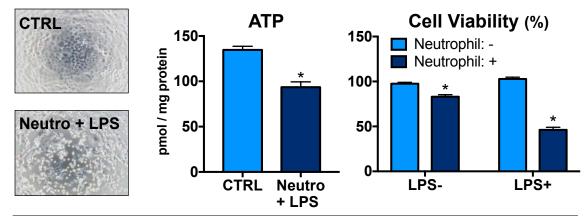

Metabolic reprogramming by inhibition of prolyl hydroxylases protects alveolar epithelial cells from LPS-neutrophil-induced energy derangements and cell death

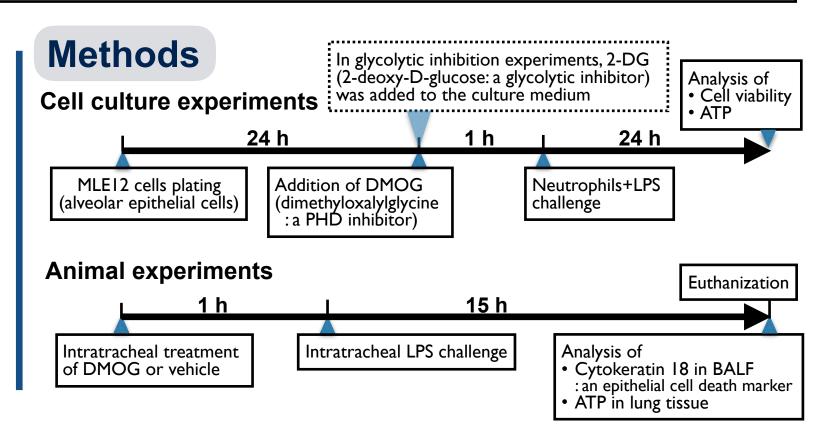
Background


- * Neutrophil-mediated alveolar epithelial injury is a hallmark of acute respiratory distress syndrome (ARDS).
- * Cellular energy derangement due to mitochondrial dysfunction underlies the alveolar epithelial injury.
- * Therefore, metabolic reprogramming shifting bioenergetic activity from mitochondria-dependent OXPHOS to glycolysis may protect alveolar epithelial cells from ARDS.

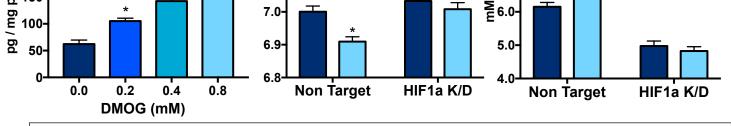
Hypothesis

Metabolic reprogramming by pharmacological inhibition of a cellular oxygen sensor, prolyl hydroxylases (PHDs) may protect alveolar epithelial cells from lung injury.

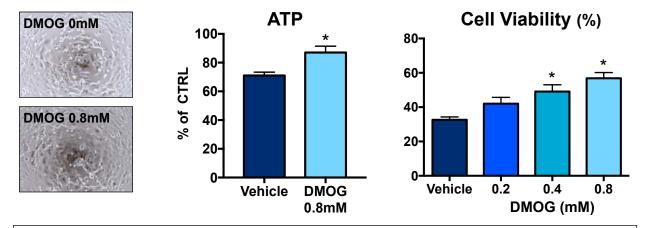
Results and Discussion



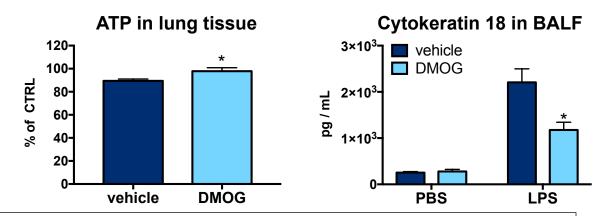
Kentaro Tojo, Nao Tamada, Yusuke Nagamine, Shuhei Ota, Takahisa Goto Yokohama City University Graduate School of Medicine, Dept of Anaesthesiology & Intensive Care, Yokohama, Japan


Summary

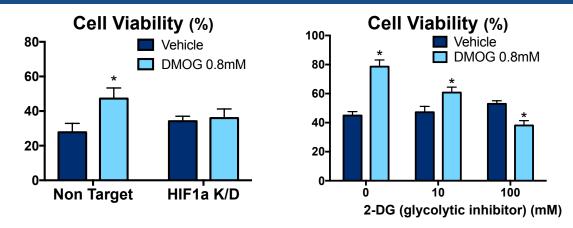
- LPS-activated neutrophils cause ATP decline and alveolar epithelial cell death.
- Pharmacological inhibition of a cellular oxygen sensor, prolyl hydroxylases (PHDs) causes HIF-1 mediated metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis.
- PHD inhibition protected alveolar epithelial cells from neutrophil-LPS-induced ATP decline and cell death via HIF-1-mediated metabolic reprogramming.



Neutrophil-LPS challenges induced ATP decline in MLE12 cells; an alveolar epithelial cell line. Concomitantly, cell viability was significantly decreased by neutrophil-LPS challenge. The cell death was not suppressed by caspase 3/7 inhibitor (data not shown). * p<0.05 *vs.* control.


A PHD inhibitor, DMOG increased HIF-1α protein in MLE12 cells, however not HIF-2α (data not shown). Moreover, DMOG increased indicators of glycolytic activity; medium acidification and lactate production, which were abolished by HIF-1α knock-down. * p<0.05 *vs.* vehicle group.

DMOG protects alveolar epithelial cell through HIF-I-mediated metabolic reprogramming from OXPHOS to glycolysis.



DMOG treatment attenuated the neutrophil-LPS-induced ATP decline and cell death in dose-dependent manner. * p<0.05 *vs.* vehicle group

Intratracheal DMOG treatment attenuates alveolar epithelial cell death and ATP decline in LPS-induced lung injury mice

Intratracheal LPS-instillation-induced ATP decline in lung tissues and increased an epithelial cell death marker; cytokeratin 18 in BALF. Intratracheal DMOG treatment attenuated these changes. * p<0.05 vs. vehicle group.

HIF-1α knock-down abolished the protective effects of DMOG. Furthermore, glycolytic inhibition by 2-DG reversed the effects of DMOG. * p<0.05 *vs*. vehicle group

Conclusion

- Pharmacological inhibition of PHDs protected alveolar epithelial cells from LPS-neutrophilinduced ATP decline and cell death via HIF-1mediated metabolic reprogramming.
- Metabolic reprogramming from OXPHOS to glycolysis may be a novel approach to protect alveolar epithelial cells from ARDS.

