60 15 15 20 1.1374

18 60 16 15 20 1.1354

17 60 13 16 20 1.1512

16 60 13 16 20

15 60 13 17 20 1.1594

14 60 13 18 20 1.1675

13 60 13 19 20 1.1755

12 60 13 19 20

11 60 13 20 20 1.1833

10 60 13 22 20 1.1987

9 60 16 22 20 1.1889

8 60 16 15 25 1.1961

7 60 17 15 25 1.194

6 60 14 16 25 1.2132

5 60 14 16 25

4 60 14 17 25 1.2241

3 60 14 17 25

2 60 14 17 25

1 60 18 17 25 1.2136

0 60 18 17 25

Table 2. Structural properties and homogenizing factors of sections.
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5. Conclusions

Simulation 1

• In this work, a numerical simulation of a reinforced-prestressed concrete beam as a

support for rotating machines was performed.

• For the vibration analysis, the viscoelasticity, which is an intrinsic material property, was

introduced due to the slenderness of the beam, revealing a resonant regime not foreseen in

the linear analysis (without viscoelasticity).

Figure 12. Frequency variation on structure at 90 days.

Figure 13. Structural frequency on height of losing stability. (a) L = 50.6975 m—Collapse on the 90th day, (b) L = 57.0000 m

—Collapse on the 60th day.
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• The effect of geometric stiffness produced by the horizontal loading and the corresponding

possibility of introducing resonant regimes in the structural support system were demon-

strated by calculating their frequencies.

• It can be concluded, therefore, that due to the increase of the axial compressive force,

resonance conditions can occur, as represented by the intersection of the curves in Figure 7.

In the present study, resonance occurs when the axial compression force reaches 210 kN at

10 days. Other instants might also be considered.

• Since the force of post-tension decreases the stiffness of the beam, this can lead to the

resonant regime if it has not been previously evaluated in the structural analysis.

• The technique studied in this chapter offers an efficient tool to provide the removal of the

support structure of that unwanted regime, avoiding the production of harmful effects on

the equipment, fabricated products, and work environment of the operators.

• In further work, it is necessary to introduce normative criteria, perform experimental activ-

ity, and evaluate the influence of the prestressing bar stiffness on the structural response.

Simulation 2

• The modulus of elasticity calculated by Eq. (6) on the ninth day was 16027.64 MPa, which

represents a decrease of 49.81% in relation to the initial value of 31931.05 MPa.

• The frequency of the structure calculated at the initial moment was 0.215715 Hz, and on

the 90th day, of 0.135021 Hz, representing a reduction of 37.41%.

• The simulated structure finds its limit of stability when reaching 50.6975 m, collapsing at

90 days. If the viscoelastic effect were not considered, the height limit would be 71.29 m,

20.47% above the first one. The obtained result was taken for an exactitude of five decimal

significant algorisms (f = 0.00000).

• The previous aspect is relevant because if the height were considered between the limit

established without the viscoelasticity and that defined with it, the structure would

collapse before the end of 90 days in service. For a height of 57 m, for example, the

collapse would occur 60 days after being loaded.

• Others rheological models for representing viscoelastic behavior can be tested in order to

evaluate the frequency of a column of reinforced concrete as well as criteria from regula-

tory codes.

• The critical load of buckling can be obtained by using the same process present in this

work and comparing it to other tools for calculations as, for example, finite element

method (FEM).
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