Cell Identification and Sub-Cellular Chemical Characterization Using HD FTIR-Imaging: A Multivariate Analysis

O RUSH UNIVERSITY MEDICAL CENTER

PS2 #1865

Songyun Liu, Deborah J. Hall, Stephanie M. McCarthy, Si Chen, Joshua J. Jacobs, Robert M. Urban, Robin Pourzal Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL

Introduction

- Corrosion products and wear debris generated from total hip replacements (THR) often lead to premature implant failure.
- Clinical histopathological practice is limited in identifying **biochemical alternations**.
- High definition Fourier transform infrared micro-spectroscopy imaging (HD FTIR-I) enables rapid chemical identification with a high spatial resolution.

Purpose:

To characterize different pathological patterns associated with varying particulates using HD FTIR imaging

<u>Methods</u>

	Work Flow
Sample format	5 μ m FFPE fixed tissue section
ample substrate	BaF ₂ slide
Sampling mode	Transmission (pixel: $1.1 \times 1.1 \mu m^2$)
Data acquisition	Hyperspectral data cube
Pre-processing	Quality test; baseline correction
Data analysis	Chemical Imaging; clustering

Highlights:

- Entirely non-perturbing sample preparation;
- High-throughput imaging data;
- Unsupervised learning or hierarchical cluster analysis (HCA) use recorded local spectrum to relate data to underlying physiologic condition.

Results

Identification of CrPO₄ particles, fibrin exudate, and macrophages within capsule tissue from a MoP THR with

Conclusion

- HD FTIRI provides a fast method to characterize wear and corrosion debris at a high level of spatial detail.
- Multivariate FTIRI approach, specifically HCA, is a promising tool for spectral histopathology to aid in clinical diagnosis and quantification of histopathological patterns.

➡ For example, macrophages can be distinguished based on particle contents.

Acknowledgement: NIH R01 AR070181 grant

Copyright © 2019 Songyun Liu Songyun_Liu@rush.edu