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Reference Tracking and Profit Optimization of a Power Plant

Martin Kragelund, John Leth, and Rafa l Wisniewski

Abstract—In this paper we discuss two different
methods for implementing reference tracking in a
profit optimization problem of a power plant. It is
shown that tracking included as a side constraint
results in an significant tracking error only when the
reference gradient is large. When tracking is included
in the cost function, as a quadratic term, the reference
is tracked with a small accumulated error. Finally, the
two methods are compared both in terms of tracking
performance and computational burden.

I. Introduction

Traditional thermal power plants, i.e., coal, gas, or oil
fired power plants, have been studied in details [1]. In
brief, a thermal power plant functions by burning a fuel
in a boiler which evaporates water to steam under high
pressure. The stream then drives a turbine generating
electrical power which is delivered to the electrical grid.
A thermal power plant is modeled by first principle

in [2], where the considered fuel is coal dust which is fed
by four coal mills grinding the raw coal. The detailed
model in [2] was used to establish an observer for the
flow of coal into the boiler to improve the control of
the coal mills. Simpler models for system control are
presented in [3], where the di↵erent methods for changing
the output from the complete portfolio of DONG Energy
in Denmark are described. The means of changing the
output is denoted an e↵ectuator in [3], and the models
of typical e↵ectuators in a power plant are derived. An
example of an e↵ectuator is the boiler load in a thermal
power plant which can be modeled as a 3rd order system.
In production economics the possible outputs from a

production unit or “firm” are identified and called the
production set [4, Chapter 5]. The production units are
seen as black boxes which are capable of transforming
some goods (input) to other goods (output). Some as-
sumptions are often made about the production set e.g.
No free lunch and Free disposal, i.e. the production set,
Y , cannot contain R

l
+ as this would yield production of

some quantity without consumption and the company
can absorb any additional input without reducing the
output. In [4, Chapter 5] it is concluded that the ob-
jective of a company is to maximize its profit, which at
first seems reasonable. However, it is possible to imagine
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companies which have the objective of maximizing sales
revenue or the size of the company, but if the company
is owned by the consumers in a market they will agree
that profit maximization is preferable regardless of their
own preference function.

The electricity market place for Nordic Countries is
called Nord Pool. Here the price of electricity, as known
by the average electricity consumer, is negotiated. Fur-
thermore Nord Pool regulates related to the quality of
the power deliverance. These quantities are traded on
the hourly spot market, elspot. The transmission system
operator maintains the energy balance. In other words it
takes care of the situation when a power plant delivers
too much or too little electricity to the grid than agreed.
To ensure that su�cient reserve capacity is available the
transmission system operator pays two prices, an up price
and a down price, i.e. price for producing more or less
electricity than previously agreed.

The data from Nord Pool has been used before to
schedule the usage of hydro power plant in Norway such
that the production plan commitment of the current
day is fulfilled while maximizing the profit of the hydro
plant [6].

This work focus on two di↵erent methods for including
reference tracking into the design of an optimal profit
strategy for a power plant, using coal, gas and oil, under
the consideration of two business objectives, e�ciency
and controllability.

A. Outline

In Section II the plant dynamics, business objectives
and profit function are described. In Section III the
continuous optimization problem is formulated without
reference tracking. For this purpose a discrete formu-
lation of the problem is derived. In Section IV and
Section V the reference tracking is included into the
optimization problem as a side constraint and as a
quadratic term in cost function, respectively. Section VI
contain a discussion of the methods for implementing the
tracking.

II. Plant Model

In this section a model of the power plant considered
in this work is presented. The plant is capable of using
three di↵erent fuel systems; coal, gas, and oil. For further
details about the presented models and quantities the
reader is referred to [7]–[10].



A. Plant Dynamics

The fuel flow, x(t) [kg/s], into the power plant is gov-
erned by third order di↵erential equations (these equa-
tions also include the power plant dynamics). The control
signal to the valves controlling these flows is denoted
u = (uc, ug, uo) 2 U, U =

�
v 2 R

3
+ | 0  vTeu  400

 
,

where eu = (10.77, 18.87, 15.77) [kg/s], and the dynamics
is given by

ż(t) = Az(t) +Bu(t)

x(t) = Cz(t),
(1)

where

A =

2

4

Ac 03x3 03x3

03x3 Ag 03x3

03x3 03x3 Ao

3

5 , Ai =

2

4

0 1 0
0 0 1
hi1 hi2 hi3

3

5 ,

B =

2

4

Bc 03x1 03x1

03x1 Bg 03x1

03x1 03x1 Bo

3

5 , Bi =

2

4

0
0
hi0

3

5 ,

C =

2

4

C1 01x3 01x3

01x3 C1 01x3

01x3 01x3 C1

3

5 , C1 =
⇥
1 0 0

⇤
,

and hij , i 2 I, are constants describing the dynamics of
the three fuel systems which are obtained from transfer
functions of the form

Hi(s) =
1

(τis+ 1)
3 ,

where τi, i 2 I, is 90, 60, and 70, respectively. The three
fuel systems may have some shared dynamics but to
simplify the model in this work the systems are assumed
decoupled.
Functions describing the two business objectives are

derived in the following.

B. Efficiency

The e�ciency objective, ye = ye(z), deals with how
much electricity is produced from a certain amount of
fuel. Three a�ne functions describing the contribution of
the individual fuels to the e�ciency objective have been
established using measurement data from two Danish
power plants and can be expressed as

ỹe(z) = Q̃z + b, (2)

where

Q̃ = diag(ex)C, ex = (10.77, 18.87, 15.77),

b = (�1.76, 1.85,�0.37),

and C defined in (1). The values of ex and b have been
established using measurement data and are measured
in [MJ/kg] and [MW ] respectively. The energy used for
preprocessing the individual fuels is expressed by the
bi’s, and the exi

’s are conversion factors which are a
combination of the boiler e�ciency and energy storage
in the di↵erent fuels.

The total amount of e�ciency is described by the
function

Z ! Y1; z 7! ye(z) = γT ỹe(z),

where

γ = (1, 1, 1).

C. Controllability

The controllability objective, yc = yc(z), deals with a
measure of how fast the production of electricity can be
changed. Allowed changes in the production is limited
to a certain gradient depending on the current e�ciency.
The reason for this limit is a compliance to maximum
temperature gradients in the boiler (these have not been
explicitly modelled and are therefore indirectly consid-
ered by limiting the allowed changes). When using coal
it is allowed to change production with 0.133 [MW/s]
when running the plant at low and high production
and 0.267 [MW/s] in the middle range from 200 [MW ]
to 360 [MW ]. When using oil or gas the values are
0.133 [MW/s] and 0.534 [MW/s]. If a mixture of the
three fuels are used it is assumed that the allowed
change is a linear combination of the allowed change
of the individual fuels. The controllability objective is,
therefore, modelled as

Z ! Y2; z 7! yc(z) =

8

><

>:

0.133 ye(z) 2 S1

ξT ỹe(z)
ye(z)

ye(z) 2 S2

0.133 ye(z) 2 S3,

(3)

where

ξ = (0.267, 0.534, 0.534), S1 = {s 2 R|0  s  200},

S2 = {s 2 R|200 < s < 360}, and

S3 = {s 2 R|360  s  400}.

D. Prices

The cost of using the fuel, revenue from production
of output, and the profit of operating the power plant
can now be determined. The above constructions yields
a product (or output) function, yP , of the system given
by

yP : Z ! Y ; z 7! (ye(z), yc(z)).

The growth of cost and growth of revenue for the
system are defined by the following functions (both with
units in [DKK/s])

gC : Z ! R; z 7! zTCTpC ,

gR : Y ⇥ R+ ! R; (y, t) 7! yTpR(t), pR(t) > 0,

where pC = (1.20, 3.74, 6.00) is the price of coal, gas, and
oil respectively and

pR(t) = (pR1(t), pR2(t))



the price of the e�ciency and controllability respec-
tively.1

The growth of profit is hence defined by

Z ⇥ Y ⇥ R+ ! R; (z,y, t) 7! gR(y, t)� gC(z),

which for the system yields the function

gP : Z ⇥ R+ ! R; (z, t) 7! gR(yP (z), t)� gC(z).

Therefore, the profit is given by

P : R+ ! R; t 7!

Z t

0

gP (z(τ), τ)dτ. (4)

III. Problem Formulation

Using the above it is now possible to formulated the
following optimization problem

max
u∈U

P (T ) =
R T

0 gP (z, t)dt

subject to ż = Az +Bu,
(5)

and with the additional requirement that, ye(z(t)) should
track a predefined reference signal, yr(t).
For computational reasons the optimization problem

above will be simplified by introduction two approxima-
tions. One which assumes good reference tracking and
one which deals with condition for discretization of (5).
The growth of profit function, gP , can when ye ⇡ yr

be approximated by

gp(z, t) = Θ(t)z + ϕ̃(t), (6)

where

Θ(t) = pR1(t)γ
TQ� pR2(t)p

T
CC + ϑ(t),

ϕ̃(t) = pR1(t)γ
Tb+ pR2(t)ζ(t),

and ϑ(t) and ζ(t) makes up for the switching function in
the original formulation of the controllability, i.e.,

ϑ(t) =

8

><

>:

0 yr(t) 2 S1

ξTQ
yr(t)

yr(t) 2 S2

0 yr(t) 2 S3,

ζ(t) =

8

><

>:

0.133 yr(t) 2 S1

ξT b
yr(t)

yr(t) 2 S2

0.133 yr(t) 2 S3,

Hence the assumption ye ⇡ yr enables us to consider
the growth of profit (4) as a a�ne function of the state
as is (6). Note that the assumption also implies that the
switching condition yr(t) 2 Si in the expression for ϑ and
ξ are time dependent, this switching condition would be
state dependent otherwise.
The time period T is divided into N equally sized time

units, h, i.e., T = Nh. It is assumed that Θ(t), ϕ(t),

1The prices used in this work corresponds to the market prices
the 29th of June, 2008 and has been established using inter-
nal DONG Energy documents and the archive of power price
at www.nordpool.dk, which is a marketplace for trading power
contracts.

ψ(t), yr(t) can be approximated by piecewise constant
functions for each time step, i.e.,

Θ(t) = Θk, kh < t < (k + 1)h,

ϕ̃(t) = ϕ̃k, kh < t < (k + 1)h,

yr(t) = yrk , kh < t < (k + 1)h.

Furthermore, the control will be assumed piecewise con-
stant as customary when digital to analogue conversion
is performed using sample-hold circuits.
Using a fact from [11] the continuous time state z(t)

in the dynamical system in (5) can be described by

z(t) = eAtz0 +

Z t

0

eA(t−s)Bu0(s)ds

=
⇥
I 0

⇤
exp

⇢
A B

0 0

�

t

�
z0

u0

�

,

(7)

where I is an identity matrix with appropriate dimen-
sion. Using (7) it is possible to derive the following
formula which is used during the discretization of the
cost and constraint
Z

h

0

e
At

dt = e
Ah

Z

h

0

e
−A(h−t)

dt

= e
Ah

✓

e
−Ah

· 0 +

Z

h

0

e
−A(h−t)

Idt

◆

= e
Ah

⇥

I 0
⇤

exp

⇢

−A I
0 0

�

h

�

0
I

�

.

(8)

The objective function, P (T ), in the optimization
problem in (5) is converted to discrete time by using the
above, i.e.,

P (T ) =

N−1
X

k=0

Z (k+1)h

kh

(Θ(t)z(t) + ϕ̃(t)) dt

=

N−1
X

k=0

Θk

Z

h

0

✓

e
At

zk +

Z

t

0

e
A(t−s)

Bdsuk

◆

dt+ hϕ̃k

=
N−1
X

k=0

Θk

Z

h

0

⇥

I 0
⇤

e
Ãt



zk

uk

�

dt+ hϕ̃k

=

N−1
X

k=0

Θk

⇥

I 0
⇤

e
Ãh

⇥

I 0
⇤

e
Âh



0
I

� 

zk

uk

�

+ hϕ̃k,

where

Â =



�Ã I

0 0

�

, Ã =


A B

0 0

�

.

With the reference tracking disregarded and the
growth of profit function as in (6), the optimization
problem (5) can be reformulated as

max
uk∈U

N−1X

k=0

Ckzk +Dkuk +Ek

subject to zk+1 = Φzk + Γuk,

(9)

where

Ck = Θk

⇥
I 0

⇤
eÃh

⇥
I 0

⇤
eÂh


0

I

� 
I

0

�

,

Dk = Θk

⇥
I 0

⇤
eÃh

⇥
I 0

⇤
eÂh


0

I

� 
0

I

�

,

Ek = hϕk, Φ = eA(tk+1−tk), and Γ =

Z tk+1−tk

0

eAsdsB.



When considering the reference tracking di↵erent
approaches can be used to formulate them. In this work
two di↵erent methods are considered - briefly these are:

Quadratic: In this approach the tracking constraint
is included in the profit function as a norm of the
di↵erence between the e�ciency and the reference
and thus penalizing deviations.

Side Constraint: In this approach the tracking
is formulated as a constraint in the optimization
such that the reference is followed within a refer-
ence band. This is implemented as additional side
constraints to problem (9).

IV. Side Constraint

To include the reference tracking in problem (5) we
introduce in this section a reference band with time
dependent width, α(t), i.e., α(t) is the normed error at
time t. In continuous time the reference band can be
formulated as

h(z(t), t) � 0, (10)

where

h(z(t), t) = Υz(t) +ψ(t), (11)

with

Υ =


γT Q̃

�γT Q̃

�

,

ψ(t) =


γTb� yr(t) + α

�γTb+ yr(t) + α

�

.

By direct calculation the discrete time approximation
then yields

Ψlzk +Πluk +Ωk,l � 0

where for l = 0, 1, 2, ..., L

Ψl = ΥeA
l−1

L
h,

Πl = Υ

Z l−1

L
h

0

eA( l−1

L
h−s)Bds,

Ωk,l = ψ( l−1
L

h+ kh).

Note that the constraint is guaranteed to be satisfied L
times between each sampling of the system in (9).
Hence the optimization problem (9) together with

tracking constraint can be formulated as

max
u ∈ U

α ≥ 0

N−1X

k=0

�
Ckzk +Dkuk +Ek �Wkαk

�

subject to zk+1 = Φzk + Γuk,

Ψlzk +Πluk +Ωk,l � 0.

Note that the tracking width αk is included in the op-
timization problem, i.e., the tracking error is minimized
as well.
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Fig. 1. Graphs of the efficiency output, input usage, and tracking
error for the optimization problem with reference band tracking,
L = 1.
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Fig. 2. Graphs of the efficiency output, input usage, and tracking
error for the optimization problem with reference band tracking,
L = 5.

The optimization problem above has been solved for
L = 1 and L = 5, the results are depicted in Figure 2 and
Figure 1. As seen in these figures, reference is tracked
well with an significant error only present at times with
large gradients in the reference signal. Furthermore, the
tracking of the reference is considerably better when L =
5 as both the intensity and the value of the e�ciency
error is smaller.

V. Quadratic

In this section we include the reference tracking as
a cost on the deviation from the reference. This is
formulated as

Q(T ) =

Z T

0

�βq

�
�γTQz(t)� yr(t)

�
�
2
dt, (12)



where k·k is the Euclidean norm. The tracking is included
in the objective function as

P (T ) =

Z T

0

gp(z, t)� βq

�
�γTQz(t)� yr(t)

�
�
2
dt

=

Z T

0

0

B
@�z(t)TQz(t)
| {z }

P2(T )

+2q(t)T z(t) + ϕ(t)
| {z }

P1(T )

1

C
A dt,

(13)

with

Q = βqQ̃
T
γγT Q̃

q(t)T =
1

2
Θ(t) + βqyr(t)γ

T Q̃

ϕ(t) = ϕ̃(t)� βqyr(t)
2.

As our maximization problem is formulated in discrete
time we need to discretize (13). This is done in the sequel
by apply (7) and (8).

P1(T ) =

Z

T

0

⇣

2q(t)Tz(t) + ϕ(t)
⌘

dt

=

N−1
X

k=0

2q(t)T
Z

h

0

✓

e
At

zk +

Z

t

0

e
A(t−s)

Bdsuk

◆

dt

+ h

N−1
X

k=0

ϕk

=

N−1
X

k=0

2q(t)T
Z

h

0

⇥

I 0
⇤

e
Ãt



zk

uk

�

dt+ h

N−1
X

k=0

ϕk

=

N−1
X

k=0

2q(t)T eÃh
⇥

I 0
⇤

e
Âh



0
I

� 

zk

uk

�

+ h

N−1
X

k=0

ϕk

=
N−1
X

k=0

(Mzzk +Muuk + hϕk) , (14)

where

Mz = 2q(t)T eÃh
⇥
I 0

⇤
eÂh


0

I

� 
I

0

�

Mu = 2q(t)T eÃh
⇥
I 0

⇤
eÂh


0

I

� 
0

I

�

with

Â =



�Ã I

0 0

�

, Ã =


A B

0 0

�

,

and the matrices I and 0 of appropriate dimensions.

Now, the quadratic term is discretized by using (7)

P2(T ) = −z(t)TQz(t)

=−

N−1
X

k=0

Z

h

0

✓

z
T

k e
A

T
t + u

T

k

Z

t

0

B
T
e
A

T (t−s)
ds

◆

Q

✓

e
At

zk +

Z

t

0

e
A(t−s)

Bdsuk

◆

dt

=−

N−1
X

k=0

Z

h

0

⇥

zT

k uT

k

⇤

e
Ã

T
t



I
0

�

Q

⇥

I 0
⇤

e
Ãt



zk

uk

�

dt

=−

N−1
X

k=0

⇥

zT

k uT

k

⇤

e
Ã

T
h
Y (h)eÃh



zk

uk

�

(15)

where Ã is as above and

Y (h) =

Z

h

0

e
−Ã

T (h−t)
Q̄e

−Ã(h−t)
dt (16)

Q̄ =



I
0

�

Q
⇥

I 0
⇤

The integral in (16) is on the form of the solution to a
matrix di↵erential equations which can be formulated as

Y (h) =

Z

h

0

e
−Ã

T (h−t)
Q̄e

−Ã(h−t)
dt ⇒

−
d

dh
Y (h) =Ã

T
Y (h) + Y (h)Ã− Q̄, Y (0) = 0. (17)

Using the Vec(·) notation which is defined as

Vec(P ) =

2

6
4

p1
...
pn

3

7
5 , (18)

where pi is the columns of P , it is possible to formulated
(17) as

�
dVec(Y (h))

dh
=FVec(Y (t))�Vec(Q̄) (19)

where

F =
⇣

I ⌦ ÃT + ÃT ⌦ I
⌘

and ⌦ denotes the Kronecker product. By using the
solution to standard vector di↵erential equation and (8),
the solution to (19) is given by

Vec(Y (h)) =

Z h

0

eF (h−τ)dτVec(Q̄)

=eFh
⇥
I 0

⇤
eF̂h


0

I

�

Vec(Q̄)

=eFhF̃Vec(Q̄),

where

F̃ =
⇥
I 0

⇤
eF̂h


0

I

�

, F̂ =


�F I

0 0

�

.

That is (15) can be expressed as

P2(T ) =−

N−1
X

k=0

⇥

zT

k uT

k

⇤



N zz Nzu

Nuz Nuu

� 

zk

uk

�

(20)



where

Nzz =
⇥
I 0

⇤
eÃ

ThVec−1
⇣

eFhF̃Vec(Q̄)
⌘

eÃh


I

0

�

Nzu =
⇥
I 0

⇤
eÃ

ThVec−1
⇣

eFhF̃Vec(Q̄)
⌘

eÃh


0

I

�

Nuz =
⇥
0 I

⇤
eÃ

ThVec−1
⇣

eFhF̃Vec(Q̄)
⌘

eÃh


I

0

�

Nuu =
⇥
0 I

⇤
eÃ

ThVec−1
⇣

eFhF̃Vec(Q̄)
⌘

eÃh


0

I

�

with matrices I and 0 of appropriate dimensions, and

Vec−1
⇣

eFhF̃Vec(Q̄)
⌘

, an n ⇥ n matrix, denoting the

“inverse” of the Vec-operator in (18), i.e., reshaping the
vector into a matrix.

Hence the optimization problem together with
quadratic tracking error can be formulated as

max
u ∈ U

α ≥ 0

N−1X

k=0

Ck

subject to zk+1 = Φzk + Γuk,

where

Ck =
⇥
zT
k uT

k

⇤
N


zk

uk

�

+Mzzk +Muuk + hϕk,

with

N = �


Nzz Nzu

Nuz Nuu

�

,

and the matrices N zz, Nzu, Nuz , Nuu, Mz , and Mu

as given above.

The optimization problem above has been solved and
the results are depicted in Figure 3. As seen in the figure
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Fig. 3. Graphs of the efficiency output, input usage, and tracking
error for the optimization problem with quadratic tracking error.

the reference is tracked with a small accumulated error
caused by the quadratic error term in (12).

VI. Comparison of Optimization Methods

In this section we compare the two di↵erence methods
for solving the problem (9) with reference tracking.
Comparing the e�ciency error of the three di↵erent

methods it is noted that the mean of the error in
the case of side constraints is less than the quadratic
method. However, the fluctuations of the e�ciency error
when using side constraints are more frequent than the
quadratic case.
The profit of the three di↵erent methods are almost

identical and are therefore not included in this analysis.
We note that this is also supported by the fact that the
use of fuels in the three approaches are similar and by
the fact that the e�ciency error is small hence producing
similar profits.
In table I the times for running the optimization are

presented for the three solution strategies. Hence the

Method Optimization Time Solver

Side Constraint (L = 5) 896 s SeDuMi
Side Constraint (L = 1) 168 s SeDuMi
Quadratic 157 s BPMPD

TABLE I

Comparison of optimization times between the three

solution strategies.

quadratic method or side constraint method with L =
1 should be applied if only the optimization time is
considered.
As the profits of each of the methods are the same the

choice of methods should be based on the need for com-
putation time and requirements on tracking performance,
which depend entire on the specific control problem.
To this end we remark that if continuous time is con-

sidered, the quadratic method has the advantage of only
having the dynamical system as side constraint, which
eases application of the Pontryagin maximum principle.
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Abstract—A nonlinear experimental pH neutralization plant is
controlled using a neural networks based Approximate Predictive
Control (APC) strategy. First a closed-loop identification is
performed, further, using neural networks, a black-box modeling
of the experimental plant is conducted. Then the approximate pre-
dictive controller is realized, where a linear model of the plant is
extracted at each sampling period from the neural network model.
This strategy is used to control the experimental neutralization
plant for set point tracking and disturbance rejection.
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I. INTRODUCTION

Monitoring and controlling the pH level is often performed

in many chemical, industrial processes. It is important to

improve the productivity and at the same time the robustness

of these processes.

A PID controller is often used to deal with this process;

however, it can only react to changes in a reference signal. On

the other hand, a Model Predictive Control (MPC) approach

is proactive and makes use of the information of the future

reference signal which is usually known beforehand in a pH

neutralization process. Although the MPC approach can not

follow a step function directly it can follow it much better than

a PID (justifiably assuming that the maximal possible slope of

the change is the same). Furthermore a MPC approach is more

sophisticated than a PID in terms of handling input and output

constraints, as well as dealing with difficult system behaviors

like high nonlinearity and long time delays, see e.g. [1].

Nonlinear Model Predictive Control (NMPC) is a well-

established research approach to deal with nonlinear plants.

Currently the NMPC is limited to processes with relatively

slow dynamics due to the usage of nonlinear optimization

approaches. Different techniques have been proposed to deal

with this problem, see e.g. [2] and [3]. One of these techniques

is the Approximate Predictive Control (APC) which uses a lin-

earized model of the plant at each sampling period [4]. By this

way, only a linear optimization problem has to be performed

every sampling instant, this reduces the computational load and

enables to deal with faster processes.

The APC approach is already known since more than ten

years and some simulation studies were introduced in [5]

to control gas turbine engines and in [4] for a pneumatic

servomechanism. Although there is a vast literature on MPC

in connection with neural networks there are not many appli-

cations of APC approaches based on neural network models

used on real problem instances. One of the exceptions is the

experimental 3-DOF Helicopter presented in [6].

To deal with the pH neutralization process in [7] a PID

controller based on a neural network model is presented, which

uses a genetic algorithm to tune the parameters of the PID

controller offline on the nonlinear neural network model. In

[8] on this problem an adaptive nonlinear control strategy is

used.

Fig. 1. The experimental pH neutralization plant.

In this paper an APC strategy is used to control the experi-

mental pH neutralization plant shown in Figure 1. We consider

the set point tracking and disturbance rejection problem. All

c� VCC 2010 - Aalborg University



Fig. 2. Schema of the problem in its SISO arrangement.

these in order to assist the capability of APC to control such

highly nonlinear process.

The rest of the paper is structured as follows: Section II

describes the system under consideration. In Section III a

system identification of the experimental pH neutralization

plant is performed. Here a data set is collected in closed-loop

and based on which a neural network is trained to represent the

experimental plant. A short introduction to the APC strategy

is given in Section IV. Section V presents the experimental

results in terms of a set point tracking and a disturbance

rejection problems. Finally in Section VI some conclusions

are drawn.

II. PROBLEM DESCRIPTION

The pH neutralization process considered in this work is

technically realized in a mixing tank with two input streams

and one output stream. Figure 1 and Figure 2 show the ex-

perimental plant and a draft of it, respectively. The cylindrical

tank is initially filled to three-fourths of its volume with water

and the mixer is arranged in the lower fourth of the tank.

Separate control loops, one for the temperature and one

for the liquid level, are used for holding the environmental

conditions approximately constant. These controllers are sim-

ple On/Off-Controllers and as such are independent from the

control method for the pH neutralization process.

One of the input streams is an alkaline solution (NaOH) and

has a constant flow rate as well as a constant pH-value. The

second input stream is acid (HCl) with a constant pH-value

but its flow rate is manipulated to control the pH-value in the

tank. The output stream is controlled in the mentioned sepa-

rated On/Off-Control loop and hence the outflow is discrete

depending on the liquid level within the tank. Finally a pH

sensor is attached near the bottom of the tank precisely above

the opening for the output stream. The reference signal which

is a desired pH-value in the tank is known beforehand.

The whole system can be formulated as a SISO system: the

pH-value of the liquid in the tank is the output and the acid

flow rate is the input to this system. The right acid flow rate

results in the desired pH-value within the tank. Insufficient

acid results in an excessively alkaline pH-value; conversely,

excessive acid inflow leads to an exceedingly acidic pH value.

In the following the nonlinearities of the experimental pH

neutralization process are summarized:

• The neutralization process proceeds nonlinearly and has

a high sensitivity around the pH-value of 7.

• The neutralization process has two regions of saturation:

one in the very acidic (pH-value < 5 approximately)

and one in the very alkaline region (pH-value > 9
approximately). If one of the regions is reached, it is very

difficult to lead the pH-value out of the saturation.

• Although a mixer blends the liquids in the tank, a

continuous homogenous distribution can not be reached

immediately. One reason for this is the positions of the

mixer relative to the location of the inflow stream, with

the first being placed at the bottom of the tank, while the

latter is found at the top.

• As a consequence of inhomogeneous liquid distribution,

the liquid level, as well as other effects, the whole system

has a noticeable time delay.

Furthermore the experimental build-up has some limita-

tions:

• The available storage volume for the acid solution is

limited and leads to a limitation of the measurement

duration. Hence the data set which can be collected is

relatively small.

• The pH sensors used have a measuring range from 0 to 14

pH, a smallest measuring range of 0.5 pH and an accuracy

of ± 0.2%. This accuracy of the pH sensors defines the

highest accuracy for the control.

III. SYSTEM IDENTIFICATION

To handle the nonlinear character of the plant a black-box

modeling method is used. First the data has to be generated

with which a neural network is then trained.

A. Data generation

For black-box modeling a set of input and output data

must contain all important information about the behavior

of the plant. To get all important information of a nonlinear

system, the whole range of amplitudes and frequencies must

be stimulated within which the plant shall be operated. The

resulting data is a set of data input uk and output yk of the

experimental plant with N being the number of samples k:

ZN = {uk, yk | k = 1, 2, . . . , N}. Because of the saturation

regions of the neutralization process the amplitude range of the

pH-value which has to be covered is from around 5 to around

9.

With the relay feedback method [9] the critical frequency fc;

with different step responses the rise time tr and finally using

(1) the sampling frequency fs and hence the sampling time

Ts are determined as fc = 1

60
Hz, tr = 90sec and Ts = 9sec,

respectively.

fs = (5 ⇠ 10) · fc and fs = (5 ⇠ 10) ·
1

tr
(1)

A multisine signal [10] is used to excite the system. This

is a periodic non-binary multifrequency signal given as:



u(t) =

nsX

i=1

Ai · cos(ωi · t), (2)

where Ai and ωi are the i-th amplitude and frequency of

the multisine. With a multisine a desired frequency spectrum

with constant amplitudes in a desired frequency range can be

designed easily. Additionally a relatively small crest factor

can be achieved (hence it has a good signal-to-noise ratio).

Following [11] the minimum number of samples N and the

minimum number of different frequencies ns of the multisine

can be computed by:

N �
2 · π · βs · τdom

T
, (3)

ns �
N · Ts · αs

2 · π · τdom
, (4)

where τdom is the dominant plant time constant, βs specifies

how much low-frequency information will be in the signal and

here it is chosen as βs = 3 to get low-frequency information.

The constant αs denotes how much faster the closed-loop

response is expected to be in comparison with the open-loop

one, it is chosen as αs = 1. In addition, N and ns are chosen

as 350 and 20, respectively, which fulfil (3) and (4).

Figure 3 shows a typical spectrum of an input signal for

the identification purpose, where fn is the Nyquist frequency,

fb is the bandwidth of the closed loop system which is taken

as fb =
1

60
Hz with fb = αs · fc. The low frequency part up to

fb stimulates the range in which the plant shall be operated.

The amplitude of the high frequency part from fb to fn is only

half of the amplitude of the low frequency part. Therefor, the

high frequency noise is not significantly amplified.

Fig. 3. The frequency spectrum of the input signal.

The closed-loop shown in Figure 4 is used to generate

the data set for identification. By using the feedback control

scheme one can force the output signal to get out of the

saturation. This counteracts the problem of getting stuck in

the saturation which otherwise occurs with the open-loop

approach. A proportional controller is used in the closed-

loop and the input signal is added just after the proportional

controller. It is known that closed-loop identification based on

a direct approach [10] is sensitive to noise since the noise of

the input to the plant is correlated with the noise of the output;

however, the high signal-to-noise ratio allows to assume that

the amount of the noise in the output signal is neglectable.

The data set generated in this way is shown in Figure 5

and will be used in the following section for the training of

the neural network.

Fig. 4. Closed loop structure for the identification of the data set.
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Fig. 5. Input and output signals of the training data set.

B. System identification with neural networks

A neural network is trained to capture the nonlinear behav-

ior of the plant. The structure of the neural network is chosen to

correspond to an ARX (AutoRegressive with eXogenous input)

model structure in linear systems [10]. We refer to a neural

network with this structure as a NNARX model structure, see

Figure 6.

The input vector ϕ of the neural network consists of the

past n output signals yk−1 until yk−n and of the past m input

signals uk−d until uk−d−m+1 which are shifted by the delay d.

The output of the neural network is ŷk which is a prediction of

the plant’s output at instant k. A multilayer preceptron neural

network type is used [4], with two layers, p neurons and which

is described as:

ŷ = f2(W 2f1(W 1ϕ+ ω1
0) + ω2

0), (5)

where f1 and f2 are the tangent hyperbolic and linear

functions, respectively, W 1 and W 2 are matrices containing

the network weights and ω1
0 as well as ω2

0 are the weights of

the biases. θ in Figure 6 contains all weights, i.e. it includes

the weights W 1, W 2, ω1
0 and ω2

0 .

Fig. 6. NNARX model structure.

To train the network, i.e. to find the weights, the Levenberg-

Marquardt Backpropagation algorithm [4] is used. The method



0 500 1000 1500 2000 2500 3000 3500
5

5.5

6

6.5

7

7.5

8

8.5

9

time in sec

p
H

 v
a
lu

e

validation signal

predicted signal

Fig. 7. Validation signal (solid) and 10-step-ahead prediction (dashed) of a
NNARX model with p = 11, n = 11, m = 10 and d = 1.

seeks to minimize the sum of the mean squared prediction

errors given as:

VN (θ, ZN ,α) =
1

2N

NX

k=1

((yk� ŷk(θ))
2+

1

2N
θT ·αI ·θ). (6)

During the training of the neural network an undesired

effect may occur, which is known as overfitting [4], [12].

In overfitting, the neural network is not only trained on the

plant dynamics but also on the plant disturbance. In order

to deal with this, two methods can be used: training with a

regularization term and pruning [4], [12]. Both methods are

used in this paper. The regularization term α can be found in

(6) and it is tuned to be as α = 10−3.

To implement these methods the Neural Network Based

System Identification TOOLBOX [13] is used. It contains

algorithms for the training and the validation of multilayer

perceptron neural networks together with methods for pruning

and the regularization term.

Using the data generated in the closed-loop, a NNARX

model of the experimental neutralization plant is found. The

result is a neural network which has p = 11 neurons, uses

n = 11 past outputs as well as m = 10 past inputs and

has a delay of d = 1. The number of past inputs m and

past outputs n was determined with an order index criterion

based on Liptschitz quotients [4]. The 10-step ahead prediction

with the NNARX model in comparison to the validation signal

can be seen in Figure 7. It has to be noted that the data set

used to train the neural network and the data set used for

validation are two different ones. Since the storage volume

of the acid solution is limited the measurement period is also

limited. This may reduce the quality of the nonlinear model;

however, as shown in Figure 7 the plant behavior has been

identified with satisfactory in the 10-step ahead prediction. In

the following sections this neural network model is used for

the APC controller as well as for tuning the controller in a

simulation build-up.

IV. APPROXIMATE PREDICTIVE CONTROL

The main concept behind common predictive control strate-

gies is to predict the future outcome of different plant inputs

and to choose the best out of these. Its calculations are

relatively time consuming, this being its main disadvantage.

Fig. 8. Block structure of Approximate predictive control.

The minimization problem:

min
Ũk

Jk = min
Ũk

(

N2X

i=N1

(rk+i � ŷk+i)
2 + ρ

NuX

j=1

∆u2
k+j−1), (7)

where Jk is the cost function, rk+i is the known future

reference signal and ρ is a factor which penalizes the influence

of the input signals on the cost function has to be solved at

each instant k. Moreover Ũk is a vector with the most recent

control input changes given as:

Ũk = [∆uk ∆uk+1 . . . ∆uk+Nu−1]
T , (8)

where ∆ = 1 � z−1 with z−1 is a time delay operator

(i.e. z−puk = uk−p). At each instant only the first computed

input change ∆uk is applied to the plant and then the whole

computation is repeated for the next instant.

To solve this minimization problem the predicted outputs

ŷk+i within the fixed prediction horizon have to be determined.

To reduce the calculation time requirements the General Pre-

dictive Control (GPC) approaches use a linear model to predict

the future outputs [14], [15]. This results in a linear optimiza-

tion problem with a new linear model for each sampling period.

Approximate Predictive Control (APC) is a special case of the

GPC approach, where the linear model is extracted from a

neural network. This is known as instantaneous linearization

[4]. In Figure 8 the block structure of the APC is shown.

A detailed introduction of the APC can be found in [4], and

a toolkit which uses these formulas is implemented in [16].

V. EXPERIMENTAL STUDY

In this section the experimental results of the APC on the

pH neutralization plant are presented. A set point tracking

problem as well as a disturbance rejection problem are con-

sidered. It is difficult to adjust the parameter values of the

controller directly in the real experimental plant because of its

nonlinear behavior, the time intensive preparations to run the

plant and the long measurement duration to obtain sufficient

measurements. Therefore, first the parameter values of the APC

are adjusted off-line with the neural network model identified

earlier, then the APC is tried on the experimental plant.
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Fig. 9. Simulation results of a set point tracking problem with APC (N1 = 1,
N2 = 10, Nu = 2 and ρ = 2000).

A. Off-line parameter values adjustment

The neural network model found in Section III-B which

provides the results shown in Figure 7 is used to tune the APC

off-line. The model is used twofold: first it is applied inside

the APC structure (for this purpose the neural network model

is constructed as shown in Figure 8), and second it simulates

the plant that has to be controlled.

The parameter values of the APC are adjusted as follows:

N1 = 1 is fixed and equals the delay of the system. N2 is

selected as tr
Ts

= 10 so that the prediction horizon covers at

least the rise time of the plant; Nu = 2 is chosen relatively

small in comparison with N2. It has been observed that the

choice of N2 and Nu is mostly unproblematic and gives good

results for different values. The value of ρ in (7), which

penalizes the control signal, should be carefully tuned. With

ρ = 2000 a satisfactory tracking capability has been achieved

in simulation.

Figure 9 shows the simulation results of the set point

tracking problem. The reference signal is a three level signal

that changes each 500 seconds. The APC produces reasonable

control inputs and the output tracks the reference signal

in a satisfactory manner. Finally, in Figure 9 the proactive

characteristic of the APC can be observed because the control

action begins earlier than the change in the reference. Next,

the above parameter values are used with the real experimental

plant.

B. Experimental results

The same obtained controller parameters have been utilized

when the APC is tested on the real experimental pH neu-

tralization plant. However, to improve the tracking capability

and to reduce some oscillations which appear during the

implementation, the value of ρ has been further tuned online,

and it turns out that its best value is ρ = 20000.

The resulted measurement on the set point tracking problem

is shown in Figure 10. The first change from pH-value 7 to 5.5
is unproblematic and relatively well done. The changes from

pH 5.5 to 8 and then back to 7 are not ideal, but the control
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Fig. 10. Experimental results of a set point tracking problem with APC
(N1 = 1, N2 = 10, Nu = 2 and ρ = 20000).

signal touches its limits, in particular, the lower one. Overall

the results are reasonable and almost the same as the simulated

ones.

From Figure 10 it can be also seen that the prediction

is close to the real output, which shows that the model can

capture the dynamics of the plant very well.

Finally the performance of the APC on a disturbance

rejection problem is considered. The same parameter values

as in the set point tracking problem are used. The task for

the controller is to hold a constant pH-value equal 6, while

some unmeasured disturbances are acting on the alkaline

input stream. In Figure 11 the results are presented. The first

disturbance is done by increasing the base valve opening for

one sampling period from 0.2 to 0.4, which is equivalent to a

three times higher alkaline flow rate. The second disturbance is

obtained by reducing the valve opening from 0.2 to 0 for two

sampling periods. It can be observed that the controller directly

reacts with a change of the acid inflow when a deviation in

the pH value occurs. Furthermore, it can be seen that the

disturbance can not bring the pH-value far from the reference.

VI. CONCLUSION

In this work an approximate predictive control strategy for

an experimental pH neutralization plant has been carried out.

In closed-loop, with a multisine input signal, an identification

data set has been gathered. A multilayer preceptron network

with a NNARX model structure has been trained. Based on

the trained neural network model, an APC has been off-line

tuned and then implemented on the experimental plant.

The experimental results of a set point tracking and a dis-

turbance rejection problems have demonstrated the capability

of the APC to control the experimental pH neutralization plant

successfully.

REFERENCES

[1] J.M. Maciejowski: Predictive control with constraints. Prentice-Hall,
Pearson Education Limited, Harlow, UK, 2002.



0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

b
a
s
e
 v

a
lv

e
 v

a
lu

e

0 100 200 300 400 500 600 700
5.5

6

6.5

p
H

 v
a
lu

e

0 100 200 300 400 500 600 700
0.03

0.04

0.05

time in sec

a
c
id

 f
lo

w
 r

a
te

disturbed base inflow

reference

output

input

Fig. 11. Experimental results of a disturbance rejection problem with APC
(N1 = 1, N2 = 10, Nu = 2 and ρ = 20000).

[2] V.M. Zavala, C.D. Laird, L.T. Biegler: Fast implementations and

rigorous models: Can both be accommodated in NMPC?. International
Journal of Robust and Nonlinear Control, Vol. 18, No. 8, pp. 800-815,
2008.

[3] J.H. Lee: Modeling and Identification for Nonlinear Model Predictive

Control: Requirements, Current Status and Future Research Needs.
Nonlinear Model Predictive Control, F. Allgöwer and A. Zheng (Eds.),
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Abstract—Local perturbation bounds are obtained for the
continuous-time H∞ control problem based on linear matrix
inequalities (LMI). The sensitivity analysis of the perturbed LMI
is done by introducing a suitable slightly perturbed right-hand
part. This approach leads to tight, condition number based
perturbation bounds for the LMI solutions to the H∞ control
problem.

I. INTRODUCTION

In the last decade a number of papers have been published

on the sensitivity of the H1 control problem [2]. These papers,

however, consider exclusively the case of the Riccati-based

H1 control problem. In contrast, in this paper we study the

sensitivity of the LMI-based H1 control problem. We propose

a new approach to the perturbation analysis of this problem via

introducing a suitable right hand part in the considered matrix

inequalities. Using this new perturbation technique we obtain

local perturbation bounds for the the continuous-time LMI-

based H1 control problem in terms of condition numbers with

respect to the perturbations in the data.

We use the following notations: R
m⇥n – the space of

real m ⇥ n matrices; R
n = R

n⇥1; In – the identity n ⇥ n
matrix; en – the unit n ⇥ 1 vector; M> – the transpose of

M ; M† – the pseudo inverse of M ; kMk2 = σmax(M) –

the spectral norm of M , where σmax(M) is the maximum

singular value of M ; kMkF =
p

tr(M>M) – the Frobenius

norm of M ; kMk1 := supRe s�0 kM(s)k2; k.k is any of

the above norms; vec(M) 2 R
mn – the column-wise vector

representation of M 2 R
m⇥n; Πm,n 2 R

mn⇥mn – the

vec-permutation matrix, such that vec(M>) = Πm,nvec(M);
M ⌦ P – the Kroneker product of the matrices M and

P ; vec(MXP ) = (P> ⌦ M)vec(X) – column-wise vector

representation of the multiplication MXP . The notation “:=”

stands for “equal by definition”.

The paper is organized as follows. In Section II we shortly

present the problem setup and objective. Section III describes

the performed linear sensitivity analysis of the LMI based

H1 control problem. Section IV presents a numerical example

before we conclude in Section V with some final remarks.

II. PROBLEM STATEMENT

Consider the linear continuous-time system

ẋ(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D11w(t) +D12u(t) (1)

y(t) = C2x(t) +D21w(t)

where x(t) 2 R
n, u(t) 2 R

m, y(t) 2 R
r and z(t) 2 R

p

are the system state, input, output and performance vectors

respectively, w(t) 2 R
l is the disturbance and A, B1, B2, C1,

C2, D11, D12, D21 are constant matrices of compatible size.

The suboptimal H1 control problem consists in finding a

control law u(t) which leads to a bounded H1-norm of the

transfer function matrix Tzw(s) from w(t) to z(t) :

kTzw(s)k1 < γ, γ > 0. (2)

In the optimal H1 control problem one tries to find the

infimum of γ (further denoted by γopt) which satisfies (2).

The solution of the optimal H1 control problem corresponds

to the best disturbance attenuation at the performance vector

of the closed-loop system.

The H1 control problem (1), (2), is solvable if and only

if there exist two symmetric matrices R,S 2 R
n⇥n satisfying

the following system of LMI [4] :

2

6

6

4

N12

... 0
. . . . . . . . .

0
... I

3

7

7

5

>

2

6

6

6

6

6

4

AR+RA> RC1
>

... B1

C1R �γI
... D11

. . . . . . . . . . . .

B1
> D11

>
... �γI

3

7

7

7

7

7

5

⇥

2

6

6

4

N12

... 0
. . . . . . . . .

0
... I

3

7

7

5

< 0 (3)
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2

6

6

4

N21

... 0
. . . . . . . . .

0
... I

3

7

7

5

>

2

6

6

6

6

6

4

A>S + SA SB1

... C1
>

B1
>S �γI

... D11
>

. . . . . . . . . . . .

C1 D11

... �γI

3

7

7

7

7

7

5

⇥

2

6

6

4

N21

... 0
. . . . . . . . .

0
... I

3

7

7

5

< 0, (4)



R I
I S

�

> 0 (5)

where N12 and N21 are the orthonormal bases of the null

spaces of
⇥

B2
> D12

>
⇤

and
⇥

C2 D21

⇤

, respectively.

Computing solutions (R,S) of the LMI system (3)-(5) is

a convex optimization problem. The sensitivity of the LMI

under consideration, subject to variations in the system data,

may affect the accuracy of the matrices R and S and hence

the accuracy of controller matrices. It is not clear up to the

moment how LMI sensitivity is connected to the sensitivity of

the given H1 suboptimal problem.

In what follows, we assume that γopt is determined and

present a sensitivity analysis of the optimal H1 control

problem based on the LMI (3)-(5).

Suppose that the matrices A, . . . , D21 and the quantity γ

in (3), (4) are subject to perturbations ∆A, . . . , ∆γopt and

denote by R⇤+∆R, S⇤+∆S the solution of the perturbed LMI

system. The sensitivity analysis of the H1 control problem

is aimed at determining bounds for ∆R and ∆S near the

optimal value of γ, as functions of the perturbations in the

data A, . . . , D21 and γopt. In the next section we shall derive

linear, condition number based bounds for ∆R and ∆S with

respect to perturbations in A, B2, C2, D12, D21 and γopt.

III. LINEAR SENSITIVITY ANALYSIS

The essence of our approach is to perform sensitivity

analysis of LMI (3) and (4) in a similar way as for proper

matrix equations after introducing suitable right hand sides

which are slightly perturbed.

Consider first LMI (4). Its structure allows us to analyze

only the perturbed inequality

(N21 +∆N21)
>

⇥

("

(A+∆A)>(S +∆S) + (S +∆S)(A+∆A) 0

B1
>(S +∆S) 0

#

+

"

0 (S +∆S)B1

0 �γI �∆γI

#)

⇥ (N21 +∆N21) := P̄⇤ +∆P̄1 < 0 (6)

where the matrix P̄⇤ is obtained using the nominal LMI

N21
>



A>S⇤ + S⇤A S⇤B1

B1
>S⇤ �γoptI

�

N21 := P̄⇤ < 0 (7)

and ∆P̄1 is due to the data and closed-loop performance

perturbations, the rounding errors and the sensitivity of the

interior point method that is used to solve the LMIs.

Within first order terms the perturbed relation (6) may be

written as

N21
>WN21+N21

>W∆N21+∆N21
>WN21+∆N21

>W∆N21

(8)

where

W =
"

A>S⇤+ S⇤A+A>
∆S +∆SA+∆A>S⇤+ S⇤

∆A 0

B1
>S⇤ +B1∆S 0

#

+

"

0 S⇤B1 +∆SB1

0 �γoptI �∆γoptI

#

.

Using relation (19) one has

∆P̄1 = N21
>
ΥSN21N21

>(P⇤ +ΥS)∆N21 +

+∆N21
>(P⇤ +ΥS)N21 +ΨS)∆N21 (9)

+∆N21
>(P⇤ +ΥS)∆N21 (10)

where P̄⇤ = N21
>P⇤N21, ΥS = ∆S + ΩS ,

∆S =



A>
∆S +∆SA ∆SB1

B1
>
∆S 0

�

ΩS =



∆A>S⇤ + S⇤
∆A 0

0 �∆γoptI

�

.

Neglecting the second and higher order terms in (9) one obtains

∆P̄1 = N21
>
∆SN21 +N21

>
ΩSN21 (11)

+ ∆N21
>P⇤N21 +N21

>P⇤
∆N21.

Setting P⇤N21 = Ñ21 and N21
>P⇤ = Ñ ⇤

21 it follows that

vec(∆N21
>Ñ21 + Ñ ⇤

21∆N21) = (12)

[(Ñ21
> ⌦ I)Π(n+l),n2 + (I ⌦ Ñ ⇤

21)]vec(∆N21).

Relation (11) may be written in a vector form as

(N21
> ⌦N21

>)vec(∆S) + (N21
> ⌦N21

>)vec(ΩS) (13)

+ NSΩvec(∆N21) = vec(∆P̄1)

where

vec(∆S) =

2

6

6

4

I ⌦A> +A> ⌦ I
B1

> ⌦ I
I ⌦B1

>

0

3

7

7

5

vec(∆S) := V∆s



vec(ΩS) =

2

6

6

4

(I ⌦ S⇤) + (S⇤ ⌦ I)Πn2 0
0 0
0 0
0 �el3

3

7

7

5

⇥



vec(∆A)
∆γopt

�

(14)

:=
⇥

Vt1 Vt2

⇤



vec(∆A)
∆γopt

�

and

NSΩ = (Ñ21
> ⌦ I)Π(n+l),n2 + (I ⌦ Ñ ⇤

21).

Thus we have

Vs∆s+ Vts1vec(∆A) + Vts2∆γopt +NSΩvec(∆N21)

= vec(∆P̄1) (15)

where

Vs = (N21
> ⌦N21

>)V, Vts1 = (N21
> ⌦N21

>)Vt1

Vts2 = (N21
> ⌦N21

>)Vt2.

It is well known [6] that the perturbation bound for the

projector N21 may be written as

k∆N21k2  k[C2, D21]
†k2k[∆C2, ∆D21]k2. (16)

Using the fact that kvec(M)k2 = kMkF , we finally obtain the

relative perturbation bound for S⇤

k∆SkF
kS⇤kF


1

kS⇤kF

✓

Vab1
k∆AkF
kAkF

+ Vab2
|∆γopt|

|γopt|

◆

(17)

+
1

kS⇤kF

✓

Vcd
k[∆C2, ∆D21]kF
k[C2, D21]kF

+ V1
k∆P̄1kF
kP̄⇤kF

◆

where

Vab1

kS⇤kF
=

kV †
s k2kVts1k2kAkF

kS⇤kF

Vab2

kS⇤kF
=

kV †
s k2kVts2k2|γopt|

kS⇤kF
,

V1

kS⇤kF
=

kV †
s k2kP̄

⇤kF
kS⇤kF

Vcd

kS⇤kF
=

kV †
s k2kNSΩk2k[C2, D21]

†kFk[C2, D21]kF
kS⇤kF

are the relative condition numbers of LMI (4) with respect to

the perturbations in the data.

In a similar way we can obtain a relative perturbation bound

for the solution R⇤ of the LMI (3). In this case we consider

the perturbed inequality

(N12 +∆N12)
>

⇥

("

(A+∆A)(R⇤ +∆R) + (R⇤ +∆R)(A+∆A)> 0

C1(R
⇤ +∆R) 0

#

+

"

0 (R⇤ +∆R)C1

0 �γoptI �∆γoptI

#)

⇥(N12 +∆N12) := Q̄⇤ +∆Q̄1 < 0 (18)

where

N12
>



AR⇤ +R⇤A> R⇤C1
>

C1R
⇤ �γoptI

�

N12 := Q̄⇤ < 0. (19)

Here, instead of ∆S and ΩS we have

∆R =



A∆R+∆RA>
∆RC1

>

C1∆R 0

�

ΩR =



∆AR⇤ +R⇤
∆A> 0

0 �∆γoptI

�

and thus

vec(∆R) =

2

6

6

4

I ⌦A+A⌦ I
C1 ⌦ I
I ⌦ C1

0

3

7

7

5

vec(∆R) := T∆r

vec(ΩR) =

2

6

6

4

(R⇤ ⌦ I) + (I ⌦R⇤)Πn2 0
0 0
0 0
0 �ep3

3

7

7

5

⇥



vec(∆A)
∆γopt

�

=
⇥

Tt1 Tt2

⇤



vec(∆A)
∆γopt

�

.

Denote

Q̄⇤ = N12
>Q⇤N12, Q⇤N12 = Ñ12, N12

>Q⇤ = Ñ ⇤
12

NRΩ = (Ñ12
> ⌦ I)Π(n+p),n2 + (I ⌦ Ñ ⇤

12)

Tr = (N12
> ⌦N12

>)T, Ttr1 = (N12
> ⌦N12

>)Tt1

Ttr2 = (N12
> ⌦N12

>)Tt2.

Having in mind that

k∆N12kF  k[B2
>, D12

>]†kFk[∆B2
>, ∆D12

>]kF

we obtain the relative perturbation bound for R⇤

k∆RkF
kR⇤kF


1

kR⇤kF

✓

Tac1
k∆AkF
kAkF

+ Tac2
|∆γopt|

|γopt|

◆

(20)

+
1

kR⇤kF

✓

Tbd
k[∆B2

>, ∆D12
>]kF

k[B2
>, D12

>]kF
+ T1

k∆Q̄1kF
kQ̄⇤kF

◆

where

Tac1

kR⇤kF
=

kT †
r k2kTtr1k2kAkF

kR⇤kF

Tac2

kR⇤kF
=

kT †
r k2kTtr2k2|γopt|

kR⇤k2
,

T1

kR⇤kF
=

kT †
r k2kQ̄

⇤kF
kR⇤kF

Tbd

kR⇤kF
=

kT †
r k2kNRΩk2k[B2

>, D12
>]†kFkB2

>, D21
>kF

kR⇤kF

are the relative condition numbers of LMI (3).



IV. NUMERICAL EXAMPLE

Consider the continuous-time system (1) with

A=



0 1
�k/m �c/m

�

, B1=



0 0 0
�pm �pc/m �pk/m

�

B2 =



0
1/m

�

, C1 =

2

4

�k/m �c/m
0 c
k 0

3

5

C2 =
⇥

1 0
⇤

, D11 =

2

4

�pm �pc/m �pk/m
0 0 0
0 0 0

3

5

D12 =

2

4

1/m
0
0

3

5 , D21 =
⇥

0 0 0
⇤

and m = 3, c = 1, k = 2, pm = 0.4, pc = 0.2, pk = 0.3. The

perturbations in the data are chosen as

∆A = A⇥ 10�i, ∆B1 = B1 ⇥ 10�i, ∆B2 = B2 ⇥ 10�i

∆C1 = C1⇥ 10�i, ∆C2 = C2⇥ 10�i, ∆D11 = D11⇥ 10�i

∆D12 = D12⇥ 10�i, ∆γopt = 10�i⇥ γopt

for i = 8, 7, . . . , 4.

The perturbed solutions R⇤ +∆R and S⇤ +∆S are com-

puted using the LMI Control Toolbox of MATLAB [5]. The

optimal closed-loop performance obtained is γopt = 0.4191.

The relative perturbations in the solutions R⇤ and S⇤ of (3),

(4) are estimated using the perturbation bounds (20) and (17),

respectively.

The results obtained for different values of i are shown in

the following table:

i
k∆SkF

kS∗kF
Bound(17)

k∆RkF

kR∗kF
Bound(20)

8 1.2 10�7 3.8 10�7 1.0 10�7 1.5 10�7

7 1.7 10�7 3.8 10�6 1.9 10�7 1.5 10�6

6 4.1 10�6 3.8 10�5 8.2 10�6 1.5 10�5

5 1.9 10�5 3.8 10�4 9.9 10�5 1.5 10�4

4 2.0 10�4 3.8 10�3 1.0 10�4 1.5 10�3

V. CONCLUSIONS

Linear sensitivity analysis of the LMI arising in the

continuous-time H1 control problem is done. Condition num-

ber based perturbation bounds are obtained in a similar way

as for matrix equations, introducing a slightly perturbed right

hand side in LMI. A numerical example is presented illustrat-

ing the accuracy of the proposed LMI perturbation bounds.
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Abstract—Attenuating both exogenous signals and initial dis-
turbances caused by unknown initial conditions is considered
in the framework of a so called problem of H∞ control with
transients. Applying an LMI approach, instead of the Riccati
equations one, in characterizing the performance measure that is
the worst-case norm of the regulated output over all exogenous
signals and initial states allows one to synthesize a time-invariant,
instead of the time-varying, output-feedback controller for which
the performance measure of the closed-loop system is less than
a prescribed number. State-space formulae for all time-invariant
state- and output-feedback controllers in the problem of the H∞

control with transients are also presented.

Index Terms—H∞ control, unknown initial conditions, linear
matrix inequality, output-feedback controller

I. INTRODUCTION

The classical H1 control theory [1], [2] defines the control

law for which the performance measure that is the worst-

case norm of the regulated output over all exogenous signals

less than a prescribed number. It is usually assumed that the

plant initial state is zero. However, there exist situations when

the plant initial state is possibly nonzero and unknown. The

nonzero initial state causes an additional unknown disturbance.

In [3], [4], γ-optimal control which minimizes the worst-

case norm of the regulated output over all initial states in

the disturbance-free system was considered. When two above

reasons are available, it is worth-while to synthesize a control

law that would provide attenuating both exogenous and initial

disturbances.

Reference [5] introduced a performance measure that is

the induced norm of the regulated output over all exogenous

signals and initial states for finite and infinite horizons (see

also [6], [7]). The performance measure is parameterized by

a weighting matrix R reflecting the relative importance of the

uncertainty in the initial state contrary to the uncertainty in the

exogenous signal. The problem is to synthesize controllers for

which the performance measure of the closed-loop system is

less than a prescribed number. Since the authors of [5] from

the very outset restrict their attention to the central solution

to the corresponding H1-like problem based on the Riccati

equations and since the central controller for the problem under

consideration turned out, even in the infinite horizon case, to be

a linear time-varying output-feedback controller, they obtained

necessary and sufficient conditions for the existence of a linear

time-varying output-feedback controller. This observer-based

controller is of the form

dx̂

dt
= (A+ γ�2B1B

T
1 P )x̂+ [I � γ�2Q(t)P ]�1⇥

Q(t)CT
2 (y � C2x̂) +B2u,

u = �BT
2 Px̂,

(1)

where P is the stabilizing solution to H1-type algebraic

Riccati equation such that P < γ2R, Q(t) is the solution

to H1-type differential Riccati equation for the finite time

horizon with initial condition Q(0) = R�1 such that the

unforced linear time-varying system

ṗ = [A�Q(t)(CT
2 C2 � γ�2CT

1 C1)]p

is exponentially stable, and finally ”spectral radius” function

{1 � γ�2ρ[Q(t)P ]}�1 > 0 for all t � 0 and is bounded.

From the numerical point of view, constructing such a con-

troller based on solving these algebraic and differential Riccati

equations coupled to the nonstationary algebraic inequality

seems to be a rather complicated problem, and finding an

optimal controller is very problematical. Quantitative results

concerning another time-varying output-feedback controller for

a slightly different H1 control problem with initial conditions

were obtained in [8].

At the same time, there exists a whole set of controllers

that yield the prescribed performance. Among these controllers

there maybe time-invariant output-feedback ones. The present

paper just shows that this is the case. Necessary and sufficient

conditions for the existence of time-invariant state- and output-

feedback controllers in the H1 control problem with transients

are derived in the terms of LMIs, and state-space formulae for

all such controllers are presented. The role of the weighting

matrix is revealed in the trade-off between H1- and γ-optimal

controls. More precisely, necessary and sufficient conditions in

the form of a fundamental inequality for the weighting matrix

is obtained under which the above trade-off takes place.

c� VCC 2010 - Aalborg University



II. PERFORMANCE MEASURE

Let the asymptotically stable system be described by the

equations

ẋ = Ax+Bv, x(0) = x0,
z = Cx+Dv,

(2)

where x 2 Rnx is the state, v 2 Rnv is the exogenous

input, z 2 Rnz is the regulated output. It is assumed that

the exogenous disturbance v = v(t) 2 L2[0,1) and that the

plant initial state x0 is unknown. The performance measure is

defined as the worst-case norm of the regulated output over all

admissible exogenous signals and initial states [5], i.e.,

γw = sup
kvk2+xT

0
Rx0 6=0

kzk
(kvk2 + xT

0 Rx0)1/2
, (3)

where k ·k denotes L2-norm of the corresponding function and

R = RT > 0 is a given weighting matrix.

If the initial state is zero, γw is equal to the worst-case norm

of the regulated output over all admissible exogenous signals,

i.e., γw = γ1, where

γ1 = sup
kvk6=0

kzk
kvk = sup

ω2(�1,1)

kH(j ω)k = kHk1,

H(s) = D + C(sI � A)�1B is the transfer function matrix,

j =
p
�1, kHk = max

i
σi(H), σi is the ith singular value of

the matrix H , and k · k1 is the 1-norm in the space of H(s)
such that supRe s�0 kH(s)k < 1.

If the exogenous input is zero, γw is the worst-case norm

of the regulated output over all admissible initial states, i.e.,

γw = γ0(R), where

γ0(R) = sup
x0 6=0

kzk
(xT

0 Rx0)1/2
. (4)

It is shown in [5] that the performance measure of the

system (2) with D = 0 satisfies inequality γw < γ for a given

γ if and only if there exists a symmetric matrix P such that

ATP + PA+ γ�2PBBTP + CTC = 0,

A + γ�2BBTP is asymptotically stable, and P < γ2R.

Even though in the characterization of the standard H1 norm

the Riccati equation can be substituted for the corresponding

Riccati inequality, that is equivalent, by Schur lemma, to LMI,

it does not yet follow from this that γw < γ is equivalent to

these two LMIs. This fact requires a separate proof.

Theorem 1: The performance measure of the system (2) is

less than a prescribed value γ if and only if there exists a

(nx ⇥ nx)-matrix X = XT > 0 such that LMIs

0

@

ATX +XA XB CT

BTX �γ2I DT

C D �I

1

A < 0, X < γ2R (5)

are feasible.

The proof of Theorem 1 utilizes some ideas of the proof of

Theorem 1.3 in [5] and is given in Appendix. Since γw can

equivalently be expressed as

γw = inf
γ

{γ :
kzk

(kvk2 + xT
0 Rx0)1/2

< γ,

8 v 2 L2, 8x0 2 Rnx , kvk2 + xT
0 Rx0 6= 0},

from Theorem 1 it follows that γw can be computed as the

minimal value of γ for which LMIs (5) are feasible in variables

X = XT > 0 and γ2 > 0. This is a standard procedure in

Matlab which results in a value γε = γw + ε, where ε > 0 is

determined by the accuracy of LMI solvers.

Now we study the performance measure as a function of

the weighting matrix R, i.e., γw = γw(R). From (3) it follows

that if R1  R2, then γw(R1) � γw(R2). This property was

also mentioned in [5]. Further, since

sup
kvk2+xT

0
Rx0�1

kzk � sup
kvk=1, x0=0

kzk = γ1,

sup
kvk2+xT

0
Rx0�1

kzk � sup
xT
0
Rx0=1, v�0

kzk = γ0(R),

we arrive at γw(R) � max{γ1, γ0(R)}. The next property of

the performance measure plays a special role and is proven in

Appendix.

Theorem 2: Let the system and the performance mea-

sure be as above. Then γw(R) = γ1 if and only if

λmax(R
�1R⇤)  1, where R⇤ = (1/γ2

1) lim
ε�+0

X(ε) and

X(ε) is a stabilizing solution of the Riccati equation

ATX +XA+ CTC + ε2I+

(CTD +XB)[(γ1 + ε)2I �DTD]�1(CTD +XB)T = 0.
(6)

Corollary 1: The performance measure (3) for the system

(2) is the trade-off between kHk1 and γ0(R) if and only if

the following inequality holds

λmax(R
�1R⇤) > 1, (7)

where R⇤ is defined in Theorem 2.

To compute the matrix R⇤ it is sufficient to find both the

minimal γ⇤ ⇡ γ1 and the corresponding matrix X⇤ satisfying

the first inequality in (5), and then R⇤ ⇡ X⇤/γ
2
⇤ .

III. STATE-FEEDBACK CONTROL

Consider the controlled plant

ẋ = Ax+B1v +B2u,
z = C1x+D11v +D12u,

(8)

where x 2 Rnx is the state, v 2 Rnv is the exogenous input,

u 2 Rnu is the control input, and z 2 Rnz is the regulated

output. The problem is to find a linear state-feedback control

u = Θx (9)

for which the performance measure γw(Θ) of the closed-loop

system is less than a given γ > 0.

Substituting the matrix of the closed-loop system into (5),

multiplying the first inequality by diag (X�1, I, I) from the

left and from the right, introducing the new variables Y =



X�1 and Z = ΘY , and changing the second inequality by

using Schur lemma, we arrive at the following statement.

Theorem 3: There exists an admissible state-feedback con-

troller such that γw(Θ) < γ if and only if the LMIs
0

@

Y AT +AY +B2Z + ZTBT
2 ⇤ ⇤

BT
1 �γ2I ⇤

C1Y +D12Z D11 �I

1

A < 0,

✓

Y I
I γ2R

◆

> 0

(10)

are feasible in the variables Y = Y T > 0 and Z, where ⇤
stands for notation of the corresponding entry of the symmetric

matrix. In this case, gain matrix Θ is computed as Θ = ZY �1,

where (Y, Z) is a solution of (10) for the given γ.

Define an optimal state-feedback controller by the inequal-

ity γw(Θ) < γ⇤
w(1+ε) for any sufficiently small ε > 0, where

γ⇤
w = inf

Θ

γw(Θ). To numerically compute γ⇤
w and the optimal

gain matrix Θ⇤ it is required to find a minimal value of γ

and the corresponding Y⇤, Z⇤ for which (10) are feasible with

regard to Y = Y T > 0, Z, and γ2 > 0 and then compute

Θ⇤ = Z⇤Y
�1
⇤ .

Remark 1: Note that the gain matrix for the standard

H1-optimal state-feedback controller can be computed as

Θ1 = Z⇤Y
�1
⇤ , where (Y⇤, Z⇤) is the solution of the first

inequality in (10) with the minimal value of γ ⇡ γ̄1. From

the second inequality in (10) it immediately follows that for

R > R⇤ = γ̄�2
1 Y �1

⇤ , we get γ⇤
w(R) = γ̄1 and, hence,

H1-optimal state-feedback controller with transients coincides

with the standard H1-optimal controller. Also note that γ-

optimal state-feedback controller (see [3]) is computed as

Θ0(R) = Z0Y
�1
0 , where (Y0, Z0) is the solution of LMIs (10)

in the first of which the second row and column are deleted,

with the minimal value of γ ⇡ γ̄0(R).

IV. OUTPUT-FEEDBACK CONTROL

Let the plant be described by the equations

ẋ = Ax+B1v +B2u,
z = C1x+D11v +D12u,
y = C2x+D21v,

(11)

where x 2 Rnx is the plant state, v 2 Rnv is the exogenous

input, u 2 Rnu is the control input, z 2 Rnz is the regulated

output, y 2 Rny is the measurable output, and the full order

dynamic output-feedback controller be described by

ẋr = Arxr +Bry , xr(0) = 0 ,
u = Crxr +Dry ,

(12)

where xr 2 Rnx is the controller state. Denote the gain matrix

of the controller as

Θ =

✓

Ar Br

Cr Dr

◆

.

The problem is to synthesize a time-invariant output-feedback

controller such that the performance measure of the closed-

loop system satisfies the inequality γw(Θ) < γ with a given

γ > 0.

Theorem 4: There exists an admissible output-feedback

controller such that γw(Θ) < γ if and only if the LMIs

NT
1

0

@

ATX11 +X11A ⇤ ⇤
BT

1 X11 �γ2I ⇤
C1 D11 �I

1

AN1 < 0,

NT
2

0

@

Y11A
T +AY11 ⇤ ⇤
C1Y11 �I ⇤
BT

1 DT
11 �γ2I

1

AN2 < 0,

✓

X11 I
I Y11

◆

� 0, X11 < γ2R

(13)

are feasible in (nx ⇥ nx)-matrices X11 = XT
11 > 0 and

Y11 = Y T
11 > 0, where columns of the matrices N1 and N2

form bases of kernels of matrices (C2 D21 0) and (BT
2 DT

12 0),
respectively.

The proof of Theorem 4 is based on Theorem 1 and

manipulations using LMI technique and given in Appendix.

The procedure of computing gain matrix Θ is following: find

matrices X11 and Y11, construct matrix X using formula

(23), and solve LMI (18) with respect to Θ. Note that the

problem is rendered tractable under the assumption that the

initial conditions of the controller states are zero, otherwise

the problem is not reduced to convex optimization (see [3]).

An optimal output-feedback controller is defined by the

inequality γw(Θ) < γ⇤
w(1+ε) for any sufficiently small ε > 0,

where γ⇤
w = inf

Θ

γw(Θ). Analogously to the state-feedback

case for R > R⇤ = γ̂�2
1 X⇤

11, where X⇤
11 is the solution to

inequalities in (13), except the last one, with the minimal value

of γ ⇡ γ̂1, we have γ⇤
w = γ̂1 and, hence, for such weighting

matrices, the optimal output-feedback controller coincides with

the standard H1-optimal output-feedback controller. This very

steady-state central H1 controller was derived in [5] (see

Corollary 2.5) as a solution to the problem of H1 control

with transients for sufficiently large R.

V. ILLUSTRATIVE EXAMPLE

Consider a controlled linear oscillator described by the

equations (8) with matrices

A =

✓

0 1
�1 �0.1

◆

, B1 = B2 =

✓

0
1

◆

,

C1 =

✓

1 0
0 0

◆

, D11 =

✓

0
0

◆

, D12 =

✓

0
1

◆

.

Calculate the standard H1-optimal state-feedback controller

to find the gain matrix Θ1 = �(0.5012 10.0217) and

γ̄1 = 0.9950. For γ-optimal controller we find Θ0(ρ) =
�(0.4142 0.8156) and γ̄0(ρ) = 1.2087/ρ. Note that in this

case the gain matrix Θ0(ρ) does not depend on ρ. Fig.1 shows

three curves: curve 1 is the performance measure γw for the

the closed-loop system with Θ1; curve 2 is that for the closed-

loop system with Θ0; curve 3 is the optimal performance

measure γ⇤
w(ρ) corresponding to H1-optimal state-feedback

controller with transients. From this figure it follows that the
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Fig. 1. Performance measure of the closed-loop system under
(1) H∞-optimal, (2) γ-optimal and (3) H∞-optimal with transients
controllers versus parameter ρ in the state-feedback case.
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Fig. 2. Performance measure of the closed-loop system under
(1) H∞-optimal, (2) γ-optimal and (3) H∞-optimal with transients
controllers versus parameter ρ in the output-feedback case.

performance measure γ⇤
w(ρ) is closed to γ̄0(ρ) for small ρ and

is closed to γ̄1 for large ρ, while in a certain range of ρ it is

considerably less than both of these.

In the output-feedback case, we obtained the following

parameters for H1-optimal and γ-optimal controllers

Θ1 =

0

@

�26, 35 1, 00 �26, 35
�75, 84 �0, 0004 �74, 85
�252, 4 10, 00 �252, 9

1

A ,

Θ0 =

0

@

�1, 5056 0, 0334 0, 6472
0, 0506 �1, 5251 �1, 0082
0, 8990 �1, 3760 �0, 9378

1

A .

Fig.2 shows three curves: curve 1 is the performance measure

γw(ρ) for the the closed-loop system with Θ1; curve 2 is that

for the closed-loop system with Θ0; curve 3 is the optimal

performance measure γ⇤
w(ρ) corresponding to H1-optimal

output-feedback controller with transients. Let us compare the

values of the performance measure, for example, at ρ = 4, 5:

γp(Θ1) = 8, 2203, γp(Θ0) = 1, 7221 and γ⇤
p = 1, 0651

under H1-optimal output-feedback controller with transients

for which

Θ⇤ =

0

@

�5, 425 0, 9584 �5, 587
0, 1695 �0, 5665 0, 4048
�10, 93 2, 142 �11, 42

1

A .

Thus, the performance measure under the optimal controller

constructed is considerably less then that under the standard

H1-optimal controller.

VI. CONCLUSION

This paper presents an LMI approach to H1 control in-

corporating unknown initial conditions. The main contribution

of the paper is the new LMI based necessary and sufficient

conditions for the existence of a time-invariant output-feedback

controller solving the problem of H1 control with transients

and a procedure of synthesizing optimal controllers. It is also

shown that H1-optimal control with transients is actually a

trade-off between H1-control, being optimal under unknown

exogenous disturbances and zero initial state, and γ-control,

being optimal under zero exogenous signal and unknown initial

conditions, if and only if the weighting matrix satisfies a

fundamental inequality. If this inequality fails, the performance

measure coincides with the H1-norm and the trade-off gets

broken.
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APPENDIX A

PROOF OF THEOREM 1

By Schur lemma the first inequality in (5) implies that for

all x, v (|x|2 + |v|2 6= 0)

xT (ATX +XA)x+ 2xTXBv+

(Cx+Dv)T (Cx+Dv)� γ2|v|2 < 0.

This means that the derivative of the function V (x) = xTXx
along a trajectory of the system (2) satisfies inequality

V̇ + |z|2 � γ2|v|2 < 0 8x, v (|x|2 + |v|2 6= 0).

Integrating this inequality over infinite horizon, we get kzk2�
γ2kvk2 < xT

0 Xx0. Then the second inequality in (5) implies

γw < γ.

Let now γw < γ. Since γ1  γw, then kHk1 < γ and,

hence, it follows from KYP lemma [9], [10] that the first

inequality in (5) is feasible and that there exists a stabilizing

solution Xγ = XT
γ
> 0 of the Riccati equation

ATX +XA+ CTC+

(CTD +XB)(γ2I �DTD)�1(CTD +XB)T = 0



such that matrix A + B(γ2I � DTD)�1(CTD + XγB)T is

asymptotically stable. Note that γ2I � DTD > 0 due to the

first inequality in (5). This means that the derivative of the

function V (x) = xTXγx along trajectories of the system (2)

satisfies

V̇ + |z|2 � γ2|v⇤|
2 = 0, (14)

where v⇤ = (γ2I �DTD)�1(CTD +XγB)Tx.

We will show that there exists a solution of the first

inequality in (5) satisfying the second inequality. To that

end, at first we show that matrix Xγ satisfies the second

inequality in (5). Suppose this is not the case, i.e., there

exists x0 6= 0 such that xT
0 Xγx0 � γ2xT

0 Rx0. Choose

the initial state x(0) = x0 and integrate (14) to obtain

kzk2�γ2kv⇤k2 = xT
0 Xγx0 � γ2xT

0 Rx0. This implies γw � γ

which contradicts the assumption. Thus, Xγ < γ2R and,

consequently, λmax(R
�1/2XγR

�1/2) = λmax(R
�1Xγ) <

γ2, where λmax(·) denotes the maximum eigenvalue of the

corresponding matrix.

Suppose that any solution X of the Riccati inequality

ATX +XA+ CTC+

(CTD +XB)(γ2I �DTD)�1(CTD +XB)T < 0

that is equivalent to the first inequality in (5) does not satisfy

the inequality X < γ2R, i.e., λmax(R
�1X) � γ2 holds. Then

there exists a consequence εn ! 0 as n ! 1 such that,

for stabilizing solutions X(εn) = XT (εn) > 0 to the Riccati

equations

ATX +XA+ CTC+

(CTD +XB)(γ2I �DTD)�1(CTD +XB)T + ε2nI = 0,

the inequalities λmax[R
�1X(εn)] � γ2 hold. Since X(εn) !

Xγ as n ! 1, the limiting matrix possesses the analogous

property, which contradicts to λmax(R
�1Xγ) < γ2.

APPENDIX B

PROOF OF THEOREM 2

Let γw(R) = γ1 and X(ε) be a stabilizing solution of

(6). By Schur lemma X(ε) satisfies the first inequality in (5)

for γ = γ1 + ε, where ε > 0. It was shown in the proof of

Theorem 1 that the inequality X(ε) < γ2
w(R)R holds. Taking

the limit as ε ! 0 we get γ2
1R⇤  γ2

w(R)R and, hence,

R � R⇤ or, equivalently, λmax(R
�1R⇤)  1.

Now, let λmax(R
�1R⇤)  1. Denote R(ε) = X(ε)/(γ1 +

ε)2. Since X(ε) = (γ1 + ε)2R(ε) < (γ1 + ε)2R for R >
R(ε), then X(ε) also satisfies the second inequality in (5) for

γ = γ1 + ε and R > R(ε). Now, from Theorem 1 it follows

γw(R) < γ1 + ε for R > R(ε). Taking the limit as ε ! 0,

we get γw(R)  γ1 for R � R⇤. In view of γw(R) � γ1
for any R > 0, we arrive at γw(R) = γ1 for R � R⇤.

APPENDIX C

PROOF OF THEOREM 4

The closed-loop system (11), (12) is described by the

equations
ẋc = Acxc +Bcv,
z = Ccxc +Dcv,

(15)

where xc = col (x, xr),

Ac =

✓

A+B2DrC2 B2Cr

BrC2 Ar

◆

,

Bc =

✓

B1 +B2DrD21

BrD21

◆

,

Cc = (C1 +D12DrC2 D12Cr) ,

Dc = D11 +D12DrD21.

(16)

Since the initial state of this system is of the form col (x0, 0),
its performance measure is determined by (3) as before. From

the proof of Theorem 1 it immediately follows that the LMI

characterization of such a performance measure is reduced to
0

@

AT
c X +XAc XBc CT

c

BT
c X �γ2I DT

c

Cc Dc �I

1

A < 0, X11 < γ2R, (17)

where X11 is the (nx ⇥ nx) top left block of the matrix X .

Further, let us present the matrices of the closed-loop system

in the form

Ac = A0 + BΘC , Bc = B0 + BΘD21 ,

Cc = C0 +D12ΘC , Dc = D11 +D12ΘD21 ,

where

A0 =

✓

A 0
0 0

◆

, B0 =

✓

B1

0

◆

, C0 = (C1 0),

B =

✓

0 B2

I 0

◆

, C =

✓

0 I
C2 0

◆

,

D12 = (0 D12), D21 =

✓

0
D21

◆

.

Insert these expressions into inequality (17) to present it in the

form (see also [11], [12], [4])

Ψ+ PT
Θ

TQ+QT
ΘP < 0, (18)

where

Ψ =

0

@

AT
0 X +XA0 XB0 CT

0

BT
0 X �γI DT

11

C0 D11 �γI

1

A ,

P = (C D21 0), Q = (BTX 0 DT
12).

(19)

Then by elimination lemma, inequality (18) holds for some Θ

if and only if

WT
P

0

@

AT
0 X +XA0 XB0 CT

0

BT
0 X �γI DT

11

C0 D11 �γI

1

AWP < 0,

WT
Q

0

@

AT
0 X +XA0 XB0 CT

0

BT
0 X �γI DT

11

C0 D11 �γI

1

AWQ < 0,

(20)

where WS stands for notation of a matrix whose columns form

any base of the null space of the matrix S. Observe that

Q = R

0

@

X 0 0
0 I 0
0 0 I

1

A , R = (BT 0 DT
12).



Hence,

WQ =

0

@

X�1 0 0
0 I 0
0 0 I

1

AWR.

Thus, inequalities (20) are equivalent to following two LMIs

WT
P

0

@

AT
0 X +XA0 XB0 CT

0

BT
0 X �γI DT

11

C0 D11 �γI

1

AWP < 0,

WT
R

0

@

Y AT
0 +A0Y B0 Y CT

0

BT
0 �γI DT

11

C0Y D11 �γI

1

AWR < 0,

(21)

where Y = X�1. Taking into account the block structures of

the above matrices and partitioning X and Y as

X =

✓

X11 X12

XT
12 X22

◆

, Y =

✓

Y11 Y12

Y T
12 Y22

◆

,

we arrive at the first pair of inequalities in (13).

According to Frobenius formula, Y = X�1 implies

Y11 = (X11 �X12X
�1
22 XT

12)
�1 (22)

which shows there exist reciprocal matrices X > 0, Y > 0
with given blocks X11 = XT

11 > 0, Y11 = Y T
11 > 0 if and only

if X11�Y �1
11 � 0, i.e. the third inequality in (13) holds. If this

inequality is strict, blocks X12 and X22 of the corresponding

matrix X can be chosen, for example, as

X12 = X22 = X11 � Y �1
11 . (23)

Thus, inequalities (17) are feasible if and only if inequalities

(13) are feasible. This completes the proof.
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Abstract—This paper presents an output feedback sliding
mode control scheme for uncertain dynamical systems. The design
problem is solved in two steps, involving first a state feedback
and then an output feedback problem. First, using the null space
dynamics, the sliding surface for the unmatched uncertainty is
designed. Then, by tuning the sliding surface a robust controller
is constructed for the whole uncertainty; this problem takes the
form of static output feedback. Based on this, a dynamic output
feedback controller for the system augmented with the sliding
surface is designed. The synthesis involves the solution of an
LMI and a BMI problem; the BMI problem is solved iteratively.
The proposed approach is illustrated by applying it to a well-
known robust benchmark problem, and also experimentally on
a spring mass system with variable stiffness. Simulation and
experimental results show that the proposed method outperforms
previous approaches in terms of robust performance.

I. INTRODUCTION

Ideal sliding mode control is a technique that has attracted

the attention of researchers for more than four decades because

of its attractive theoretical robustness properties [8], [3]. A

serious limitation in this technique and most of the literature

in this field is that only state feedback is considered, i.e.

all states are assumed to be available for measurement. In

[10], static output feedback sliding mode control is introduced

to nominal system without uncertainty, the necessary and

sufficient condition to existence problem is given in [7], [14].

In [7] introduced sliding mode control to system with matched

uncertainty, constructed the controller in LMI framework in

presence of matched uncertainty using only equivalent control

is done by [14]. The controller in [14] is extended by [6]

using equivalent control and applied control. In static output

feedback sliding mode controller, if the number of system

output and input are equal, it is not possible to build sliding

hyperplane robust to the unmatched uncertainty unless the

system inherent robust stable against unmatched uncertainty. In

other words, there is enough stable zero dynamic in the system

covering the dynamic of the sliding hyperplane and inherently

stable against unmatched uncertainty. Hence, [6] is extended

by [22] to design robust sliding hyperplane against matched

and unmatched uncertainty by considering more system output

than input is available. The sliding hyperplane is designed to

minimize the unmatched by formulate it in polytopic formula,

the equivalent control part divided to two parts, a part minimize

the unmatched uncertainty and part minimize the matched one.

The design of static output feedback sliding mode control in

[6], [22] is encounter non-convex matrix inequality that non-

iterative LMI-based algorithm proposed in [17], [16] is used

to design the controller.

As discussed previously, dynamic output feedback sliding

mode control can satisfied only the sufficient condition ex-

istence problem. In [11], the controller is designed to nominal

system without uncertainty. For system has matched and un-

matched uncertainty a robust hyperplane design is introduced

[1]. In [9], the sliding hyperplane is constructed using LMI,

the design is restricted to system has matched uncertainty, this

work is extended by [23] to unmatched uncertainty. In [29],

a different approach to design state feedback sliding mode

control is introduced, the approach is to design dynamic sliding

hyperplane by using compensator, the compensator is designed

when system in sliding mode. This approach is extended by

[20] to design output feedback dynamic sliding mode control

using H∞ control µ synthesis theory, and LPV sliding mode

in [24].

In most applications, only measured system outputs are ac-

cessible. A more practical approach is taken in [21], where

output feedback sliding mode control is considered. However,

it is restricted to a specific type of uncertainty, the control

action tends to have high magnitude and frequency contents.

The design procedure in [5] introduces a general way of

selecting a sliding surface for a given system in an optimal

way, such that the performance of the reduced order system is

balanced against the control costs. In this paper, we propose a

new approach to design output feedback sliding mode control

scheme where the dynamics on the sliding surface are selected

to minimize a H∞ cost function. The approach is illustrated

with its application to a well-known benchmark problem for

robust control, the ACC benchmark problem, and to an experi-

mental spring mass system with variable spring constants. The

extension of this paper to robust H2 is introduced in [19]. In

[18] extended to LPV system.

The layout of the paper is as follows. The general dynamic

model is first introduced, and a method to design a sliding

surface and to synthesize a sliding mode output feedback

controller is proposed. To illustrate the approach, in section(IV)

the ACC benchmark problem model is summarized. Section(V)

shows simulation results and a tuning procedure for the pro-

posed controller. Finally, experimental results with an imple-

mentation of the proposed controller and a standard robust
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LTI output feedback controller based H∞ minimization on an

experimental spring mass system are presented in section(VI).

II. PROBLEM DESCRIPTION

Consider an uncertain dynamic system of the form

ẋ = (A+∆A)x+(B+∆B)u

y =Cx (1)

where ∆A,∆B represents the uncertainty in the matrices A,B
respectively. The matrix A can be decomposed as (Aum +Am)

A =



A11 A12

A21 A22

�

, Aum =



Aum11
Aum12

0 0

�

Am =



0 0

Am21
Am22

�

, B =



0

B2

�

(2)

where x 2 Rn is the state vector, u 2 Rm is the control input,

y 2 Rp is the output. Am represents matched uncertainty i.e.

BT Am 6= 0, Aum is unmatched uncertainty that mean AT
umB� 6= 0,

and A11 2 R(n�m)⇥(n�m), B2 2 Rm⇥m.

The first objective is to design a sliding surface of the form

S = {x : Sx = 0}, where S 2 Rm⇥n is a full rank matrix which

needs to be designed, so that the associated reduced order

sliding mode, when the system states are confined to S , has

appropriate dynamics. This is a state feedback problem (all

states are available for measurement).

The second objective is to design a sliding surface of the form

S = {x : S(CKxk +DKy) = 0}, where xk 2 Rn, with controller

state equation ẋk = AKxk + BKy, AK 2 Rn,BK 2 Rn⇥p,CK 2
Rn⇥n,DK 2 Rn⇥p. This problem is output feedback.

III. CONTROLLER DESIGN

The generalized plant P(s) for (1) has the state space

representation

ẋ = Ax+Bww+Bu

y =Cx

z =Cwx+Duu

w = ∆z (3)

Perturbation of the nominal plant A,B is expressed via fictitious

inputs through Bw and fictitious outputs through Cw,Du. Where

the matrix ∆ represents the range of admissible perturbations

and is assumed to satisfy k∆k∞ < 1 at all times, leading to the

LFT form

ẋ = (A+Bw∆Cw)x+(B+Bw∆Du)u (4)

For the analysis, it is convenient to re-partition the system

states x given in (1) to x1,x2 where x1 2 R(n�m)⇥1, x2 2 Rm⇥1.

On the other hand the sliding matrix can be partitioned as S =
⇥

S1 S2

⇤

where S1 2 Rm⇥(n�m), S2 2 Rm⇥m. To design sliding

mode controller, the design procedure will be in two steps.

First, find the a part of the sliding surface matrix S�1
2 S1 that

minimizes the unmatched uncertainty Aum, then choose S2 to

minimize the whole uncertainty ∆A,∆B. Next, augmented the

system with the sliding surface, then design the dynamic part

that feeds the controller with the necessary information about

the states. The control block diagram is shown in Figure 1.

y

K(s)

C(s)S

ũ

P(s)

∆

P̃(s)
w

z

u

Fig. 1. Closed-loop system with generalized plant

A. State Feedback Sliding Mode Controller

For first order sliding mode control, it is known [5] that

when the system is on the sliding surface, the dynamics of the

motion are governed by (5),

ẋ1 = (A11 +Aum11
)x1 +(A12 +Aum12

)x2

x2 =�Mx1 (5)

where M 2 Rm⇥(n�m), and the sliding surface S can be de-

composed such that S = α
⇥

M Im

⇤

. By neglecting Aum12
the

dynamic part of (5) can be written in LFT form as follows

ẋ1 = (A11 +B11∆11C11)x1 +A12x2 (6)

The singular value decomposition method of [27] can be

used to determine B11 and C11 such that k∆11k∞ < 1 for all

operating points of the reduced order system. When Aum12
is

not neglected, the system in (5) can be decomposed into a

more general LFT from as [4]

ẋ1 = (A11 +B11∆11C11)x1 +(A12 +B11∆11D11)x2 (7)

The generalized plant for the reduced order system is shown

in Figure 2. The plant variation is represented by an uncertain

real gain matrix block ∆11 connected between fictitious outputs

z11 and inputs w11, leading to the state space representation

ẋ1 = A11x1 +A12x2 +B11w11

y = x1

z11 =C11x1 +D11x2

w11 = ∆11z11 (8)

For the state feedback problem, assume the system given in

(3) to have all states available for measurement, i.e. C = I. The

problem considered in this section is to design a sliding surface

S, such that the closed loop transfer function Tzw satisfies

kTzwk∞ < γ for all k∆k∞ < 1. This can be achieved by first

designing M to guarantee kTz11w11
k∞ < γ11 for the reduced

order system (5). The problem is now to minimize kTz11w11
k∞

for the generalized plant in (8). Therefore, M is designed to

make kTz11w11
k∞ less than γ11. This is a standard LMI problem,

i.e. M can be computed using the robust control toolbox for

Matlab [2]. On the other hand, finding the value of the scaling

parameter α involves solving a BMI problem.

The design problem can now be solved as a static output
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z11

�M

P11(s)

∆11

x2 x1

w11

Fig. 2. Configuration with reduced-order plant

w

α

⇥

M Im

⇤

P(s)

∆

u x y

z

Fig. 3. Static output feedback problem

feedback problem, as shown in Figure 3. Solutions to this

problem are discussed e.g. in [13], [15]. For a single-input

system, α can be computed from the BMI problem using linear

search - fixing it makes it into an LMI problem that can be

solved for the value of γ . The best value of α is the one that

gives the smallest value for γ .

If there is more than one input to the system, α will be a

matrix and a genetic algorithm can be used for the search.

B. Output Feedback Sliding Mode Controller

The problem considered in the second step of the design is

to find a dynamic controller C(s) of order n with input y and

output ũ

C(s) =



AK BK

CK DK

�

(9)

such that kTzwk∞ < γ over all admissible perturbations ∆. The

closed-loop block diagram is shown in Figure 4. where the

z

C(s)

P̃(s)

∆

ũ y

w

Fig. 4. Dynamic output feedback problem

generalized plant P(s) in Figure 1 is changed to P̃(s) in Figure

4, and the generalized plant P̃(s) is given as

ẋ = Ax+Bww+Bα
⇥

M Im

⇤

ũ

y =Cx

z =Cwx+Duα
⇥

M Im

⇤

ũ

w = ∆z (10)

For simplicity suppose D̃ = Duα
⇥

M Im

⇤

and

B̃ = Bα
⇥

M Im

⇤

. The closed-loop system from w to z

is

ẋc = Acxc +Bcw

z =Ccxc (11)

where

Ac =



A+ B̃DkC B̃CK

BKC AK

�

, Bc =



Bw

0

�

, (12)

Cc =
⇥

Cw + D̃DKC D̃CK

⇤

The design objective is now to find the controller C(s) that

minimizes kTzwk∞ < γ . The problem has now been converted

to an output feedback problem with multi-inputs. This problem

can be solved using the robust control toolbox for Matlab.

The controller that will be connected to the system is then

K(s) =



AK BK

�α
⇥

M Im

⇤

CK �α
⇥

M Im

⇤

DK

�

(13)

The control action that will be applied to the plant is

u = ko sat(
S(CKxk +DKy)

µ
) (14)

where ko > 0, and µ > 0 is the width of the boundary layer.

IV. APPLICATION TO A BENCHMARK PROBLEM

In this section, the approach presented in the previous

section will be illustrated by applying it to a well-known robust

benchmark problem, known as ACC benchmark problem, first

proposed in [28]. In [25], a score for the achieved performance

is defined that will be used here.

Comparison with a standard LTI based H∞ minimization robust

design will show that the proposed sliding mode controller

is more robust and achieves a higher performance score than

this and other controllers proposed previously for the ACC

benchmark problem, see e.g. [25], [12].

The plant to be controlled is a spring mass system, shown

in Figure 5, with two masses m1 = m2 = 1 connected to each

other by a spring with stiffness k, which is uncertain and varies

in a given range. A state space model of the system is

d1

u
m1

m2 d2

k

x1 x  = y2

Fig. 5. Two-mass spring system
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ẋ = (A+∆A)x+Bu+
⇥

G1 G2

⇤



d1

d2

�

,

y =Cx (15)

where

A+∆A =

2

6

6

4

0 0 1 0

0 0 0 1

� k
m1

k
m1

0 0
k

m2
� k

m2
0 0

3

7

7

5

, B =

2

6

6

4

0

0
1

m1

0

3

7

7

5

G =

2

6

6

4

0 0

0 0
1

m1
0

0 1
m2

3

7

7

5

, C =
⇥

0 1 0 0
⇤

(16)

Comparing (16) with (15) we obtain

Am =

2

6

6

4

0 0 0 0

0 0 0 0

�∆k ∆k 0 0

0 0 0 0

3

7

7

5

, Aum =

2

6

6

6

6

4

0 0 0 0

0 0 0 0

0 0 0 0

∆k �∆k 0 0

3

7

7

7

7

5

,

Dm =

2

6

6

4

0

0
1

m1

0

3

7

7

5

Dum =

2

6

6

4

0

0

0
1

m2

3

7

7

5

(17)

where x1 and x2 are the position of body 1 and body 2,

respectively. x3 and x4 are the velocities of body 1 and body

2, respectively. u is the control input acting on body 1. d1 and

d2 are disturbances acting on body 1 and 2, respectively. y is

the measured output. The design requirements is given in [25].

V. CONTROLLER DESIGN AND SIMULATION RESULTS

The design procedure divides to two parts. First, design the

sliding surface that yields a minimum value of γ when all states

are available for feedback. Second, design the dynamic output

feedback law and provide the sliding surface with the required

states. The sliding surface design requires first to synthesize

M that minimize γ11 for the reduced order system, while α is

used to reduce γ for the full order system. A suitable value

for α is chosen by solving the static output feedback problem

shown in Figure (3); using linear search. The minimum value

of γ for sliding mode state feedback is 1.0692 with α equal

1.35; this will be used in the second design step.

The second design step is to find a dynamic output feedback

sliding mode controller C(s), see Figure 4, that minimizes γ .

The value of α that has been chosen in the design step for the

sliding surface is used when computing C(s). It may however

have to be re-tuned, since it had been tuned for a state feedback

problem. For the output feedback sliding mode control, the

tuning of α can be again considered as static output feedback

problem, and solved as a BMI problem. A linear search is used

to solve this problem here.

The value of α that minimizes γ for the state feedback problem

is not same value as that minimizing γ for the output feedback

problem - this value of α is 1.4. The variation of α affects the

gain and phase margin: the maximum phase margin is obtained

when α = 0.8, while the gain margin decreases with increasing

α . Increasing the value of α increases the minimum value of

the spring constant for which the system is stable, whereas the

maximum value of the spring constant for which the system

is stable is decreased with increasing α . Thus the range of

stability is decreased with increasing α . The effect of α on

the robustness measure pm introduced in [25]: it is obviously

decreased with increasing α . Note that the control action in

(14) provides a free parameters ko,µ , that can be tuned to

improve the performance. Figures 6-7 show the response of the

system to an impulse disturbance applied on mass1 and mass2,

respectively, with the tuning parameters α, ko, µ equal to 0.8,

0.7, and 0.625, respectively. In the reference [25] a scoring

0 5 10 15 20 25 30

0

1

2

3

x
1

Response to an impulse disturbance applied to Mass1

0 5 10 15 20 25 30

0

1

2

3

x
2

0 5 10 15 20 25 30
−1

0

1

u

 

 

k=0.5

k=1

k=2

Fig. 6. Impulse disturbance applied at mass1, for α, ko, µ equal to 0.8, 0.7,
0.625, respectively

0 5 10 15 20 25 30

0

1

2

3

x
1

Response to an impulse disturbance applied to Mass2

0 5 10 15 20 25 30

0

1

2

3

x
2

0 5 10 15 20 25 30
−1

0

1

u

 

 

k=0.5

k=1

k=2

Fig. 7. Impulse applied at mass2, for α, ko, µ equal to 0.8, 0.7, 0.625,
respectively

scheme to evaluate and compare the performance of different

controllers for the ACC benchmark problem was proposed.

In the same paper, a H2/classical controller was designed that

achieved a score of 7.4. A robust H2 controller proposed in

[12] outperformed this with a score of 8.5, see Table (I). The
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sliding mode controller presented above in turn outperforms

both controllers and achieves a score of 10.1, see Table (II).

TABLE I
PERFORMANCE MEASURES FOR ROBUST H2 CONTROLLER [12]

PM GM ts(sec) umax kmin � kmax pm Score

32 6.6 14.5 0.55 0.41-3.1 0.48 8.5

TABLE II
PERFORMANCE MEASURES FOR SLIDING MODE CONTROLLER

PM GM ts(sec) umax kmin � kmax pm Score

37.97 8.5 14.4 0.7 0.24-5.05 0.61 10.1

VI. REAL-TIME CONTROL OF A RECTILINEAR PLANT

In this section, the output feedback sliding mode control

scheme is applied to an experimental version of the ACC

benchmark problem.

The mechanical plant used for this purpose is the rectilinear

mechanism shown in Figure 8. To construct an output feedback

Fig. 8. Experimental version of the ACC benchmark problem

sliding mode controller, the design procedure proposed in sec-

tion (III) will be used. To tune the controller for performance,

an LMI condition representing regional pole constraints is

added; here a vertical strip and a conic sector are considered.

The fist step in the design is to find M which determines the

sliding surface. The LMI condition for M is now combined

with the LMI region constraint. In order to convert the design

from state feedback to output feedback, the model of the plant

in Figure 8 is augmented with the sliding surface and with

integral action for accurate tracking.

The augmented system is then used to design the output feed-

back controller as explained in section (III-B), by adding the

LMI region constraint (intersection of vertical strip with conic

sector). The tuning parameters are αl , αr, θ , the selection of

which will be discussed later.

After design the sliding surface and the dynamic part of the

sliding mode controller, a first order lag with time constant τ

was used as a prefilter to reduce the overshoot. Experimental

results show that when the parameters αl ,αr,θ are fixed, and

the parameter αlr ,αrr are increased, the steady state error

is reduced. However, in general increasing these parameters

amplifies noise in the system, a reasonable trade-off used in

all results shown in this section is αlr = 7, αrr = 3.

Oscillation in the response can decreased by increasing the

conic sector angle θ . The values of the parameter αl ,αr,θ
for the experimental results shown here are 8.3, 4.3 and 35,

respectively.

First, the control law (14) is used for the nominal system

(medium stiffness) with ko,µ equal to 1. Unfortunately, the

value of ko can not be increased beyond one, and the boundary

layer µ cannot be decreased below one for the above control

law, which means that simply a linear controller is imple-

mented. To reduce the boundary layer µ , the control scheme

suggested in [26] turned out to work well in this application.

The control law then becomes

u = Mko(e) sat(
S(CKxk +DKy)

µ
) (18)

where Mko(e) = ko Mo |e|, e is the difference between

desired input and controlled output. Using control law (18),

the boundary layer can be reduced to µ = .0067 and ko = .2.

Experimental results show that the overshoot is increased by

increasing ko, and the reverse is true for the steady state error

when the control law (14) is used. On other hand, using the

modified control law in (18), the overshoot is decreased and

rise time is increased by increasing Mo for the medium and

spring. It is clear that the performance is improved when the

modified control action in (18) is used. The increasing of Mo

reduces the overshoot and increases the rise time for medium

and hard stiffness, while for weak stiffness, the overshoot is

increased with increasing Mo. By modifying the control law

(18), the steady state error can be reduced further: the required

modification is as follows:

i f |e|< ε, Mko(e) = ko M1 |e| (19)

otherwise, Mko(e) = ko M2 |e|

The modified control law (19) involves two gains (M1,M2)

instead of one gain Mo in control law (18). The experimental

results show that increasing M1 reduces the steady state error,

increases oscillation, and by reducing ε the oscillation can be

reduced. Figure (9) shows the response for different springs

using the proposed control law (19), which improves the steady

state error. Finally, for comparison a standard robust LTI output
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Fig. 9. Experimental results: response with M1 = 4,M 2 = 2.5, ε = 0.5 for
three different springs

feedback controller based H∞ minimization is designed using

the same pole constraints that were used for the sliding mode
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controller. The system response with this controller is shown in

Figure 10. It is obvious from the comparison of the response

of the two controllers in Figures 9 - 10, the sliding mode

controller outperforms the standard robust LTI controller based

H∞.
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Fig. 10. Experimental results: response for robust LTI output feedback control
based H∞ for three springs

VII. CONCLUSION

A systematic design and tuning strategy for H∞ output

feedback sliding mode controllers has been proposed. The

first step is to design a robust sliding surface that minimizes

the H∞ norm for a part of the unmatched uncertainty or the

all unmatched uncertainty. Secondly, the system is augmented

with the sliding surface, then one designs an output feedback

dynamic sliding mode controller that is robust against the

matched and unmatched uncertainty. The proposed control

scheme has been tested on a benchmark problem and compared

with previously published results as well as a standard robust

LTI based H∞ minimization controller. Simulation results show

that the proposed controller achieves a score is higher than

that of previous controllers: The sliding mode control score is

10.1, while for the Classical/H2 and robust H2 scheme it is

7.4 and 8.5, respectively. In addition, the proposed controller

has been applied successfully to an experimental version of

the benchmark problem. Again, comparison with a robust LTI

controller based H∞ shows that sliding mode control gives less

overshoot, better steady state error and faster rising time.
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Abstract—The least-squares quadratic filtering and fixed-point
smoothing problems of discrete-time stochastic signals from
observations with multiple packet dropouts are addressed. The
random dropouts are modelled by introducing a sequence of
Bernoulli random variables with known distributions in the
observation model. A recursive estimation algorithm is deduced
without requiring full knowledge of the state-space model gener-
ating the signal process, but only information about the dropout
probabilities and the moments of the processes involved. Defining
suitable augmented signal and observation vectors, the quadratic
estimation problem is reduced to the linear estimation problem
of the augmented signal based on the augmented observations,
which is solved by using an innovation approach.

I. INTRODUCTION

Over the past few years, research on networked systems

has gained lot of interest. Classical estimation methods are not

appropriate for these systems in which time delay and/or data

packet dropouts are unavoidable due to numerous causes, such

as network congestion, random failures in the transmission

mechanism, accidental loss of some measurements, or data

inaccessibility at certain times.

Under the assumption that the state-space model of the

signal to be estimated is known, several modifications of

conventional linear estimation algorithms have been proposed

to incorporate the effects of random delays on the measurement

arrival (see e.g. Ray et al. [1]). Also, many results have been

reported on linear estimation for systems with packet dropouts

(see e.g. Sahebsara et al. [2] and Sun et al. [3] for systems with

multiple packet dropouts, and Sun [4] for the case when the

number of consecutive packet dropouts is bounded by a finite

number). Nevertheless, in some practical situations the state-

space model of the signal is not available and another type

of information, for example about the covariance functions

of the processes involved in the observation equation, must

be processed for the estimation. In this context, linear esti-

mation algorithms from randomly delayed observations based

on covariance information have been derived, for example,

in Nakamori et al. [5] and, also, quadratic estimators, which

improve significantly the performance of linear ones, have been

proposed in Hermoso and Linares [6], among others. However,

for systems with packet dropouts, estimation problems using

covariance information have not been well studied yet.

In this paper a least-squares quadratic filtering and fixed-

point smoothing algorithm is proposed for observation mod-

els with multiple packet dropouts. The measurement packet

dropouts are modelled by introducing a sequence of Bernoulli

random variables, whose values (one or zero) indicate if the

current measure is available or lost (in which case, the latest

measurement is processed instead). For the quadratic estima-

tion approach the signal and observation vectors are augmented

by assembling the original vectors with their second-order

powers. Then, by using an innovation approach, the linear

estimator of the augmented signal based on the augmented

observations is obtained, providing the required quadratic

estimator.

The rest of the paper is organized as follows. In Sec-

tion II the observation model considered and the hypotheses

on the signal and noise processes are presented. The least-

squares quadratic estimation problem is formulated in Section

III, where the augmented observation model and the statisti-

cal properties of the augmented vectors are established; the

quadratic estimation problem is then reduced to the linear es-

timation problem of the augmented signal, and the innovation

technique used to address such linear estimation problem is

described. The least-squares quadratic estimation algorithm is

derived in Section IV which includes recursive formulas to

obtain the estimation error covariance matrices; these matrices

provide a global measure of the estimators accuracy. Finally,

in Section V, a numerical simulation example is presented to

show the effectiveness of the estimation algorithm proposed in

the current paper, and some conclusions are drawn in Section

VI.

II. OBSERVATION MODEL

Consider an n-dimensional signal vector, zk, whose mea-

sured output at the sampling time k, denoted by eyk, is

perturbed by an additive noise vector vk; that is,

eyk = zk + vk, k � 1. (1)

Assume that, at the initial time k = 1, the measured output

ey1 is always available and, hence, the measurement processed

for the estimation is equal to the real measurement, y1 = ey1.

However, at any time k > 1, the measured output eyk can
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be randomly dropped-out during network transmission, which

occurs with known probability. Consequently, the measurement

processed at time k, yk, will be either the current measured

output eyk (with probability pk) or, if such measured output is

lost during transmission, then the latest measurement received

yk−1 will be processed (with probability 1� pk); that is

yk =

⇢
eyk, with probability pk
yk−1, with probability 1� pk.

Therefore, the following model for the measurements pro-

cessed to estimate the signal is considered:

yk = γkeyk + (1� γk)yk−1, k > 1; y1 = ey1, (2)

where {γk; k > 1} is a sequence of mutually independent

Bernoulli random variables with P [γk = 1] = pk.

This model, considered by Sahebsara et al. [2], can describe

multiple packet dropouts if successive values of the Bernoulli

variables are equal to zero. For example, if γk = γk−1 =
γk−2 = 0 and γk−3 = 1, three consecutive data are lost and

the measurement received at k�3 will be used at k�2, k�1
and k.

To address the quadratic estimation problem of the signal

the following assumptions are needed:

(H1) The signal process {zk; k � 1} has zero mean and auto-

covariance function Kk,s = E[zkz
T
s ] = AkB

T
s , s  k,

where A and B are n ⇥ M known matrix functions.

The autocovariance function of the second-order powers

(defined by the Kronecker product, z[2] = z ⌦ z),

Kz[2]

k,s = E
�
(z

[2]
k � E[z

[2]
k ])(z

[2]
s � E[z

[2]
s ])T

�
is also

factorized as Kz[2]

k,s = akb
T
s , s  k, where a and b

are n2 ⇥ L known matrix functions. Moreover,

Kzz[2]

k,s = E
�
zkz

[2]T
s

�
=

⇢
αkβ

T
s , s  k,

εkδ
T
s , k  s,

where α, β, ε and δ are n ⇥ N , n2 ⇥N , n ⇥ P and

n2 ⇥ P known matrix functions, respectively.

(H2) The noise process {vk; k � 1} is a zero-mean white

sequence and its moments, up to the fourth one, are also

known and denoted as follows

Rv
k = E[vkv

T
k ], Rvv[2]

k = E[vkv
[2]T
k ],

Rv[2]

k = E
�
(v

[2]
k � E[v

[2]
k ])(v

[2]
k � E[v

[2]
k ])T

�
.

(H3) The noise {γk; k > 1} is a sequence of independent

Bernoulli random variables with known probabilities

P [γk = 1] = pk.

(H4) The signal {zk; k � 1} and the noises {vk; k � 1} and

{γk; k > 1} are mutually independent processes.

III. QUADRATIC ESTIMATION PROBLEM

Given the observation model (1)-(2) under assumptions

(H1)-(H4), the problem is to find the least-squares (LS)

quadratic estimator, z
Q
k/L, of the signal, zk, when information

on the measurement history up to the Lth instant, {y1, . . . , yL},

is available. More specifically, our aim is to derive recursive

algorithms for the filter, z
Q
k/k, and the estimators z

Q
k/L at the

fixed-point k, for any L > k, that is, the fixed-point smoother.

From hypotheses (H1) and (H2), E[y
[2]T
i y

[2]
i ] < 1, so the

required quadratic estimator z
Q
k/L exists and can be obtained as

the orthogonal projection of zk on the space of n-dimensional

linear transformations of y1, . . . , yL and y
[2]
1 , . . . , y

[2]
L . The

technique used to obtain this estimator consists of augmenting

the signal and observation vectors by assembling the original

vectors and their second-order powers,

Zk =

✓
zk

z
[2]
k

◆
, eYk =

✓ eyk
ey[2]k

◆
, Yk =

✓
yk

y
[2]
k

◆

thus deriving the estimator z
Q
k/L as the vector constituted of

the first n entries of the LS linear estimator of Zk based on

Y1, . . . ,YL, whose existence is guaranteed from (H1).

In the next section the relation between the augmented

vectors is studied and their statistical properties are analyzed.

A. Augmented observation model

By using (1) and the Kronecker product properties, the

following expression for ey[2]k is obtained

ey[2]k = z
[2]
k + (In2 +Kn2) (zk ⌦ vk) + v

[2]
k , k � 1,

where In2 is the n2⇥n2 identity matrix and Kn2 is the n2⇥n2

commutation matrix, which satisfies Kn2(zk ⌦ vk) = vk ⌦ zk.

Hence, the centered augmented vectors Zk = Zk�E[Zk] and
eYk = eYk � E[ eYk] satisfy

eYk = Zk + Vk, k � 1,

where

Vk =

✓
vk

(In2 +Kn2) (zk ⌦ vk) + v
[2]
k � vec(Rv

k)

◆
.

Next, using (2) and taking into account that γ2
k = γk, the

following expression for y
[2]
k is obtained

y
[2]
k = γkey[2]k + (1� γk)y

[2]
k−1, k > 1; y

[2]
1 = ey[2]1 .

Using again the Kronecker product properties and the model

hypotheses, it is deduced that the centered augmented vector

Yk = Yk � E[Yk] satisfy the following equation:

Yk = γk eYk + (1� γk)Yk−1 + (γk � pk)Ck, k>1; Y1= eY1,

where Ck = E[ eYk]� Ek−1, k > 1, with Ek = E [Yk] being

recursively calculated from

Ek = (1� pk)Ek−1 + pkE[ eYk], k � 2; E1 = E[ eY1]

and

E[ eYk] =

✓
0

vec(AkB
T
k +Rv

k)

◆
, k � 1.



B. Statistical properties of augmented vectors

Clearly, the signal and noise processes, {Zk; k � 1} and

{Vk; k � 1}, have zero mean. Their second-order statistical

properties, which are derived from (H1)-(H4), are established

in the following propositions.

Proposition 1. If the signal process {zk; k � 1} satisfies (H1),

the autocovariance function of the augmented signal process

{Zk; k � 1} can be expressed in a semi-degenerate kernel

form; namely,

KZ
k,s = E[ZkZ

T
s ] = AkB

T
s , s  k,

where

Ak =

✓
Ak αk 0n×P 0n×L

0n2
×M 0n2

×N δk ak

◆
,

Bk =

✓
Bk 0n×N εk 0n×L

0n2
×M βk 0n2

×P bk

◆
.

Proposition 2. Under (H1)-(H4), the noise {Vk; k � 1}
is a sequence of mutually uncorrelated random vectors with

covariance matrices given by

E[VkV
T
k ] = RV

k =

 
Rv

k Rvv[2]

k

Rvv[2]T
k R22

k

!

where

R22
k = (Im2 +Km2)

�
AkB

T
k ⌦Rv

k

�
(Im2 +Km2) +Rv[2]

k .

Moreover, {Vk; k � 1} is uncorrelated with the process

{Zk; k � 1}.

C. Linear estimation of the augmented signal Zk

As indicated previously, to obtain the LS quadratic estima-

tors of the signal, zk, based on the observations {y1, . . . , yL},

we consider the LS linear estimation problem of the augmented

signal, Zk, based on the augmented observations {Y1, . . . , YL}.

This problem is addressed via an innovation approach, which

simplifies considerably the derivation of the filtering algorithm,

since the innovations constitute a white process.

Let νi = Yi��Yi/i−1, where �Yi/i−1 denotes the LS linear es-

timator of Yi based on the previous observations, Y1, . . . , Yi−1.

For each i, νi may be regarded as a measure of the new

information or the innovation provided by the observation Yi.

It is known that the innovations {νi, i  L} can be determined

from the observations {Yi, i  L} by means of a causal and

causally invertible linear transformation. Therefore, each set

can be replaced by the other with no loss of information and,

consequently, the LS linear filter of the signal Zk based on the

observations Y1, . . . , YL, which is denoted by �Zk/L, is equal to

the LS linear estimator given the innovations ν1, . . . , νL. Since

the innovations constitute a white process, from the Orthogonal

Projection Lemma it is easily proven that the filter is given by

�Zk/L =

LX

i=1

Sk,iΠ
−1
i νi, (3)

where Sk,i = E[Zkν
T
i ] and Πi = E[νiν

T
i ].

Thus, as the estimators are expressed in terms of the

innovations, we start by determining them or, equivalently,

the predictors �Yi/i−1. It is clear that �Y1/0 = 0 and, taking

into account the model hypotheses, the Orthogonal Projection

Lemma leads to

�Yi/i−1 = pi �Zi/i−1 + (1� pi)Yi−1, k � 2. (4)

IV. QUADRATIC FILTERING AND FIXED-POINT SMOOTHING

ALGORITHM

Using the properties of the augmented processes, as estab-

lished in propositions 1 and 2, we derive recursive algorithms

for the linear filtering and fixed-point smoothing estimators,
�Zk/L, L � k, of the augmented signal Zk. These estimators

allow us to obtain the required quadratic filtering and fixed-

point smoothing estimators of the original signal zk, just by

extracting the first n entries.

Theorem 1. The quadratic filtering and fixed-point smoothing

estimators, z
Q
k/L, L � k, of the signal zk are given by

z
Q
k/L = Υ �Zk/L, L � k

where Υ is the operator which extracts the first n entries of
�Zk/L, the linear estimators of the augmented signal Zk, which

are recursively obtained by

�Zk/L = �Zk/L−1 + Sk,LΠ
−1
L νL, L > k (5)

from the initial condition

�Zk/k = AkOk. (6)

The innovation, νL, satisfies

νL = YL � pLALOL−1 � (1� pL)YL−1, L � 2;
ν1 = Y1,

(7)

where the vectors OL are recursively calculated from

OL = OL−1 + JLΠ
−1
L νL, L � 1; O0 = 0. (8)

The matrix function J satisfies

JL = pL
⇥
BT
L � rL−1A

T
L

⇤
, L � 2; J1 = BT

1 , (9)

where rL are recursively obtained from

rL = rL−1 + JLΠ
−1
L JT

L , L � 1; r0 = 0. (10)

The covariance matrix of the innovation, ΠL, verifies

ΠL = Σ
Y
L � p2LALrL−1AL

T � (1� pL)
2
Σ

Y
L−1

�pL(1� pL)
⇥
ALGL−1 +GT

L−1AL
T
⇤
, L � 2;

Π1 = Σ
Y
1 ,

(11)

where Σ
Y
L and GL are recursively calculated from

Σ
Y
L = pL(ALB

T
L +RV

L ) + (1� pL)Σ
Y
L−1

+pL(1� pL)CLC
T
L , L � 2;

Σ
Y
1 = A1B

T
1 +RV

1

(12)

and

GL = JL + pLrL−1A
T
L + (1� pL)GL−1, L � 1;

G0 = 0.
(13)



Finally, the matrices Sk,L are calculated from

Sk,L = pL[Bk �Hk,L−1]A
T
L, L > k,

Sk,k = AkJk
(14)

where Hk,L satisfy

Hk,L = Hk,L−1 + Sk,LΠ
−1
L JT

L , L > k,

Hk,k = Akrk.
(15)

Proof. From the general expression (3), it is clear that the linear

fixed-point smoothers of the signal Zk are recursively obtained

by relation (5), and its initial condition is obviously provided

by the filter, �Zk/k.

From (3), in order to determine the filter, the coefficients

Sk,i = E[Zkν
T
i ], must be calculated for i  k. Using

expression (4) in νi = Yi � �Yi/i−1 yields

Sk,i= E[ZkY
T
i ]�piE[Zk

�ZT
i/i−1]�(1�pi)E[ZkYi−1], i�2

Sk,1= E[Zk
eY T
1 ].

Again, taking into account (3) for the predictors, �Zi/i−1, and

using that E[Zk
eY T
i ] = AkB

T
i for 1  i  k, since E[Zkν

T
j ] =

Sk,j , we have

Sk,i = piAkB
T
i � pi

i−1X

j=1

Sk,jΠ
−1
j ST

i,j , 2  i  k

Sk,1 = AkB
T
1 .

This expression for Sk,i guarantees that

Sk,i = AkJi, 1  i  k, (16)

where J is a function satisfying

Ji = piB
T
i � pi

i−1X

j=1

JjΠ
−1
j ST

i,j , 2  i  k

J1 = BT
1 .

(17)

Hence, if we denote

OL =
LX

i=1

JiΠ
−1
i νi, O0 = 0, (18)

which, obviously, satisfies (8), expression (6) for the filter is

deduced from (3), (16) and (18) for L = k.

Similarly, the one-stage predictors of the signal are given

by
�ZL/L−1 = ALOL−1, (19)

and expression (7) for νL = YL � �YL/L−1 is obtained by

substituting (19) in (4) for i = L.

Next, taking into account that, from (16), SL,i = ALJi for

1  i  L, and by denoting

rL = E
⇥
OLO

T
L

⇤
=

LX

i=1

JiΠ
−1
i JT

i , r0 = 0, (20)

from (17) for i = L, expression (9) for JL is easily derived.

The recursive formula (10) for rL is obvious from (20).

By denoting Σ
Y
L = E[YLY

T
L ] and GL = E[OLY

T
L ], it is

clear that the innovation covariance matrix ΠL = E[YLY
T
L ]�

E[�YL/L−1
�Y T
L/L−1] satisfies expression (11).

Recursive relations (12) and (13) for Σ
Y
L and GL, respec-

tively, are derived as follows:

• Clearly, from the model hypotheses, E[eYL
eY T
L ] =

ALB
T
L+RV

L ; hence, taking into account that E[γ2
L] = pL,

E[(1 � γL)
2] = 1 � pL and E[γL(1 � γL)] = 0, the

expression (12) for ΣY
L is obtained.

• We write GL = E[OLY
T
L ] = E[OLν

T
L ] +E[OL

�Y T
L/L−1].

Clearly, from (18) and since the innovation is a white

process, we have E[OLν
T
L ] = JL and E[OL

�Y T
L/L−1] =

E[OL−1
�Y T
L/L−1]. Next, from (4), (19) and (20), we have

E[OL−1
�Y T
L/L−1] = pLrL−1A

T
L + (1 � pL)GL−1, and

expression (13) is obtained.

Finally, we must prove (14) for Sk,L = E[Zkν
T
L ] and (15)

for Hk,L. Using (7) for νL, and since E[ZkY
T
L ] = pLBkA

T
L

for L > k, we obtain

Sk,L = pLBkA
T
L � pLE[ZkO

T
L−1]A

T
L,

which leads to (14), just denoting Hk,L = E[ZkO
T
L ]. The

initial condition in (14) is immediately clear from (16).

The recursive relation (15) is derived from (8) and its initial

condition is obtained from (6) and (20), taking into account

that, from the Orthogonal projection Lemma, E[ZkO
T
k ] =

E[ �Zk/kO
T
k ].

A. Error covariance matrices

The performance of the LS estimators �Zk/L, L � k, is

measured by the covariance matrices of the estimation errors,

Pk/L = E
⇥
ZkZ

T
k

⇤
� E

�
�Zk/L

�ZT
k/L

�
, L � k.

Using the recursive relation (5) for �Zk/L, these matrices can

be written as

Pk/L = Pk/L−1 � Sk,LΠ
−1
L ST

k,L, L > k (21)

The initial condition is Pk/k, the error covariance matrix

of the filter �Zk/k = AkOk which, taking into account that

E[ZkZ
T
k ] = AkB

T
k and rk = E[OkO

T
k ], is given by:

Pk/k = Ak

⇥
BT
k � rkA

T
k

⇤
.

The first n ⇥ n blocks of the matrices Pk/L, L � k,

constitute the covariance matrices of the quadratic smoothing

and filtering errors, thus providing a measure of the accuracy

of the respective quadratic estimators.

V. COMPUTER EXAMPLE

In this section a numerical simulation example is shown

to illustrate the feasibility and effectiveness of the proposed

quadratic estimation algorithm. For this purpose, we have

simulated 100 values of the signal to be estimated and the cor-

responding observations with multiple packet dropouts. Using

these observations, both linear and quadratic estimates of the



signal are calculated and the corresponding error covariance

matrices are provided to measure the estimation accuracy.

We consider a zero-mean scalar signal {zk; k � 1} such

that the autocovariance and cross-covariance functions of this

signal and their second-order powers are given by

Kz
k,s = 1.025641⇥ 0.95k−s, s  k,

Kz2

k,s = 2.1038795⇥ 0.952(k−s), s  k,

Kzz2

k,s = 0, 8s, k;

hence, according to hypothesis (H1), the functions which

constitute these covariance functions can be defined as follows:

Ak = 1.025641⇥ 0.95k, Bk = 0.95−k,

ak = 2.1038795⇥ 0.952k, bk = 0.95−2k,

αk = βk = εk = δk = 0.

For the simulations, the signal is assumed to be generated by

the following first-order autoregressive model

zk+1 = 0.95zk + wk

where {wk; k � 1} is a zero-mean white Gaussian noise with

V ar [wk] = 0.1, for all k.

The real measurements of the signal, eyk = zk + vk, are

perturbed by a white noise, {vk; k � 1}, with distribution

P [vk = �8] =
1

8
, P


vk =

8

7

�
=

7

8
, 8k � 0;

hence,

E[vk] = 0, Rv
k = 9.142857,

Rvv2

k = �62.693878, Rv2

k = 429.900875.

Now, according to our theoretic study, we suppose that, at

any sampling time k > 1, the measurement processed for the

estimation, yk, can be either the current measured output eyk,

with constant probability p, or the latest measurement received

yk−1, with probability 1� p; that is, the measurements of the

signal are given by

yk = γkeyk + (1� γk)yk−1, k > 1; y1 = ey1
with

eyk = zk + vk, k � 1.

First, considering a fixed value of the probability p = 0.5,

the error variances of the linear and quadratic estimators are

calculated, allowing us to compare the performance of both

estimators. The error variances of the linear and quadratic

filters and fixed-point smoothers, are displayed in Figure 1

which shows, on the one hand, that the quadratic estimation

error variances are less than the linear ones (confirming the su-

periority of the quadratic estimators over the linear ones) and,

on the other, that the estimation accuracy of the smoothers is

superior to that of the filters and, also, that the performance of

the fixed-point smoothers improves as the number of available

observations increases.

Next, we compare the performance of the estimators con-

sidering different values of the probability p. Since the error

variances show insignificant variation from the 20th iteration
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Fig. 1. Linear and quadratic estimation error variances for p = 0.5.

onwards, only the error variances at a specific iteration are

considered. In Figure 2 the linear and quadratic filtering and

smoothing error variances at k = 100 are displayed versus p.

This figure shows, as expected, that both, linear and quadratic

estimators, have better performance (the error variances are

smaller) as the probability p increases or, equivalently, as the

dropout probability decreases.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability p

 

 

Linear filtering error variances

Quadratic filtering error variances

Filter k/k

Smoother k/k+2

Smoother k/k+5

Fig. 2. Linear and quadratic estimation error variances versus p.

Finally, Figure 3 displays 100 simulated values of the signal,

together with the linear filtering estimates and the quadratic

filtering and fixed-point smoothing estimates, for the value

p = 0.5. This figure shows, on the one hand, that the quadratic

filtering estimates follow the signal evolution better than the

linear ones and, on the other, that the signal evolution is

followed more accurately by the smoothing estimates, agreeing

with the comments made about Figure 1.
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VI. CONCLUSION

A recursive algorithm is proposed for the LS quadratic

filter and fixed-point smoother from observations featuring

multiple packet dropouts, a realistic assumption in networked

stochastic systems where, generally, transmission losses are

unavoidable due to the unreliable network characteristics. We

assume that, when the current measurement is not available,

the latest measurement is processed for the estimation.

To address the quadratic estimation problem, an augmented

signal and observation vectors are introduced by assembling

the original vectors with their second-order powers, defined

by the Kronecker product. Using an innovation approach,

the linear estimator of the augmented signal based on the

augmented observations is obtained, providing the required

quadratic estimator.

The estimation algorithm does not require the knowledge

of the signal state-space model, but only the autocovariance

and crosscovariance functions of the signal and its second-

order powers, and the same information on the additive noise.

Furthermore, our estimators only depend on the data arrival

probabilities, but do not need to know if a measurement is

received or lost at a particular sampling time. To measure

the performance of the estimators, recursive formulas for the

estimation error covariance matrices are also proposed.

To illustrate the theoretical results established in this paper,

a simulation example is presented, showing the feasibility of

the proposed algorithm and the superiority of the quadratic

estimators over the linear ones.
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Abstract — This paper considers modelling and 
simulation study of a helicopter system – UH-60 Black 
Hawk helicopter. Mathematical model of single main rotor 
helicopters is presented in this paper. For the convenience of 
presentation, force and moment expressions of the various 
helicopter components are given in the paper to bridge a 
generic model to the model of UH-60 Black Hawk 
helicopters. For simulation study a UH-60 like Flightlab 
GRM model (Generic Rotorcraft Model) is used. 
Comparisons are made between the simulation results and 
flight test data. A general agreement exits but where 
disagreements and anomalies occur, clues are gathered to 
give explanation. Overall the model represents the UH-60 
Black Hawk helicopter. This model can be used for 
controller development to improve flight handling quality 
and performances.

      Keywords - modelling; simulation; model validation; helicopter 

system; flight control

I. INTRODUCTION

A helicopter has six degrees of freedom in its motions: 

up/down, fore/aft (longitudinal motion), left/right (lateral 

motion), pitching, rolling, and yawing. The motions of a 

helicopter are achieved by; 1) collectively changing the pitch of 

all the main rotor blades, thus increasing rotor thrust (collective 

pitch); 2) cyclically changing the pitch as a sinusoidal function 

of azimuth which tilts the tip-path-plane fore/aft or left/right 

and changes the thrust vector direction (cyclic pitch); and 3) 

collectively changing the tail rotor pitch, which changes tail 

rotor thrust and thus the yaw moment. A helicopter pilot must 

simultaneously control three forces and moments, hence,

control of a helicopter, is a difficult task indeed. A helicopter 

pilot typically has at his disposal a cyclic stick to control both 

fore/aft motions (pitch control) and left/right motion (roll 

control), a collective lever to control up and down motions 

(vertical control), and pedals to control left and right yawing 

motions (yaw control). Lift, thrust, pitching, and rolling control 

comes from the main rotor while yawing control comes from 

the tail rotor (Bramwell, 1976, Stepniewski, et al, 1984). 

Analyse the dynamic problems of controlling a helicopter and 

to develop control schemes for alleviating these problems it is 

necessary to derive a dynamic model for helicopters. The 

dynamic model should be well suited to stability and control 

analysis, which may involve linearized equations of motion 

about possible equilibrium positions.

In the following section a mathematical model of a single 

main rotor helicopter is presented. The forces and moments 

from the different elements of helicopter are discussed in 

details. Then the model of UH-60 helicopter has been derived 

and simulation study has been conducted. The results are 

presented in this paper.

II. DYNAMIC MODEL OF A HELICOPTER

The overall vehicle equations of motion are derived. The forces 

and moments from the different elements of a helicopter, such 

as main rotor, tail rotor, fuselage and empennage, are discussed 

in this paper. The helicopter has six degree of freedom in its 

motion and it has nine state variables in general, which are 

wvu ,, the aircraft velocity components at centre of gravity, 

rqp ,, the aircraft roll, pitch and yaw rates about body reference 

axes, and ,, the Euler angles. To derive the equations of 

the translational and rotational motions of a helicopter, the 

helicopter is assumed to be a rigid body referred to an axes 

system fixed at the centre of mass of the aircraft, so the axes 

move with time varying velocity components under the action 

of the applied forces. The Euler angles define the orientation of 

the fuselage with respect to earth axes system (Padfield, 1996). 

There are four control inputs, which are, longitudinal cyclic 

stick (
s1

), lateral cyclic stick )(
1c

, collective lever )(
c

and 

pedal input )(
p

which control the helicopter’s motion 

through NandMLZYX ,,,,, . So the system equations are as 

follows

aM/Xsingqwrvu       (1a) 

aM/Ysincosgrupwv       (1b)

aM/Zcoscosgpvquw       (1c)   
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tancostansin rqp                                   (3a)

sincos rq               (3b)

seccossecsin rq              (3c)

where
a

M and g are the mass of the helicopter and acceleration 

due to gravity, 
zzyyxx

III ,, are the moment of inertia of the 

helicopter about yx, and z axes, and 
xz

I the aircraft product of 

inertia. The model (1) ~ (3) can be considered as a cascade 

connection nonlinear system, that is, it has the following form:

yxfx ,
1

                  (4)

UyGy,xfy 2
                  (5)

The overall external forces YX , and Z along zyx ,, axes and 

moments NML ,, about zyx ,, axes can be written as
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and
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where is air density, R and are the main rotor blade radius 

and speed, 
0

a and s the main rotor blade lift curve slope and 

solidity, and 
zYx

CCC ,, are the main rotor force coefficients in 

shaft axes. They are given by
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where 
W

is the side-slip angle and 
T

C is the main rotor thrust 

coefficient given by

22
RR

T
C

T
               (14)

The main rotor force coefficients in the hub-wind axes 
XW

C and 

YW
C are can be obtained through equations (15) and (16) in 

terms of harmonic components of integrated blade 

aerodynamic loads and harmonics of flapping.
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where
0
is the coning angle and 

cw1
,

sw1
are the first harmonic 

cyclic flapping angles. The harmonic components of integrated 

blade aerodynamic loads are given by the following 

expressions
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where
0
is the main rotor collective pitch and is given by
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                     (24)

In equation (24),
0c

g and 
1c

g are the collective gearing 

constants, 
g

k and n the autostabiliser feed back gain and 

aircraft normal acceleration increment, and 
c

the collective 

lever variable (control input).

swcw 11
, blade cyclic pitch components in hub-wind axes are 

defined by

c
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where 
cs 11

, are the longitudinal and lateral cyclic pitch they 

are determined by
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   , (27)

where 
qp

kandkkk ,, feedback gains, 
sc

kandk
11

are feed 

forward gains. 
0101

,
cs

and are constants, adjustable by the 

pilot and 
sc 11

, are lateral and longitudinal cyclic stick 

variables (control inputs).

The tail rotor provides control for the yaw, whose only 

responsibility is to provide a sideways thrust force and thereby 

produce a yawing moment about the main rotor shaft 

(Newman, 1994, Leishman, 2000) i.e. contributes the external 

force Y , moments L , and M (see equations (7), (9) and (11)). 

Tail rotor contributaion can be determined by
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where 
T0

is a tail rotor pitch (control input) and is given by
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In equation (29), 
10

,
tt

gg are pedals gearing constants, and
0ct

g is 

the pedal cable gearing constant.  
pc

, are the collective liver 

variable and pedal variable, which are the control inputs.

Almost all of the performance characteristics of a helicopter 

depend on the power-plant performance (Prouty, 1986). Here a 

simplified model for a helicopter rotor-speed, associated engine 

and rotor governor dynamics formulae are presented as 

follows.
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In time domain, differential equation can be written as

      
2331
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eiEEee
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where 
RE

QQ , and 
T

Q are the engine, main rotor, and tail rotor 

torques, respectively. 
T

G is the tail rotor gear ratio. 
R

I is the 

moment of inertia of the rotating system.  
i

is the idling rotor 

speed and  
3

K overall engine/rotor speed gain.

Some assumptions are made to produce a closed form of 

expressions to the helicopter motion, which are shown below. 

The tail rotor flapping is ignored. For the main rotor, flapping 

angles are assumed small and the overall fuselage acceleration 

and blade weight effects are neglected. Yaw rate and sideslip 

rate, are assumed small compared with rotor angular rate in 

the kinematics of blade motion. Especially, basic assumptions 

regarding to the rotor blade aerodynamics are summarised as 

follows:

A constant, two-dimensional, lift curve slope is assumed.

Compressibility effects are ignored.

Stall and reversed flow effects are ignored.

The induced velocity distribution, normal to the rotor disc, 

includes linear longitudinal and lateral variations, the value 

at the centre satisfying simple momentum considerations. 

Couplings from blade pitch and lag dynamics into flapping 

motion are ignored.

Quasi-steady flapping and coning are used in the 

derivation of the reaction forces and moments on the 

fuselage, i.e., the interaction of disc tilt modes with 

fuselage mode are neglected.

These assumptions make it possible to integrate the 

aerodynamic loading analytically and hence produce the closed 

form of expressions for the rotor forces and moments. 



                                            

III. SIMULATION STUDY OF UH-60 BLACK HAWK 

HELICOPTER USING FLIGHTLAB

A similar approach has been taken for modelling main rotor 

and tail rotor apart from that the tail rotor flapping has been 

ignored. In Flightlab, the tail rotor component implemented is 

based on a simplified theoretical method of determining the 

characteristics of a lifting rotor in forward flight (report No 716 

National Advisory committee for Aeronautics by F.J. Bailey, 

Jr,) which is called bailey rotor. The co-ordinate system of the 

bailey rotor has X forward into the free-stream airflow and Z in 

the direction of thrust. Rotor thrust and torque are calculated as 

functions of the blade tip loss factor by making the similar 

assumptions as mentioned above. Bailey derived rotor thrust 

and torque by analytically integrating the air-loads over the 

rotor blade span and averaging them over the azimuth. For the 

bailey rotor, using a reasonable initial value for the tail rotor 

thrust 
T

T , the thrust coefficient 
TT

C can be calculated from 

momentum theory as

blTTT
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TT

kRR

T
C

22
             (35)

The only difference from mathematical model described in (28) 

is that the blockage effect, 
bl

k , is introduced due to fin 

consideration. Total inflow 
0

and the induced velocity 
i

v can 

be calculated by

TT
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0zi
v               (37)

Using these values, an iterative procedure is performed to 

determine the values of the total inflow.  This is done by using 

the equation below derived by applying momentum theory.
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where 
0

and 
1

are the blade collective pitch at the root and 

tip, respectively. 
0

is the total inflow across the rotor disk. 

The values 
1,3

t , 
2,3

t and 
3,3

t are computed by

22

1,3
4

1

2

1
Bt        (39)

23

2,3
2

1

2

1
BBt        (40)
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Once the values of 
1,3

t , 
2,3

t and 
3,3

t have been determined within 

a reasonable tolerance, the induced velocity is again calculated 

using the above equation.  From equation (36) the thrust 

coefficient is then recalculated using

2

0

22
iTT

vC                       (42)

The rotor thrust can then be calculated with the following 

equation:

22

180
TTblT

RkT ,                       (43)

where the blockage effect, 
bl

k , due to a fin is used to modify 

the rotor thrust as a function of the velocity which is given by,

12

2

1
1

t

bl

A

tbl
b

v

u
bk ,  

blA
vu                       (44)

2tbl
bk ,

blA vu                       (45)

in equations (44) and (45) the transition velocity, 
bl

v and the 

tail blockage constants, 
1t

b and 
2t

b , are specified by the users. 

This allows calculating the root collective pitch 
0

by

cbiasT
T

330
tan

180
,                       (46)

where 
c

is the commanded root collective pitch, 
bias

is a 

preset collective pitch bias, 
T

T is the tail rotor thrust, and 
3

is 

the hinge skew angle for pitch-flap coupling. In addition, for 

the main rotor, in Flightlab model, aerodynamic effect has been 

taken into account. In more details, the aerodynamic 

components are numeric components that allow the 

computation of airloads, inflow, and interference. Airloads are 

computed to give the motion of the attached structural 

component and inflow is computed based on the airloads. 

Additionally, interference between the aerodynamic 

components can be computed. 

Fuselage and empennage components are implemented in 

Flightlab model, by using simple aerodynamics laws, in which 

the forces and moments from these elements are given by 

functions of incident and sideslip angle. In the process of 

modelling due to the complex flow field around helicopter 

fuselages and the interaction of the main rotor wake with the 

fuselage, some difficulties are caused to construct the forces 

and moments equations. So the direct results from wind tunnel 

test data gathered from various sources are used (Biggers, 

1962, Wilson, et at, 1975). The engine output torque is 

controlled by the governor system that senses a change in rotor 

speed and demands a fuel flow change 
f
. The fuel change 

is represented as a single lag.

11 effe
K ,                      (47)

where 
1e

and 
1e

K are the time constant and gain respectively. 

1e
K is the slope of the droop in the rotor speed from flight idle 

to maximum contingency fuel flow.

i
,                      (48)

where and 
i

are the changes in rotor speed and flight idle 

rotor speed, respectively. The engine torque 
E

Q response to the 



                                            

fuel flow change is described by a lag responding to fuel flow 

and flow rate

ffeeEEe
KQQ

223
,                      (49)

where 
2e

K is the gain and 
2e

,
3e

are the time constants. 

Combining the above results gives a second order ordinary 

differential equation as follows

2331

31

1
iEEee

ee

E
KQQQ        (50)

The equation is further normalised by maximum engine torque 

maxE
Q as

2

max

3

3131 ei

E

EEeeEee
Q

K
QQQ      (51)

Where
213
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ee

E

E

E
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Q

Q
Q                      (52)

With

i

m

i

E
Q

K

1

max

3
                      (53)

m
is the rotor speed at maximum contingency fuel flow. 

Similarly in the mathematical model the simplified free turbine 

engine equations are also presented (see equation (34)).

In the flight control system, essentially, signals from the cyclic 

stick, collective lever and yaw pedals are transmitted to the 

main and tail rotor blades. Inter-links between collective lever, 

main rotor cyclic, and tail rotor collective pitch are also 

incorporated in the mathematical model. These pilot generated 

signals are combined with error signals from the stabilisation 

and automatic flight control systems and passed through a first 

order lag. The autostabiliser transmits signals from rate and 

attitude gyros to produce feedback control of roll through 

lateral cyclic, pitch through longitudinal cyclic and yaw 

through tail rotor collective. Feed forward signals are also 

incorporated in the cyclic loops for compensation also normal 

acceleration is fed back into the main rotor collective channel 

to reduce adverse rotor pitching moments at high forward 

speeds. In Flightlab model the control components are designed 

as multi input/ mulit output, linear and nonlinear sub system. 

Simulation results are presented in this paper. The appropriate 

parameters for the UH-60 helicopters are used in the simulation 

studies are presented in the appendix Table A.1~A.4. 

Comparison result shows that there is a general agreement 

between the flight test data and the Flightlab GRM model 

simulation results. The flight test data were generated from the 

tests conducted for the UH-60 helicopter under very calm wind 

condition at Navy crows landing, California in September 1992 

(Fletcher, 1993, Fletcher, 1995).  

Simulation with two dynamics manoeuvres (Hover and 80Kts) 

for the four control input has been carried out. The model 

response was computed using the actual flight measured 

control positions. Both the flight data and the simulation data 

ware plotted in the same scale, which enables an easier 

comparison of the variables of interest, such as translational 

velocities ( wvu ,, ), rotational velocities qp,( , r ), Euler 

angles ),,( and body axes accelerations ),,(
zyx

aaa .  In this 

paper longitudinal stick input simulation results are choosen as 

an example, which are shown In Fig. 3.1(a) and Fig. 3.1(b). 

The pilot’s longitudinal stick input was used to drive the model 

in hover condition and 80Kts forward flight speed. 

There exists reasonably good correlation with the flight data 

response, however some discrepancies are evident in the pitch 

rate )(q . Initially it starts with a good agreement but tends to 

differ in the long term, which might be an indication of that 

some unstable factors in real flight vehicle have not been 

included into the mathematical model.

IV. CONCLUDING REMARKS

The paper describes modelling and simulation study of a 

helicopter system. The mathematical model for a helicopter has 

been developed for simulation study and control analysis.             

For the simulation study in the paper a UH-60 like Fightlab 

GRM model has been used. The model responses are compared 

with UH-60 flight test data in both hover and 80Kts forward 

flight conditions. Correlation in the main is satisfactory but 

anomalies are present. The possible reasons for those 

anomalies are suggested. Overall satisfactory results are 

achieved. Simulation analyses with the mathematical model 

itself are currently undergoing and the results will be 

investigated for the analysis of the system stability and control. 
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Figure. 3.1(a) Comparison of helicopter dynamic responses at hover between flight test data and FGR model for longitudinal 

stick input

Figure. 3.1(b) Comparison of helicopter dynamic responses at 80Kts between flight test data and FGR model for longitudinal 

stick input



                              

APPENDIX A

PARAMETER OF UH-60 HELICOPTER

UH-60 helicopter data are gathered from various 

sources are presented below (eg. Hilbert, 1984). 

Table A.1 Aircraft mass and inertia:

Description Symbol UH-60 

value

Units

mass of the helicopter
a

M 15350 lb

aircraft roll inertia
xx

I 5629 2
ftslug

aircraft pitch inertia
yy

I 40000 2
ftslug

aircraft yaw inertia
zz

I 37200 2ftslug

aircraft product of inertia
xz

I 1670 2
ftslug

centre of gravity location - (36.0 0 4.7) ft

Fuselage reference pt. - (34.6 0 23.4) ft

   

Table A.2 Main rotor group:

Description Symbol UH-60 value Units

main rotor speed 27.0 sec/rad

main rotor blade radius R 26.83 ft

blade lift curve slope
0

a 5.73 1
rad

main rotor solidity s 0.08210 -

rotor shaft forward tilt
s

0.05236 rad

rotor thrust coefficient
T

C 0.1846 -

number of blades b 4 -

blade lock number
0

8.1936 -

rotor inertia number 1.0242 -

flap frequency ratio 1 -

linear blade twist
tw

-0.3142 rad

z co-ordinate of  rotor 

hub
R

h 31.5 ft

mixing angle
F

0.175 rad

blade chord c 1.73 ft

flapping spring const. K 0 -

c.g. location fwd.of 

fuselage ref. Point
cg

x 1.4 ft

Stiffness number S 0 -

blade profile drag 

coefficient
0

-0.0216 -

air density 0.002473 3
/ ftslug

blade flapping moment 

of inertia
I 3.10 2

ftslug

Table A.3 Empennage:

Description Symbol UH-60 

value

Units

tail plane area
TP

S 45.0 ft

lift curve slope at zero incident
TP

a
0

4 -

Location aft of fuselage reference 

point
TP

l , 
FN

l 70.0 ft

fin area
FN

S 32.3 2
ft

  Table A.4 Tail rotor group:

Description Symbol UH-60 

value

Units

tail rotor blade radius
T

R 5.5 ft

tail rotor speed
T

124.62 sec/rad

blade lift curve slope
T

a
0

5.73 1
rad

tail rotor solidity
T

s 0.1875 -

fin blockage factor
T

F -0.402 -

tail rotor inertia number
T

n )(
0.4223 -

flap frequency ratio
T

)( 1.0 -

tail rotor location aft of fuselage 

reference point
T

l 73.2 ft

Negative z co-ordinate of hub
T

h 32.5 ft

linear blade twist
tw

-18.0 deg

Number of rotor blade b 4 -

blade profile drag coefficient
T0

-0.0216 -

blade lift dependent drag coefficient
T2

0.40 -

pitch/flap coupling (
3

)
3

k 0.700 -

blade lock number
T

3.378 -
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Abstract—This paper presents a robust design approach for 

the Terminal Iterative Learning Control (TILC) algorithm 

based on the µ-synthesis approach. TILC is used to control 

the reheat phase of plastic sheets in a thermoforming oven. 

TILC adjusts the heater temperature setpoints so that the 

plastic sheet temperature measured at the end of the reheat 

cycle converges to a desired temperature after a few cycles. 

Simulation results are included to show the effectiveness of 

this robust TILC algorithm. 

Keywords—Terminal Iterative Learning Control, robust 

control, µ-synthesis, thermoforming. 

I.  INTRODUCTION 

In the thermoforming industry, the reheat phase is an 
important part of the process, since plastic sheets have to 
be heated to the right temperature before being molded [1-
4]. The heater temperature setpoints are adjusted manually, 
by trial and error. This manual adjustment takes some 
cycles to complete, and results in monetary loss owing to 
the production of rejected parts. 

This problem, observed in the plastics industry, has led 
to the idea of a cycle-to-cycle control approach to 
automatically tune the heater temperature setpoints [5]. To 
achieve this efficiently, the Terminal Iterative Learning 
Control (TILC) algorithm can be used to tune the setpoint 
temperature of heaters in a thermoforming oven [6-8]. The 
approach calls for the installation of temperature sensors 
measuring the surface temperature of the plastic sheet at 
the end of the cycle [4, 9].   

TILC adjusts the heater temperature setpoints so that 
the sheet surface temperature converges to a desired 
temperature profile at the end of the heating cycle [10]. 

For the experimental oven, since it is small, the 
temperature sensors are inside the oven.  But, for a bigger 
oven, the use of temperature scanner at the output of the 
oven is cheaper than using a lot a sensor inside the oven, 
so we need to use TILC. 

This paper concerns the use of µ-synthesis as a tool to 
design TILC controllers. The µ-synthesis approach has 

been successfully used by other researchers for ILC – see 
[11, 12], and [13]. While robust ILC design has been 
studied extensively, robust TILC has attracted much less 
attention. TILC was introduced first in [14] and then in a 
PhD thesis in the same year [15]. High-order TILC, 
presented in [14-17], has been proposed to improve 
robustness. TILC is a variant of ILC, the main difference 
between them being that ILC has access to measurements 
sampled during the entire cycle, while TILC only has 
access to measurements sampled at the end of the cycle 
[14, 18]. 

Section II presents the system used to design TILC. 
Section II introduces the µ-synthesis concepts required to 
carry out the robust design, such as weighting functions 
and their parameters. Simulation results, using a TILC 
algorithm created with µ-synthesis, are shown in section 
IV. Section V concludes the paper. 

II. PROBLEM SETUP 

The system on which we apply the TILC algorithm is a 
thermoforming machine, but the algorithm can be applied 
to any system that behaves in a repetitive way. A 
linearized system is used to design TILC, and has been 
defined by [4, 6, 7, 10]: 

 
( ) ( )

( ) ( )
k k k

k k

x t Ax t Bu

y t Cx t
 (1) 

In (1), t  and k represent the time within the 
cycle and the cycle number respectively. The cycle length 
T has a fixed duration, because it is an important 
assumption of the TILC approach. Matrices A, B, and C 
are time-invariant. The state vector ( ) n

kx t  expresses 
the temperature at n points on the plastic sheet. The input 
vector m

ku  contains the temperature of the heaters, 
and those temperatures are maintained constant during the 
entire reheat cycle. The surface temperatures of the plastic 
sheet are in the output vector ( ) p

ky t . 

The control task is to update the control the input ku , 
such that the sheet surface temperatures converge to a 



                                  
 

desired terminal value vector  p

dy   at time T. For 
linear systems, the terminal output is 

 ( ) (0)k k ky T x u . (2) 

The matrix p n is used to obtain the zero-input 
response, and is defined as 

 ATCe . (3) 
The matrix p m  is used to obtain the zero-state 

response, and is defined by 

 
0

T
A T

C e Bd . (4) 

To put the emphasis on the cycle domain, expressed by 
k, the notation can be changed, and so (2) is rewritten as 

 0[ ] [ ] [ ]Ty k x k u k , (5) 

where [ ] : ( )T ky k y T , [ ] : ku k u , and 0[ ] : (0)kx k x . 

Since it is a discretized system in the cycle domain, the 
z-transform is a useful tool for analyzing it. Then, the z-
transform of (5) for the cycle domain is 

 0ˆ ˆ ˆ( ) ( ) ( )Ty z x z u z  (6) 

where the z-domain variables have a caret above them. 

In the z-domain, the TILC algorithm is defined by 

 ˆ ˆ ˆ( ) ( ) ( ) ( )d Tu z C z y z y z . (7) 

The closed-loop transfer function of the system (6) 
controlled with the TILC in (7)  is expressed by 

 
1

0ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
p d

y z I C z C z y z x z , (8) 

or 

 
1

0ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )m du z C z I C z y z x z . (9) 

Lemma 1: The closed loop-system is internally stable 
if and only if the following matrix is invertible: 

 
( )m

p

I C z

I
 (10) 

for all z outside the unit circle. 

Proof: The proof can be found in [20, 21].                   

An example of a first-order TILC algorithm (since it is 
an integrator) would be 

 
1

( ) 1C z z  (11) 

where the + exponent represents the pseudoinverse 
operator. 

Theorem 1: Suppose that a system represented by the 
matrix  is controlled by the TILC algorithm expressed 
by (11). Then, the closed-loop system is internally stable. 

Proof: From Lemma 1, the system is internally stable if 
(10) is invertible: 

 
1( ) 1m m

p p

I C z I z

I I
. (12) 

The determinant of (12) is 

 
1

( )
( ) : det

det 1

m

p

p

I C z
p z

I

I z

 (13) 

Then, 

 ( ) 1 det 1
p

p
p z z I z . (14) 

The roots of (14) ( ( ) 0p z ) correspond to the poles of 

the closed-loop system. The zeros of ( )p z  are also the 

eigenvalues of pI . There are two cases:  

If pI , then the eigenvalues are all equal to 0 

and the system is stable.  

If pI , then the eigenvalues are equal to 0 or 1, 

since pI  is idempotent, like . The 1 

eigenvalues are canceled out by the ( 1)z  term in the 
denominator of (14), leaving the 0 eigenvalues, implying 
that the closed loop system is stable. 

Then, in both cases, the closed-loop system is stable.   

The closed-loop system must remain stable, even when 
the parameters of the system are uncertain. However, fast 
convergence is needed to minimize the number of plastic 
sheets wasted. 

III. THE MU-SYNTHESIS APPROACH 

The µ-synthesis approach can be used to design a 
robust TILC algorithm by tuning the filter parameters. 
Figure 1 shows the detailed block diagram of the system 
matrix with its uncertainties [8]. The system matrix  is 
related to the nominal one, 0 , with the weighting 
functions and matrices necessary to define the uncertainty 
of the system. 

 
Figure 1: Representation of system uncertainty 

 
We need to define each matrix appearing in this figure 

before proceeding. 

The control system is expressed by its nominal matrix 

0
p m , and the uncertainty amplitudes on each entry 

of the system matrix  are expressed by each entry 

,ii , 1,2, ,i r  of the real diagonal matrix 



                                  
 

. The size of matrix  depends on the number of 
uncertain real entries in the system, but the maximum size 
is pm pm . 

The real diagonal matrix  is such that each entry on 
the main diagonal is strictly smaller than 1 ( 1ii ). 

Hence, the size of the matrix  is the same as . To 

associate each entry 0,ij  of 0  with the corresponding 

uncertainty amplitude ,kk , we need two real matrices 

identified by UW  and YW . Then, the uncertain system can 
be written as 

 0 Y UW W . (15) 

When all parameters of the system  are uncertain, 
the matrix pm m

UW  is 

 
T

U m m mW I I I  (16) 

where the identity matrix mI  is repeated p times, and 

matrix p pm

YW  is 

 1 1 1Y pW I  (17) 

where the 1 is repeated m times. 

When some parameters of the system have no 
uncertainty, the corresponding lines and columns have to 
be removed from the matrices, as shown in Figure 2. 
Hence, this operation reduces the size of all the matrices 
appearing in this figure [8]. 

 
Figure 2: Removal of a 0 uncertainty 

 
The uncertain system  is connected to a cycle-to-

cycle control to close the loop in the cycle domain. Figure 
3 shows the complete block diagram of the system. 

The TILC controller ( )C z  results from combining the 

blocks ( )C z  and 1z I . The part of the controller to be 

designed using the µ-synthesis approach is ( )C z . 

Since the robustness of the controller is obtained by the 
uncertainties expressed earlier, the performance 
specifications are included in the 1( )W z  matrix containing 
the weighting function of the main diagonal. Each entry of 

1( )W z  has the following transfer function: 

 
1, 1, 1, 1,

1,

1, 1, 1, 1, 1,

2 21

2 2

i i i i

ii

i i i i i

M z M
W

M z
 (18) 

where 1,2, ,i p . 

The parameters of the weighting function are [8]: 

- 1,iM : the high-frequency gain of the inverse of 

1,iiW , its purpose being to limit the high-

frequency gain of the sensitivity function of the 
closed-loop system; 

- 1,i : the low-frequency gain of the inverse of 1,iiW  

– the steady state error of the closed-loop system 
will remain under this value; 

- 1,i : the frequency where the gain of the inverse is 

equal to 1, which will determine the speed of 
convergence of the closed-loop system. 
 

The block diagram shown in Figure 3 can be 
reorganized into the one shown in Figure 4. The TILC and 
uncertainty are put into distinct blocks, and all the other 
blocks are grouped into a block named N. Figure 4 can be 

simplified to an N C  representation, as shown in Figure 
5.  

From the block diagram in Figure 5, we can write 

 

1

1
1 1 1 0

1
0

0 0

:
U

Y

Y

W z

N WW W W z

W I z

. (19) 

This N matrix is the main component of the following 
relationship between input and output shown in Figure 5: 

 d

p q

z N y

e u

. (20) 

The µ-synthesis consists of finding a controller ( )C z  
that minimizes the maximum value of µ. The objective 
function to minimize is given by [8, 19] 

 
( )

( ) arg min ( ( ), ( )l
stabilizing C z

C z N z C z . (21) 

In this function, the lower linear fractional 
transformation (LFT)  is defined as 

 
1

11 12 22 21: ( , )lP N C N N C I N C N . (22) 

 

 

 
Figure 3: Block diagram of the closed-loop system with weighting functions 

  



                                     
 

 
Figure 4: Reorganized block diagram 

 

 
Figure 5: Simplified block diagram for µ-synthesis 

 
In (22), N is partitioned as follows: 

 11
1 1

0 0

Y

N
WW W

, (23) 

 
1

12 1
1 0

UW z
N

W z
, (24) 

 21 YN W I , (25) 

 1
22 0N z . (26) 

 
The performance specification is expressed by a fictitious 

uncertainty matrix p p

P . This matrix connects the output 

z of the weighting function 1W  to the input dy .  

The matrix P  is such that 

 1P P  (27) 

at all frequencies. The matrix P  is a full matrix of complex 

values. Both uncertainty matrices,  and P , are combined 
into one [19, 22]: 

 
0

0 P

. (28) 

 
Note that  satisfies 

 max , 1P  (29) 

at all frequencies. 

Since the norm of  is smaller than 1, by the small gain 
theorem, the combination of the system expressed by matrix N 

and the controller C  must give a matrix P having a gain (or 
norm) smaller than 1 at all frequencies. 

The µ-synthesis is a way to obtain the TILC controller 
1C z C  for the system. The algorithm consists of finding a 

controller that minimizes the maximum value of µ. If the 
maximum value of µ is less than 1, controller C ensures a 
system with robust performance. If not, the closed-loop system 
violates at least one of the specifications, robust performance or 
robust stability. 

To use the available software tools to perform -synthesis, 
the system must be converted from discrete to continuous time 
using the Tustin approach [8]. The controller found must then 
be converted back to discrete time. For this design, we use the 
“dkitgui” function in Matlab®. 

IV. SIMULATION RESULTS 

The simulation is performed with a nonlinear model of the 
AAA thermoforming oven (this model is explained in [4, 6, 8]). 
The oven has 12 heater banks and 14 infrared temperature 
sensors (IRT) to measure the temperature at the surface of the 
plastic sheet. Figure 6 shows the location of the IRT sensors 
and the heaters in the oven. The TILC algorithm created with 
the -synthesis approach is designed with a linearized model of 
the thermoforming oven with the default parameters shown in 
Table 1. The weighting function parameters of 1W  are 1 2M , 

1 0.01 , and 1 0.5 . Those parameters will ensure a fast 
and monotonic convergence of the closed-loop system. 

Heater
Heater Bank

Infrared sensor

 
Figure 6: Heater and sensor location (bottom heaters and sensors at the same 

location, with subscript B) 

TABLE I.  PARAMETERS USED IN THE SIMULATIONS 

Parameter Units Default Modified  

Density kg/m3 950 1045 
Specific heat J/(kg·K) 1838 2021.8 

Effective emissivity  0.45 0.495 
Absortivity  300 350 

Heat conduction W/(m·K) 0.4 0.3 
Convection factor W/(m2·K) 6 10 

 

All simulations are performed on the nonlinear system, 
some with the default parameters and some with the modified 
parameters, to test the robustness of the closed-loop system. 



                                     
 

A. Two heater/two sensor configuration 

The first three simulations are performed with a two-heater, 
two-sensor configuration. All heaters above the plastic sheet 
are grouped together, as are all the bottom heaters. The desired 
terminal values are 150°C at IRT1 and 151°C at IRB1. From the 
linearized model, the -synthesis-designed TILC algorithm is 
(with 0.910 ) 

 
1 1.8044 0.7342

( ) 0.995
0.7343 1.9061

C z z . (30) 

 
Using this TILC algorithm on the nonlinear model of the 

thermoforming machine, we obtain the maximum surface 
temperature error (MSTE) plot in Figure 7 ( ). The 
temperature error falls below 5°C in 3 cycles. 
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Figure 7: Surface temperature error, sim. #1 and #2 

  

The initial heater temperature setpoints were set to 250°C in 
all simulations. Although a thermoforming oven operator might 
consider this initial adjustment to be unwise, that setting may 
make it possible to demonstrate the ability of the TILC to 
converge rapidly to the desired surface temperature profile.    

With a non-linear model having the modified parameters, 
convergence is slower, since the maximum temperature error 
falls below 5°C in 6 cycles (  in Figure 7). The energy transfer 
from the heater to the plastic sheet in this case seems to be less 
efficient, which is why the heater temperature setpoints are 
higher in simulation 2. 

In the third simulation, the 
1

0.995z  term in (30) is 

replaced by 
1

1z . Then, the maximum surface temperature 

error converges to 0 and no steady-state error remains. 
However, the heater temperature setpoints are about 10°C 
higher. 

B. Six heater/sir sensor configuration 

For the fourth simulation, we consider an oven 
configuration with six heaters and six sensors. The TILC 
algorithm obtained gives the results shown in Figure 8. The 
convergence is slower and the maximum temperature error 
falls below 5°C in 8 cycles. For this algorithm, we obtained 

0.954 , with the weighting function parameter 1 0.125 . 

C. Ten heater/ten sensor configuration 

Finally, the last four simulations were performed with a 10 
heater/10 sensor configuration. Using 1 0.125  for the TILC 
design, the resulting TILC algorithm has a maximal µ equal to 
0.997. The denominator of the controller obtained is 

0.9988z . The fifth simulation was performed with the 

system having the default parameters. Figure 9 shows a 
convergence to a value under 5°C in 7 cycles ( ). A steady-
state error remains. 
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Figure 8: Surface temperature error, sim. #4 
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Figure 9: Surface temperature error, sim. #5 & #6 

  

The measured surface temperatures have a monotonic 
convergence all measured temperatures.  

For the sixth simulation, the denominator of the controller 
was changed to 1z . With this new TILC, convergence is a 

little bit faster (  in Figure 9) and the MSTE falls to 0.  

The next simulation was performed with a system subject to 
a measurement noise having a standard deviation of 1°C, an 
ambient temperature drift of 1°C per cycle and slow sinusoidal 
variation of initial temperature. With the system having the 
default parameters, the MTSE converges below 5°C at the 8th 
cycle (Figure 10). Due to noise, drift, and initial temperature 
variation, the error does not fall to 0, even if the denominator is 

1z . From the 8th cycle, the MTSE remains under 5°C. 

For the last simulation, with the modified parameters, the 
MTSE falls below 5°C at the 11th cycle. The effect of noise, 



                                     
 

drift, and initial temperature variation is apparent on the heater 
temperature setpoints in Figure 11. The TILC algorithm is able 
to sustain slow variations of the oven temperature and variation 
of the initial temperature of the plastic sheet. 
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Figure 10: Surface temperature error, sim. #7 
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Figure 11: Heater temperature setpoints, sim. #8 

  

V. CONCLUSION 

The TILC algorithm design with µ-synthesis is able to 
produce a robust controller, as shown by the simulations. Now, 
there is a compromise to be made between robustness and 
performance. Each cycle with a maximum terminal surface 
temperature error over 10°C can lead to a wasted plastic sheet 
(for HDPE).  

Then, the speed of convergence becomes an important 
specification defined by tuning the parameter 1  of the 

weighting function 1W . 

Ideally, convergence must be monotonic, since an excessive 
overshoot on the heater temperature setpoints can lead to an 
overheated plastic sheet. The plastic can become too fluid and 
fall onto the bottom heaters, damaging the thermoforming 
oven. Therefore, the system must be robust in the face of slow 
parametric and environmental changes. µ-synthesis makes it 
possible to tune this compromise, so that the thermoforming 

oven will behave relatively well during the reheat phase, even 
with an unwise choice of initial heater temperature setpoints. 
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Gain-scheduled H∞ control of a robotic manipulator

with nonlinear joint friction

Seyed Mahdi Hashemi and Herbert Werner

Abstract—This paper presents the LPV modelling and con-
trol of a robotic manipulator with a nonlinear joint friction
model. A nonlinear dynamic model of the manipulator includ-
ing viscous and Coulomb friction terms is obtained and the
signum function in the friction model is approximated by a

hyperbolic function in order to smooth such hard nonlinearity.
A quasi-LPV model is derived and since it has a large number
of affine scheduling parameters and a large overbounding,
parameter set mapping is used to reduce conservatism and
complexity in controller design by finding tighter parameter
regions with fewer scheduling parameters. Then, a polytopic
LPV gain-scheduled controller is synthesized and implemented
experimentally on an industrial robot for a trajectory tracking
task. The experimental results illustrate that the designed LPV
controller outperforms a similar LPV controller based on a
linear friction model, a model-based inverse dynamics and a
decentralized PD controller in terms of tracking performance.

I. INTRODUCTION

Modelling and control of systems in which friction occurs

has been an active field of research during the last decades

[1], [2] and [3]. A number of models have been developed for

sliding and pre-sliding friction regimes [4] [5] and [6] which

can capture various aspects of this phenomena. However,

nonlinearities in most of them is a major challenge to design

high performance controllers.

Linear parameter-varying (LPV) gain-scheduling tech-

niques have evolved into a promising and effective frame-

work for modern control applications. Their attractiveness

lies in the extension of well-known linear optimal H1

control methods and the use of Linear Matrix Inequalities

(LMIs), to the solution of nonlinear control problems, see e.g.

[7], [8] and [9]. Many nonlinear systems can be converted

into a quasi-LPV form, where the scheduling parameters may

include system inputs, states, outputs and external signals.

However, the number of reported successful implementation

of LPV controllers on practical applications is still limited.

Two major limiting problems in this regard are conservatism,

among other things due to overbounding, and the large

number of scheduling parameters [10].

Obviously, simply neglecting some dynamic terms of

the plant model or heuristically freezing some scheduling

parameters will in general not be an appropriate solution.

Parameter set mapping based on principle component anal-

ysis (PCA) proposed in [10] helps to obtain LPV models

with tighter parameter sets that have less overbounding.

In addition, correlation between scheduling parameters is

S. M. Hashemi and H. Werner are with the Institute of Control Systems,
Hamburg University of Technology, Eissendorfer Str. 40, 21073 Hamburg,
Germany, {seyed.hashemi, h.werner}@tu-harburg.de

detected and insignificant directions in the parameter space

can be neglected without loosing much information about

the plant.

Using LPV gain-scheduling techniques, high performance

controllers can be designed and implemented for nonlinear

robotic manipulators. In [11], LPV modelling and control

of a simple drive system with a nonlinear friction model is

reported, where the scheduling parameters include some dis-

continuities which can be a challenge in many applications.

In [12], [13] and [14], LPV gain-scheduling controllers were

designed for robot models ignoring friction. In [15] and [16],

LPV modelling and control of a robotic manipulator were

reported, where a linear friction model was adopted.

This paper presents the application of LPV gain-

scheduling techniques to modelling and identification of a

two-degrees-of-freedom (2-DOF) robotic manipulator with

a nonlinear friction model. Dynamic model of the robot

including Coulomb and viscous friction terms is identified to

derive a quasi-LPV model. Although there is no upper bound

on the rate of change for scheduling parameters in polytopic

LPV controller synthesis with a fixed Lyapunov function

[7], existence of sudden changes with an infinite slope

due to the Coulomb friction term in scheduling parameters

can degrade the experimental results. Thus, a continuous

hyperbolic function is used to smooth such hard nonlinearity.

A quasi-LPV model in polytopic form is constructed such

that the state matrices depend on the scheduling parameters

in an affine manner. Such a model has a large number

of scheduling parameters, which makes the LPV controller

synthesis conservative and computationally expensive. Thus,

parameter set mapping is applied and less significant com-

ponents are neglected and the accuracy of the approximated

model is assessed. Afterwards, the model is discretized and

a discrete-time polytopic LPV controller with a fixed Lya-

punov function is designed and implemented on the robot for

a trajectory tracking task. The experimental results illustrate

that the designed LPV controller outperforms a similar LPV

controller based on a linear viscous friction model, a model-

based inverse dynamics and a decentralized PD controller in

terms of tracking performance.

The contribution of this paper is that an smoothed nonlin-

ear friction model is included in an LPV framework, which

leads to an improvement in modelling accuracy and control

performance. In addition, no ad-hoc simplification in the

manipulator dynamics is made, but a systematic approach is

used to derive a suitable LPV model for controller synthesis.

This paper is organized as follows. Dynamic and friction

modelling of the robot is presented in section II. In Section



III, LPV modelling and application of parameter set mapping

for parameter reduction is discussed. The LPV controller

synthesis is described in Section IV. Controller implemen-

tation and experimental results are given in Section V. The

last section gives the conclusions.

II. DYNAMIC MODEL

The CRS A465 robotic manipulator shown in Fig. 1 has

six rotational DOFs. In this paper, only the second and

third joints of this robot, referred to as joint 1 and joint 2

respectively, are modeled and the other links are considered

as parts of them, and are fixed during the experiments

as shown in Fig. 2. These two links which represent the

shoulder and elbow respectively, are the most challenging to

control, since they are affected by gravity as well as inertial,

centripetal, Coriolis and friction torques.

Fig. 1. The CRS A465 robot
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Fig. 2. Side view of the 2-DOF robot model

Using the Euler-Lagrange formulation, a rigid-body dy-

namic model of the 2-DOF manipulator is obtained as

τ (t) = D(q(t))q̈(t) + c(q(t), q̇(t)) + g(q(t)) + τ f (q̇(t)),
(1)

where τ is the vector of joint torques (control inputs), and

q, q̇ and q̈ are the vectors of joint positions, velocities

and accelerations respectively, all belonging to R2. D is the

inertia matrix and c, g and τ f are the vectors of Coriolis-

centrifugal, gravity and joint friction torques.

It is reported in [17] and [18] that a friction model

containing Coulomb and viscous terms is appropriate for a

wide range of robotic applications. This model is adopted

here since Coulomb and viscous terms have a higher effect

in comparison with the Stribeck term in this plant [19]

τfi(t) = fcisgn(q̇i(t)) + fvi q̇i(t), i = 1, 2, (2)

where fci and fvi are the Coulomb and viscous friction

coefficients and sgn represents the signum function. Since the

plant is not equipped with high resolution proximity sensors,

friction models including the presliding regime can not be

selected.

If joint positions are measured from a fixed coordinate

axis shown in Fig. 2, some undesirable nonlinear terms in

the dynamic equations will disappear, and developing an

LPV model which depends affinely on scheduling parameters

will become easier. Such a measurement is not possible in

practice, but one can introduce new joint position variables

q̃i with a fixed coordinate reference

q̃1 = q1, q̃2 = q1 + q2. (3)

Using (3), the dynamic model (1) is rewritten as

τ (t) = D̃(q̃(t))¨̃q(t) + c̃(q̃(t), ˙̃q(t)) + g̃(q̃(t)) + τ̃ f ( ˙̃q(t)),
(4)

D̃ =



b1 + b3 cos(q̃2 − q̃1) b2 + b3 cos(q̃2 − q̃1)
b3 cos(q̃2 − q̃1)− b8 b7

�

,

c̃ =



b3 ˙̃q
2
1 sin(q̃2 − q̃1)− b3 ˙̃q

2
2 sin(q̃2 − q̃1)

b3 ˙̃q
2
1 sin(q̃2 − q̃1)

�

,

g̃ =



−b4 sin(q̃2)− b5 sin(q̃1)
−b4 sin(q̃2)

�

,

τ̃ f =



b10sgn( ˙̃q1) + b6 ˙̃q1
b11sgn( ˙̃q2 − ˙̃q1) + b10( ˙̃q2 − ˙̃q1)

�

,

(5)

and the coefficients bi, i = 1 . . . 11 are linear combinations
of dynamic and kinematic parameters, given in Appendix A.

Some scheduling parameters of the LPV model will in-

clude the signum function in (2), that may degrade the

performance in experiments. Thus, it is approximated by a

smooth hyperbolic tangent function shown in Fig. 3

sgn(q̇i(t)) ≈ tanh(βq̇i(t)), i = 1, 2, (6)

where β = 20 is a smoothing coefficient that is chosen
to make the scheduling trajectories smooth enough while

providing suitable model accuracy. The unknown dynamic
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Fig. 3. Signum (dashed) and hyperbolic tangent functions(solid)

and friction parameters bis are estimated using the linear

least squares method, see [15] for more details.

The estimated parameters are given in Table I. To validate

the accuracy of the estimated model, measured and predicted

torques by the model for a cross validation trajectory are

compared and plotted in Fig. 4, which illustrates a high



TABLE I

ESTIMATED INERTIAL AND FRICTION PARAMETERS

(WITH NON-SI UNITS)

b1 0.0877 b5 0.0407 b9 0.5860
b2 0.0241 b6 0.4524 b10 0.1603
b3 -0.0075 b7 -0.00957 b11 0.7060
b4 0.0154 b8 0.0675

accuracy. Having an accurate nonlinear model is of great

importance in deriving a useful quasi-LPV model.
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Fig. 4. Measured (dashed) and predicted (solid) torques for cross validation
trajectory with non-SI units

III. LPV MODEL

A. Derivation of a Quasi-LPV Model

Consider an LPV model in the state-space form

ẋ(t) = AP (θ(t))x(t) +BP (θ(t))u(t)

y(t) = CP (θ(t))x(t) +DP (θ(t))u(t)
, (7)

where x ∈ R
n, u ∈ R

nu and y ∈ R
ny . The mappings

AP (.), BP (.), CP (.) and DP (.) are continuous functions of
time-varying scheduling parameter vector θ(t) ∈ Rl. In this

problem, n = 4, nu = 2, ny = 2. This model can also be
represented by a linear input-output map

P (θ) =



AP (θ) BP (θ)
CP (θ) DP (θ)

�

. (8)

The parameter vector θ(t) depends on measurable signals
ρ(t) ∈ Rs referred to as scheduling signals, according to

θ(t) = f(ρ(t)), (9)

where f : Rs → R
l is a continuous mapping.

Consider the compact set Pθ ⊂ R
l : θ ∈ Pθ, ∀t > 0.

Here, it is assumed to be a polytope defined by the convex

hull

Pθ := Co{θv1 , θv2 , . . . , θvL}, (10)

where L = 2l is the number of vertices.
The LPV system is called parameter-affine, if the state

space model depends affinely on the parameters

P (θ) =

l
X

i=0

θiPi = P0 + θ1P1 + · · ·+ θlPl. (11)

Since θ can be expressed as a convex combination of L

vertices θvi , if (11) holds, it follows that the system can be

represented by a linear combination of LTI models at the

vertices; this is called a polytopic LPV system

P (θ) ∈ Co{P (θv1), P (θv2), . . . , P (θvL)} =

L
X

i=1

αiP (θvi),

(12)

where
PL

i=1 αi = 1, and αi ≥ 0 are the convex coordinates.
To obtain the quasi-LPV model of the robot, ρ(t) is selected
as the state vector of the system, which consists of the

transformed joint positions and velocities

ρ(t) = x(t) =
⇥

q̃1 q̃2 ˙̃q1 ˙̃q2
⇤>

. (13)

The state matrices of the quasi-LPV model of the robot

are obtained from (4) and (5) as

AP =

2

6

6

4

0 0 1 0
0 0 0 1
θ1 θ2 θ3 θ4
θ5 θ6 θ7 θ8

3

7

7

5

,

BP =

2

6

6

4

0 0
0 0

b7θ9 −b3θ10 − b2θ9
b8θ9 − b3θ10 b3θ10 + b1θ9

3

7

7

5

,

CP =
⇥

I O
⇤

, DP = O,

(14)

where I and O denote identity and zero matrices of appro-

priate dimensions. In this problem l = 10 and the affine
scheduling parameters θ are given in the Appendix B. The

representation of the new joint position variables q̃i in (3)

facilitates the affine generation in (14). Affine dependence

of the state matrices in θ is different from [15] to avoid

increasing the number of scheduling parameters due to the

Coulomb friction terms.

Since L = 1024, this quasi-LPV model would require a

number of 2049 LMIs [7] to be simultaneously solved for
a polytopic LPV controller synthesis, which is obviously a

numerically challenging problem. Moreover, an implemented

controller would have on-line dependence on 1024 vertex

controllers. For practical reasons, the number of vertices

should therefore be decreased.

B. Parameter Set Mapping

Parameter set mapping is a systematic procedure to find

tighter regions in the space of the scheduling parameters.

Moreover, approximations of LPV models can be obtained

which neglect insignificant directions in the mapped parame-

ter space without ad-hoc model simplifications and parameter

freezing. Using parameter set mapping allows a trade-off

between the number of parameters and model accuracy in

a straightforward way. Altogether, it will lead to a less

conservative controller synthesis [10], [15]. This method

is used in this paper to reduce the computation cost and

conservatism of the controller. The objective is to find a

mapping g : Rs → R
m such that m 6 l, and

φ(t) = g(ρ(t)), (15)



yields a model

ẋ(t) = ÂP (φ(t))x(t) + B̂P (φ(t))u(t)

y(t) = ĈP (φ(t))x(t) + D̂P (φ(t))u(t)
, (16)

that provides a satisfactory approximation of (7). Finding

a suitable integer m is an important issue. The first step

is to generate typical trajectories of the scheduling signals

such that all expected operating regions of the plant are

covered. A multi-sine trajectory covering the whole operation

range of the robot is used for this purpose with N = 70000
data points. Then, corresponding scheduling parameters are

computed to generate the data matrix

Θ =
⇥

θ(0) θ(T ) . . . θ((N − 1)T )
⇤

∈ Rl⇥N , (17)

where T = 0.001. To put the same weight on each θi, all

rows of the data matrix are normalized such that each has

zero mean and a unit standard deviation

Θ
n
i = Ni(Θi), Θi = N�1

i (Θn
i ). (18)

Now, PCA [20] is applied to the normalized data. Intro-

duce the singular value decomposition of Θn

Θ
n = [Us Un]



Σs 0 0
0 Σn 0

� 

V >
s

V >
n

�

, (19)

where Σs = diag(σ1 · · ·σm), Σn = diag(σm+1 · · ·σl),
Us ∈ R

l⇥m, Vs ∈ R
N⇥m, Un ∈ R

l⇥(l�m) and Vn ∈

R
N⇥(N�m), and assume that Us, Σs and Vs correspond to

the m significant singular values, such that

Θ̂
n = UsΣsV

>

s ≈ Θ
n, (20)

is a reasonable approximation of the given data. The fraction

of total variation vm is calculated to evaluate the accuracy

of the approximated model as

vm =

Pm

i=1 σ
2
i

Pl

i=1 σ
2
i

, (21)

where σi denote the singular values in (19). By choosing

the number m of scheduling parameters, one can trade the

accuracy of the model against complexity. The matrix Us

represents a basis of the significant column space of the data

matrix Θn, and can be used to obtain a reduced mapping g

in (15) by computing

φ(t) = g(ρ(t)) = U>

s N (f(ρ(t))). (22)

The approximated model in (16) is related to (7) by

P (φ) =



ÂP (φ) B̂P (φ)

ĈP (φ) D̂P (φ)

�

=

"

AP (θ̂) BP (θ̂)

CP (θ̂) DP (θ̂)

#

,

(23)

θ̂(t) = N�1(Usφ(t)) = N�1(UsU
>

s N (θ(t))), (24)

where N�1 denotes the row-wise re-scaling. The approxi-

mated LPV model can be produced at any time by (24).

The above procedure is applied to the derived LPV model

in (7). It turns out that about 57% of the information is

contributed by the first principle component. Around 96%

and 98% of the information is selected by choosing m = 2
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Fig. 5. Scheduling parameter θi (dashed) and approximation θ̂i (solid)

and m = 3, respectively. In this paper m = 2 is chosen
since it gives only 4 vertices and 9 LMIs to be solved

for LPV controller synthesis. It is also obvious that the

mapped parameter space with two dimensions has much

less overbounding than the original one, leading to a less

conservative controller. Some typical parameter trajectories

for the accurate and approximated model are compared in

Fig. 5, which illustrates a satisfactory accuracy for controller

design purpose. Based on the derived quasi-LPV model, a

polytopic LPV controller is designed.

IV. CONTROLLER SYNTHESIS

Polytopic gain-scheduled controller design with a fixed

Lyapunov function [7] has been proven to be an effective and

practical tool for LPV synthesis due to the simplicity of the

synthesis and implementation and low online computational

effort. The reduced quasi-LPV model in the previous section

is used for controller synthesis. The manipulator is controlled

by an LPV controller that is scheduled by the reduced

parameter vector. The design objective considered here is

to stabilize the plant in the whole operating range with a

high tracking capability, disturbance and measurement noise

rejection and taking in consideration the actuator constraints.

An H1 mixed-sensitivity loop-shaping approach is adopted

to achieve the objectives. After discretizing the LPV model,

a 12th order discrete-time polytopic gain-scheduled H1

controller is synthesized similar to the design in [15]. The

design procedure is not explained here again due to space

limitation.

V. EXPERIMENTAL RESULTS

This section describes the experimental setup and the

implementation of the designed LPV controller, and com-

parison of results with a similar LPV controller based on a

linear friction model and two classical controllers. A low-

complexity controller structure and reduced conservatism

lead to an experimental implementation of the designed con-

troller with a high performance. A low online computational

load required for controller implementation allows to chose

a high sampling frequency.



A. Experimental Setup

The CRS A465 industrial robotic manipulator has six

rotational joints actuated by DC motors. The angular dis-

placements of the motor shafts are measured by incremental

encoders with a resolution of 1.5 × 10�5 rad. The robot

has a repeatability of 0.05 mm with 2 Kg payload, and its
harmonic drive transmission provides a smooth motion with

zero backlash for all joints.

The system is supplied by the manufacturer with a C500C

controller that controls the robot with a decentralized PD

controller. It also connects both encoders and motor ampli-

fiers to a PC-based open architecture control system via a

Q8 input/output board of Quanser Consulting. Online data

acquisition and control in MATLAB/SIMULINK is possible

using a WinCon real-time Windows application [21]. The

sampling frequency during the identification experiment and

controller implementation is 1 kHz. Higher sampling rate is

not possible due to hardware limitations.

B. Controller Implementation

The designed LPV controller which is referred to as

LPV-CV is implemented on the two assigned joints of

the robot, to track a specific trajectory which is different

from identification trajectories. Joint velocities are obtained

online by numerical differentiation of the joint positions

after suitable low-pass filtering, since they are needed to

compute the scheduling signals. For comparison, a similar

LPV controller based on a linear viscous friction model

[15] referred to as LPV-V, an inverse dynamics feedforward

controller based on an accurate identified model in [19] and

a decentralized PD controller proposed by the manufacturer

are also implemented.
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Fig. 6. Cartesian command trajectory (solid), LPV-CV (dashed-dotted) and
PD (dashed) controller outputs

The trajectory tracking results in Cartesian space are

plotted in Fig. 6 only for LPV-CV and PD controllers for a

convenient comparison (Other plots are indistinguishable in

print). The joint space trajectories together with the reference

inputs for LPV-CV and PD controllers are plotted in Fig. 7,

where the figures are zoomed in to make the deviations more

visible. The root mean square (RMS) of tracking error for

the whole trajectory by all controllers are given in Table II.

The experimental results in both Cartesian and joint spaces

illustrate the high accuracy of the designed LPV-CV con-

troller. It has a better tracking performance compared with

TABLE II

RMS OF TRACKING ERROR FOR ALL IMPLEMENTED CONTROLLERS IN

CARTESIAN SPACE (METER) AND JOINT SPACE (DEGREE)

Controllers Cartesian Space Joint Space

LPV-CV 3.42 10−4 0.0481

LPV-V 3.66 10
−4

0.0516

Inverse Dynamics 3.71 10
−4

0.0522

PD 3.0 10−3 0.4084

the LPV-V controller. Moreover, the LPV-CV and LPV-

V controller obviously outperform the PD controller by a

factor of 8 in terms of tracking performance and achieve a

slightly better accuracy than a model-based inverse dynamics

controller. Since the inverse dynamics control law includes

the whole dynamic terms of the robot, it is more complex

especially for higher DOFs.
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Fig. 7. Joint command trajectory (solid), LPV-CV (dashed-dotted) and PD
(dashed) controller outputs for both joints (zoomed-in)

The tracking experiment is done for 13 seconds, including

two periods of the Cartesian trajectory tracking plus initial

and final smoothing trajectories. The control signal computed

by the LPV controller during the tracking experiment is far

below the saturation limits but not shown here due to space

limitation.

VI. CONCLUSIONS

This paper presents a realistic LPV modelling and control

of a 2-DOF robotic manipulator. All rigid-body dynamic

and important friction terms of the manipulator have been

taken into account in the modelling without any ad-hoc

model simplification. The adopted friction model includes

the Coulomb and viscous terms , where the hard nonlinearity

in the Coulomb term has been approximated by a hyperbolic

tangent function. Since the quasi-LPV system has a large

number of scheduling parameters and a high overbounding,

the systematic procedure of PCA-based parameter set map-

ping has been used to find tighter scheduling parameter set

with fewer dimensions, which results in a less conservative

controller with lower online computation load. The parameter

set dimension has been reduced from 10 to 2 by this

mapping, reducing the number of LMIs to be solved for

controller synthesis from 2049 to 9.

A polytopic LPV gain-scheduled controller has been syn-

thesized based on the approximated LPV model and is



implemented successfully on an industrial robot. It is illus-

trated that the designed LPV controller has a better tracking

performance compared with a similar LPV controller based

on a linear viscous friction model. Moreover, it obviously

outperform a PD controller and achieves a slightly better ac-

curacy than a model-based inverse dynamics controller. The

advantage of the LPV controller over the inverse dynamics

one is that it is less complex and various design objectives

can be adopted according to the performance and robustness

requirements of the application.

The computed control signal by the LPV controller is

far below the actuator saturation limits, and the high mea-

surement noise of encoders are rejected since both facts are

considered in the mixed-sensitivity loop-shaping design.

If the setup is equipped with high resolution position

sensors, dynamic friction models including presliding regime

can also be used in LPV modelling, following the same

procedure proposed in this paper.

APPENDIX

A. Grouped Dynamic and Kinematic Parameters

b1 = Izz1 +m2a
2
1, b2 = Izz2 , b3 = My2

a1,

b4 = gMy2, b5 = g(m2a1 +Mx1), b6 = fv1 ,

b7 = Im2
+ Izz2 , b8 = Im2

, b9 = fv2 ,

b10 = fc1 , b11 = fc2 ,

where Izzn is the moment of inertia of nth link, mn and

an are the mass and length of the links, Mxn
and Myn

are the first moment of the nth link (product of mass and

coordinates of gravity center), and Imn
is the motor moment

of inertia. The axes are named according to the modified DH

convention.

B. Scheduling Parameters

θ1 = b7b5sinc(q̃1)
1

ν
,

θ2 = sinc(q̃2)(b7b4 − b2b4 − b3b4 cos(q̃1 − q̃2))
1

ν
,

θ3 = (−b7b6 − b2b3 sin(q̃1 − q̃2) ˙̃q1 − b2b9 − b3b9 cos(q̃1 − q̃2)

− b23 cos(q̃1 − q̃2) sin(q̃1 − q̃2) ˙̃q1 − b7b10tanhc( ˙̃q1)

− b3b11 cos(q̃1 − q̃2)tanhc( ˙̃q2 − ˙̃q1)− b2b11tanhc( ˙̃q2 − ˙̃q1)

+ b7b3 sin(q̃1 − q̃2) ˙̃q1)
1

ν
,

θ4 = (b2b9 − b7b3 sin(q̃1 − q̃2) ˙̃q2 + b3b9 cos(q̃1 − q̃2)

+ b11(b2 + b3 cos(q̃1 − q̃2))tanhc( ˙̃q2 − ˙̃q1))
1

ν
,

θ5 = (−b3b5 cos(q̃1 − q̃2)sinc(q̃1) + b8b5sinc(q̃1))
1

ν
,

θ6 = ((b8 + b1)b4sinc(q̃2))
1

ν
,

θ7 = (b1b9 + b3b9 cos(q̃1 − q̃2)− b8b6 + b3b6 cos(q̃1 − q̃2)

+ b8b3 sin(q̃1 − q̃2) ˙̃q1 + b1b3 sin(q̃1 − q̃2) ˙̃q1

+ b3b11 cos(q̃1 − q̃2)tanhc( ˙̃q2 − ˙̃q1) + b1b11tanhc( ˙̃q2 − ˙̃q1)

+ b3b10 cos(q̃1 − q̃2)tanhc( ˙̃q1)− b8b10tanhc( ˙̃q1))
1

ν
,

θ8 = (−b1b9 + b23 cos(q̃1 − q̃2) sin(q̃1 − q̃2) ˙̃q2

− b3b9 cos(q̃1 − q̃2)− b8b3 sin(q̃1 − q̃2) ˙̃q2

− (b1 − b3 cos(q̃1 − q̃2))b11tanhc( ˙̃q2 − ˙̃q1))
1

ν
,

θ9 =
1

ν
,

θ10 = cos(q̃1 − q̃2)
1

ν
,

ν =b7b1 + b2b8+

+ cos(q̃2 − q̃1)(b7b3 − b2b3 + b3b8 − cos(q̃2 − q̃1)b
2
3),

where sinc(x) = sin(x)
x

and tanhc(x) = tanh(βx)
x

.
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Abstract— This paper presents an observer based scheme for 

adapting the power control of wind turbines to the actual 

power coefficients of the blades mounted on the wind turbine. 

Normally it is assumed that the power coefficients for one 

turbine in a production series are valid for all the turbines in 

that production series. An unknown input observer is used to 

estimate the actual table of power coefficients depending on 

blade pitch angle and tip speed ratio. If the actual table is 

much different from the initial assumed table, the actual table 

is found by iterations. A simulation is used to illustrate the 

schemes potential to estimate the power coefficients and to see 

the gained potential of the use of this scheme compared with a 

non-corrected situation. 

Keywords- Wind turbines; unknown input observers; adaptive 

systems; aerodynamics; power control 

I.  INTRODUCTION 

In the recent years the installed energy generation capacity 
of wind turbines has dramatically increased. In the same period 
the sizes of the individual wind turbines has increased from 
turbines in the kilo watt sizes to multiple mega watts. 
Consequently optimization of the power generated by the 
turbine is as well of increasingly interest.   

A wind turbine consists of a tower on which a nacelle is 
mounted; in the nacelle the generator is placed. The generator 
is driven by a main shaft at which the turbine’s blades are 
fixed. In the example used in this paper a turbine with 3 pitch-
able blades are used, meaning that their angle towards the wind 
can be controlled. A gearbox, enabling the possibility of 
different rotational speeds, divides the main shaft. The 
increased size of the wind turbines have also increased the 
interest of turbines with variable speed and active pitch of the 
blades, which are used to keep the turbine at rated power when 
the rated wind speed is exceeded. Until the rated power is 
achieved the power optimum is obtained by requiring the 
optimal reference torque at the generator, see [1] 

Some research has been conducted on the subject of 
optimization of the generated power of the wind turbine. A 
couple of examples can be found in [1] and [2]. 

The optimal torque and pitch references are obtained by a 
mapping between power generation ratio, pitch angle and the 
tip speed ratio which is the ratio between wind speed and the 
speed of the blade tip, (the rotation speed of the rotor can be 
controlled by the torque reference). This mapping is denoted 

the -surface and could be obtained by: finite element 

simulations, wind tunnel experiments etc., in practice it is often 
represented by a table, which in the following is denoted as the 

-table. 

A problem in achieving optimal power and speed control of 
a wind turbine is that the -surface is not well known. Initially 

these values are most often not actually measured but 
computed, and if measured, only a few blades in an entire 
production series and measurements are rarely performed on 
the actual turbine. Some work has been published regarding 

adapting the power controller to the specific -surface. In [1] 

a scheme is proposed which uses a Newton like scheme to find 
the power optimum online. A non-linear controller is proposed 
in [2], which assumes that the wind speed is well known. [3] 
presents an adaptive scheme which uses a least square method 
to online identify the system parameters; the controller is 
designed using a minimum variance controller, which is 
impractical. [4] presents a fuzzy control to adapt the power 
controller.  

In [5] another part of the solution dealing with this problem 
is presented. It presents a method to estimate the -value and 

the wind speed online based on standard measurements from 

the wind turbine. The estimated -values can subsequently 

after approximately 1 month be used to update of the -

surface. Based on the updated -surface a new power 

optimum can be found. This means that the power control is 

adapted using an adaptive -surface. A large advantage of this 

scheme is that the existing control structure is not influenced by 
this scheme, it do only provide updated power references when 
present. An unknown input observer is used to estimate these 
variables, for details on the general scheme see [6], in this 



     

context it is changed to estimate the unknown inputs instead of 
being robust towards them, another example can be found in 
[7]. 

Based on these online estimations of the -surface a 

simple scheme was proposed to adapt the optimal reference 
point to the power controller of wind turbine, in respect with 
changes in the -surface due to change with time e.g. due to 

debris build-up on the blades of the turbine, see [8]. In this 
paper the proposed scheme will both be extended and also bee 

changed to handle the estimation of the real -surface and its 

optimum point. This estimation is designed to be performed 
during the commission of the wind turbines. 

The model of the wind turbine is subsequently introduced, 
which leads to an estimator design using the optimal unknown 

input observer scheme. Based on the estimates of the -values 

a -table can be computed, which again can be used to find 

the optimum of the -table. This optimum is used as reference 

for the power controller of the wind turbine. 

 

In Section II a wind turbine model is described. The 
proposed scheme is presented in Section III and Section IV. In 
Section V the end the simulation is used to show the potential 
gain of using this proposed adaptive scheme to adapt the actual 

optimum of the -table, by comparing a wind turbine with 

and without an adapted optimum reference value. A conclusion 
is drawn in Section VI. 

II. WIND TURBINE MODEL 

In a typical variable speed wind turbine the generated 
power is controlled by two modes power and speed control. In 
power control mode the generator torque is controlled to 
maximize the generated power, by obtaining a tip speed ratio 
which results in the optimum on the -surface. The produced 

power of these two control modes is mapped as a function of 
the wind speed in Fig.1. In speed control mode the blades are 
pitched such that the rated power is obtained and the generator 
torque chosen such that the rotational speed of the rotor is 
following the nominal value. In order to obtain the optimum 
power in power control mode the -surface is highly 

important, e.g. the turbine will not be controlled optimally if 
the optimum on -surface is moved from the assumed. 

Inspecting the problem deeper, the torque balance model of 
the wind turbine is considered. 

,   (1) 

and 

,  (2) 

where  is the rotational velocity of the rotor,  is 

the reference torque to the generator transferred to the low 
speed side, and due to the fast power electronics in the 
converter and the generator it is assumed that this reference is 

followed,  is the pitch angle,  is the tip speed ratio,  

is the wind speed,  is the moment of inertia of blades shaft 

etc,  is the density of the air,  is the area covered by the 

blades in the rotation.  and  are measurable. The 

wind denoted  is measured as well, but is very non-reliable, 

since it should be the average over the entire swept area, and 
not a point measurement, in addition the wind is measured with 
an anemometer mounted on the wind turbine nacelle behind the 
blades. The aerodynamics of the blades will consequently 
influence the wind speed measurement by the anemometer. 

If this model is linearized a small signal model can be 
obtained, the variations between actual power coefficients and 
wind speed compared to measured and computed once are 

denoted as  and . 

 

,(3) 
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Fig. 1 Illustration of the produced power until the rated power is reached at 
a wind speed of 15 m/s, the power is optimized and above this speed it is 
limited by blade pitching.  

In this context the power coefficient and the wind speed is 
assumed to be unknown variables, which varies around a well-
known working point, as modelled by the small signal values 
of these. Changes in the - table would be very slowly, 

meaning that the frequency content of  is in the region 

close to 0 rad/s. Compared to this the changes in the wind 
speed will be placed in a region with much higher frequency 
content, meaning that frequency separation can be assumed.  

The anemometer, introduces a risk of a DC-error on the 
measurement. This is much more critical than high 
uncertainties at higher frequencies since these can be decoupled 
by the frequency information. If a DC calibration of the 
anemometer is not performed, an offset will be introduced on 



     

the -table estimates. It will be a constant offset on the entire 

-table, and consequently not resulting in a false optimal -
value, but the absolute value cannot be determined. 

III.  OBSERVER DESIGN 

In order to design the observer model of the wind turbine, 
the model should be extended similar to the method used in [7]. 

The existence of the unknown inputs in the system, points 
at the usage of a specific scheme to estimate the - values, 

this is the optimal unknown input observer. In order to use this 
unknown input observer  is used as a state; it can be 

modeled as low pass filter of first order. However, used in the 
commissioning process of the wind turbine this means that the 

-tables should be recomputed a number of times in order to 

iterate to the correct table. In order to use this approach the 
wind speed needs to be estimated as well, and it can be 
assumed to change much faster than the -table, meaning it 

can be represented by a band pass filter, the difference between 
the measured and actual wind speed was previously defined as 

. In principle these filters represents the uncertainties in 

the -table and the wind speed. In practice the difference in 

the relevant frequencies is relatively large. In terms of time 

durations of the relevant content are days for the -table and 

in the milliseconds range for the wind speed variations.  

The linear wind turbine model extended with the internal 
models of  and  can be seen in     

  (4) 

where 

 

 is a state vector representing the internal model of 

,  is the state vector representing the internal model 

of ,  is a signal representing the unknown input. The 

internal model of the  is in state space form 

, and the internal model of  is in 

state space form , the merged system 

matrices are defined by: 

, (5) 

     (6) 

  (7) 

    (8) 

The first element in  is non-zero even though that  is 

not assumed to be driven by the uncertain input. The reason is 
that this small but non-zero elements in the matrix introduce 
some robustness towards model uncertainties, which could be 
due to linearization of the nonlinear model before it is used to 
design the observer. 

The system is subsequently descretized with a sample 
frequency at 10 Hz. Resulting in a state space system defined 
as in (9), where stochastic disturbances and measurement 
noises are added. 

(9) 

in addition to the filters defining the internal models, the 
covariance matrices  and  introduces design flexibility into 

the system as a couple of design parameters. The filters 
representing  and  have to be designed, the point is 

that , , and  are found such that it is a low pass 

filter with a time constant of days, and ,  and  such that 

they form a high pass filter/ band pass filter such that its pass 
region is placed in the much higher region in terms of 
frequency content with a time constant in the milliseconds. 

Due to the non-linearity of the model, especially the cubic 
dependency on the wind speed, a number of operating points 
are used in practice such that an observer is designed for each, 
and bump-less transfer is used to switch between them. 
However, for simplicity this is left out in this paper, and only a 
single observer is consequently designed to one point of 
operation. However, the introduction of these multiple 
observers would increase the performance of the estimated; 
but, as one can see in the simulation section, the scheme with 
only one observer performs pretty well. 

A. Unknown Input Observer 

The unknown input observer is given by a state space 
representation seen in (10). 

(10) 

 

In where the matrices are found using an algorithm 
described in [6]. 

B. Online Power Coefficients Table Computation 

The estimated -values are stored in an array depending 

on the pitch angle and tip speed ratio of the blades. The values 
are stored as the sum of the  and the assumed -values 

based on the aerodynamic model. Each measurement is stored 
in the element with the closest geometrical origin; which is 
illustrated in Fig. 2, where the most recent measurement is 
marked with a black dot, and the nearest entry is (k-1,m). 
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Fig. 2 Illustration of the location of the closets table entry. The 
measurement is marked with the black dot, and the nearest table entry (k-1,m).  

In order to limit the needed memory for storing all the -

values, the mean value is computed iteratively, meaning that 
the computed mean of -value and a counter of the -values 

contained in the mean are stored. 

The mean value of -table at the point  in the table is 

denoted as and defined as 

   (11) 

Where  is the counter of elements used to compute the 

old mean value. The computation of the -table can be 

subsequently be defined as the following algorithm. 

Find the element  of the present -value. 

Compute a new mean for this element using (11). 

Update the counter as  

 

After the -table has been computed for a sufficient time 

period, denote this time period as , the table will be 

recomputed using the same measurement data as used to the 
present table, the only different is that the most recent 

computed -table is used to compute the expected - values 

used in the estimation. Continue this iterative process until the 

difference between the recent and previous -table is small 

enough. The time period can be decreased if  and   contains 

increased actuations. 

Define the table error as 

,(12) 

It is now possible to summarize the algorithm to compute. 

Set n=1. 

Compute first -table using the previous algorithm, define 

this table as . 

Set . 

Replace the initial with , and compute  as 

in 2). 

Compute the table error as in (12). If , stop the 

algorithm, else jump to 3). 

The value of  should be found by experiments, it should at 

least represent so long time that the relevant parts of the table is 
well covered with a large enough numbers of instances. The 
table can covered faster if additional actuation signals are 

added to  and .  An initial guess on the value of  is 1 

month. 

IV.  TABLE BASED OPTIMIZATION 

The optimization can be performed quite simple. Just find 

the point in the table where the maximal -value is found. 

Since this algorithm is only performed once per time period 
computational efficiency is not very important. However, due 
the implementation in the wind turbine it is still relevant to 
limit the computational burden of the algorithm. In this first 
version of the algorithm a simple max search is used.  

V. SIMULATIONS 

In this simulation the same set of model parameter is used 

as in [5]. In which the observer used to estimate the -values 

is designed. 

The wind turbine is modelled by the nonlinear model in (1)-
(2), and the following model parameters are used:  

, ,   

The sample frequency of the system and wind data is 10 
Hz. 

For the linear model the points of operation are chosen such 
that the entire range of the wind speed in the data set is covered 

as well as possible. The values are found to be  

  and .  

The linear observer model matrices of the two internal 
models are found iteratively to: 

 and  

 

The two cross correlation matrices are found iteratively as: 

 

In [5] this observer is used to estimate the -values, the 

same simulations is performed with a change in the initial -

table to test how fast the observer will converge to the actual 
-values, this shown in Fig. 3. 



     

 

Fig. 3 Simulated -values compared with the estimated one, simulated 

with an error in the initial -value. 

This simulation shows that the used observer estimates the 
-values quite well even though the initial value of -table is 

wrong. 

Subsequently it is simulated how much can be gained by 
using the proposed adaptive scheme in a case where the 

optimal tip speed ratio  is assumed to be 10% wrong. Since 

the pitch angle kept constant under power control of the wind 

turbine, -table is in this simulation only depending on .  

These two -curves can be seen in Fig. 4. From this figure it 

can be seen that the actual optimal -value is approximately 

equal 8 and that the assumed  is approximately equal 7.  
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Fig. 4 Comparison of the actual -curve only depending on  and the 

assumed -curve. 

In order to simulate the non-adapted -curve and the 

adapted -curve measured wind data is used, see Fig. 5. 

 

Fig. 5 The wind speed profile used in the simulation, which includes 47 
minuets ranging from 5 m/s to 18 m/s. 

The wind turbine is now simulated on this wind data, 
sampled at 10Hz, for both the adapted and non-adapted 
situation. A standard proportional controller is used as 
presented in [1], in which  

,    (13) 

where 

    (14) 

in which  is the maximal power coefficient and which 

is equal 0.45,  is the tip speed ratio relating to the maximal 

power coefficient, which in this case is 8 for the adapted case 
and 7 for the non-adapted. The produced powers for these 
simulations are both shown in Fig. 6. In the figure the powers 
are plotted relative to the rated power of the wind turbine. 
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Fig. 6 Comparison of the simulations of power produced by the wind 
turbine for both adapted  and standard . 

 

This plot shows the power generated in the two cases of 
power references; the adapted one and the non-adapted one. It 
is clear to see that if the power controller is not adapted to 



     

actual blades and -table/curve quite allot of energy is actual 

lost. It is approximately 20 % on the maximal power. It is a 
further study to investigate how much the -table varieties 

between wind turbines. 

Using this scheme the torque reference curves can be 
adapted during the first couple of months during the 
commission of the wind turbine using only standard 
measurements present at the wind turbine. An alternative 
would be to place a wind measuring mast in front of each 
turbine which would be highly costly, and consequently almost 
never done in practice. Even though wind measurement 
equipments are used at a few test turbines to document the 
power production. This measurement could be used to adapt 
the power reference curve, and is some times done. It will, 
however, clearly increase the potential gain if every turbine is 
adapted to its own actual power reference curve which is 
possible using the proposed algorithm. 

VI. CONCLUSIONS 

Optimality of power produced by wind turbines depends on 
the correctness of a table of power coefficients. This table is 
normally provided by the manufactures of the wind turbine 
blades. These are measured or calculated for a limited number 
of blades in a production series but not for all produced blades. 
This means that the used table might be incorrect regarding the 
actual used one. This again leads to risk of non-optimal power 
production by the wind turbine. An unknown input observer 
designed in another paper is used to estimate a new -table 

which fits the actual power coefficients of the blades of the 
wind turbine. This might require a number of iterations if the 
actual power coefficients are highly different from the assumed 

-table. The optimal reference curve is found based on this 

newly computed -table. A simulation is performed where the 

found optimal reference curve is compared with the initial 
assumed one. In this simulation the non-adapted power 
controlled wind turbine generates approximately 20% less 
power compared with the adaptive power controlled one. 
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Abstract— Fault detection in large scale industrial systems are 

of importance in order to detect and accommodate eventual 

faults and failures in the system. Such an industrial system is a 

hydraulic system which typically consists of a high number of 

control valves. It would be beneficial to detect eventually 

faults in these valves. In computer controlled systems these 

valves are often electromagnetic actuated. In this paper a 

model of an electromagnetic normally-closed hydraulic valve 

is completed. This model of the valve is used to test a scheme 

to detect blocked gliders in the electromagnetic actuated 

hydraulic valve. The scheme tested in this paper only detects 

when a valve is blocked. This is a very important feature to 

have in a system with many hydraulic valves, since it can take 

a lot of time to find the valve with the failure in such a system. 

In a situation like this it is critical to detect and isolate a 

blocked valve; however, it is not necessary to detect the fault 

at the instant it occurs. The algorithm used in this paper find 

100% faulty cases, without any false positive detection. 

Keywords-Fault Detection, Hydraulic Valves 

I.  INTRODUCTION 

In the industry valves are often used to control hydraulic 
systems. In a complex system with many hydraulic valves, it 
will be highly time consuming to localize a defect valve. 
Therefore it could be useful to have functionality in the control 
system to detect if a valve is moving or not as it should. 

The valve used in this paper is at normally open, double 
blocking poppet-type solenoid valve. This valve is activated by 
a 26W coil and the magnetic will push the masses and close the 
valve. This armature is pushing on a small mass which again is 
pushing on the plunger. The plunger closes and opens for the 
hydraulic oil. 

In order to have robust detection of faults in the valve in 
terms of a blocked plunger, the best solution is to use the coil 
current measurement as the detection signal. This current is 
measured in order to control the proportional valve. 

 
This controller’s actuation signal is in most case a pulse wide 
modulated signal, since this enables a design of a controller to 

reduce the current to what is necessary to hold the valve open. 
The control loop is formed with the coil current as measured 
output and the voltage over the coil as control signal. 

Most of the published research on fault detection on 
hydraulic systems has been on the system level. Detection on 
specific valves has been rare. Some examples are as follows. 

In [8] a neural network based scheme is used to identify the 
parameters in physical model of a hydraulic system. In [5] 
redundancy and logic based detection scheme are used to find 
the most likely “good” sensor signal and actuator drive. In [2] 
an Extended Kalman estimator is used to detect faults in a 
hydraulic actuator system with servo valves and pistons. A 
model-based fault detection scheme is presented in [4] which is 
used to detect faults in hydraulic brake system for automobiles. 
In [3] and [11] two different fault detection benchmark 
problem are presented dealing with the industrial problem of 
detection of faults in valves in process plant. A couple of 
examples on detection valve faults in case of process control 
systems are: stiction detection and control in [12], and fuzzy 
logic based detection in [6]. 

Examples on models of electrical actuated hydraulic valves 
can be seen in [14, 1, 16, 9, 15], and a more basic description 
of the physics of the valves can be seen in [7]. 

In [10] and unknown input observer is used in the same 
scenario this scheme can detect the faults as they occurs. In 
[13] a number of different detection schemes have been suggest 
to detect the fault in an electro activated hydraulic valve, one 
method has as well been implemented, a method based on 
differentiation has been implemented. The detection on the 
valve is not time critical, so it could be possible to record some 
data and make an analysis on the recorded dataset. The same 
data used in these experiments is described in this paper and 
the differentiation detection is described. Before the algorithm 
the model used for test is described in details, in order to 
provide information about the valves mechanical data, and the 
test setup. 

A FFT analysis is performed on the fault free and faulty 
model output to compute the frequency range of the major 
difference between the two cases. 



                                  
 

In Section II a model of the electro activated hydraulic 
valve is presented, and in Section III an experimental setup is 
presented. Validation of the model is presented in Section IV, 
and the proposed scheme is presented in Section V, followed 
by simulation results in Section VI. The paper is concluded in 
Section VIII. 

 

II. MODEL OF ELECTROACTIVATED HYDRAULIC VALVE 

A. Systems Description 

The system in question is an on/off electro-magnetic hydraulic 

valve (normally closed) in which the position is controlled by 

the voltage over the coil, , and only the coil current, , 

is measured and consequently provided as output. A current 

controller is form to control and position the valve glider. An 

illustration of the valve can be seen in Fig. 1 

 

Fig. 1 An illustration of the physical layout of the on/off electro-magnetic 

hydraulic valve. 

In the dynamic model of the electro-magnetic valve there are 

two deferent situations. Situation 1 is where the armature is 

open and the armature is moving to the plunger. Situation two 

is where the two masses are moving together closing the 

valve, see Fig. 2. The figure also defines the minimal, 

maximal and servo positions, . 

 

Fig. 2 An illustration of the two situations of the valve movements. 

B. Model of Valve  

In the section the dynamic equations for the valve will be 
described. The coil has  turns and a resistance . The 

armature inside the coil has an area , a mass ,, and  

plunger sitting in the valve has a spring constant , and the 

preloaded force . Area of the plunger is , mass of it is 

, and the pressure from the hydraulic supply is . 

In the two situations the frictions constants are different. The 

first situation the friction constant is , and in the next 

situation the constant is . 

The magnetic field, , can be found by 

,  (1) 

Resulting in a differential equation 

,  (2) 

The magnetic force,   is 

,   (3) 

The current is 

,   (4) 

Where 

  (5) 

The position  is found by two situations depending on 

its value. In (6)-,(7) the acceleration, , of the position  

are found. 

If  

,  (6) 

If  

,(7) 

in which  is the meeting position of the plunger and 

armature. 

This gives two nonlinear state space representations: 

Situation 1 

,  (8) 

Where 

, (9) 

Situation 2 

, (10) 



                                  
 

,(11) 

Where 

,  (12) 

The output equation is 

,   (13) 

The following parameters are used in the model: 

    

    

    

    

    

    

    

    

 

 

 

III. EXPERIMENTAL SETUP 

A system overview over the setup used in these 
experiments is shown in Fig. 3. 

 

Fig. 3 – Block diagram over the experimental setup. 

 

The hydraulic pressure station has a reservoir with 
hydraulic oil and an oil cooler included. The pump generates a 
pressure on 20[bar], and the valve used on the hydraulic station 
is normally-open, double blocking poppet-type solenoid valve. 

The controller card has a Pulse Wide Modulation (PWM) 
output with a PI current regulator implemented. The power 
supply on the PWM output is a 24[V] supply. And it measure 
the current with the sample rate on 1[kHz]. 

 

 

IV. EXPERIMENTS AND MODEL IDENTIFICATION 

Two experiments where preformed on the valves; one 
where the valve is blocked and another one where the valve is 
not. In both situations the input to the controller is a step on the 
current. The controller is a PI with anti windup. 

Kp and Ti is tuned so the current controller not will reduce 
the current in the step. The following controller parameters are 

used: , . 

The results of the experiments can be seen in Fig. 4, it is 
easy to see the difference between the blocked and non-blocked 
valve. 
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Fig. 4 Measured data from a situation with the same valve blocked and 
unblocked 

 

With those data it is now possible to compare the measured 
data with the simulations using the model found for the valve 
in the previously section. After tuning of the valve parameters, 
on the non-blocked model the measured and simulated current 
is quite close, see Fig. 5. In case of the blocked valve the 
simulated current increased a bit faster than the measured 
current, see Fig. 6. Fortunately, this model error is not of large 
importance due to the large variation between blocked and non-
blocked behavior  
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Fig. 5 Comparison on the model found and the measured data on the 
unblocked valve. 
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Fig. 6 Comparison between the model and the blocked valve. 

Measurement noise is added to the simulated current as 
Gaussian noise with zero mean value and a std twice the 
measured one in the experimental setup . 

V. PROPOSED SCHEME 

In this paper scheme which is easy to implement and as 
well have shown strong performance is described. 

It is a simple but effective scheme. It is based on a 
backward-differentiation of the current, which is used to find 
the catachrestic of the current, when the valve not is locked. 
This detection method is really useful in this scenario because 
the valve current contain much information about the armature 
and plungers position. 

The backward-differentiation results in a high pass filter 
effect. On the measurements board there is a low pass filter. 
Combing these two gives a band pass filter. This input filter is 
a RC coupling witch transfer function there could be described 
by.  

,  (14) 

in which: ,  

Transferring this function from the continues time domain 
to the discrete with using bilinear transformation with a sample 
frequency at 1[kHz]: 

,    (15) 

where the coefficients for this transferred with bilinear 
approximation is, , , . 

Implementation of the backward-differentiation is as following. 

,      (16) 

The transfer function of this is given by.   

,   (17) 

,   (18)  

,    (19)  

 

The transfer function for the two systems will subsequently 
be folded to find the transfer function for the filter. And k is set 
to 2. 

,   (20) 

,  (21) 

The bode plot of this transfer function can be seen in Fig. 7. 
It is seen that this filter pass most of the energy in the 
frequency interval between 250[rad/s] and 2000[rad/s], which 
corresponds to (39.8[Hz] 318[Hz]). 
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Fig. 7 Bode plot of the merged transfer function of the input filter and the 
detection filter. 

This differentiation based detection filter works since the 
current increase much faster in case of a blocked valve 
compared to a non blocked valve. It reaches the steady state 
value after 60 samples compared to 80 samples for a non 
blocked valve. 

After the backward-differentiation is calculated with  

the result  is compared to the threshold, . The value of 

this variable is found by trail error method; in many different 
scenarios on the model. The most optimal threshold value for 
this valve is . 

A.  FFT analysis of faulty and fault free valve 

The characteristic in the current generated by coil can be 
computed with a Fast Fourier Transform (FFT) the movement 
of the mass inside the coil will give a specific frequency in the 
current. 

To search this for frequency a windowed FFT is calculated, 
on the data generated from the model, to se if it is possible to 
find the characteristic frequency in the current. This analysis is 
executed in order to find the frequency range with the largest 
difference between the faulty and fault free case. 

Fig. 8 shows the frequency response in the current when a 
valve is in normal operation. It is clear to see that most of the 
energy is located in frequencies in the interval between 40 and 
50[Hz].   
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Fig. 8 FFT on data from fault free valve. 

 

If a FFT based on same method is calculated when plunger is 

locked the calculations gives a result shown in Fig. 9. 
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Fig. 9 FFT on data from a blocked valve. 

 
In this plot it is simple to see there is a difference to Fig. 9. 

Again most of the energy is located between 40 and 50[Hz] but 
with a clearly difference sequence at these frequencies in time. 
This means that the frequency interval to look at for the 
detection filter should be between 40 and 50[Hz], and this 
interval the detection filter has a gain at around 4 db, meaning 
most of the energy of the error would pass through the 
detection filter. Consequently the detection filter is sensible 
towards the fault as it was suppose to. 

FFT is in both examples calculated with at window size of 
5 over 100 samples. 

VI. SIMULATIONS 

The simulations are performed using the backward-
differentiation detector where 2744 situations are simulated, 
1372 situations are fault free and 1372 has a fault. This fault is 
blocked value at a position between 0.6mm and 1.4mm. 

The results of the simulations tests executed on the 
algorithm with the model give following results. 

True Positive 100 % 

False Negative 100 % 

False Positive 0 % 

True Negative 0 % 

Table 1 - Tabel of preformed test on algorithm. 

This algorithm detects the failure pretty good, beside it is 
quite simple to implement. The rate of correct detections are 
that high since the current in the blocked case increases 
dramatically faster than in the non-blocked case. Due to the 
model uncertainty, the simulation of the blocked valve might 
result in a much clearer difference between the blocked and 
non-blocked case, this means that in practice the results might a 
little bit less impressive in terms of true positive detection rates. 

VII. CONCLUSIONS 

In this paper a model of an electromechanically valve is 
found and used to test goodness of algorithm for detecting fouls 
on the valve in terms of blocked valves. The only measured 
data is the current and this is differentiated and from this it is 
easy to see if there is a critical fault on the valve. 1372 faults 
and 1372 non faults are simulated with measurement noise. 
With a correct threshold value the detector detect 100% true 
negative faults, and 100% true positive faults. 
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Abstract— In this paper an observer based scheme is proposed 

to detect blocked gliders in electromagnetic actuated hydraulic 

valves. Detection of blocked gliders in electromagnetic 

actuated hydraulic valves is of large importance in large 

hydraulic systems which contain a large number of control 

valves. If the glider position was measured this detection 

would be simple, however, in many cases only the coil current 

is measured. In case of a blocked glider, it can be viewed as 

the introduction of an extra force to keep the glider in position. 

This extra force can be viewed as an unknown input, and can 

be estimated by the use of an unknown input observer. Using 

this estimated fault signal gives correct fault detection in case 

of 96.6% of 1500 faulty cases and only 4% in case of no 

faults, these numbers are found using Monte Carlo 

simulations. The detection time is as fast as the step response 

of the current changes in the valve. 

Keywords-Fault Detection, Hydraulic Valves, Unknown Input 

Observers 

I.  INTRODUCTION 

In the industry hydraulic systems valves are often used to 
control the systems. In case of a complex system with many 
hydraulic valves, it will take a lot of time to localize a defect 
valve in the system, and sometime a defect valve could result in 
large damage of the system. To find this defect on the valve 
before it will damage on the system would be very helpful. The 
system operator could as well be informed that this valve is 
going to be damaged, so it could be replaced with a new one 
before it damages the system. 

Most of the published research on fault detection on 
hydraulic systems has been on the system level. Detection on 
specific valves has been rare. Some examples are as follows.  

In [1] a model of a hydraulic servo system is made by using 
a neural network to identify the parameters in physical based 
model of the hydraulic system with a neural network based 
model on this structure. A multi model approach for detection 
of faults in a hydraulic servo axis can be seen in [2]. In [3] 
redundancy and logic based detection scheme are used to find 
the most likely “good” sensor signal and actuator drive. In [4] 
an Extended Kalman estimator is used to detect faults in a 
hydraulic actuator system with servo valves and pistons. A 

model-based fault detection scheme is presented in [5] which is 
used to detect faults in hydraulic brake system for automobiles. 
In [6] a fault detection benchmark problem is presented dealing 
with the industrial problem of detection of faults in valves in 
process plant. Signal processing on the coil current is often 
used for fault detection in process plant valves. In [7] a number 
of different detection schemes have been suggest to detect the 
fault in a electro activated hydraulic valve, one method has as 
well been implemented; a method based on differentiation has 
been implemented. Examples on models of electrical actuated 
hydraulic valves can be seen in [8, 9, 10, 11, 12], and a more 
basic description of the physics of the valves can be seen in 
[13]. 

An alternative approach would be to use an observer based 
scheme such that faults can be detected based on both position 
measurements as well as control actions. In order to deal with 
model uncertainties, as well, an unknown input observer, see 
[14], is applied to detect the fault. 

The valve in question is controlled by a current controller 
and consequently it would be beneficial to include an observer 
in the fault detection scheme, since the observer can combine 
information in both control signals and system output. A 
blocked glider in the valve could be modeled as a force balance 
with an additional force keeping the glider in a specific position 
whatsoever forces the controllers puts on the glider. In [15] and 
[16] an unknown input observer is used to detect faults and or 
missing input signals to systems, in the first the observer is 
used to estimate faults in coal mills and in the second paper it is 
used to estimate power coefficients and wind speeds in an 
application of a wind turbine. The same approach is applied to 
the problem of detecting blocked gliders in this specific 
hydraulic valve.  

In this paper the system description and the model of the 
valve is first described, followed by the applied scheme and 
experiments. Finally a conclusion is drawn. 

II. MODEL OF ELECTROACTIVATED HYDRAULIC VALVE 

A. Systems Description 

The system in question is an on/off electro-magnetic 
hydraulic valve (normally closed) in which the position is 
controlled by the voltage over the coil, , and only the coil 



                                  
 

current, , is measured and consequently provided as output. 

A current controller is form to control and position the valve 
glider. An illustration of the valve can be seen in Fig. 1 

 

Fig. 1 An illustration of the physical layout of the on/off electro-magnetic 

hydraulic valve. 

In the dynamic model of the electro-magnetic valve there 
are two deferent situations. Situation 1 is where the armature is 
open and the armature is moving to the plunger. Situation two 
is where the two masses are moving together closing the valve, 
see Fig. 2. The figure also defines the minimal, maximal and 

servo positions, . 

 

Fig. 2 An illustration of the two situations of the valve movements. 

B. Model of Valve  

In the section the dynamic equations for the valve will be 
described. The coil has  turns and a resistance . The 

armature inside the coil has an area , a mass ,, and  

plunger sitting in the valve has a spring constant , and the 

preloaded force . Area of the plunger is , mass of it is 

, and the pressure from the hydraulic supply is . 

In the two situations the frictions constants are different. The 

first situation the friction constant is , and in the next 

situation the constant is . 

The magnetic field, , can be found by 

,  (1) 

Resulting in a differential equation 

,  

 (2) 

The magnetic force,   is 

,   

 (3) 

The current is 

,   (4) 

Where 

  (5) 

The position  is found by two situations depending on 

its value. In (6)-,(7) the acceleration, , of the position  

are found. 

If  

,  (6) 

If  

,(7) 

in which  is the meeting position of the plunger and 

armature. 

This gives two nonlinear state space representations: 

Situation 1 

,  (8) 

Where 

, (9) 

Situation 2 

, (10) 

,(11) 

Where 

,  (12) 

The output equation is 

,   (13) 

 

 



                                  
 

The following parameters are used in the model: 

    

    

    

    

    

    

    

    

 

 

 

In order to simplify the used observer only one linear model 
of the valve is used to design the observer. The point of 
operation is found in situation 2, causing a large model 
uncertainty then describing situation 1. The linear model can be 
seen in (14)-(17). 

  (14) 

  (15) 

Where 

 (16) 

     (17) 

, ,  
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Fig. 3 Comparison of linear model output with system output 

In Fig. 3 the linear model is compared with the system 
output, from which it can be seen that the linear model fits the 
system output quite well. The model is following discretized 
with a sample frequency at 1 kHz. 

3. PROPOSED SCHEMES 

The idea is to add an additional force to the motion model 
in,(7) and the second row in the state space model ,(11).  Now 
take the linearized model (14)-(17) and introduce an unknown 
input into it representing a force keeping the glider in a blocked 
position. Subsequently an Unknown Input Observer is designed 
to estimate the unknown inputs. Consequently, in order to 
estimate the unknown input a state represent of the “fault” is 
introduced in the model, an example of this approach can be 
found in [15].  

The introduced state represents the fast dynamics of the 
fault by a high pass filter. 

(18) 

  (19) 

where:  is a unknown input representing the force 

needed to keep the gilder in the blocked position,  is the 

state representing the fault. The new state matrix is defined as 

 as, in which  is the zero of the high pass filter and  is 

the pole of the same filter.  

(20) 

The  matrix has been extended with an extra zero. 



                                  
 

       (21) 

The  matrix is defined as 

,     (22) 

The first three elements in  matrix is set to 0.1 in order 

to introduce some robustness regarding model uncertainties, 

and  the parameter relating to the fault estimate will be found 

in the design section. 

This linear model is subsequently discretized. 

Since the system in mind contains some unknown inputs 
the idea is to use an unknown input observer in its optimal 
version, see  (Chen & Patton, 1999). The structure is: 

(23) 

where  and  are matrices 

designed to achieve decoupling from the unknown input and as 

well obtain an optimal observer.  is a vector of the states of 

the extended model. The matrices in the unknown input 
observer are found using the following equation see (24)-(32). 

          (24) 

       (25) 

       (26) 

       (27) 

       (28) 

      (29) 

      (30) 

     (31) 

,      (32) 

The observer design procedure can be described by the 
following algorithm: 

1) Set Initial values:  

 

 

 

 

2) Compute  using (32). 

3) Compute  and  using (28) and (31). 

4) Compute , ,  and  by (25), (26), 

(27) and   

5) Compute the state estimate  and  using 

(23). 

6) Compute  using (30) and (31).. 

7) Set  go to step 2). 

3.1 Design of detection scheme 

The observer and detection scheme is designed on data 
from the non-linear simulation model simulating a fault free 
situation and a situation with a blocked valve at 0.6mm. The 

two variance matrices in the observer design  and  are 

found by experiments in order to optimize the correct fault 
detection rate and detection time, resulting in the following 
values: 

 (33) 

 (34) 

Additional a threshold  is used determine if a fault is 

present. If  a fault is detected and no faults are 

detected if . By experiments  is found as the 

lowest threshold value which detects the faults without too 
many false positive detections. 

The detection scheme applied to data from a blocked valve 
can be seen in Fig. 4. It can be seen that the fault is detected a 
approximately the same time as the step response has reached 
its steady state value, see Fig. 3. 
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Fig. 4  Illustration of the fault estimate and threshold in case of a fault – a 
blocked value. 

In Fig. 5 the fault estimate is compared with the threshold 
in case of a non blocked valve and consequently a fault is not 
detected. 
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Fig. 5 Illustration of the fault estimate and threshold in case of no faults. 

 

Experiments 

The experiments are performed using Monte Carlo 
simulations on the nonlinear model where 3000 situations are 
simulated, 1500 situations are fault free and 1500 has a blocked 
value at a position between 0.6mm and 1.4mm. Measurement 
noise is added to the simulated current as Gaussian noise with 
zero mean value and a std (standard deviation) twice the 
measured one in the experimental setup . 

The results are shown in Table 1, where it is seen that 
96.6% of the faults are correctly detected and only 4% of the 
non-faults are falsely detected as faults. It is, consequently seen 
that this proposed observer based detection scheme has a good 
performance of detecting the faults in the valve even though the 
presence of the large model uncertainties, which are tested by 
applying the observer on data from non-linear model some 
different model parameters. These tests are not a part of this 
paper, since they are on going, but they indicate some good 
properties regarding handling model uncertainties. 

 

True Positive 96.6% 

False Negative 3.4% 

False Positive 4.0% 

True Negative 96.0% 

Table 1: Results of the simulation with 1500 faults and 1500 non-faults. 

Other methods not focusing on fast detections can obtain 
100 correct fault detections, which can be match by the 
proposed algorithm if detection time is not considered. 

III. CONCLUSION 

In this paper an unknown input observer based scheme is 
proposed to detect faults in hydraulic valves in terms of 
blocked gliders. The only measurement assumed is the current 
through the valve coil. The current is controlled to follow a step 
reference. 1500 faults and 1500 non-faults are simulated with 
measurement noise and the detection scheme detects in must 
cases the fault at the time the current reaches its steady state 
value. The detection scheme detects 96.6% “true positive 
faults” and 96% “true negative faults” (correctly detected non-
faults). 
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Abstract—Automotive idle speed control is a critical issue in
engine control fields. Essentially it is a highly nonlinear and time-
varying problem. Its performance has a significant impact on fuel
economy and emission levels. In this paper, the authors present
a complete and coherent engine model, aimed at the challenging
purpose of the analysis of the interaction between the idle speed
control and variable valve actuation system. The model is based
on an innovative approach for engine dynamics conceived mainly
on the analogy with electric systems. Firstly, the behavior of a
relatively simple and well known control, named Mid-Ranging
scheme has been tested on a complete ”in-cylinder” engine model,
after a modified control is proposed, in order to test the modern
engine performances improvement due to the synergy between
variable valve actuation devices and idle speed control strategy.
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I. INTRODUCTION

The evolution of engine control from mechanical to elec-

tronic strategy, and from open loop to closed loop control

method, is a consequence of the hardware and software de-

velopment. The use of electronics improves sensing accuracy,

actuation capability, and flexibility in control law design. This

results in adopting complex control strategy based on dynamic

models purposely designed. The paper deals with the Idle

Speed Control (ISC) and Variable Valve Actuation (VVA)

systems based on an engine model formalized mainly on the

analogy with electric systems.

The objective is to analyze the interaction between the

engine idle speed and the VVA application. Load torque

disturbances, such as air conditioning, power steering and

VVA different commands can cause fluctuation on engine

speed around the idle speed reference. Moreover, vehicle

aging, variation in fuel efficiency, emissions and automotive

vibrations can also effect the idle speed set point.

Several works are presented in literature on these topics.

In (1), a review of various dynamic control technologies suc-

cessfully applied to ISC systems is presented. The automotive

ISC is a multi-objective and multi-variable control issue. The

selection of target idle speed corresponds to a tradeoff among

fuel consumption, idle operation stability, and emission levels

(2). The idle speed control mechanism of different engine types

varies. For a typical Port Fuel Injection (PFI) engine, the ISC

system uses a controlled bypass valve to regulate the air flow

rate around a closed throttle, using a solenoid, stepper motor, or

controlled duty-cycle valve. The throttle bypass valve is used to

adjust the intake manifold air flow around the primary throttle

plate at idle. Its secondary function is to prevent stalling and

produce smooth throttle tip in and tip out by providing extra

air during idling and acting as an electronic dashpot during

sudden deceleration (3).

Moreover, the presence of the VVA can cause uncertainty

in the air mass flow estimation. In fact the different profiles

of the VVA, full lift, early closing, late opening and multi

lift, determinate a variable air mass flow depending by VVA

control, as described in details in the following. So it is critical

to model such system, aimed at analyzing the phenomenon

and at designing suitable control strategies to compensate

this uncertainty (4). The main contribution is the air-charge

prediction for a Spark Ignition Internal Combustion Engine

(SI-ICE) equipped with VVA, necessary to verify and validate

control strategies, such as air-fuel regulation, idle speed control

and torque generation (5). In particular, an accurate estimation

of air flowing into the cylinders is the key point to determinate

the engine fueling rate in order to control the air-fuel ratio

during the combustion (6) and, consequently, to optimize the

performance of the three way catalytic converter.

Generally, in order to overcome this kind of problem,

mathematical models are used both to analyze the behavior

of the system and, eventually, to design advanced control

strategies. Among others, finite models of the combustion

chamber allow to calculate all in-cylinder variables with a

local resolution. The drawback is the long computing time.

Vice versa, MVEMs (Mean Value Engine Models) simulate

the dominant physical effects neglecting the fast dynamics,

resulting in a lower computing time.

In this context, the paper presents an SI engine model

equipped with a VVA system aimed at controlling the en-

gine idle speed through two different control strategies, a

multivariable mid-ranging algorithms and a new solution for

the strategies to reduce the control complexity. The proposed



model is obtained exploiting an innovative approach based on

the analogy of the engine components with electrical circuits

(7). The robustness of the model is tested comparing some

measurable variables with experimental data, while the analysis

on the proposed solution is based only on simulation results

due to lack of measurements.

II. ENGINE MODEL

In this paper, the engine model used to analyze the inter-

action between idle control and VVA system is derived by

(7). In the following, the utilized modeling approach is briefly

described. The authors, starting from a simple analogy with

electrical systems, have obtained an engine description similar

to an electrical circuit, with all the useful consequences in term

of existence and numerical availability of the solution (8). The

advantages are in the specific comparison that is founded be-

tween the engine components and variables (as throttle valve,

cylinder, inertial flows) with electrical counterparts (current,

voltage, resistance). In the following, the utilized modeling

approach is briefly described. For details and equations see

(7).

The engine is seen as an array of cylinders, having common

connections with an intake and an exhaust manifold. The

connections are regulated by valves opening. It is then possible

to distinguish separate subsystems interconnected each others,

such as the intake manifold equipped with throttle valve, the

exhaust manifold and cylinders. From the phenomenological

point of view, the elements composing the engine can be

classified in the following categories: volumes, orifices, inertial

effects and combustion.

The intake and exhaust manifolds and cylinders are grouped

respectively as constant and variable volumes.

The orifices are responsible of the pressure drops along the

gas path. They are modeled as variable resistances causing

equivalent voltage drops.The size of the orifice. and con-

sequently the resistance, is variable and regulated by valve

opening, as throttle valve, air bypass, intake and exhaust

valves.

The inertial phenomena can be considered as minor efforts

but not complectly negligible. They describe the reduction or

the increase of the pressure upstream the valve of a quantity

proportional to the derivative of the mass flow through the

same valve. Here, they are modeled as an linear inductance.The

combustion process constitutes the most meaningful and com-

plex phenomenon occurring into the engine. In order to model

the in-cylinder cycle pressure, an equivalent electric circuit has

been adopted. The circuit is formed by a variable condensator,

representing the cylinder volume, equipped by an impulsive

voltage generator. This causes an impulsive increase of the

voltage at the condensator extremities and, consequently, gen-

erates a current flow thought the capacitor. This phenomenon

corresponds to the well known combustion process, i.e. an

impulsive increase of the in-cylinder pressure caused by the

combustion resulting in a torque generation and in mass flow

through the exhaust valves. Based on the electric analogies,

Fig. 2. Experiment 1 at 1500 rpm and WOT. Intake and exhaust mass flows
for the four cylinders.

the entire engine can be represented by the circuit shown in

Figure 1.

Starting from the left of the figure, the model describes the

dynamic of the air crossing the intake manifold, i.e. driven

by the ambient pressure (a current generator), the air mass

passes the filter (a resistance) and the throttle body (a variable

resistance) and arrives into the cylinders through the intake

valves (a new variable resistance). The cylinders are then

described by a parallel of ”n” combustion equivalent circuits,

with ”n” the number of cylinders composing the engine.

In order to verify the reliability of the proposed model,

some experiments are conducted aimed at comparing some

measurable variables with experimental signals. The model

has been designed by means of a simple approach based

on the analogy of mechanical components with electrical

circuits. This methodology has been presented in (7), where

the validation of the model has been detailed.

Figures 2 and 3 report an experiment at 1500 rpm. In partic-

ular, 2 shows the simulated intake and exhaust mass flows for

each cylinder. Figure 3 completes the experiment comparing

the simulated in-cylinder pressure cycle with experimental data

highlighting the good performance. The intake and exhaust

valve lift ends the Figure 3.

The results, showing a good level of the model of reliability

and accuracy, allows to carry on the simulated analysis of

air mass dynamics for two different control strategies. It is

remarked again that the purpose of the work is the study in

simulation of phenomenon aimed at a better knowledge of the

system.

III. VARIABLE VALVE ACTUATION SYSTEM

The variable valve actuation has been introduced as a

promising technology able to improve the performance of the

vehicle in terms of fuel economy, emission reductions and,

more generally, the whole efficiency of the system (4).

In opposition to the classical engine, where the intake and

exhaust valves are commanded mechanically by the camshaft

and so both the timing and the duration of valves opening are



Fig. 1. Internal combustion engine equivalent circuit.

Fig. 3. Experiment 1 at 1500 rpm and WOT. The first plot compares
experimental data (dotted-black line) of the pressure inside cylinder and
simulated results (solid-magenta line); the second plot reproduces the intake
and exhaust valves lift (experimental data).

fixed by events, the VVA system offers the possibility to vary

the valves actuation.

The adopted VVA system is shown schematically in Figure

4. In this work, only the intake valves are actuated since the

benefits to actuate as well the exhaust valves are considered

small and does not justify the increase of costs to realize them.

The valve actuator consists of a piston connected through an

oil chamber to the intake valve, a solenoid valve to regulate

the pressure inside the oil chamber and an hydraulic brake to

assure the soft landing.

As reported in Figure 5, the system can operate in the

following operating modes:

• Full Lift (FL) represents the normal functioning of the

valves, i.e. commanded mechanically by the camshaft:

the solenoid valve remains closed assuring high pressure

into the oil chamber and, consequently, a rigid connection

Fig. 4. VVA system.

between the intake valve and the camshaft through the

piston;

• Early Closure (EC) is obtained by opening the solenoid

valve at a certain cam angle, i.e. the control angle,

reducing the pressure inside the oil chamber. The motion

of the intake valve is then decoupled from the piston

and, forced by the valve springs, it starts to close earlier

than in the full-lift mode. Soft landing of the intake valve

is controlled by an hydraulic dampening unit (hydraulic

brake);

• Late Opening (LO) can be achieved by regulating the

solenoid valve partially opened. In this way, the pressure

inside the oil chamber is regulated to a lower pressure

than in the full lift mode, obtaining a rigid connection, but

with a shorter distance function of the chamber pressure,

between the intake valve and the camshaft. Consequently,



Fig. 5. Valve lift profiles. The valve lift values on the y-axes are omitted for
confidential reason.

the valve profile is similar to the full lift mode, but with

a smaller time duration;

• Multi Lift (ML) is a particular operative actuation mode

obtained combining the late opening with the early

closure. This profile is limited by the mechanical cam

constrains, in fact the next late opening must be activate

before of the 50% of the full lift cam.

The flexibility of intake valve control offered by the VVA

system leads to enhance the efficiency of the combustion

process. As an example, it is possible to deactivate one of

the four valves per cylinder in order to produce swirls and

so improve the combustion optimizing the propagation of the

flame inside the cylinder. Or it is possible to actuate the

early closure mode to reduce pumping losses and improve fuel

economy. Or, again, to deactivate half cylinders to improve fuel

economy, simultaneously increasing low-speed torque. More

in general, the following advantages can be addressed to the

introduction in the vehicle of the VVA system:

• high charge trapping efficiency over the entire speed range

through a wide modulation of valve lift;

• throttle-less engine operation, through direct air control at

the valves resulting in a reduction of pumping work and

fuel consumption;

• dynamic control, cylinder by cylinder and stroke by

stroke, of the inlet charge aimed at an improvement of

emissions, driveability and fuel consumption in transient

operation.

In this work, it is presented an analysis on the interaction

between the VVA application and the idle control through the

mid-ranging strategy. Idling control is one of the most impor-

tant closed loop control functions for an internal combustion

engine. In particular, modern engine control software provides

the opportunity to stop the engine and cleverly to restart it

when it is necessary, this function is called Stop and Start.

This operation doesn’t reduce the idle control relevance but,

increases it, especially with the introduction of new devices

such as CVCP (Continuously Variable Cam Phaser), VVA,

Fig. 6. Mid-ranging control scheme. A slow control loop driven by R1 forces
the control input u2 to a steady-state desired value.

Turbo groups and so on.

The presence of the VVA can cause uncertainty for engine

fueling rate in order to control the air-fuel ratio during the

combustion and, consequently, to optimize the performance

of idle management. In fact the different profiles of the VVA,

full lift, early closing, late opening and multi lift, determinate a

variable air mass flow depending by VVA control, as described

in details in the following. So it is critical to manage the

engine speed and its fluctuations around the desired value

and at designing suitable control strategies to compensate this

uncertainty.

For the simulations here presented, the VVA on the engine

has been conceived to operate only on the intake valves and

in un-throttled mode, except for cut-off condition. About the

VVA control mode here considered, it has been applied the

Early Closing of the intake valve as shown in Figure 5. In this

way, the intake valve closing reduces the fresh air charge for

every single stroke. So, the charge, torque and power of the

engine can be controlled only with VVA control.

IV. MID-RANGING IDLE CONTROL

In the control field, there are numerous practical examples

of control algorithms where, in order to meet the control objec-

tives, two input must be manipulated to control a single output

(9). In some cases, this may be achieved by manipulating

one input at the time. Such strategies are often referred to

as split ranging. In other situation, it may be desirable or

even necessary to simultaneously manipulate the inputs. For

example, consider the situation shown in Figure 6, where the

speed ω is controlled by a combination of two controllers

in parallel. In particular, a slow control loop driven by R1

forces the control input u2 to a steady-state desired value.

This is called Mid-Ranging technique. Today, the Mid-Ranging

technique is largely used for idle speed control of spark

ignition engines, usually controlled by commercial Electronic

Control Unit (ECU) based on ”Torque Based” architecture

(10).

Idling is one of the most often used functionalities in

the modern car. This is especially the case in city traffic,

where there are frequent stop and go situations. Therefore,

improvements of the control performance for the idle speed

control unit has always been a high priority. That is, keep



Fig. 7. The Mid Ranging Idle Speed Control scheme.

the engine speed at a desired setpoint value, ensure good

disturbance rejection while maintaining low fuel consumption.

Typical disturbances that are to be rejected by the controller

are loads from the air-conditioning system or power-steering.

Obviously, the ECU compensates such disturbances on engine

torque by using the throttle, however due to the slow dynamics

of the air mass in the intake manifold, this would generate an

unacceptably slow disturbance rejection. For this reason the

spark advance is used as a second control signal, by advancing

or retarding the ignition and obtaining an instantaneous torque

variation from the engine. However, a deviation from the

optimal spark ignition will result in higher fuel consumption.

Thus the use of this signal should be kept at minimum and

used only for improving the speed of the disturbance rejection.

From control point of view this is a difficult problem since

the system in question is nonlinear, multivariable (two inputs)

and time varying. Moreover, the throttle control channel has a

slower dynamics than the spark advance event. In the literature

this problem is usually approached by treating the two control

channels separately (one control signal is set to constant while

the other is modified), leading to performance degradation.

Some other approaches treat linearized models resulting in lo-

cal designs. There exist approaches where both control signals

are treated in the same time (multivariable control), however

the resulting controllers are highly complex and difficult to

tune. This article proposes the usage of a simple technique

originally used in process control, called Mid-Ranging ’series’,

to analyze the idle speed control problem. The particular of this

scheme is that the throttle is governed directly by the error

between the desired and actual spark advance, while the spark

advance is governed by the engine speed error, as reported in

Figure 7. Moreover, the technique is particularly suitable for

processes where one of the inputs has faster dynamics than the

other, this is precisely true for the idle speed control problem

in traditional SI engine. In the Figure 7 the spark advance

control loop is the fast control loop, it takes as reference

value the desired engine speed. The second loop contains the

slower dynamics, where the air path controller adjusts the

throttle angle such that in stationarity the spark advance will

converge to the desired value. Traditionally the mid-ranging

schemes are based on PID controllers, which will be used here

too. This idea is correctly based on experimental observation,

the time delay between the spark advance application and

Fig. 8. The Modified Mid Ranging Idle Control Scheme.

the engine torque response is relatively small, symmetrical

and predictable, if compared with the engine torque response

from the intake manifold filling/emptying gas dynamics. This

control concept, depicted in Figure 7, is simple and robust for

a standard spark ignition engine, as demonstrated in (10) and

in commercial ECU present on the market.

V. MID-RANGING ALGORITHM WITH VVA SYSTEM

In this work, the authors, starting from the comparison

with Mid-Ranging ’series’ scheme, have realized an analogue

control scheme for an engine model equipped with VVA

system. In the traditional engine, the air path is considered the

slow via to regulate the engine torque, otherwise, in the modern

engine equipped with VVA system the engine torque response,

for any valve closing change, is able to exhibit a time delay

comparable with the engine torque response to spark advance

variation. For this reason, the Mid Ranging control scheme

has been changed from its traditional form with two input in a

’parallel’ scheme with only an input, as shown in Figure 8. The

advantage of this scheme is to avoid severe interaction between

the inner and outer control loops of the serial scheme. In this

way, both the control loops are driven from the same rpm error

without control interactions, improving the advantages about

the authority, quickness and steady state performance.

For the experiments has been used the engine model previ-

ously described with VVA application, and the same standard

controllers for spark advance and air path. In this experiment,

the controllers are able to guarantee the same tuning easiness

as the serial scheme, without any loss of performance.

The experiments have been realized applying the control

strategy to the four stroke internal combustion engine model.

In Figure 9 is reported a simulation for engine speed based

on two Mid-Ranging control schemes, the results define the

quality and robustness of the idle speed control for both

techniques. The good quality of the idle control and engine

behavior has been obtained by using only a Proportional-

Derivative controller for the spark advance control loop and a

Proportional-Integral controller for the engine air path control

loop.

In Figure 10 the spark advance behavior of two kind

of control scheme is depicted, showing the good preserved

robustness, slightly improved by the opportunity to use a more

high spark advance during the engine work and so to improve

the fuel consumption. Moreover, it should be noted that the

general improvement partly depends by the better cylinder



Fig. 9. Engine speed: comparison between the Mid-Ranging ’parallel’ scheme
(red-solid line) and Mid-Ranging ’series’ scheme (blue-dotted line).

Fig. 10. Spark advance: comparison between the Mid-Ranging ’parallel’
scheme (red-solid line) and Mid-Ranging ’series’ scheme (blue-dotted line).

Fig. 11. Throttle valve opening: comparison between the Mid-Ranging
’parallel’ scheme (red-solid line) and Mid-Ranging ’series’ scheme (blue-
dotted line).

filling efficiency, that un-throttled VVA systems usually allows,

as reported in Figure 11, where is possible to note that the

throttle valve is used only for cut-off occurrence.

VI. CONCLUSION

A standard Mid Ranging scheme for idle speed control

in spark ignition engine has been investigated on a realistic

four cylinder engine model. A similar control scheme, here

named ”parallel” Mid Ranging scheme, specific for engine

equipped with VVA has been deducted and tested in similar

conditions, showing similar and slightly better properties in

terms of performance quality and tuning easiness. The ability

of the parallel Mid Ranging control scheme for idle speed

control in internal combustion engines inspire to think that

even other kinds of control variables, such as instantaneous

air/fuel ratio, could be added in order to obtain a more robust

idle controller, without increases the tuning procedure. In such

a way, the idle control for a spark ignited engine will be more

hopefully able to fulfil the future requirements in terms of

emission reduction, fuel consumption, disturb rejection, and

driver satisfaction. With three charge/torque control variables

(air, spark advance, air/fuel ratio) or even more (injection phase

for direct fuel injection systems), the challenge will be the

implementation of relatively simple, modular and separated

control loop laws, with simple and almost separated tuning

procedures.
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Abstract—This paper deals with a computational approach 

to find the optimal control for nonlinear systems with 

polynomial vector fields. The approach involves four steps to 

find global optimality. First, local optimal control is found for 

the linearized part of the system and the quadratic part of the 

given performance index. Second, the density function method 

is used to find a stabilizing polynomial control for the nonlinear 

system. Third, the corresponding Lyapunov function is found 

for the control. Finally, the pair of control and its Lyapunov 

function are iteratively updated, using SOSTOOLS, for global 

optimal control. Numerical examples illustrate the effectiveness 

of the design approach. 

 

Keywords—nonlinear systems, optimal control, sum of 

squares 

I. INTRODUCTION 

In recent years, many researchers have shown interest in 

the sum of squares (SOS) technique introduced by Parrilo 

[1]. The fundamental method behind this technique is that 

the SOS problems can be converted into a convex 

optimization problem, which can be solved efficiently using 

semidefinite programming (SDP). This technique has been 

applied in many fields of control systems including stability 

analysis of a nonlinear systems [2] and [3]. Some control 

applications have also been discussed in [4] and [5].  

In general, in order to obtain a nonlinear optimal control, 

one needs to solve the Hamilton Jacobi inequality 

corresponding to a given performance index [6]. Although, 

the exact solution may not be available, a local optimal 

control and its Lyapunov function exist if the nonlinear 

system has a controllable Jacobi linearization and the 

performance index has a Taylor series expansion with 

quadratic leading term [7] and [8].  

Our objective is to obtain the nonlinear optimal control 

that matches the linear optimal control law for the linearized 

system to guarantee local optimality. The method in [9] can 

be used to solve the Hamilton Jacobi inequality 

simultaneously for finding both the nonlinear controller and 

its corresponding Lyapunov function, iteratively, where the 

nonlinear system is represented in a parameter dependent 

form. However, the original iterative algorithm requires an 

initial stabilizing controller and a corresponding Lyapunov 

function in order to be applied. The linear optimal control 

law and its Lyapunov function will not be iterated during the 

iterative algorithm.  

 
 

Here, the density function method [10] is used to find an 

initial stabilizing polynomial controller, using SOS 

technique [2].  Some examples of this method have been 

shown in [11] and [12]. Next, using the Hamilton Jacobi 

inequality and the SOS method, a Lyapunov function is also 

found for the initial stabilizing control. Then, given a 

quadratic performance index (cost), an iterative procedure 

utilizing the SOS technique is considered so as to find the 

optimal stabilizing polynomial control that minimizes the 

cost.  

 Polynomial parameters used in this paper can be mainly 

separated into two parts which are linear and nonlinear parts. 

The linear part of the system is denoted by a subscript “l”, 

such as , which is the optimal control for the linearized 

system. All higher order functions in the system are denoted 

with a subscript “h” such as , which is the nonlinear 

part of the optimal control. 

( )lu x

( )hu x

The remainder of the paper is organized as follows. A 

brief introduction to the SOS formulation is presented in 

Section II. Locally optimal control design and its Lyapunov 

function are presented in Section III. Nonlinear controller 

design using the density function is discussed in Section IV. 

In Section V, the search for the Lyapunov function is 

discussed and then, given a cost, an iterative algorithm for 

global optimal control design is explained later in this 

section. Section VI presents examples. Finally, the 

conclusions are summarized in Section VII. 

II. SUM OF SQUARES POLYNOMIALS 

The main computational method used in this paper is 

based on sum of squares (SOS) decomposition of 

multivariate polynomials [1]. The multivariate polynomial 

1( ) ( ,..., )np x p x x  is a sum of squares if there exist 

polynomials ( ),i 1,...f x i m  such that 

2

1

( ) ( )
m

i

i

p x f x   (1) 

The existence of sum of squares representation for 

is sufficient condition for its non-negativity by the 

following proposition. 

( )p x

Proposition 1, [2]:  Let  be a polynomial in ( )p x nx R of 

degree . In addition, let 2d ( )Z x  be a column vector, which 

is a properly chosen vector of monomials in x  with 

polynomials of degree no greater than . Then  is a d ( )p x
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sum of squares iff there exists a positive symmetric 

semidefinite matrix  such that  Q

( )x( ) ( )Tp x Z x QZ  (2) 

When  is a sum of squares, matrix  can be 

found using semi-definite programming (SDP) technique.  

( )p x 0Q

III. LOCALLY OPTIMAL CONTROL DESIGN 

A. Problem formulation 

Consider the nonlinear system in the form of 

( ) ( )x f x g x u   (3) 

where nx R  is the state and  is the control input. 

We assume that 

( ) mu x R

( )f x  and ( )g x  are sufficiently smooth and 

that  and (0) 0f (0) lg B  where .  lB R

The objective is to find the optimal control, with 

respect to a performance index  

( ),u x

2

0
( ) ( ( ) ) )t q Ru x(x

(

dt   (5) 

In order to guarantee local optimality, we first separate 

the linear part of the system (3) using linearization method, 

which can be written as 

( ) ) ( )( )l h l l h h l hx A x f x u u g x u uB  (4) 

where

0

l

i x

f
A

x
, ( ) ( ) ,h lf x f x A x (0)lB g

( ) ( )h lg x g x B ( ) ( )l hu x u x u and .  ( )x

We then decompose the integrand in (5) to include a 

quadratic term in .x  Then (5) can be rewritten as [7] 

2

0
( ) ( ( ) ( ( ) ( )) )T

l ht x q x R u x u xl hQ x dt   (6) 

where  is positive-definite with ( )q x

2

2

0

1 ( )
(0)

2
xx l

x

q x
q Q

x

l

, and  0R

B. Finding Local Optimal Control 

The objective here is to find the locally optimal control 

 for the linear part of the system (3) lu

l lx A x B u   (7) 

to minimize the quadratic part of  the performance 

index/cost  

2

0
( ) ( ( ) )T

l l l
t x Ru xQ x dt   (8) 

We can then write the Hamilton Jacobi-Bellman (HJB) 

equation as 

2( )
T

0l

l l l l

V
A x Bu Q x Ru

x

l

Tx  (9) 

The optimal cost (the Lyapunov function) is given by [13] 

( ) T

l
V x x P x   (10) 

where,  is a symmetric and positive definite matrix. Thus, lP

2V
lP x

x

) 0

. Moreover, (9) can be reduced to the standard 

Riccati equation as 
1(T T T

l l l l l l l l lx A P P A Q P B R B P x   (11) 

which is true for all x  and reduces to the Algebraic Riccati 

Equation (ARE) 
1 0T

l l l l l l l l lA P P A Q PB R B PT   (12) 

Finally, the local optimal control will be given by 

( )lu x K xl   (13) 

where, 1 T

l l lK R B P   

IV. STABILIZING NONLINEAR CONTROL DESIGN 

A nonlinear control design used in this paper is based on 

density function, a dual of Lyapunov’s stability theorem, 

which was proposed by Rantzer [10]. In general, for a 

nonlinear system, a major difficulty is a lack of a symmetric 

method in finding a stabilizing control  and a 

corresponding Lyapunov function  simultaneously. 

The problem is that, for a nonlinear system 

( )u x

( )V x

( ) ( ) ( ),x f x g x u x  the set { ,  satisfying the Lyapunov 

inequality 

}V u

[ ( ) ( ) ( )] 0V f x g x u x   (14) 

is generally not convex, where [ ,..., ]
i n

TV V V

x x x
V . 

However, in [10] it is shown that a dual problem, based 

on density function , has much better convexity properties. 

In fact, the set { , }u satisfying the inequality  

( )( ( ) ( ) ( )) 0x f x g x u x   (15) 

is convex, where by definition 
1 i

n f

xi
f  . 

Hence, for systems with polynomial vector fields, we can 

use the SOS technique to find the pair { , }u  satisfying the 

inequality (15). The design strategy is based on the 

following result [10]. 

Theorem 1, [10]: Given the equation ( ) ( ( ))x t f x t  where 

1( , )n nf C R R  and (0) 0,f suppose there exists a non-

negative function  such that the term  1( \{0}nC R , R )n

( ) ( ) /x f x x   (16) 

is integrable on { :nx R x 1}  and for almost all x  

[ ( ) ( )] 0x f x   (17)  

Then, for almost all initial states (0)x  the trajectory ( )x t  

exists for [0, )t and tends to zero as . Moreover, 

if the equilibrium 

t

0x  is stable, then the conclusion 

remains valid even if  takes negative values.   

To apply this theorem to find a nonlinear stabilizing 

control, let us first consider the system (4) with 

, then we have 1( ) T

lu x R B P xl l

h

1 1T T

l h l l l h l l l h h
x A x f B R B P x g R B P x B u g u (18) 

If we let 
1 1( ) T

l h l l l h l l

TF x A x f B R B P x g R B P x   (19) 



  

then, since ( ) ( )l hg x B g x  , (18) can be rewritten as 

( ) ( ) hx F x g x u   (20) 

Consider the following parameterization for { , }hu  [11]: 

( ) ( )
( ) , ( ) ( )

( ) ( )
h

a x c x
x u x x

b x b x
  (21)

 
here  and  are positive polynomials,  is a 

polynomial and 

( )a x ( )b x ( )c x

 is chosen such that the integreability 

condition (16) in Theorem 1 is satisfied. Then (15) can be 

written as 

1

1
[ ( )] [ ( )]

1
[ ( ) ( )

hF gu Fa gc
b

b Fa gc b Fa gc
b

]

0

 (22) 

Since  is positive, we only need to satisfy ( )b x

( ) ( )b Fa gc b Fa gc  (23) 

Therefore, (23) is in polynomial form and we can use 

SDP to search for the solution that makes the left-hand side 

a sum of squares. A stabilizing control can then be defined 

as  
( )

( )
( )

c x

h a x
u x  (24) 

Moreover, if  is chosen to be a constant real number, 

(e.g., 

( )a x

1 ), then from (21), the corresponding stabilizing 

control will be a polynomial, given as  

( ) ( )hu x c x  (25) 

V. OPTIMAL POLYNOMIAL CONTROL DESIGN 

A. Finding the Lyapunov Function 

Let us define system (4) in the state dependent form as [2] 

( ) ( ) ( ) ( )x A x Z x B x u x  (26) 

where ( )A x  and  are polynomial matrices in ( )B x ,x  and 

( )Z x  is an  vector of monomials in 1N ,x  (e.g., terms of 

the form 1 2 nx x x ), satisfying the following assumption. 

Assumption 1: iff ( ) 0Z x 0.x  

Now, let  be a  polynomial matrix whose  ( )M x N n

(i, j)-th entry is given by 

)()( x
x

Z
xM

j

i
ij  (27) 

where i = 1, ...,N, j = 1, ..., n, and also denote 

mjjjJ ,...,,{ 21 | jth row of equals 0}  (28) ( )B x

Our primary objective here is to find a Lyapunov function 

corresponding to the nonlinear terms,  that satisfies 

the Hamilton Jacobi inequality for the control  

( ),hV x

( ) ( ) ( )l hu x u x u x   (29)  

However, note that (29) can also be written in the form of  

( ) ( ) ( )u x K x Z x   (30) 

Hence, the closed-loop system can be written as  

[ ( ) ( ) ( )] ( )x A x B x K x Z x   (31) 

Moreover, the performance index can also be written as 

0
( ) ( ( ) ( ) )T Tt Z x QZ x u Ru dt   (32) 

where Q  and R  are symmetric positive definite matrices.  

Consider a Lyapunov function that consists of two terms 

( ) ( ) ( ) 0l hV x V x V x   (33) 

where  found in Section III  and  represents the 

Lyapunov function for the nonlinear part. 

( )lV x ( )hV x

Therefore, (33) can be rewritten in the form of a parameter-

dependent Lyapunov function as  

( ) ( ) ( ) ( ) 0TV x Z x P x Z x   (34) 

where )~(xP is a symmetric positive definite polynomial 

matrix and 
1 2

( , ,..., )
mj j jx x x x  with 1 2, ,..., mj j j J  as 

stated in (28). Finally, let (j )A x denote the j-th row of 

. )(xA

Therefore, we have 

( ) T T TV x Z PZ Z PZ Z PZ   (35) 

Then for the function in (35) to represent the minimum 

of the performance index (32) over the set of all control 

functions  the expression for  in (35) should be 

written as  

( )V x

( ),u x ( )V x

1

( ( )) [( ) ( )

( )] 0

T T T

m
T

j

j j

V
x t Z A BK M P PM A BK

t

P
Q K RK A Z Z

x

 (36) 

or equivalently as, 

 
1

( ) ( ) ( ) 0
m

T T T

j

j j

P
A BK M P PM A BK Q K RK A Z

x
 

 (37) 

If the inequalities (34) and (37) are satisfied, the closed-loop 

system (31) will be asymptotically stable at zero 

equilibrium. The polynomial inequalities (34) and (37) can 

now be viewed as sum of squares constraints, which can be 

solved for P and K using SOSTOOLS [14].  

B. Pre-procedure for the Iterative Algorithm 

Let us define system (23) in a parameterized form [9], as  

( , ) ( ) ( , )x A x Z x B x u   (38) 

where ( , )A x  and ( , )B x  are polynomial matrices in x , 

as 

1 1 2

1 1 2

( , ) ( ) ( )

( , ) ( ) ( )

2

2

A x A x A x

B x B x B x
  (39) 

such that the uncertain parameters  are 

constant and satisfy 

2

1 2

T
R

1 20, 0 1 2 1. and  The 

corresponding Lyapunov function also is rewritten as 

( , ) ( ) ( , ) ( )TV x Z x P x Z x   (40) 

where 1 1 2( , ) ( ) ( )P x P x P x 2 . Moreover, let 



  

2

1 1

( , ) ( ( , ) ( , ) ( )) ( ) ( , )

( , ) ( )( ( , ) ( , ) ( , ))

( , )( ( , ) ( ))

T T

m
i

ij

i j j

x A x B x K x M x P x

P x M x A x B x K x

P
x A x Z x Q

x

0

 (41) 

Also apply Schur complement to (37), then we get 

1

( , ) ( )
0

( )

Tx K x

K x R
  (42) 

Let us define 
T

i i i i i iN A P P A P Q     (43) 

for i = 1,2, and  

3 1 2 2 1 2 1 1 2 3 2T TN A P P A A P P A P Q   (44) 

where  , , 
[ ]

0 0

i i

i

M A B K
A

0

0 0

i

i

P
P

1

TQ K
Q

K R
, 

1

( ) 0

0 0

m
i

ij

ji j

P
A Z

P x , 
1 2

2 1

13

( ) ( ) 0

0 0

m

j j

j j j

P P
A Z A Z

P x x , 

for i = 1,2. Then (42) can be written as 
2 2

1 1 2 2 1 2 3
0N N N  (45) 

However, (45) is clearly not convex. Therefore, let us 

transform (45) into two separate inequalities as stated in 

Theorem 2 given below. 

Theorem 2, [9]: Assume that there exist a polynomial 

control  and symmetric polynomial 

matrices  and  such that 

( ) ( ) ( )u x K x Z x

1 2( ) 0, ( ) 0P x P x ( ) 0sY x

3 0sN Y   (46) 

1

2

2
0

2

s

s

N Y

Y N
  (47) 

where  are given in (43) and (44). Then the 

closed-loop system (31) is asymptotically stable. 

1 2, ,N N N3

Proof: see [9] 

 

However, the matrix inequalities (46) and (47) are still not 

convex because they still include the product of ( )K x  and 

( , ).P x  Theorem 3 provides a relaxed method of solving 

this problem by adding additional positive semi-definite 

polynomial matrices which tend to zero at the end of the 

iterative algorithm. Let us define the following positive 

semi-definite polynomial matrices. 

1 1 1 2 2 2 2 3 1 1 32 T T TB B B BT T

,

  (48) 

1 1 2 2

2 1 1

3 31 1

0 00 0

0 0 0 0

TTT T

T TB B B B2 2

  (49) 

where 
1 0 2 1 10( ) 0 , ( ) 0

T T
K K P P

20( ) 0 .
T

P P M

M  and 

 By adding the above positive semi-

definite polynomial matrices (48) and (49) to inequalities 

(46) and (47), respectively, we get 

3 2

3 1 0N Y   (50) 

1

2

2

2
0

2

N Y

Y N
  (51) 

where 

11 21

21 22

( ) ( )

( ) ( )

TY x Y x
Y

Y x Y x
  (52) 

It is clear that if (50) and (51) are satisfied, then (46) and 

(47) are satisfied. Let us define the following symmetric 

matrices  

11 11

1

21 22

1

1 2

2 1

* *

2 2 *

0 *

0 0

*

*
T T

T T

E Y

K Y R Y

K B M P I

K B M P I

  (53) 

and 

1

1

11 21 2

2 1

21 22

1 1

2 2

* * * *

* * *

2 2 * *

2 2 *

0 0 0

0 0 0 0

*

*

*

*

*

T

T T

T T

E

K R

Y Y E

Y Y K R

K B M P I

K B M P I

 (54) 

where * indicates the symmetric entries of the matrices, and 

11 1 2 2 1 2 1 1 2

1 2

2 1

1 1

1 2 2 10 10 2 2 1 0

2 1 1 20 20 1 1 2 0

10 2 2 10 20 1 1 20 0 0

( ) ( ) 2

2

2

2

T T T T

m m

j j

j jj j

T T T T T

T T T T T

T T T T T

E A M P P MA A M P PMA

P P
A Z A Z Q

x x

PMB B M P P MB B M P K K

P MB B M P P MB B M P K K

P MB B M P P MB B M P K K

  (55) 

and 

1

0 0

0 0 0 0 0 0

( )
m

T T i

i i i i i ij

j j

T T T T

i i i i i i i i

T T T T T

i i i i

P
E A M P PMA A Z

x

PMB B M P P MB B M P

K K K K P MB B M P K K Q

 (56) 

for i = 1,2. Now we have the following theorem.  

Theorem 3, [9]: Consider the nonlinear system (38) and the 

performance index/cost (32). Given a stabilizing polynomial 

control gain matrix 0 ( )K x and a corresponding Lyapunov 

function with symmetric positive definite matrices  

and  suppose that there exist a different set of 

polynomial control gain matrix 

10 ( )P x

20 ( ),P x

( )K x

2 0,

 and symmetric 

polynomial matrices  and  such 

that 

1( )P x 0, ( )P x ( )Y x 0

1 1 2 10 20 0( , , , , , , ) 0P P K Y P P K   (57)  

2 1 2 10 20 0( , , , , , , ) 0P P K Y P P K   (58) 

Then the closed-loop system (31) is asymptotically stable 

and the corresponding cost (32) will be smaller for all x . 

Proof: see [9] 

 

By applying Schur complement to the inequalities (50) and 



  

(51), it is clear that the inequalities (57) and (58) are convex 

and are equivalent to (50) and (51), respectively. Therefore 

we can now e sem nite programming us idefi  to find the 

solution for ( )K x  and ( ),V x  simultaneously.  

uadratic 

 poly

find  using the 

 the degree of the polynomial for 

properly sel

C. Iterative algorithm procedure 

Step 1:  Find the linearized part of system (3), and find the 

local optimal control ( )lu x  corresponding to the q

part of the performance index/cost (8) in Section III 

Step 2:  Define the degree and form of the nomial for 

the nonlinear controller ( ),hu x  then ( )hu x

density function shown in Section IV. 

Step 3:  Define ( ),h x  

and consider ( ) ( ) ( ) ( ) ( )T
l hV x V x V Z x P x Z x  for 

( ).

V

( )x

ected basis Z x  Also nsider 

( ) ( ) ) ( ) ( )l hu x u x K x Z x . Then find )

c

(u x

o
~(xP , and 

equivalently ( )hV x , using Lyapunov stability analysis stated 

in Sectio  V.A

Step 4:  Let 10 20( ) ( ) ( )P x P x P x  an ( ) ( ),

n . 

d 1 1 1
0K x K x  

ion, minimize [trace( )then at the i-th iterat ~(
1

xP i )] subject to 

1 2( ) 0, ( ) 0P x P x , the SOS conditions (52), (57), and 

(58).  Note that, the parameters ted in t ep are only 

parameters corr nding t ( )x  and ( )hV x  which are 

embedded in (u x d ( )V respectively. Parameters 

corresponding to ( )lu x  and ( )lV x  will be fixe

 itera

espo o hu

)  an x , 

his st

d at all time 

during the iteration. Then, stop the iteration if  

| trace( )~(10 xP i ) - trace( 10Pi )~(1 x ) | < , where  is some 

small positive real number.  

VI. SIMULATION RESULTS  

Consider a 2nd-order polynomial nonlinear system [15].  

A. Example 1 

1 2

3

x x

2 1x x u

 a rmance index (5) with 

 (59) 

Also, consider perfo
2 21
1 22

( ) ( )q x x x  and 0.5R . Note that for this system the 

optimal control is known exactly in analytical form [15]. 

However, the goal is to find the optimal control using the 

rol and its Lyapunov function 

for the linearized system, as   

e the stabilizing polynomial control to be o

3rd-ord

proposed method.  

Step 1: Find the optimal cont

1 21.732lu x x , 2 2

1 1 2 20.866 0.866lV x x x x   (60) 

Step 2: Defin f 

er as 2 2 3

1 2 3 1 2 4 2x k x x k x . Let ( ) 1,a x3

1 1 2hu k x k x  

8,  and 1 2( )b x x x  for the ns n. Then 

solve the inequality 

de ity f

(23) for jk , j

unct

SOSTOOLS, to obtain  

Step 3: Choose olynomial of 4th-order and selec

io

4 , using 1,...,

[ 5.936, , 4.270, 4.936]jk  (61)  

( )h x as a p t 

4.270

V

T
( ) 1 2Z x x x , so that ( ) ( ) ( ) ( )T

l hV x V V Z x P x Z x , 

where  

2

2 2 2 2
1 1 2 1 2 3 2 4 1 5 1 2 6 2

2 2 2
4 1 5 1 7 1 8 1 2 9 2

0.866 0.5

0.5 866

p x p x x p x p x p x x p x
P

p x p x x p x p x x p x2 6 2 0.p x
 

and , 1,...,9.ip R i  Also ) u

Then the parameters ip , 1,...,9i , in ( ) ( , , )l iP x P x V p

let ( ( ) ( )l hu x u K x Z x . 

 

can be found, using SOSTOOLS, to satisfy the inequality 

(37), which results in  

 (62) 

 4: Select 

[4.484, -2.904, 0.828, 2.322, 3.062,ip
 

-6.636, 2.235,  9.608, 2.637]

Step 2 0.5

 

1  and let 1 1
10 20( ) ( ) ( )P x P x P x  

and 1
0 ( ) ( ).K x K x  The optimal be fou  

finding new sets of matrices 1 2( ), ( ),P x P x  and ( )

 control can nd by

,K x  

iteratively, using SOSTOOLS, that satisfy the inequalities  

1 2 1 20, 0, ( ) 0, ( ) 0, ( ) 0P x P x Y x  (63) 

After 10 iterations, the final results for ( )K x  and 

( ) ( , , )l iP x P x V p for , 1,...,9i  are found as  

2

2 2
1 1 2 2

2 2
1 1 2

1 0.531 0.116 0.014
( )

1.732 0.116 0.014 0.126

T x x x x
K x

x x x x
  (64) 

and 

(65)  

with the optimal polynomial control given by
2
1 2

 (66) 

[3.109, -3.066, 1.231, 1.507, 1.192,ip

-0.496, -0.040,  0.540, 1.630]
  

 
3

1 2 1

2 3
1 2 2

( ) 1.732 0.531 0.232

0.027 0.126

u x x x x x x

x x x

 

Figure 1. Comparison of the control, states, and cost between the 

e  and the prop

onding to the 

xact solution (dashed line) osed solution (solid line) 

For the initial states (0) [1, 2]x , Figure 1 shows the 

optimal control, the states, and the optimal cost for the 

proposed algorithm as well as those corresp



  

exact optimal control, which is given by [15] 

3 4 2 4
1 1 1 2 1 1*( ) 1 2 2 1 1u x x x x x x x  (67

Clearly the optimal solution using the proposed metho

) 

d is 

ery close to the exact optimal control solution (67).  

Consider a polynomial nonlinear system with dynamics  
3
2

v

 

B. Example 2 

3 2 2
1 2 1 1 1 20.5 2

2 1

x x x x x x x

x x u

The optimal control

 (68) 

 is to be found so as to minimize the 

performance index  

e Lyapu ov. Nex  density functi

2 2 2

1 2
0

( ) ( )t x x u dt  (69) 

We first linearize system (68) and find the optimal control 

and th n t, using on technique 

with ( ) 1,a x  10,  an e 

control in the form of 1 1hu k ,  

using SOSTOOLS. Then, fo ( ) ( ) ( )l hx u u K x Z x  

and defi ial ( )hV x  to be of 4

 1( )

d , find  th

3

selec

1 2( ) ( )b x x x

3 2

2 1 2x k x x

m u

2

3 1 2 4 2k x x k x

r
th-order and ne th

t

e polynom

2

T
Z x x OLS to find 

( ) 0

1 2 0.5

x .

( )V x

 The

( )Z x . Next, let 

n, use SOSTO

( )
T

P x Z x( )P x  so that 

, 1 1
10 20( ) ( ) ( )P x P x P x , and 1

0 ( ) ( ).K x K x  

The optimal c  determ y finding new sets 

of matrices 1 2( ), ( ),P x P x  and ( ),

ontrol is then ined b

K x  iteratively, using 

SOSTOOLS, that would satisfy the inequality constrain

(63). After 14 iterations, the final control is 
2
1 2

  

Figure 2 shows the results of the proposed algorithm for 

.  

ts 

3
1 2 1

2 3

( ) 2.414 2.414 0.527 0.235u x x x x x x

1 2 20.157 0.211x x x
(70) 

(0) [ 3,2]x

 

Figure 2. Solutions of the proposed algorithm 

equently, the proposed 

procedure results in an approximate global optimal control 

y, Pasadena, CA, 2000.  

loszek, R. Feeley, W. Tan, K. Sun, and A. Packard,  

. 12-15, 2005. 

, 1992. 

 “Nonlinear Optimal 

on, pp. 1710-

(8), Mar. 2000. 

  

n 

y, 2000.  

 B.M. Lewis, H.T. Tan, “Nonlinear Feedback Controllers 

and Compensators: A State-Dependent Riccati Equation Approach,” J. 

Computational Optimization and Applications, vol. 37, no. 2, pp. 177-

218, 2007. 

VII. CONCLUSIONS 

 In this paper, a computational procedure is developed 

to solve the nonlinear optimal control problem with 

guaranteed local optimality. The procedure begins with 

finding the local optimal control for the linearized system 

and the quadratic part of the given performance index. Then 

a nonlinear stabilizing polynomial control and its 

corresponding Lyapunov function are found using density 

functions. Subsequently, an iterative algorithm is employed 

to find a nonlinear optimal control that minimizes the given 

performance index (cost). Cons

 

ptimality.   with guaranteed local o
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Abstract—We consider a star-shaped network with N strings
that are coupled at one end and subject to a feedback control at
the other end. Each feedback control is switched on and off by
a time-dependent switching signal. We provide conditions on the
switching laws that guarantee the exponential decay to zero of
the system velocity. These sufficient conditions for stability ensure
that at each moment in time only one wave arrives at the coupling
note of the network or, alternatively, that at each moment in time
only one wave is reflected at the controlled ends.

I. INTRODUCTION

We consider a star-shaped network of N strings of finite

length that are governed by the wave equation. At the boundary

point zero the strings are coupled. At the other end of each

string a feedback law is prescribed that requires the time

derivative at this point to be proportional to the space derivative

at this point. For a single string, this feedback law has been

considered in [5], and it has been shown that the energy

vanishes in finite time. In [7] it is shown that the result from

[5] is stable in the sense that also with moving boundaries,

the energy is driven to zero in finite time. In this paper we

show that also on the network, the energy is driven to zero in

finite time if the feedback control is active on all N boundary

nodes for a sufficiently long time. Our particular interest in this

paper is the question: What happens if at one of the nodes the

feedback control becomes inactive? This need not be a fixed

boundary node on the whole time interval but the inactivity

may switch between different boundary nodes in time. The

idea is that at each moment, it may happen that one of the

N controlers is inactive, and we still want to have a stable

system.

The boundary control of the wave equation has been studied

by many authors (see e.g. [17], [16], [11], [12], [2], [20]

and the references therein). A problem of optimal switching

boundary control of a single string to rest in finite time has

been considered in [8], where a single string with boundary

control at both ends has been considered and, at each moment,

at most one of the controls is allowed to be active. The

corresponding problem for the heat equation has been analysed

in [19] using an adapted adjoint calculus.

Networks of strings have been considered for example in

[14], [15], [1], [13], [18] and an overview is given in [6].

In these works about networks, the nodes where a feedback

control acts on the system are constant during the control

process.

In contrast to this situation, in this paper we consider a

system where these nodes may change as time proceeds. We

are interested in the question: How many feedback controls

must be switched on at each moment in time to achieve

exponential decay? We show that N�1 controls are sufficient.
It is essential that the choice of the inactive control need not

be constant but can vary in a quite general way with time.

In a similar spirit, the notion on how often the control

should be active in order to stabilize a string (with interior

damping) was studied in [9]. Analogous questions have been

addressed in [3], [4] for finite dimensional systems.

This paper has the following structure: First we define the

problem of switching feedback boundary stabilization of a

network of strings. Then we state our main results, which

are two sufficient conditions for exponential decay of the

derivatives in our system. First we state a backwards in time

condition and then we state a forward condition.

For the proof of the backwards condition, we transform

the initial boundary value problem in such a way that we can

state it in terms of Riemann invariants. We show that if at each

moment in time only one wave arrives at the coupling note of

the network, the partial derivatives of the solution go to zero

exponentially fast. This is the case if at each moment, at most

one of the feedback nodes is switched off.

The proof of the forward condition is stated in the last part

of the paper. It is based upon a Lyapunov function and thus

uses a completely different method.

II. THE SYSTEM

Let N � 3 and consider N strings of length Li > 0 (i 2
{1, 2, . . . , N}). Define L = max{L1, L2, . . . , LN}. Let the
corresponding wave speed c > 0 be given. For i 2 {1, . . . , N}
define the sets Ωi = (0,1)⇥ (0, Li). Define the set

B = {(y
(i)
0 , y

(i)
1 )Ni=1 : ∂xy

(i)
0 2 L1(0, Li), y1 2 L1(0, Li),

i 2 {1, ..., N}, y
(i)
0 (0) = y

(j)
0 (0), i, j 2 i 2 {1, ..., N}}.

For i 2 {1, . . . , N}, let σi : (0,1) ! {0, 1} be a

measurable function. The equation σi(t) = 0 will indicate that

c� VCC 2010 - Aalborg University



at time t the feedback at the end of string i is not active,
whereas σi(t) = 1 means that the feedback is active.

For (y
(i)
0 , y

(i)
1 )Ni=1 2 B we consider the system (S) given

by the equations

v(i)(0, x) = y
(i)
0 (x), x 2 (0, Li), i 2 {1, . . . , N} (1)

v
(i)
t (0, x) = y

(i)
1 (x), x 2 (0, Li), i 2 {1, . . . , N} (2)

v
(i)
tt (t, x) = c2 v(i)xx(t, x), (t, x) 2 Ωi, i 2 {1, . . . , N} (3)

v(i)(t, 0) = v(j)(t, 0), t 2 (0,1), i, j 2 {1, . . . , N} (4)

v(1)x (t, 0) + v(2)x (t, 0) + · · ·+ v(N)
x (t, 0) = 0, t 2 (0,1) (5)

cv(i)x (t, Li) = �σi(t) v
(i)
t (t, Li), t 2 (0,1), i 2 {1, . . . , N}.

(6)

III. MAIN RESULTS

In this section we state the main results of this paper, which

provide conditions on the switching functions σi that guarantee

exponential decay of the derivatives in system (S).

Theorem 1: [Switching feedback stabilization of (S): Back-

ward Condition] Consider system (S) defined in (1)–(6). Let
λ = L/c.
If

N
X

i=1

σi

✓

t� Li

c

◆

� N � 1 almost everywhere on (0,1) (7)

then the system state converges exponentially fast to a constant

state, in the sense that for t almost everywhere on (0,1) we
have the inequality

ess sup{|v
(i)
x (t, x)|, |v

(i)
t (t, x)| : x 2 (0, Li), i 2 {1, ..., N}}

 C exp
⇣

ln(f)
2λ t

⌘

(8)

where f = max{ 2
N
, N�2

N
}. The decay is uniform with respect

to σ, that is the constant C in (8) is independent of the choice

of σ verifying (7).

Proof. The proof is given in Section V.

Theorem 2: [Switching feedback stabilization of (S): For-

ward Condition] Consider system (S) defined in (1)–(6).
If

N
X

i=1

σi

✓

t+
Li

c

◆

� N � 1 almost everywhere on (0,1) (9)

then the energy of the state converges exponentially fast to

zero, in the sense that

E(t) =
1

2

N
X

i=1

Z Li

0

 

v
(i)
t (t, x)2

c2
+ v(i)x (t, x)2

!

dx

satisfies

E(t)  C1 exp (�C2t)E(0), (10)

for some C1, C2 > 0. The decay is uniform with respect to σ

and the initial condition, that is, the constants C1 and C2 in

(10) are independent of (y
(i)
0 , y

(i)
1 )Ni=1 and of the choice of σ

verifying (9).

Proof. The proof is given in Section VI.

Remark. Conditions (7) and (9) in Theorems 1 and 2,

respectively, cannot in general be relaxed by taking N � 2
instead of N � 1. Indeed, let us consider the case in which L1

and L2 are rationally dependent, that is, L1/L2 2 Q. It is well

known that there exist non-constant periodic solutions to the

uncontrolled wave equation on the network (with Neumann

boundary conditions) which are supported on the union of

the first two strings. They are still solutions of (S), therefore,

provided that σ1,σ2 ⌘ 0. We proved the existence of solutions
of (S) with

PN

i=1 σi(t± Li/c) ⌘ N � 2 that do not converge
to any constant function.

IV. TRANSFORMATION OF THE PROBLEM

In this section we solve the initial boundary value problem

(1)–(6) for given initial data. Let (y
(i)
0 , y

(i)
1 )Ni=1 2 B be given.

We write the solution of the wave equation in the form of the

d’Alembert solution

v(i)(t, x) = αi(x+ ct) + βi(x� ct), (11)

which means that we describe our solution in terms of the

Riemann invariants or, in other words, as the sum of travel-

ing waves. For an introduction to waves see [10]. For i 2
{1, . . . , N} the initial conditions (1), (2) yield the equations

y
(i)
0 (x) = αi(x) + βi(x), x 2 (0, Li) (12)

y
(i)
1 (x) = c [α0

i(x) � β0
i(x)], x 2 (0, Li). (13)

Hence we have

y
(i)
0 (x) + (1/c)

Z x

0

y
(i)
1 (s) ds = 2αi(x) � k

(i)
1 , (14)

y
(i)
0 (x) � (1/c)

Z x

0

y
(i)
1 (s) ds = 2βi(x) + k

(i)
1 , (15)

for x 2 (0, Li), where the real constants k
(i)
1 can be chosen

as zero, which implies

αi(x) =
1

2
y
(i)
0 (x) +

1

2c

Z x

0

y
(i)
1 (s) ds, (16)

βi(x) =
1

2
y
(i)
0 (x)� 1

2c

Z x

0

y
(i)
1 (s) ds, (17)

for x 2 (0, Li). These representations imply that α
0
i, β

0
i 2

L1(0, Li). We have shown that if (11) satisfies the initial

conditions (1), (2) then with the normalization k
(i)
1 = 0 (which

is equivalent to αi(0) = βi(0)) equations (16), (17) hold. The
converse also holds: If αi, βi satisfy (16), (17), the initial

conditions (1), (2) are valid for v(i) given by (11).
Writing the boundary condition

cv(i)x (t, Li) = �σi(t) v
(i)
t (t, Li)

in terms of α0
i and β0

i in the two cases σi = 0 and σi = 1,
yields the equation

α0
i(ct) =



σi

✓

t� Li

c

◆

� 1

�

β0
i (2Li � ct) , t 2

✓

Li

c
,1
◆

.

(18)



The node conditions (4), (5) imply that

0

B

B

B

@

β0
1(�ct)

β0
2(�ct)
...

β0
N (�ct)

1

C

C

C

A

= A

0

B

B

B

@

α0
1(ct)

α0
2(ct)
...

α0
N (ct)

1

C

C

C

A

(19)

with the orthogonal symmetric reverberation matrix

A =
N � 2

N

0

B

B

B

B

B

@

1 2
2�N

2
2�N

. . . 2
2�N

2
2�N

1 2
2�N

. . . 2
2�N

...
. . .

...
2

2�N
. . . 2

2�N
1 2

2�N
2

2�N
2

2�N
. . . 2

2�N
1

1

C

C

C

C

C

A

. (20)

Equations (18) and (19), together with the initial conditions

(16) and (17), define α and β uniquely once the switching

laws σi are given. Moreover, for what concerns their regularity,

an induction argument shows that α0
i 2 L1(0,1) and β0

i 2
L1(�1, Li). Let us check that, for α and β constructed in

this way, the functions v(i) obtained through (11) solve system
(S). First we have

0

B

B

B

B

@

1
c
v
(1)
t (t, 0)

1
c
v
(2)
t (t, 0)
...

1
c
v
(N)
t (t, 0)

1

C

C

C

C

A

=

0

B

B

B

@

α0
1(ct)� β0

1(�ct)
α0
2(ct)� β0

2(�ct)
...

α0
N (ct)� β0

N (�ct)

1

C

C

C

A

=

=
N � 2

N

0

B

@

2
N�2

2
N�2 . . . 2

N�2
...

...
...

2
N�2

2
N�2 . . . 2

N�2

1

C

A

0

B

B

B

@

α0
1(ct)

α0
2(ct)
...

α0
N (ct)

1

C

C

C

A

,

which implies the equation v
(i)
t (t, 0) = v

(j)
t (t, 0) for t 2

(0,1) and i, j 2 {1, . . . , N}. Due to the definition of the
set B, this implies that (4) is valid. Moreover, we have

0

B

B

B

B

@

v
(1)
x (t, 0)

v
(2)
x (t, 0)
...

v
(N)
x (t, 0)

1

C

C

C

C

A

=

0

B

B

B

@

α0
1(ct) + β0

1(�ct)
α0
2(ct) + β0

2(�ct)
...

α0
N (ct) + β0

N (�ct)

1

C

C

C

A

=

=

0

B

B

B

B

@

2N�2
N

� 2
N

. . . � 2
N

� 2
N

. . .
...

...
. . . � 2

N

� 2
N

. . . � 2
N

2N�2
N

1

C

C

C

C

A

0

B

B

B

@

α0
1(ct)

α0
2(ct)
...

α0
N (ct)

1

C

C

C

A

,

which implies the equation v
(1)
x (t, 0) + v

(2)
x (t, 0) + · · · +

v
(N)
x (t, 0) = 0 for t 2 (0,1), hence (5) holds.

V. PROOF OF THEOREM 1

We start the proof of Theorem 1 by the following auxiliary

result.

Lemma 3: Assume that condition (7) is satisfied. Then the

following inequality holds for all natural numbers k:

ess sup
s>2kL

max
i2{1,...,N}

{|α0
i(s)|, |β

0
i(�s)|}


p
N fkess sup

s2(0,2L)

max
i2{1,...,N}

|α0
i(s)| (21)

where f = max{ 2
N
, N�2

N
}.

Moreover, for all t � (2k + 1)λ the following inequality
holds:

ess sup{|v
(i)
x (t, x)|, |v

(i)
t (t, x)| : x 2 (0, Li), i 2 {1, ..., N}}

 max{1, c}
⇣

1 +
p
N
⌘

fk maxj2{1,...,N} kα0
j(s)kL∞(0,2L).

(22)

Proof. The idea of the proof is that for all s > 2kL we can
go backwards in (0, s) until a point in the interval (0, 2L) is
reached in at least k steps that are less than or equal to 2L. In
each of these steps, the essential supremum is reduced at least

by a factor f .
This can be seen in the following way. Condition (7) implies

that there exists at most one number k 2 {1, . . . , N} with
α0
k(ct) 6= 0. For the other N�1 dervivatives we have α0

j(ct) =
0, j 6= k. Due to (18), we have the inequality

|α0
k(ct)|  |β0

k(�c(t� 2Lk/c))|.

Due to (19) we have
0

B

B

B

@

β0
1(�ct+ 2Lk)

β0
2(�ct+ 2Lk)

...

β0
N (�ct+ 2Lk)

1

C

C

C

A

= Aw.

If we apply (18) for the time t̃ = t � 2Lk/c, we see that
also the vector

w =

0

B

B

B

@

α0
1(ct� 2Lk)

α0
2(ct� 2Lk)

...

α0
N (ct� 2Lk)

1

C

C

C

A

can have at most one nonzero component.

On account of the definition (20) of the matrix A this yields
the inequality

|β0
k(�ct+ 2Lk)|  f max

l2{1,...,N}
|α0

l(ct� 2Lk)|.

Hence we have the inequality

max
l2{1,...,N}

|α0
l(ct)| = |α0

k(ct)|  |β0
k(�c(t� 2Lk/c))|

 f max
l2{1,...,N}

|α0
l(ct� 2Lk)|.

For s0 almost everywhere in (2L,1) this yields the inequality

max
i2{1,...,N}

{|α0
i(s0)|}  f max

i2{1,...,N}
kα0

i(s)kL∞(0,s0�L̂),

where

L̂ = min{L1, . . . , LN}.



By induction for |α0
i(s)| we obtain the inequality

ess sup
s>2kL

max
i2{1,...,N}

{|α0
i(s)|}  fk max

i2{1,...,N}
kα0

i(s)kL∞(0,2L).

(23)

Due to (19) and the fact that the matrix A is orthogonal we

have

max
l2{1,...,N}

|β0
l(�s)| 

v

u

u

t

N
X

l=1

|β0
l(�s)|2 =

v

u

u

t

N
X

l=1

|α0
l(s)|

2


p
N max

l2{1,...,N}
|α0

l(s)|

hence also the inequality (21) including the factor
p
N for

|β0
i(s)| follows.
If x+ct � 2kL and x�ct  �2kL for all i 2 {1, 2, .., N}

we have

max{|v(i)x (t, x)|, |v
(i)
t (t, x)|}

 max{1, c} [|α0
i(x+ ct)|+ |β0

i(x� ct)|]

 max{1, c}
⇣

1 +
p
N
⌘

fkess sup
s2(0,2L)

max
j2{1,...,N}

|α0
j(s)|.

This implies inequality (22). ⇤

In order to complete the proof of Theorem 1 let us define

ρ(t) as

ess sup{|v(i)x (t, x)|, |v
(i)
t (t, x)| : x 2 (0, Li), i 2 {1, . . . , N}}.

Due to (??) we have

ρ(t)  max{1, c} ess sup{|α0
i(x+ ct)|+ |β0

i(x� ct)| :
x 2 (0, Li), i 2 {1, . . . , N}}.

We claim that ρ satisfies

ρ(t)  C0, t 2 (0, 3λ), (24)

ρ(t)  C1 f
k, t > (2k + 1)λ, k 2 N (25)

with C0 and C1 only depending on the initial condition

(y
(i)
0 , y

(i)
1 )Ni=1 and not on the choice of σ verifying (7).

For x 2 (0, Li), the values of αi(x) are given by (16) and
the values of βi(x) are given by (17). Hence the constant

C⇤ = 2 max{1, c} ess sup{|α0
i(x)|, |β

0
i(x)| :

x 2 (0, Li), i 2 {1, . . . , N}}

only depends on the initial condition and satisfies ρ(0)  C⇤.

For x 2 (Li, 2Li), equation (18) yields the inequality

|α0
i(x)|  |β0

i(2Li � x)|  C⇤/2, x 2 (Li, 2Li).

Hence for all x 2 (0, 2Li) we have |α
0
i(x)|  C⇤/2. Since A

has the matrix norm kAk1 = 3� 4
N
, the node condition (19)

implies that

|β0
i(�ct)| 

✓

3� 4

N

◆

max{|α0
j(ct)| : j = 1, . . . , N} (26)

for t 2 (0,1).
Moreover, due to (18) we have

|α0
i(x)| 

✓

3� 4

N

◆

max{|α0
j(x� 2Li)| : j = 1, . . . , N}

for x > 2Li. Hence, by recurrence, if x < 2kL̂ for some

integer k, then

|α0
i(x)| 

C⇤

2

✓

3� 4

N

◆k�1

.

As a consequence, if t < 2kL̂/c and x 2 (0, Li), then

|α0
i(ct+ x)|  C⇤

2

✓

3� 4

N

◆k

,

|β0
i(x� ct)|  C⇤

2

✓

3� 4

N

◆k

,

where the second inequality uses (26). It follows that

ρ(t)  max{1, c}C⇤

✓

3� 4

N

◆k

, if t < 2kL̂/c.

Now we choose k̄ such that 3L < 2k̄L̂ and set

C0 = max{1, c}C⇤

✓

3� 4

N

◆k̄

.

If t > (2k+1)λ for some integer k inequality (22) implies

ρ(t)  max{1, c}
⇣

1 +
p
N
⌘

max
j2{1,...,N}

kα0
j(s)kL∞(0,2L) f

k

 max{1, c}
⇣

1 +
p
N
⌘

C0 f
k.

Hence we choose

C1 = max{1, c}
⇣

1 +
p
N
⌘

C0.

Since ρ(t) satisfies (24) and (25), it can be bounded from
above by

f�2 max{C0, C1} exp
⇣

ln(f)
2λ t

⌘

. ⇤

VI. PROOF OF THEOREM 2

Let ε > 0 and define, for i = 1, . . . , N ,

Ξi =

8

<

:

x 2 RN :
X

j 6=i

x2
j < εx2

i

9

=

;

.

Hence, Ξi is a cone with axial symmetry with respect to the

axis spanned by the i-th vector of the canonical basis of RN .

Let Ξ = [N
i=1Ξi.

Lemma 4: There exists k1 > 0 depending only on ε such

that, if x belongs to RN \ Ξ, then

min
i=1,...,N

X

j 6=i

x2
j � k1kxk2. (27)

Proof. Let i be the index achieving the minimization in
(27). Since x 62 Ξi, then

X

j 6=i

x2
j � 1

2

X

j 6=i

x2
j +

εx2
i

2
� min

✓

1

2
,
ε

2

◆

kxk2

and the lemma is proved. ⇤

Define Θ as the set of non-negative times t such that
β0(�ct) 2 Ξ.



Lemma 5: Let k2 2 (0,min{2, N � 2}/N). Then, for
every ε > 0 small enough, almost every t 2 Θ and every

i = 1, . . . , N ,

|α0
i(ct)| � k2kα0(�ct)k. (28)

Moreover, for almost every t 2 {τ | τ � 4λ, τ 2 Θ}, either
α0(ct) = 0 or t � 2Li 2 Θ for at most one i 2 {1, . . . , N}
and σl(t� Ll/c) = 0 for every l 2 {1, . . . , N}.
Proof. Let

Υ = {x 2 RN : |xi| � k2kxk for every i = 1, . . . , N}.

In order to prove the first part of the statement, we have

to show that for every ε > 0 small enough and almost every
t 2 Θ, α0(ct) 2 Υ.

Since A is idempotent and because of (19), α0(ct) 2 AΞ
for almost every t 2 Θ. Notice that AΞ is the union of the N
cones with axial symmetry with respect to the columns of A
and with the same aperture as the Ξi’s.

We have to show that for every ε > 0 small enough AΞ is
contained in Υ. It suffices to notice that the boundary of Υ is

invariant by multiplication by a scalar and that the each vector

corresponding to a column of A is in the interior of Υ. (Indeed,
if x is a column of A, then kxk = 1 and |xi| = (N � 2)/N or

|xi| = 2/N .) Then for ε small enough every vector of AΞ\{0}
belongs to the interior of Υ.

As for the second part of the statement, take t 2 Θ such

that t � 4λ and α0(ct) 6= 0. Because of the first part of the
lemma, α0

l(ct) 6= 0 for every l 2 {1, . . . , N}. It follows from
(18) that β0

l(2Ll � ct) 6= 0 and σ0
l(2Ll � ct) = 0 for every

l 2 {1, . . . , N}.
Assume now by contradiction that t�2Li/c, t�2Lj/c 2 Θ

with i 6= j. In particular, both β0
i(2Li � ct) and β0

j(2Lj � ct)
are nonzero. Hence, α0(ct�2Li) and α

0(ct�2Lj) are nonzero.
Since t�2Li/c, t�2Lj/c 2 Θ, we can apply again the first part

of the lemma and (18), deducing that σi(t� (2Lj +Li)/c) =
σj(t� (2Li + Lj)/c) = 0.

t − 2Li/c ∈ Θ

LjLi0

σj(t − Lj/c) = 0

σi(t − Li/c) = 0

t ∈ Θ

σi(t − (2Lj + Li)/c) = 0

σj(t − (2Li + Lj)/c) = 0

t − 2(Li + Lj)/c

t − 2Lj/c ∈ Θ

Fig. 1. Contradiction argument for t− 2Li/c, t− 2Lj/c ∈ Θ.

This contradicts condition (9) when we take as t the time
t� 2(Li + Lj)/c and concludes the proof of the lemma. ⇤

Let us complete the proof of Theorem 2.

The time-derivative of the energy E(t) can be computed
using equations (3)–(6) and is given by

Ė(t) = �1

c

N
X

i=1

σi(t)
⇣

v
(i)
t (t, Li)

⌘2

for almost every t. In particular, E is non-increasing. Notice

that v
(i)
t (Li) = c(α0

i(Li + ct) � β0
i(Li � ct)) (see (11)) and

that α0
i(Li + ct) = 0 if σi(t) = 1 (see (18)). Therefore,

Ė(t) = �c

N
X

i=1

σi(t)βi(Li � ct)2.

Let

F (t) =
N
X

i=1

E

✓

t+
Li

c

◆

.

Then

Ḟ (t)  �c
N
X

i=1

σi

✓

t+
Li

c

◆

βi(�ct)2.

Lemma 4 and condition (9) guarantee that if t 62 Θ, then

Ḟ (t)  �ck1kα0(ct)k2.
On the other hand, according to Lemma 5, for almost every

t 2 Θ such that t � 4λ, either α0(ct) = 0 or for all but possibly
one i 2 {1, . . . , N} we have

Ḟ (t� 2Li/c)  �ck1kα0(ct� 2Li)k2

= �ck1kβ0(2Li � ct)k2

 �ck1|β
0
i(2Li � ct)|2

= �ck1|α
0
i(ct)|

2  �ck1k
2
2kα0(ct)k2.

Let G(t) = F (t) +
PN

i=1 F (t � 2Li/c). Then, for almost
every t � 4λ,

Ġ(t)  �(N � 1)ck1k
2
2kα0(ct)k2, (29)

where we used the inequality (N � 1)k22  1.
Notice that

2(α0
i(x+ ct)2 + β0

i(x� ct)2) =
= (α0

i(x + ct) + β0
i(x� ct))2 + (α0

i(x+ ct)� β0
i(x� ct))2

=
v
(i)
t (t,x)2

c2
+ v

(i)
x (t, x)2.

Thus we have

E(t) 
Z L

0

�

kα0(x+ ct)k2 + kβ0(x� ct)k2
�

dx

=

Z L

0

�

kα0(x+ ct)k2 + kα0(ct� x)k2
�

dx

= c

Z t+λ

t�λ

kα0(cs)k2ds.

If t � 5λ this and (29) imply the inequality

G(t+ λ)�G(t� λ)  �(N � 1)k1k
2
2E(t).

By monotonicity of E and definition of G,

G(t)  (N + 1)F (t� 2λ)  N(N + 1)E(t� 2λ)



so that

G(t+ λ)�G(t� λ)  � N � 1

N(N + 1)
k1k

2
2G(t+ 2λ).

Hence G(t) decays exponentially to zero as t goes to
infinity. Moreover, G(5λ)  N(N + 1)E(0). Since k1, k2,
N and λ do not depend on the initial conditions nor on σ,

we have that G(t)  C1 exp (�C2t)E(0) with C1 and C2

independent of (y
(i)
0 , y

(i)
1 )Ni=1 and of the choice of σ verifying

(9).

Inequality (10) follows and this concludes the proof of

Theorem 2. ⇤

VII. CONCLUSION

For a single string it is well known that a velocity feedback

at one end with a special feedback parameter steers the solution

to a constant state in finite time; the semigroup describing

the corresponding solution is nilpotent. In this paper we

prove that a similar situation occurs for star-shaped networks

with boundary feedback at all boundary nodes: The partial

derivatives of the solution vanish after finite time and the

system state becomes constant.

If the feedback is switched off at one of the boundary nodes

in such a way that at each moment of the delayed time axes

shifted by the corresponding travel time of the signals to the

coupling node at least N�1 of the feedback controls are active,
then the partial derivatives of the solution decay exponentially

fast. Note that the node where the control is switched off need

not be constant but can vary with time.

This result may be interpreted in the following way: In the

boundary feedback stabilization of a star-shaped network the

exponential decay property is not destroyed if at each moment

one of the feedback controllers does not work.

It is an open question whether the corresponding result

holds for a tree-shaped network of strings with control at all

boundary nodes. For the analysis of this problem, the most

promising approach appears to be the consideration of the

dynamics of the energy on the whole tree.
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[6] R. Dáger and E. Zuazua. Wave propagation, observation and control in
1-d flexible multi-structures, volume 50 of Mathématiques & Applica-
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Abstract—The problem of robust controller design under
PWM feedback is discussed in terms of Filippov’s average model
where control variable is a duty ratio function. The proposed
controller is an extension of PI/PID control scheme under PWM
feedback. The presented design methodology guarantees desired
output transient performance indices by inducing of two-time-
scale motions in the closed-loop system. Stability conditions
imposed on the fast and slow modes and sufficiently large mode
separation rate between fast and slow modes can ensure that
the full-order closed-loop nonlinear system achieves the desired
properties in such a way that the output transient performances
are desired and insensitive to external disturbances and plant’s
parameter variations. The method of singular perturbations is
used throughout the paper in order to get explicit expressions
for evaluation of the controller parameters. Simulation results of
tracking control for magnetic levitation system are presented as
an example of the application for the discussed PWM control
design methodology.

I. INTRODUCTION

There are many control systems with pulse-width modula-

tion (PWM) in feedback loop that are widely used in appli-

cations where the most important ones are power converters

and motor control systems [1]-[4]. The great improvement

of power electronic switching device characteristics and the

drastic decreasing of switching device production cost give

a possibility to provide a high sampling frequency in PWM

control systems. Therefore, among various PWM techniques

the principle of equivalent areas [5] is efficiently used where

the continuous-time or discrete-time control algorithms are

designed at the beginning, and then ones should be re-designed

in order to be implemented in a PWM feedback loop [6].

Theoretical problems of stability and oscillations for non-

linear pulse-modulated systems are investigated based on av-

eraging method and Lyapunov function method with help of

V.A.Yakubovich’s frequency theorem in [7], [8].

The existence of an equivalence between sliding modes

of variable structure control and PWM control responses

under the high frequency sampling gives other possibilities

for PWM controller design [9]. It was shown in [10], if PWM

controller is not saturated and the sampling frequency tends

to infinity, then the response of discontinuously controlled

system coincides with Filippov’s average model [11] where

control variable is represented by duty ratio function. Hence,

various type of continuous-time or discrete-time controllers

can be designed based on the Filippov’s average model, for

instance, proportional-integral (PI) or proportional-integral-

derivative (PID) controllers.

Problems of PI (PID) control system analysis and design

are treated in a huge set of publications, for instance, [12],

[13], that are only few ones. For example, the well known

Ziegel-Nichols tuning rules [14] or its various modifications

are widely used for selection of controller parameters. In the

presence of plant uncertainty, in order to fetch out the best

PI and PID controllers in accordance with the assigned design

objectives, a set of tuning rules, identification and adaptation

schemes has been developed [15], [16]. The main disadvantage

for the most part of the existing procedures on PI or PID

controller design is that the desired transient performances can

not be guaranteed in the presence of nonlinear plant parameter

variations and unknown external disturbances.

The objectives of this paper are the analysis and design

of control systems with PWM feedback loop for nonlinear

plant model in the presence of plant’s parameter variations,

and unknown external disturbances. The discussed approach

to controller design is based on the design methodology

presented in [17], that guarantees desired output transients by

inducing of two-time-scale motions in the closed-loop system.

Stability conditions imposed on the fast and slow modes and

sufficiently large mode separation rate between fast and slow

modes can ensure that the full-order closed-loop nonlinear

system achieves the desired properties in such a way that

the output transient performances are desired and insensitive

to external disturbances and plant’s parameter variations. The

stability of fast-motion transients in the closed-loop system is

provided by proper selection of controller parameters, as well

as slow-motion transients correspond to the stable reference

model of desired mapping from reference input into controlled

output. The method of singular perturbations [18]-[23] is used

throughout the paper.

The paper is a continuation of [24] and one is organized as

follows. First, the control design objectives are stated. Second,

the Filippov’s average model for nonlinear nonaffine-in-control

system under high-frequency sampling is introduced. Third, the

generalized structure of feedback controller, which is called as

a universal controller, for nonlinear systems of an arbitrary de-

gree is presented where the proposed controller is an extension

of PI/PID control scheme. Fourth, the two-time-scale motions

analysis of the closed-loop system properties is discussed. Such
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questions as conditions for not saturated behavior of pulse-

width modulator and attenuation of high-frequency chattering

caused by the switching mode of the pulse-width modulator

are addressed as well. Finally, simulation results of tracking

control for magnetic levitation system are presented as an

example of the application for the proposed PWM control

design methodology.

II. CONTROL PROBLEM STATEMENT

Consider the SISO nonlinear system of the following form:

x(n) = f(X,w, u) (1)

where X = [x, x(1), . . . , x(n−1)]T is the state vector and x is

the measurable output of the system (1).

It is assumed that f(X,w, u) is an unknown scalar con-

tinuous bounded function of X , w, and u on a bounded set

ΩX,w,u := ΩX ⇥ Ωw ⇥ Ωu.

Remark 1: The discussed nonlinear system given by (1), in

general, can be nonaffine-in-control system, that is an explicit

inversion of the function z = f(X,w, u) with respect to

control variable u is impossible for given z, x, and w. For

instance, the system given by ẋ = x3 + u(1� u2) is the non-

affine in control one.

Let u(t) is the scalar control variable, where u takes one

of two possible values in Ωu := {u−, u+}.

Assume that the pulse-width modulated control for the

system (1) is defined as the switching function u(t) given by

u =

⇢

u+ for tκ < t  tκ + χ(tκ)Ts

u− for tκ + χ(tκ)Ts < t  tκ + Ts
(2)

where Ts is the sampling period of the pulse-width modulation,

χ is the duty ratio function which takes values in the interval

[0, 1], χ(tκ) is the duty ratio function at the time instance tκ,

tκ = κTs, and κ = 0, 1, 2, . . ..
A control system is being designed so that the condition

lim
t→∞

x(t) = r (3)

holds, where r = const. Moreover, the output transients

of x(t) should have the desired performance indices. These

transients should not depend on nonlinearity of the system (1),

the external disturbance or varying parameter represented by

w(t).
The block diagram of the discussed control system is shown

in Fig. 1, where the plant (P) is represented by (1), the pulse-

width modulator (PWM) is given by (2), and the controller (C)

should by designed later on.

Fig. 1. Block diagram of the control system.

III. CONTROL VIA TIME-SCALE SEPARATION

A. Filippov’s Average Model

Denote

f+(X,w) := f(X,w, u+), f−(X,w) := f(X,w, u−).

Then the system (1)-(2) can be rewritten as

x(n) = νf+(X,w) + (1� ν)f−(X,w) (4)

where ν is defined as the ideal switching function

ν =

⇢

1 for tκ < t  tκ + χ(tκ)Ts

0 for tκ + χ(tκ)Ts < t  tκ + Ts
(5)

Assumption 1: The pulse-width modulator given by (2) is

not saturated, that is the following condition 0 < χ < 1 holds.

Assumption 2: The sampling period Ts is assumed to be

sufficiently small in comparison with time constants associated

with the dynamics of the system (1).

In accordance with Assumptions 1 and 2, by following

to the Filippov’s approach [11], the geometric approach to

PWM control [9], and Theorem A.1 in the paper by [10], the

response of discontinuously controlled system given by (1) and

(2) coincides with Filippov’s average model

x(n) = χf+(X,w) + (1� χ)f−(X,w) (6)

where χ is the duty ratio and χ 2 (0, 1) by Assumption 1.

The closed-loop system properties will be treated below

based on the average model (6), that is rewritten as

x(n) = f−(X,w) + [f+(X,w)� f−(X,w)]χ. (7)

Remark 2: The nonlinear non-affine in control system (1)

with the high-frequency pulse-width modulator (2) yields the

average model (7) which is affine in control system.

B. Control Law

By following to the design methodology [17], [24], consider

the universal controller given by

µq
χ
(q) + dq−1µ

q−1
χ
(q−1) + · · ·+ d1µχ

(1)

= k[F (X, r)� x(n)] (8)

where µ is the small positive parameter, q � n, and

F (X, r) = �
a0n−1

T
x(n−1) � · · ·� a01

Tn−1
x(1) +

1

Tn
[r � x].

The controller parameters a0n−1, . . . , a
0
1, T are selected such

that the polynomial

Tnsn + a0n−1T
n−1sn−1 + · · ·+ a02T

2s2 + a01Ts+ 1 (9)

has the desired root distribution inside the left part of the

s-plane, where roots of the polynomial (9) are defined by

the requirements imposed on the desired output transient

performance indices of x(t) in the system (1).



Remark 3: The control law (8) can be expressed in terms

of transfer functions, that is

χ(s) =
k

µ(µq−1sq−1 + dq−1µq−2sq−2 + · · ·+ d2µs+ d1)

⇥
⇢

[r(s)�x(s)]

sTn
�(sn−1+· · ·+

a02s

Tn−2
+

a01
Tn−1

)x(s)

�

where this controller is proper and one is implemented without

an ideal differentiation of x(t) or r(t) due to q � n.

Remark 4: The conventional PI controller results from (8)

when q = n = 1. The PI controller with an additional lowpass

filtering results from (8) when q > n = 1. The proper PID

controller with an additional lowpass filtering results from (8)

when q > n = 2.

Remark 5: If q � n, then the controller (8) can be rewritten

as the system of state space differential equations given by

U̇χ = AcUχ +Bcx+ Ecr

χ = CcUχ +Dcx
(10)

where Uχ 2 R
q . Note, the relation between the duty ratio

function χ(t) and the control variable u(t) is defined by the

switching function (2).

C. Time-Scale Separation

Consider the closed-loop system equations given by the

average model (7) and controller (8), that are

x(n) = f−(X,w) + [f+(X,w)� f−(X,w)]χ

µq
χ
(q) + dq−1µ

q−1
χ
(q−1) + · · ·+ d1µχ

(1)

= k[F (X, r)� x(n)].

The replacement of x(n) in (8) by the right member of (7)

yields the closed-loop system equations in the form

x(n) = f−(X,w) + [f+(X,w)� f−(X,w)]χ

µq
χ
(q) + dq−1µ

q−1
χ
(q−1) + · · ·+ d1µχ

(1) (11)

+k[f+(X,w)� f−(X,w)]χ = k[F (X, r)� f−(X,w)].

Denote x1 = x, x2 = x(1), . . ., xn = x(n−1), χ1 = χ, χ2 =
µχ

(1), . . ., χq = µq−1
χ
(q−1). Then the closed-loop system

(11) may be rewritten as the following system of singularly

perturbed differential equations:

ẋi = xi+1, i = 1, 2, . . . , n� 1

ẋn = f−(X,w) + [f+(X,w)� f−(X,w)]χ1

µ χ̇j = χj+1, j = 1, 2, . . . , q � 1 (12)

µ χ̇q = �k[f+(X,w)� f−(X,w)]χ1 � d1χ2

� · · ·� dq−1χq + k[F (X, r)� f−(X,w)]

where two-time-scale motions are forced as µ ! 0. Hence, fast

and slow modes are artificially forced in the closed-loop system

and the time-scale separation between these modes depends on

the parameter µ.

In order to enable usage of the standard technique for two-

time-scale motions analysis, take t = µt0. Hence, from (12),

the system

dxi

dt0
= µxi+1, i = 1, 2, . . . , n� 1

dxn

dt0
= µ[f−(X,w) + [f+(X,w)� f−(X,w)]χ1]

dχj

dt0
= χj+1, j = 1, 2, . . . , q � 1 (13)

dχq

dt0
= �k[f+(X,w)� f−(X,w)]χ1 � d1χ2

� · · ·� dq−1χq + k[F (X, r)� f−(X,w)]

results. By setting µ = 0 we get the system given by

dxi

dt0
= 0, i = 1, 2, . . . , n

dχj

dt0
= χj+1, j = 1, 2, . . . , q � 1 (14)

dχq

dt0
= �k[f+(X,w)� f−(X,w)]χ1 � d1χ2

� · · ·� dq−1χq + k[F (X, r)� f−(X,w)]

Then the inverse replacement t0 = µ−1t yields the fast-motion

subsystem (FMS) given by

µ χ̇j = χj+1, j = 1, 2, . . . , q � 1 (15)

µ χ̇q = �k[f+(X,w)� f−(X,w)]χ1 � d1χ2

� · · ·� dq−1χq + k[F (X, r)� f−(X,w)]

where X and w are treated as the frozen variables during the

transients in (16). Finally, the equations (15) can be rewritten

as

µq
χ
(q) + dq−1µ

q−1
χ
(q−1) + · · ·+ d1µχ

(1)

+k[f+(X,w)�f−(X,w)]χ = k[F (X, r)�f−(X,w)]. (16)

Assumption 3: Assume that k, d1,. . . , dq , u+, and u− are

selected such that the condition

k[f+(X,w)� f−(X,w)] > 0

holds for all (X,w) 2 ΩX,w and the transients of the FMS

(16) are exponentially stable.

The rate of transients in (16) depends on the parameter

µ. Hence, if µ is small enough, then, in accordance with

Assumption 3, after the rapid decay of transients in (16), we

get the steady state (more precisely, quasi-steady state) for the

FMS, where χ̇ = 0 and χ(t) = χ
id(t). From (16), we find

χ
id =

F (X, r)� f−(X,w)

f+(X,w)� f−(X,w)
(17)

where χ
id is exactly the inverse dynamics solution.

Substitution of χ = χ
id into (7) yields the slow-motion

subsystem (SMS) given by

x(n) = F (X, r) (18)

that is the reference model of the desired behavior in the

following form:

Tnx(n) + a0n−1T
n−1x(n−1)

+ · · ·+ a02T
2x(2) + a01Tx

(1) + x = r.



The main qualitative property of the singularly perturbed

systems is that: if the equilibrium point of the FMS is

exponentially stable, then there exists µ∗ > 0 such that for

all µ 2 (0, µ∗) the trajectories of the singularly perturbed

system approximate to the trajectories of the SMS [18], [19],

[20], [21], [22], [23]. So, if a sufficient time-scale separation

between the fast and slow modes in the closed-loop system

and exponential convergence of FMS transients to equilibrium

are provided, then after the damping of fast transients the

desired output behavior prescribed by (18) is fulfilled despite

that f(X,w) and g(X,w) are unknown complex functions.

Thus, the output transient performance indices are insensitive

to parameter variations of the nonlinear system and external

disturbances, by that the solution of the discussed control

problem (3) is maintained.

Let τfms be the time constant of the FMS (16) where

τfms = µ/ q
p
γ and γ = k[f+(X,w) � f−(X,w)]. The

requirement for degree of time-scale separation between the

fast and slow modes in the system (12) can be represented by

τfms  τsms/η (19)

where τsms = T and, for example, η � 10. The inequality

(19) yields the upper bound for µ given by

µ  µmax = T q
p
γmin/η

where

γmin = min
∀(X,w)∈ΩX,w

k[f+(X,w)� f−(X,w)].

D. Control Variable Range

From (17) it follows, the not saturated behavior of χ
id(t)

can be provided by proper selection of the pulse-width

modulator parameters u+ and u−, it means that the value

|f+(X,w)�f−(X,w)| can be increased through the selection

of u+ and u−.

In order to keep the condition χ 2 [0, 1] for the transient

behavior of the FMS (16), the control system should be

supplemented by an additional limiter as shown in Fig. 2.

Fig. 2. Block diagram of control system which is supplemented by the limiter.

E. High-Frequency Chattering Attenuation

The high-frequency chattering, caused by the switching

mode of the pulse-width modulator (2), is induced in the

closed-loop system. The main effect is produced by the sam-

pling frequency ωs where ωs = 2π/Ts. The maximum impact

of the pulse-width modulation on the amplitude of the high-

frequency chattering with the sampling frequency ωs in the

behavior of the output variable x(t) can be estimated by

Ax(ωs) ⇡
2

πωn
s

| f+(X,w)� f−(X,w) | (20)

under assumption that χ = 0.5.

Accordingly, the maximum impact of the pulse-width mod-

ulation on the amplitude of the high-frequency chattering with

the sampling frequency ωs in the behavior of the duty ratio

function χ(t) can be estimated by

Aχ(ωs) ⇡
k

µqω
q−n
s

Ax(ωs) (21)

where q � n.

Note, the accuracy of the estimations given by (20) and (21)

increase when ωs ! 1.

From (20) and (21), we have Ax(ωs) ! 0 and Aχ(ωs) ! 0
as Ts ! 0. Hence, the high-frequency chattering attenuation

can be provided in the closed-loop system when Ts ! 0.

The effect of the generated high-frequency harmonics and

subharmonic of unknown frequencies can be neglected in

comparison with the effect of the sampling frequency ωs due

to a low-pass filtering property of the system (1).

Remark 6: From (21) it follows, the high-frequency chat-

tering of the duty ratio function χ(t) can be reduced without

decrease in Ts, by increasing q in comparison with n.

IV. EXAMPLE: CONTROL OF MAGNETIC LEVITATION

SYSTEM

A. Model of Magnetic Levitation System

In this section the problem of tracking control for magnetic

levitation system is discussed as an example of the application

for the presented above PWM control design methodology.

Let us consider a simplified model of the magnetic levitation

system given by the following differential equations [25]:

ẋ1 = x2

ẋ2 = ga �
1

M

x2
3

x1
(22)

ẋ3 = �R

L
x3 +

1

L
u

where x1 is the mass position relative to the electromagnet,

x2 is the mass velocity, x3 is the electric current in the

electromagnet coil, ga is the gravity acceleration, M is the

mass, R and L are the resistance and inductance of the

electromagnet coil.

Assume that x1 is the measured output variable and the

scalar control variable u(t) takes one of two possible values

in Ωu := {u−, u+} where the pulse-width modulated control

for the magnetic levitation system (22) is defined as the

switching function u(t) given by (2). Accordingly, from (22)

the Filippov’s average model

ẋ1 = x2

ẋ2 = ga �
1

M

x2
3

x1
(23)

ẋ3 = �R

L
x3 +

1

L
u− +

1

L
[u+ � u−]χ

results. Denote

y1 = x1, y2 = x2, y3 = ga �
1

M

x2
3

x1
. (24)



Assume that the conditions y1 > 0, x3 > 0 hold, then

y3 < ga. (25)

Hence, in accordance with (23)-(25), the Filippov’s average

model can be rewritten as

ẏ1 = y2

ẏ2 = y3 (26)

ẏ3 = f(y1, y2, y3, u
−) + g(y1, y2, y3, u

−, u+)χ

where

f(y1, y2, y3, u
−) =



y2
y1

+
2R

L

�

(ga � y3)�
2
p
ga � y3p
ML

p
y1

u−

g(y1, y2, y3, u
−, u+) =

(�1)2
p
ga � y3p

ML
p
y1

[u+ � u−]

B. Controller for Magnetic Levitation System

In accordance with (8), consider the controller given by

µ3 ...
χ + d2µ

2
χ̈+ d1µ χ̇

= k[�
...
y 1 �

a02
T
ÿ1 �

a01
T 2

ẏ1 +
1

T 3
(r � y1)]. (27)

In order to practical implementation, the discussed control law

(27) can be rewritten in the form given by

χ
(3) + a2χ

(2) + a1χ
(1)

= b3y
(3)
1 + b2y

(2)
1 + b1y

(1)
1 + b0y1 + c0r (28)

where

a2 =
d2
µ
, a1 =

d1
µ2

, c0 =
k

µ3T 3
,

b3 = � k

µ3
, b2 = � ka02

µ3T
, b1 = � ka01

µ3T 2
, b0 = �c0.

Then, from (28), we may get the equations of the controller

in the state space form (10), that are

χ̇1 = �a2χ1 + χ2 + (b2 � a2b3)y1

χ̇2 = �a1χ1 + χ3 + (b1 � a1b3)y1 (29)

χ̇3 = �a0χ1 + (b0 � a0b3)y1 + c0r

χ = χ1 + b3y1.

C. Selection of Initial Conditions

In order to avoid excitation of transients caused by the

initial condition mismatching between (22) and (29), let the

initial conditions of the magnetic levitation system (22) and

the controller given by (29) have been selected such that

the steady-state of the closed-loop system composed of the

Filippov’s average model (23) and controller (29) takes place

when t = 0. Hence, from (23) under assumptions ẋ1(0) = 0,

ẋ2(0) = 0, ẋ3(0) = 0, and y1(0) = x1(0) = x0
1 > 0, it follows

that x2(0) = x3(0) = 0 and

x3(0) =
p

Mgax1(0) (30)

χ(0) =
Rx3(0)� u−

u+ � u−
.

Then, from (29) under assumptions χ̇1(0) = 0, χ̇2(0) = 0,

and χ̇3(0) = 0, the following expressions

χ1(0) = χ(0)� b3y1(0)

χ2(0) = a2χ1(0)� (b2 � a2b3)y1(0) (31)

χ3(0) = a1χ1(0)� (b1 � a1b3)y1(0)

result.

D. Simulation Results

The parameters of the discussed magnetic levitation system

(22) are taken from [25] where we have

M = 0.1 kg, ga = 9.8m/s2, R = 6Ω, L = 0.1H.

Assume that the pulse-width modulated control is defined by

(29) with the switching function u(t) given by (2) where

Ts = 0.006 s, u+ = 2.2V, u− = 0.2V.

The controller parameters are selected as

T = 0.1 s, a01 = a02 = 3, d1 = 15,

d2 = 8, µ = 0.0067 s, k = �0.015

The initial conditions for numerical simulation are selected in

accordance with (30) and (31) where x1(0) = 0.07m.

The simulation results of the closed-loop magnetic levi-

tation control system (22), (29) with the switching function

(2) are shown in Figs. 3–5. The simulation results confirm

the presented above analytical investigations. In particular,

the transient response of x1(t) coincided with the transient

response of the reference equation assigned by

T 3...
x1 + a02T

2ẍ1 + a01T ẋ1 + x1 = r.

From (20) and (21), we have Ax(ωs) ⇡ 10−6 and Aχ(ωs) ⇡
0.0524. One can see, the calculated value of Aχ(ωs) coincided

with the high-frequency chattering of the duty ratio function

χ(t) shown in Fig. 5.

Fig. 3. Plots of r(t) and x1(t) in the system (22), (29) with the switching
function (2) where t ∈ [0, 2] s.



Fig. 4. Plot of u(t) in the system (22), (29) with the switching function (2)
where t ∈ [1.7, 1.78] s.

Fig. 5. Plots of χ(t) in the system (22), (29) with the switching function
(2) where t ∈ [0, 2] s.

V. CONCLUSION

The main advantage of the discussed singular perturbation

technique for control system analysis and design is that the

parameters of the controller for nonlinear systems in the pres-

ence of a pulse-width modulation in feedback loop can be ana-

lytically derived in accordance with such indirect performance

objectives as the desired root placement of the reference model

characteristic polynomial, while the desired root distribution

is defined by such direct output performance objectives as

settling time and overshoot. The application of the singular

perturbation technique in the presented design methodology

allows to get desired output transient performance indices for

nonlinear systems under uncomplete knowledge about external

disturbances and plant’s parameter variations.

The next step of investigation will be an implementation

of the discussed magnetic levitation control system in an

experimental prototype in the laboratory.
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Abstract—In this paper we consider the robust controller
synthesis problem for a group of identical agents which have
to fulfill a common goal. To achieve this, the agents have the
capability to communicate with each other. The communication
structure is modeled as a directed graph and is affected by time
delays and changes in the communication topology. These time
delays differ depending on whether they affect also an agent‘s own
states and not only the communicated states of the other agents.
For both cases, a synthesis method that guarantees stability of the
formation is proposed. The design of a controller that guarantees
stability in the face of self-delays is the main contribution of
this paper and an extension to previous work. A comparison of
the controller design method for communication delays with and
without self-delays has been carried out by a simulation of a
formation flight of quad-rotor helicopters.

I. INTRODUCTION

The problem of developing cooperative control strategies

for multi-agent systems consisting of identical agents has

received considerable interest in the control community over

the last several years due to its broad applications in mobile

robotics, autonomous underwater vehicles, automated highway

systems, microsatellite clustering, unmanned aerial vehicles,

etc. [1], [2], [3], [4]. In all these applications it is important to

design appropriate control strategies based on local information

such that the overall goal of the multi-agent system can be

fulfilled. To obtain the required information from other agents,

communication has to be considered as a necessary part in real

applications and has to be taken into account in the control

strategy.

There are two important aspects of communication which

shall be examined here. First, there is the effect of changing

communication topologies due to range limitations, obstacles,

packet losses or failures of the communication equipment.

Another aspect is the delay introduced by communication over

a certain channel. Since the aspect of changing communication

topologies has already been covered in previous work [5],

[6], in this paper we will concentrate on communication time

delays. A lot of research effort has been directed to the study

of communication delays. Multi-agent systems consisting of

single integrator agents were considered in [7], [8], [9]. But

also higher order agent dynamics were considered in [10], [11],

[12], [13]. In contrast to these works and a previous result

obtained in [6], in this paper the effect of two implementations

of time delays shall be analysed and a local controller synthesis

method taking these two different time delays into account

is proposed. In the first case, the time delay only affects the

states of other agents, such that the formation error signal will

be composed of the difference of an agent‘s actual state and

the delayed transmitted outputs of the other agents. However,

in practice it is more realistic to consider the formation error

as the difference between one agents‘ delayed outputs and the

delayed outputs of the other agents which are delayed by the

same amount. In both cases the time delays are allowed to be

different. For both implementations the controller synthesis is

carried out using methods from robust control.

This paper is organized as follows. In Section II a review

of the multi-agent system framework is given and the different

implementations of time delays is presented. In Section III

the robust controller design approach for the two different

implementations of time delay is given. Section IV presents

a numerical example applied on a linear time-invariant model

of a quad-rotor helicopter. Section V concludes this paper and

addresses future work.

The following notation will be used throughout the paper:

Ip denotes the p ⇥ p identity matrix; Rp×q , Cp×q are, cor-

respondingly, the sets of p ⇥ q real and complex matrices;
diag (x1, . . . , xn) indicates an n⇥n diagonal matrix with the
elements x1 to xn on the diagonal;⌦ is the Kronecker product;
FL(P (s),K(s)) denotes the lower linear fractional transfor-
mation of P (s) with K(s), see, e.g., [14]. Dτ represents the

delay operator such that Dτv(t) = v (t� τ) for a continuous
function v(t).

II. STABILITY OF THE MULTI-AGENT SYSTEM AND

FORMATION MODELING

In this section a review of the proposed formation control

framework is given and results from graph theory which

are used to model the communication topology are breifly

recalled. Furthermore we will extend the description of the

communication topology by time delays.

A. Description of a Single Agent

We consider a formation of N identical agents which have

the ability to communicate with each other. Each agent can

be modeled as a LTI system and has a two-degree of freedom

controller as shown in Fig. 1. The controller consists of two

components:

© VCC 2010 - Aalborg University



• KL is a feedback controller which is used to internally

stabilize the agents, e.g., in case of loss of all communi-

cation.

• KF (s) is a controller which uses signals that are of
interest on formation level and influences the formation

behaviour.

vi

KF (s)
Agent i

KL

ei

H(s)

ui

ηiP (s)

PF (s)

Figure 1. Single agent and its controller

Here, vi 2 Rp, i = 1, . . ., N , are the transmitted signals that
are of interest for the formation of agents, whereas ηi 2 Rm

are outputs that can be used to stabilize the agent internally.

Considering for example an unmanned aerial vehicle as will

be done in Section IV, the transmitted signals may consist of

the positions in cartesian coordinates of the vehicles whereas

the internal singals may include additional information - such

as angles, velocities or angular velocities. This also reduces

the communication requirements that are needed to maintain

a prescribed formation. The formation-level control error ei 2
Rp will be defined in the next subsection. The control signal

ui 2 Rh is the input for agent i.
The transfer function from ei to vi is H(s). The agents are

defined to be locally stable if the eigenvalues of the system

matrix of H(s) are located strictly in the open left half plane
P := {α|α2C,Re {α} < 0}.

B. Formation-Level Error and Communication Topology

For simplicity we first assume that there are no communica-

tion delays. The formation-level control error shall be defined

as in [2]. It is the equally weighted sum of errors of the

sensed neighbors. The set of sensed neighbors is given as

Ji and consists of all agents k from which agent i receives
information. |Ji| is the cardinality of this set.

ei =
1

|Ji|

X

k∈Ji

eik, (1)

where

eik = (ri � vi)� (rk � vk) = r̄ik � (vi � vk) (2)

is defined as the error between the i-th and k-th agent. The
term r̄ik 2 Rp defines the intended formation of the multi-

agent system and consists of the difference between ri 2 Rp

and rk 2 R
p which are the reference input for agent i and

k, respectively. Note that the signals are weighted equally but
the results in this paper can also be generalized if the weights

in each communication channel are different as long as ei is
normalized.

The communication topology can be represented as a di-

rected graph, where the nodes represent the agents and the

vertices indicate communication links. To formally describe

the communication topology one can use the normalized graph

Laplacian matrix [15] which is defined as

L := [lik]N×N , lik =

8
<

:

1, if i = k
� 1

|Ji|
, k 2 Ji

0, k /2 Ji.

(3)

C. Formation stability

Now we are able to construct the closed-loop formation

shown in Fig. 2. Let L(p) = L ⌦ Ip, r =
⇥
rT1 . . . rTN

⇤T
, e =⇥

eT1 . . . eTN
⇤T

and v =
⇥
vT1 . . . vTN

⇤T
. Using the definition of

the normalized Laplacian one can define r as a reference signal

that provides a commanded value for the outputs of the agents

whereas r̄ can be used as a reference signal for relative errors

of the agents.

e = L(p)ẽ = L(p) (r� v) = r̄� L(p)v, (4)

where ẽ describes an absolute error of the outputs. Since the

r

H(s)

H(s)

-
L(p)

...
ẽ e

e1

eN

v1

vN

v

Figure 2. Closed-loop representation of the formation

normalized Laplacian L is not invertible, there are infinitely

many absolute references r for the same relative reference r̄.

For the closed-loop interconnection of the multi-agent system

given in Fig. 2 we can define stability of the formation.

Definition 1 A multi-agent system is called stable if the system

matrix of the closed-loop transfer function from e to v has all

its poles in the left half plane P .

The closed-loop system PF (s) formed by each agent and its
stabilizing local controller KL shall be described as

ξ̇i = Aξi +Bui

vi = Cξi i = 1, . . . , N
(5)

where A 2 R
n×n, B 2 R

n×h and C 2 R
p×n. ξi 2 R

n

represent the states of an agent. With this definition the

following result is taken from [2], Theorem 3.

Theorem 1 The controller KF stabilizes the closed-loop for-

mation 2 if and only if it simultaneously stabilizes the set of

N systems

˙̃
ξi = Aξ̃i +Bũi

ṽi = λiC ξ̃i i = 1, . . . , N
(6)



where λi denotes an eigenvalue of L. Note that due to the
transformation (e.g., eigenvalue or Schur transformation, see

[2] for details) of the system matrices the states, inputs and

outputs are different from those in (5).

D. Time delay modeling

In this section the modeling of the communication time

delays is presented. First we assume that the communication

time delay between agent i and agent k is τik 2 R+ for

i, k = 1, . . . , N, i 6=k. This means that the ouptut signal from
each agent to itself is not delayed (agents without self-delay,

[13]). The delay-dependent normalized graph Laplacian can be

described as

Ld :=
⇥
ldik

⇤
N×N

, ldik =

8
<
:

1, if i = k
� 1

|Ji|
e−sτik , k 2 Ji

0, k /2 Ji.

(7)

With this definition the error between the i-th and k-th agent
(2) changes to

edik (t) = r̄ik (t)� (vi (t)� vk (t� τik)), (8)

and the closed-loop formation can be shown to be as in Fig. 3,

where G
d
(p) = (IN ⌦ Ip) � L

d
(p) is the normalized adjacency

matrix affected by communication time-delays and augmented

with the number of outputs p.

G
d
(p)

H(s)

H(s)

...

e1

eN

v1

vN

v
IN⌦Ip-

-r eẽ

Figure 3. Formation with communication delays

The main contribution of this paper is an extention to the

previous robust controller design approach given in [5], [6]

to include agents with self-delays. This is a more realistic

assumption in practice because one would not compare the

actual position of one agent with the delayed postion of

other agents which may lead to problems, e.g., concerning the

avoidance of collisions between the agents. In this case the

formation-level control error (2) becomes

esik (t) = r̄ik (t)� (vi (t� τik)� vk (t� τik)). (9)

Note that in both cases the relative reference input is not

delayed since this would not change any of the obtained results.

III. ROBUST CONTROLLER DESIGN

The robust controller design approach which is used here is

proposed in [5] and [6]. In contrast to the methods proposed

in [16] and [17] which consider only state feedback control,

we rely on output feedback. Another distributed controller

design method is proposed in [18] but this approach can be

computationally expensive for large formations or agents with

many states.

First we use a synthesis method already proposed in [5], [6]

and incorporate communication time delays into the frame-

work, see [19]. Then we extend this approach with another

result from robust control theory [20] to stabilize formations

including self-delays which is known to be a more challenging

problem, see [13], [21].

A. Time-Varying Topologies and Communication Delays

In order to synthesize a robust controller we need to

recall that the eigenvalues λi, i = 1. . .N , of the normalized
Laplacian L defined in (3) belong to the set [15]

Λ := {1 + δλ|δλ 2 C, |δλ|1}. (10)

Proof: Communication delays without self-delays influ-

ence only the off-diagonal elements of Ld. In Fig. 3 the

eigenvalues of the normalized adjacency matrix G are mul-

tiplied by a factor e−sτ which means that the magnitude of

the eigenvalues do not change but only the phase according to

the time-delay τ . Therefore all eigenvalues of Ld still belong

to the set defined in (10).

Now we can apply a standard approach from robust control

[14] already applied in [6], [19] and represent the group of N
agents as a single one with uncertainty δλ.

Theorem 2 A controller KF (s) stabilizes the closed-loop

formation in Fig. 3 for any number of agents and any fixed

communication topology if KF (s) stabilizes the following

system Gd(s) (see Fig. 4(a))

˙̃
ξ = Aξ̃ +Bũ

zδ = Cδ ξ̃

ṽ = C ξ̃ +Dδwδ

wδ = δλIpzδ

(11)

for all |δλ|  1, where DδCδ = C.

Consider now a norm bounded uncertainty ∆ 2 ∆

∆ := {∆ |∆ 2 C
q×q, k∆k  1}

acting on Gd(s), wδ = ∆zδ and accounting for the structure of
the uncertainty (i.e., ∆ = δλIp) the following theorem enables
the controller design using µ-synthesis with static D-scaling.

Theorem 3 A controller KF (s) stabilizes the closed-loop

formation in Fig. 3 for any number of agents and any fixed

as well as time-varying communication topology with any

time-varying communication delays if there exists an invertible

matrix Dd 2 R
p×p such that

kDdT d(s)Dd−1

k∞ < 1,

where T d(s) = FL

�
Gd(s),�KF (s)

�
as shown in Fig. 4(a).

The lengthy proof of this theorem is presented in [19], Theo-

rem 3 and is omitted here due to space limitations.
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ṽ
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δλIp
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ũ
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wδ zδzδwδ

ũ

Figure 4. LFT interconnection for robust stability design

B. Incorporating Self-Delays

In this section we show the main result of this paper:

how to incorporate self-delays in the presented framework and

design a controller that guarantees stability of the formation.

In contrast to Section III-A we use (9) to incorporate self-

delays into the framework. Here we assume that the time

delays are uncertain and may vary within a given range to

be upper-bounded and this upper bound is considered to be

known. Furthermore, we assume that the difference between

one agent‘s own state and the state of an neighboring agent are

delayed by the same amount. In practice this can be achieved if

the communicated outputs of the agents include a time-stamp.

Then the time delays can be modelled as an output complex

multiplicative uncertainty where the tightest bound l(ω) of the
multiplicative uncertainty weight can be described as [22]

l(ω) =

⇢ ��e−(jω)τ � 1
�� , 8ω < π/τ

2, 8ω > π/τ.
(12)

For controller synthesis purposes we need to find a ratio-

nal weight Wτ (s) that gives an upper bound for l(ω), i.e.��e−(jω)τ � 1
�� < |Wτ (s)|. One easy way is to model the time

delay as a first order weight Wτ (s) given in Appendix A. In
Fig. 5 the irrational bound for the time delay and the first-order

approximation is shown. One can see that the first order weight

is very close to the irrational bound at low frequencies. At

high frequencies there is a bigger difference but it has already

been shown in [22] that Wτ (s) is a simple and reasonably
good approximation of the time delay. The next theorem is

adapted from Theorem 2 and a direct result of including

the communication time delays with self-delays in the output

channels ṽ. Then the output equation in (6) changes to

ṽi = λiDτikIpC ξ̃i

= DτikIpCξi + δiDτikIpCξi.
(13)

Following the same resoning as in Theorem 2 we are now

ready to describe the group of N agents as a single one, now
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Figure 5. Multiplicative weight for time delay uncertainty τ

using δλ as an uncertainty describing the unknown communi-

cation topology and δτ (s) as an uncertainty which corresponds
to the unknown but upper bounded time delay τ .

Theorem 4 A controller KF (s) stabilizes the closed-loop

formation in Fig. 3 and including self-delays for any number of

agents, any fixed communication topology and any fixed time

delay τ if KF (s) stabilizes the following system Gs(s) (see
Fig. 4(b))

˙̃
ξ = Aξ̃ +Bũ

zδ = Cδ ξ̃

ṽ = C ξ̃ +Dδwδ

wδ = δτ (s)Ipzδ + δλIpzδ + δλIpδτ (s)Ipzδ

(14)

for all |δλ|  1, kδτ(s)k∞  1 where DδCδ = C.

Now using the same line of argument as in Theorem 3 and the

results given in [20], the following theorem holds

Theorem 5 A controller KF (s) stabilizes the closed-loop

formation in Fig. 3 for any number of agents and any fixed

as well as time-varying communication topology with any

time-varying communication delays if there exists an invertible

matrix Ds 2 R
3p×3p such that

kDsT s(s)Ds−1

k∞ < 1,

where T s(s) = FL (Gs(s),�KF (s)) as shown in Fig. 4(b).

This theorem leads to a scaled H∞ condition and can be used

for controller synthesis using standard robust control tools.

C. Performance Requirements

As has been shown in [6], stability by itself does not

lead to a satisfactory control scheme. To have a meaningful

formation-level controller, performance requirements have to

be incorporated into the design. In this paper we will use a

mixed-sensitivity approach. The generalized plant G(s) aug-
mented with exogeneous inputs wP and performance outputs

zP is shown in Fig. 6. In this figure, ePF (s) describes a state



space model of a system given in Theorem 1. To construct the

generalized plant, one has to augment Gd(s) or Gs(s) with
sensitivity WS(s) and control sensitivity WK(s) filters. Here
we consider the exogeneous input wP as a reference signal r.
Note the fictitious input wδ which accounts for the time delay

uncertainty and the time-varying communication topology. To

cope with unknown self-delays, we also introduce the filter

Wτ (s) to augment the system Gs(s) (see Fig. 6).

G(s)

ṽ

WK(s)

WS(s)
ũ

wδ

wP

ẽ
-

W
τ
(s)

zP

zδ

zτ

ePF (s)

Figure 6. Generalized plant with additional channels

In this configuration the generalized plant G(s) imposes a
penalty on the relative error ẽ of the agent in the formation but
this can also be modified to establish a penalty on the absolute

error.

IV. NUMERICAL EXAMPLE

This section shows an application of the proposed design

method in Section III. We will both show the robustness

against time delay uncertainties as well as changes in the

communication topology. The first simulation will include

time delays in the communication channel without self-delays.

Unknown but upper-bounded self-delays will be added in the

second simulation example

As an example of a multi-agent system we use a forma-

tion of quad-rotor helicopters. The number of agents in our

simulation is N = 5. The linearized model of the quad-
rotor helicopters has already been introduced in [6] together

with the stabilizing local state feedback LQR controller KL

guaranteeing stability of one quad-rotor in case of a total

communication loss. The formation controller is synthesized

using µ-synthesis with static D-scaling. The sensitivity and
control sensitivity filters and the filter for imposing an upper

bound on the time delay uncertainty are given in Appendix

A. In all simulations the communication topology changes

randomly three times at 25, 50 and 75s. The communication

time delay is assumed to be varying between 0 and 1.5s and it

is assumed that the time delays for every agent are different.

To force the quad-rotors to approach an absolute position we

introduce a target waypoint with no dynamics which is known

to at least one of the quad-rotors. In both simulations we

restrict the figures to show the results only for the x-axis

because there are no remarkable differences compared to the

other axes.

The first simulation uses the controller synthesis approach

suggested in Section III-A which leads to a 19th order con-

troller. Fig. 7 shows the results of the simulation. Although

there are some oscillations at the beginning of the simulation,

the formation remains stable and also reaches the desired

waypoint with a small steady state error. If we introduce even

moderate self-delays (e.g., 0.75s) according to (9) into the

closed-loop formation of quad-rotor helicopters it becomes

unstable.
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Figure 7. Simulated x-Positions of the formation without self-delays using
synthesis method described in Section III-A

To cope with self-delays in the next simulation we apply

the controller synthesis method proposed in Section III-B

which leads to a 22nd order controller due to the introduction

of the first order filter Wτ (s) as an upper bound for the
maximum time-delay τ . Fig. 8 shows the simulation results

of the formation flight example. In this figure one can see

that the controller is able to stabilize the formation despite

changes in the communication topology and communication

time delays. The oscillations which were also present in Fig. 7

can also be observed in this simulation. In addition also the

performance of this controller is slightly worse compared to

the simulation where self-delays were not considered. This can

also be explained intuitively because adding time delays tends

to destabilize and degrade the performance of a system.

V. CONCLUSIONS AND FUTURE WORK

This paper is concerned with the design of robust controllers

for a formation of identical vehicles subject to communication

and self-delays. The main contribution is the local controller

synthesis for agents with self-delays that guarantee robust-

ness against unknown but upper-bounded delays. Our design

method is confirmed in a case study - in a numerical example

a multi-agent system consisting of quad-rotor helicopters shall

perform a formation flight.

In this framework the agents itself are stabilized inter-

nally by a local controller. Stability of the whole formation

is guaranteed by local formation controllers that take into

account time-varying communication topologies and arbitrary

communication time delays. If the communication time delays
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Figure 8. Simulated x-Positions of the formation including self-delays using
synthesis method described in Section III-B

are assumed to be upper-bounded and this bound is known, the

formation controller can also handle self-delays. Performance

requirements are also incorporated into this design using

mixed-sensitivity loop shaping.

Future research will concentrate on enhancing the perfor-

mance of the robust controller design. This may be done

by incorporating a prediction scheme. For this purpose the

predictor then has to be robustified against uncertainties in the

communication time delays.

APPENDIX

The sensitivity and control sensitivity weighting filters are

given as

WS = I3 ⌦

✓
0.333

s+ 0.01

◆
, WK = I4 ⌦

✓
10

s+ 103

s+ 106

◆
.

The filter that describes the upper bound for the time-delay

uncertainty is given as (see Fig. 5)

Wτ = I3 ⌦

✓
3.465τs

τs+ 3.465

◆
.
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Abstract—Let x = (xt)t≥0 be a scalar observed process with
control u = (ut)t≥0 described by the stochastic differential
equation

dxt = ϑxtdt+ utdt+ dwt, t ≥ 0,

driven by the standard Wiener process (wt)t≥0. Assume the
parameter ϑ to be unknown.
The problem solved in this paper is to approximate the process

x to the stable Ornstein-Uhlenbeck process x0 = (x0

t )t≥0 with
the given dynamic parameter a < 0, satisfying the equation

dx
0

t = ax
0

tdt+ dwt, t ≥ 0,

by choosing the control process u.
More precisely, based on continuous observation of x, for given

ε > 0 an adaptive control law uε = (uε

t )t≥0 is constructed, such
that the corresponding observed process xε = (xε

t )t≥0, xε

t =
xt(u

ε) satisfies the following relations

sup
t≥0

E(xε

t )
2
≤ L

and
sup
t≥tε

E(xε

t − x
0

t )
2
≤ ε,

where L is some constant (independent of ε) and tε is an
unboundedly increasing as ε → 0 non-random function.
The first relation ensures the stability of the object xε.
The rate ε

−1 ln ε−1 of increase of tε is obtained.
A similar problem is solved for a stochastic delay differential

equation with an unknown parameter.

Keywords: Adaptive control; continuous-time stochastic

systems; delay equations; unknown parameters

I. INTRODUCTION AND PROBLEM STATEMENT

This paper is devoted to control problems of continuous-

time stochastic processes with unknown parameters. A signifi-

cant progress has been achieved in constructing the regulators

with feedback for stochastic discrete and continuous time

systems with unknown parameters, see e.g. [1],[2],[4]-[8],

[11]-[20] among others. The adaptation to unknown parameters

by using control leads to rather complicate analytical questions.

Therefore it is quite natural to solve first the problem of

estimating the unknown parameters of the object and then to

use these estimators step by step in the algorithm of adaptive

control.

In many cases the control aim can be given as ’a target

inequality’

Q(x, t)  M, (1)

where Q(·, ·) is a destination function, x = (xt) is a controlled
process, M - a (given) threshold quantity, see [7], [8]. It is

obvious, that for uncertainty systems (e.g. for the systems with

unknown parameters) this inequality can be not fulfilled for all

t. In such case the target inequality (1) can be changed by ’the
limit target inequality’

lim
t→∞

Q(x, t)  M. (2)

Thus the control problem of an uncertain object can be

formulated as follows: we have to find a control law which

does not depend on unknown parameters such that the limit

target inequality (1) or (2) is fulfilled (similar problems have

been considered, e.g. in [7] Chap. 6, [8] Chap. 6, [19] Chap.

12, see the references therein as well).

This paper presents an adaptive control method for the

following two problems.

Problem I.

Consider the stochastic differential equation with control

given by

dxt = ϑxtdt+ utdt+ dwt, t � 0. (3)

Here (wt)t≥0 denotes a realvalued standard Wiener process on

some probability space (Ω,F , P ) with respect to a filtration
F = (Ft, t � 0) from F . We shall suppose in the sequel, that
the initial value x0 is zero mean Gaussian and F0-adapted.

The control function (ut)t≥0 is supposed to be (Ft)-adapted
and satisfying for some constant K the inequalities |ut| 

K · |xt|, t � 0 (this condition ensures the existence of a strong
solution of the equation (3)).

The parameter ϑ is supposed to be unknown but from the

interval [ϑ0,ϑ1], where ϑ0, ϑ1 are known numbers. Obviously,

the process x can be unstable.
Consider the problem of approximation of the object

x = (xt)t≥0 to the stable Ornstein-Uhlenbeck process x
0 =

(x0
t )t≥0 (called a reference process) with a given dynamic

parameter a < 0 satisfying the equation

dx0
t = ax0

tdt+ dwt, x0
0 = x0, t � 0. (4)

It is clear, that in the case of known parameter ϑ the control

law of the form

ut = (a� ϑ)xt, t � 0 (5)

c� VCC 2010 - Aalborg University



transform the equation (3) to (4) exactly.

It should be noted, that the linear structure (with respect to

x) of the control function is usually used for quadratic type
criteria. We shall use the quadratic cost criteria of the control

performance as well, see formulae (7) and (8) below. Thus

it is natural to use the function (5) for the case of unknown

parameter ϑ with some non-anticipative estimator ϑ̂t instead

of ϑ :

ut = (a� ϑ̂t)xt, t � 0. (6)

Our main purpose is to obtain for a given positive ε a control

law uε = (uε
t )t≥0 from the admissible set of controls u =

uε of the type (6) with a Ft-adapted dependent of ε process

(ϑ̂ε
t )t≥0, ϑ̂

ε
t 2 [ϑ0,ϑ1], such that the corresponding observed

process xε = (xε
t )t≥0, x

ε
t = xt(u

ε) is stable in the following
sense

sup
t≥0

E(xε
t )

2  L, (7)

where L is some constant (independent of ε), and approximate
the reference process x0 in the following way

sup
t≥tε

E(xε
t � x0

t )
2  ε. (8)

Here tε is an unboundedly increasing as ε ! 0 non-random
function with a known rate of increase if ε decreases to zero.

Problem II.

Consider the stochastic delay differential equation with

control given by

dxt = ϑxt−rdt+ utdt+ dwt, t � 0. (9)

We shall suppose in the sequel, that the parameters ϑ, and
r > 0 are real numbers; the initial process x(0) = (x0(s), s 2
[�r, 0]) also defined on (Ω,F , P ) is cadlag and all x0(s), s 2
[�r, 0] are zero mean Gaussian and F0�adapted.

The parameter ϑ is supposed to be unknown but such that

ϑ 2 [ϑ0,ϑ1], where ϑ0, ϑ1 are known bounds. The parameter

r is known.
Consider the problem of approximation of the object (9)

to the stable process x0 = (x0
t )t≥0, satisfying the following

stochastic delay differential equation with given dynamic pa-

rameters a and b :

dx0
t = ax0

tdt+ bx0
t−rdt+ dwt, t � 0 (10)

and with the initial process x(0).
Similar to Problem I we will use the obvious structure of

the non-adaptive control law of the form

ut = axt + (b� ϑ)xt−r, t � 0

for the construction of an adaptive one:

uε
t = aεtxt + (b� ϑ̂ε

t )xt−r, t � 0, (11)

where bounded Ft-adapted functions aεt and ϑ̂ε
t 2 [ϑ0,ϑ1],

t � 0 are such that the corresponding observed process xε

should satisfy the relations (7) and (8) with an unboundedly

increasing as ε ! 0 non-random function tε.

The method used for solving both problems can be roughly

described as follows.

First we shall construct an increasing sequence of stopping

times and construct corresponding sequential maximum likeli-

hood estimators of the parameter ϑ calculated at these times.

Secondly we define, using these estimators, a piecewise

constant function ϑε = (ϑε
t )t≥0 (and (aεt ) for Problem II) and

a corresponding control function uε of the type (6) (and (11)).

It should be noted that an analogue method of parameter

estimation was used in adaptive control and non-parametric es-

timation problems for discrete-time systems, see, for example,

[21]-[24].

II. MAIN RESULTS

A. Construction of the control law for Problem I

We shall define a control law satisfying (7) and (8) as

follows.

Let (cn,ε)n≥0 be unboundedly increasing sequences of pos-

itive numbers, satisfying some special conditions (an example

see after Corollary 2.1) and (τn,ε)n≥0 be the sequences of

stopping times

τn,ε = inf{T > 0 :

T
Z

0

(xε
t )

2dt = cn,ε}, n � 0.

Define a sequence of sequential estimators (ϑ̃n,ε)n≥0 of the

parameter ϑ as

ϑ̃n,ε =
1

cn,ε

τn,ε
Z

0

xε
t (dx

ε
t � uε

tdt), n � 0

and the piecewise-constant function (ϑε
t )t≥0 :

ϑε
t =

⇢

ϑ1, 0  t < τ0,ε,
ϑn,ε, τn,ε  t < τn+1,ε, n � 0

with

ϑn,ε = (ϑ̃n,ε � ϑ1) � ϑ0, n � 0.

Here and in the sequel a � b =min(a,b), a � b =max(a,b).
From the definition of the sequential plans (τn,ε,ϑn,ε), n �

0 of estimation of the parameter ϑ it follows that all the

stopping times τn,ε are almost surely finite and according to

the Burkholder-Gundy inequality with the smallest coefficient

C(θ) = (8θ)θ (see, e.g. [3], [26]), for every θ � 1 and n � 0
we have

E|ϑn,ε � ϑ|2θ  c−2θ
n,ε E

0

@

τn,ε
Z

0

xε
tdwt

1

A

2θ

 C(θ)c−θ
n,ε. (12)

As the control law uε we define

uε
t = (a� ϑε

t ) · x
ε
t , t � 0. (13)

Our aim is to show that inserting uε
t from (13) into (3) the

inequalities (7) and (8) are ensured.



To this end we decompose xε
t � x0

t into two parts:

xε
t � x0

t = ∆
ε
t + δεt , t � 0 (14)

and derive upper bounds for the second moments of ∆ε
t and

δεt . Here
∆

ε
t = yεt � x0

t , ∆
ε
0 = 0,

δεt = xε
t � yεt , δε0 = 0, t � 0

and yε = (yεt )t≥0 is given by the SDE

dyεt = Aε
ty

ε
t dt+ dwt, yε0 = x0.

The auxiliary process (Aε
t )t≥0 is defined in a somewhat

complicate way to ensure the desired estimators for (∆ε
t ) and

(δεt ).
First we choose a piecewise-constant function (γε

t )t≥0 as

follows:

γε
t =

⇢

ϑ1 � ϑ0, 0  t < τ0,ε,
ε1/2γn,ε, τn,ε  t < τn+1,ε, n � 0,

(15)

where (γn,ε)n≥0 is a decreasing sequence of non-random

positive numbers, ε > 0.
Without restriction of generality we choose a number ε∗0

such that for all ε  ε∗0 the following inequalities hold

ε1/2γ0,ε  π(ε) < �a, (16)

where π(ε) = (ln(e + ε−1))−1.
Now define the auxiliary process (ϑ

ε

t )t≥0 by ϑ
ε

t = ϑ � ϑε
t

and introduce (Aε
t )t≥0 and (Bε

t )t≥0 by

Aε
t = a+ ϑ

ε

t · χ{|ϑ
ε

t |≤γε

t
}, Bε

t = ϑ
ε

t · χ{|ϑ
ε

t |>γε

t
}, t � 0,

where χ{a<b} = 1 if a < b and 0 otherwise.
By the definition, for the processes (∆ε

t ) and (δεt ) the
following equations hold

d∆ε
t = Aε

t∆
ε
tdt+ bεtx

0
tdt, t � 0, (17)

where bεt = ϑ
ε

t · χ{|ϑ
ε

t |≤γε

t
}, and

dδεt = Aε
tδ

ε
t dt+Bε

t x
ε
tdt, t � 0. (18)

Note, that according to the condition (16) and the definitions

of (Aε
t ) and (ϑε

t ), the process (A
ε
t ) is, for ε  ε∗0 uniformly

bounded from above

Aε
t  �aε, t � 0,

where aε = �(a + π(ε)) is positive. As follows, the funda-

mental function Ψε(s, t) = e

t
R

s

Aε

l dl

of the processes (17) and

(18) can be estimated from above:

Ψε(s, t)  e−aε(t−s), 0  s  t. (19)

To prove (7) and (8) we can derive, using (19), estimators

of the second moments of the processes (∆ε
t ) and (δεt ).

Define for every θ � 1 the numbers

C
0

x(θ) = sup
t≥0

E(x0
t )

2θ, C0
x(θ) = sup

t≥0
E(x0

t )
2θ,

C(θ, ε) =
2

µ4
εa

ε
· (

2

3
C

2

θ

1 (θ) + C
2

θ

2 (θ)),

C1(θ) =
1

2

✓

32(ϑ1 � ϑ0)θ

a2

◆θ

· C
0

x(θ),

C2(θ) =
1

4

✓

4(ϑ1 � ϑ0)

a2

◆θ

· (C
0

x(2θ) + Ex4θ
0 ),

f0 = �
1

2(a+ ϑ� ϑ1)
, µε = f0 · π(ε),

t̃ε = [c0,ε · (f0 � µε)
−1] � [8(aε)−1],

where c0,ε is a special chosen number;
for t � t̃ε and θ > 2 the function

∆(t̃ε, t, θ) =
1

aε
· (C0

x(
θ

θ � 2
))

θ−2

θ ·

·{
1

aε
(ϑ1 � ϑ0)

2e−aε(t−t̃ε) +
C(θ, ε)

t2
}.

Set the number

λ0 = 8ef−1
0 a−2 · (Ex2

0 �
1

2a
) (20)

and define the time

tε = inf{t � t̃ε : ∆(t̃ε, t, 2π
−1(ε))  π2(ε) · ε}. (21)

Theorem 2.1: Let uε be a control law of the object (3) as

well as the number λ0 and the time tε are defined by the
formulae (13), (20) and (21) respectively.

Then for the object (3) for ε small enough the relations

sup
t≥0

E(xε
t )

2  L

and

sup
t≥tε

E(xε
t � x0

t )
2  ε

are fulfilled. The time tε has the following rate of increase

ε · [tε � λ0 · ε
−1 ln ε−1] = O(1) as ε ! 0. (22)

Corollary 2.1: Using the definition of the stopping time

τ0,ε and Theorem 2.1 the following limiting relation can be

proved:

lim
ε→0

τ0,ε

tε
= 1 a.s.

Example 2.1: The sequences (γn,ε) and (cn,ε) can be taken
as follows:

γn,ε = γ0,ε · χ{n=0} + γ1,ε · n
−ρ · χ{n≥1},

cn,ε = c0,ε · χ{n=0} + c1,ε · n
α · χ{n≥1},

where γ0,ε, γ1,ε, c0,ε and c1,ε are some special chosen numbers
and α > 2ρ > 0.
Remark 2.1: The time t̃ε depends on the unknown param-

eter ϑ and can be estimated from above, using the inequality

f0 �
1

2(ϑ1 � ϑ0 � a)
, by the known time tε � t̃ε defined as

tε = [2(ϑ1 � ϑ0 � a)c0,ε · (1� π(ε))−1] � [8(aε)−1].



Thus the relation (8) for the object (3) is fulfilled for the known

time tε defined in (21) with tε instead of t̃ε.
In this case the following limiting equality holds true:

ε · [tε � λ1ε
−1 ln ε−1] = O(1) as ε ! 0,

where λ1 is a known number:

λ1 = 16(ϑ1 � ϑ0 � a)ea−2 · (Ex2
0 �

1

2a
).

B. Construction of the control law for Problem II

Consider the process of the type (9)

dxε
t = ϑxε

t−rdt+ uε
tdt+ dwt, t � 0

with a control function uε, for which we shall prove that (7)
and (8) hold, defined as follows.

It should be noted that solutions of SDDE’s have essentially

more complicate asymptotic behavior in comparison with

linear SDE’s, see [9]. Thus, in particular, the adaptive control

algorithm, constructed similar to the previous section II-A for

the system without delay is more difficult for investigation.

Let (c̃n,ε)n≥0 be an unboundedly increasing sequence of

positive numbers, satisfying some general conditions and τ̃ε =
(τ̃n,ε)n≥−1 be the sequence of stopping times

τ̃n,ε = inf{T > 0 :

T
Z

0

(xε
t−r)

2dt = c̃n,ε}, n � 0, τ̃−1,ε = 0.

Define the sequence (ϑ̃n,ε)n≥0 of sequential estimators of

ϑ by

ϑ̃n,ε =
1

c̃n,ε

τ̃n,ε
Z

0

xε
t−r(dx

ε
t � uε

tdt), n � 0

and the sequence (ϑn,ε)n≥0 :

ϑn,ε = (ϑ̃n,ε � ϑ1) � ϑ0, n � 0.

Define b̃(ϑ) = b + ϑ � ϑ, ϑ =
ϑ0 + ϑ1

2
. The real number

ãε will be chosen in such a way, that the equation

dxε
t = ãεxε

tdt+ b̃(ϑ)xε
t−rdt+ dwt, 0  t < τ̃0,ε (23)

admits a stationary solution for all ϑ 2 [ϑ0,ϑ1] (and that more-
over we have (ãε, b̃(ϑ)) ! (a, b) if ε ! 0 and ϑ1 � ϑ0 ! 0).
The condition on ãε is difficult because the set of parameters
(a, b), where the equation

dxt = axtdt+ bxt−rdt+ dwt (24)

has a stationary solution is more complicate than in the

Ornstein-Uhlenbeck case I (see, e.g. [9]).

In [9] the region of all parameters (a, b), such that the
process (24) with r = 1 is stable, is characterized by using
a function u(a), a < 1, defined as follows:
introduce a parametric curve (a(ξ), b(ξ)), ξ > 0, ξ 6= π, 2π, . . .
in R

2 by

a(ξ) = ξ cot ξ, b(ξ) = �ξ/ sin ξ,

then b = u(a) is the branch of this curve corresponding to
ξ 2 (0,π).

Define the numbers β1 = b�
ϑ1 � ϑ0

2
, β2 = b+

ϑ1 � ϑ0

2
and the number α for the case β1  r−1 as a solution of the

equation u(αr) = β1r.
Now we are ready to define the parameter ãε as follows:

ãε =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

a · χ{α−π(ε)≥a} + (α� π(ε)) · χ{α−π(ε)<a},
β2  r−1,
a · χ{α∧β2−π(ε)≥a} + (α � β2 � π(ε))·
χ{α∧β2−π(ε)<a}, β1 < r−1 < β2,
a · χ{β2−π(ε)≥a} + (β2 � π(ε)) · χ{β2−π(ε)<a},
β1 � r−1.

It is clear, that (23) with such parameters has a stationary

solution.

For the defined function ãε and the number ϑ, we introduce
the piecewise-constant functions (aεt )t≥0 and (ϑε

t )t≥−r by

aεt =

⇢

ãε, 0  t < τ̃0,ε,
a, t � τ̃0,ε;

ϑε
t−r =

⇢

ϑ, 0  t < τ̃0,ε,
ϑn,ε, τ̃n,ε  t < τ̃n+1,ε, n � 0.

As the control law uε we now define

uε
t = aεtx

ε
t + (b� ϑε

t−r)x
ε
t−r, t � 0. (25)

Similar to the previous section the main idea is to construct

an appropriate decomposition (26) below for the object (9)

with the control process (25).

Define auxiliary processes (Aε
t )t≥0, (b

ε
t )t≥0 and (Bε

t )t≥0

as follows

Aε
t = b+bεt , b

ε
t = ϑ

ε

t−rχ{|ϑ
ε

t−r|≤γ̃ε

t
}, B

ε
t = ϑ

ε

t−rχ{|ϑ
ε

t−r|>γ̃ε

t
},

where ϑ
ε

t = ϑ�ϑε
t , t � �r and (γ̃ε

t )t≥0 is a piecewise constant

function defined similar to (15).

Now we write the equation (9) with the control (25) in the

form

dxε
t = aεtx

ε
tdt+Aε

tx
ε
t−rdt+Bε

t x
ε
t−rdt+ dwt, t � 0.

Define the auxiliary process (aεt )t≥0, a
ε
t = aεt � a as well

as processes (yεt )t≥−r, (∆
ε
t )t≥−r and (δ

ε
t )t≥−r, satisfying the

equations:

dyεt = aεty
ε
t dt+Aε

ty
ε
t−rdt+dwt, yεs = x0(s), s 2 [�r, 0],

∆
ε
t = yεt � x0

t , ∆
ε
s = 0, s 2 [�r, 0],

δεt = xε
t � yεt , δεs = 0, s 2 [�r, 0], t � 0.

Then the observed process xε, similar to the Problem I can

be represented in the form

xε
t = x0

t +∆
ε
t + δεt , t � �r. (26)

By the definition, the processes (∆ε
t ) and (δεt ) satisfy the

following equations

d∆ε
t = aεt∆

ε
tdt+Aε

t∆
ε
t−rdt+ aεtx

0
tdt+ bεtx

0
t−rdt,



dδεt = aεtδ
ε
t dt+Aε

tδ
ε
t−rdt+Bε

t x
ε
t−rdt, t � 0

and are stable.

To prove (7) and (8) we can derive, similar to the previous

section, estimators of the second moments of the processes

(∆ε
t ) and (δεt ).

Similar to Problem I, we have defined a function t∗ε and a
number λ∗

0 satisfying the following relation:

ε · [t∗ε � λ∗
0 · ε

−1 ln ε−1] = O(1) as ε ! 0. (27)

Theorem 2.2: For the constructed uε for some number L∗

independent from ε it holds

sup
t≥0

E(xε
t )

2  L∗

and for ε small enough

sup
t≥t∗

ε

E(xε
t � x0

t )
2  ε.

III. SUMMARY

This paper presents a certainty equivalence design method

with application for two continuous-time stochastic systems

with unknown parameters. The main aim is to approximate

the observed processes by choosing the control process (ut)t≥0

to the stable Ornstein-Uhlenbeck process (Problem I) and to

the stable related process satisfying SDDE (Problem II) in the

sense of the inequality (8). In comparison with the often used

as a criterion limit target inequality (2), we have found the time

tε (ε is a threshold quantity) after that our target inequality (8)
is fulfilled. It is shown that the time tε in (8) has equal rates
of increase ε−1 ln ε−1 in both problems. Moreover, the target

inequality (7), which ensures the stability of the controlled

processes is established.

In Problem I the time tε agrees closely with the time
of obtaining of the first estimator with a given accuracy of

the unknown parameter ϑ of the object for ε small enough.

Moreover, in Problem I this time has known upper bound

and in Problem II the limiting constant λ∗
0 (see (27)) can be

estimated.

The constructed control law works in a real time. Simul-

taneously the problem of estimation with guaranteed in the

sense (12) accuracy of the unknown parameter ϑ in both the

problems is solved.

The method presented in the paper can be easily applied

for the special type multidimensional systems considered, e.g.

in [25]. Similar problem for more general controlled multidi-

mensional systems can be solved using sequential estimators

of unknown parameters, presented in [10].
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[9] A. A. GUSHCHIN, AND U. KÜCHLER, Asymptotic inference for a linear
stochastic differential equation with time delay, Bernoulli, 5(6) (1999),
pp. 1059–1098.
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Abstract—In [1][2], a new systematic design method for
fractional order proportional and derivative (FOPD) controller
is proposed for a class of typical second-order plants. Simulation
and experimental results show that the dynamic performance and
robustness of the position ramp response at normal speed with
the designed FOPD controller outperforms that with the ITAE
optimized traditional integer order proportional and integral
(IOPI) controller. Furthermore, we found that, for the ultra low
speed position tracking with significant friction effect in the same
experimental system in [2], the tracking performance using the
designed FOPD controller is much better than that using the
optimized IOPI controller. In this paper, using the describing
function method and the Bode plots analysis, the observed
advantage of the designed FOPD controller for the nonlinear
low speed position tracking system with friction effect over the
optimized IOPI controller is explained, which is consistently
demonstrated by our extended experimental results.

I. INTRODUCTION

Friction is the force resisting the relative lateral motion of

solid surfaces, fluid layers, or material elements in contact.

This common nonlinear phenomenon has an universal impact

in all regimes of operation in mechanisms and produces unde-

sirable behaviors in control systems such as the tracking errors,

and limit cycles [3]. Especially, in the high-precision position

control systems, the performance is inherently affected by the

friction effect. Compensation for the friction and attenuation

of its effects has been addressed in many papers over the

years [3], [4], [5], [6]. The describing function method (DF)

is widely used as a common tool for the nonlinear system

analysis [7], [8], [9], [10], [11]. In [6], using the describing

function method, different approaches for the prediction of

limit cycles in control systems with friction are discussed

based on a simple stick-slip motion example. The existing

limit cycles cannot be predicted using the describing function

for only the friction nonlinearity part. But the describing

function combining part of the plant with the friction model

can capture the behavior of the friction with zero velocity,

and the limit cycles can be predicted. However, this describing

function depends on three parameters, the amplitude, frequency

and offset, comparing with the normal two parameters, the

amplitude and frequency.

On the other hand, the application of fractional calcu-

lus attracts increasing attentions in control domain in recent

years [12], [13], [14]. It is remarkable to see the increasing

number of studies related to the theory and applications of

fractional order controllers (FOC), especially, the fractional

order PID controller. In [1][2], a new systematic design method

for fractional order proportional and derivative (FOPD) con-

troller is proposed for a class of typical second-order plants.

The tuned FOPD controller can ensure that the given gain

crossover frequency and phase margin are fulfilled, and the

phase derivative w. r. t. the frequency is zero, i.e., phase Bode

plot is flat, around the given gain crossover frequency. So that

the closed loop system is robust to gain variations. Simulation

and experimental results show that the dynamic performance

and robustness of the position ramp response at normal speed

with the designed FOPD controller outperforms that with the

ITAE optimized traditional integer order proportional and inte-

gral (IOPI) controller. Furthermore, we found that, for the low

speed position tracking with significant friction effect in the

same experimental platform in [1][2], the tracking performance

using the designed FOPD controller is much better than that

using the optimized IOPI controller. Based on this favorable

experimental phenomenon, the theoretical analysis is needed

for the clear understanding.

In this paper, using the describing function method and the

Bode plots analysis, the observed advantage of the designed

FOPD controller for the nonlinear low speed position tracking

system with friction effect over the optimized IOPI controller is

explained, which is consistently demonstrated by our extended

experimental results.

II. LOW SPEED POSITION TRACKING USING FOPD AND

IOPI

In this section, the main idea of the FOPD controller design

and the performance comparison with the ITAE optimized

IOPI controller in [1][2] are introduced briefly. The experiment

comparison for the low speed position tracking with significant

friction effect using the designed FOPD and the optimized

IOPI are presented.

A. Introduction to the FOPD Design of the Position Tracking

without Considering the Friction Effect

A new systematic design method for FOPD controller is

proposed for a class of typical second-order plants without



considering the friction effect in [1][2]. The key points of

this FOPD controller systematic design scheme are that the

designed FOPD controller can ensure that the given gain

crossover frequency and phase margin are fulfilled, and fur-

thermore the phase derivative w. r. t. the frequency is zero. So

that, the closed loop system is robust to gain variations.

For FOPD controller design, a class of second-order plants

P (s) is described by (1),

P (s) =
K

s(Ts+ 1)
, (1)

which can approximately model a DC motor position servo

system. The experimental platform of the dynamometer for

the position tracking in [2] was identified as the second-order

system as (1) with K = 1.52 and T = 0.4.
The FOPD controller has the following form of transfer

function,

C(s) = Kp(1 +Kds
µ), (2)

where µ ∈ (0, 1].
Three specifications are proposed to design the FOPD

controller.

(i) Phase margin specification

Arg[G(jωc)] = Arg[C(jωc)P (jωc)] = −π + φm,

where the φm and ωc are the desired phase margin and gain

crossover frequency, respectively.

(ii) Robustness specification to the plant gain variations

(
d(Arg(C(jω)P (jω)))

dω
)ω=ωc

= 0,

with the condition that the phase Bode plot is flat, around the

gain crossover frequency. It means that the system is more

robust to gain changes and the overshoots of the response are

almost the same.

(iii) Gain crossover frequency specification

|G(jωc)|dB = |C(jωc)P (jωc)|dB = 0.

With these specifications, the gain crossover frequency is

set as ωc = 10(rad/s), and the desired phase margin is set
as Φm = 70�. Moreover, the robustness to gain variations
is required. Using the dynamometer experimental model, ac-

cording to the numerical method in [1], we can obtain the

parameters of the FOPD controller as µ = 0.844, Kd = 0.368
and Kp = 13.860. Meanwhile, the parameters of the ITAE
optimized IOPI controller are designed as Kp = 2.6531 and
Ki = 1.1662 [1][15].
Simulation and experimental results show that, the dynamic

performance and robustness of the position ramp response at

normal speed with the designed FOPD controller outperforms

that with the ITAE optimized IOPI controller [1][2].

B. Low Speed Position Tracking Performances with the FOPD

and IOPI Controllers

In the same experimental plant, and using the same designed

FOPD and optimized IOPI controllers as in [1], if the position

ramp is generated by the integration of a normal reference

speed without considering the real friction except the viscous

part, the experimental system can be described in Fig. 1, which

is equal to the system in Fig. 2. If both the nonlinear unmod-

elled friction effect and the viscous friction are considered in

the system model, the closed-loop system can be shown in

Fig. 3 with C as the designed FOPD or the optimized IOPI.

1/s C 1/(Js+B) 1/s

-

+v0 T XVX0

Fig. 1. Position tracking control diagram with constant speed reference
without considering friction

1/s C 1/(Js+B)

-

+v0 T V

Fig. 2. Position tracking control equivalent diagram with constant speed
reference without considering friction

Fig. 3. Position tracking control equivalent diagram with constant speed
reference and friction

When the reference speed used for the position ramp

tracking is reduced to a very small value as 0.05 rad/s,
then, the friction effect is significant and not negligible. So,

Fig. 3 should be used to describe the closed-loop experimental

system. Figs. 4(a), 4(b), 5(a) and 5(b) show speed and position

output of the position tracking with constant ultra low-speed

reference, it is obvious that, the tracking performance using

the designed FOPD in Fig. 4(b) is much better than that using

the optimized IOPI in Fig. 4(a).

III. STATIC / DYNAMIC MODELS OF FRICTION AND

DESCRIBING FUNCTIONS FOR FRICTION MODEL

In this section, the different friction models and two un-

coupling methods of the linear part and nonlinear part are

presented.

A. Static and Dynamic Models of Friction

In general, the friction models are described by a dis-

continuous relation between the relative velocity in between

the surfaces contacted and the resulting friction force. The

friction force can be briefly divided into the traditional static

models which are expressed by the static equations and the

combinations of coulomb friction, viscous friction and so

on [16]. The friction force can be also be modeled by the

dynamic models proposed in the last few decades with the



(a) IOPI (b) FOPD

Fig. 4. Speed output of position tracking with constant speed reference using
optimized IOPI and designed FOPD

(a) IOPI (b) FOPD

Fig. 5. Position output of position tracking with constant speed reference
using optimized IOPI and designed FOPD

differential equations [5][17]. Many models are defined with-

out considering the velocity zero. For this particular velocity,

the friction force depends on the applied force. As presented

in [5], the proposed LuGre dynamic friction model combines

the stiction behavior, i.e., the Dahl effect, with arbitrary steady

state friction characteristics which can include the Stribeck

effect and the zero velocity friction. The typical LuGre model

is useful for various control tasks, and is given by [5],

ż = v −
|v|

g(v)
z, (3)

F = σ0z + σ1ż + σ2v, (4)

σ0g(v) = FC + (FS − FC)e
�(v/vs)

2

, (5)

where the average deflection of the bristles is denoted by z; v
is the relative velocity between the two surfaces; the function

g is positive and depends on many factors such as material
properties, lubrication and temperature; σ0 is the stiffness, and

σ1, σ2 are damping coefficients; FC is the Coulomb friction

level; FS is the level of the stiction force, and vs is the Stribeck
velocity.

B. Describing Functions for Friction Models and Two Uncou-

pling Methods of Linear and Nonlinear Parts

The experimental platform for the position tracking with

consideration of the friction effect is shown in Fig. 3. Using

the describing function method, the transfer function of the

nonlinear block is described by the relationship between the

output response y(t) and the frequency ω. In the output

response, only the first harmonic y1(t) with the same frequency
as that in the input signal is considered,

y1(t) = a cosωt+ b sin(ωt) = c sin(ωt+ ϕ), (6)

where

a =
2

π

Z π

0

y(t) cos(ωt)d(ωt),

b =
2

π

Z π

0

y(t) sin(ωt)d(ωt),

c =
p

a2 + b2, ϕ = arctan(b/a). (7)

The describing function of the nonlinear block can be ex-

pressed by the gain and phase shift between the first harmonic

of the output and the sinusoid input as below,

NI(A,ω) =
c

A
ejϕ. (8)

In order to use the describing function method to analysis

the system performance, we need to get the approximation

closed-loop system with uncoupled linear and nonlinear parts

as in Fig. 6, from the position tracking system with friction

nonlinear effect in Fig. 3. There are two methods for uncou-

pling the linear and nonlinear parts as shown in Fig. 7(a) and

Fig. 7(b). The straightforward way is to treat only the friction

as the nonlinear part, and the other items as the linear part

in Fig. 7(a). Following the analysis in [6], with the simple

example of the stick-slip motion, it can be seen that, the

velocity is the input and the friction is the output for the

describing function analysis.Then, the nonlinear part will not

be affected by the behavior of the friction force with exact zero

velocity. So, the intricate behavior of the friction with zero

velocity is neglected unfortunately. Meanwhile, the Nyquist

curves for the linear and nonlinear parts are plotted in [6]. It

is figured out that there is no intersection which the limit cycle

frequency can be obtained from, for the two curves except the

origin point. So, the analysis with the uncoupling method in

Fig. 7(a) doesn’t predict any limit cycle [6] in spite of the

average velocity v0, frequency ω and amplitude A.
For the other uncoupling method in Fig. 7(b), the force T

is the input and the velocity is the output of the nonlinear

part which includes not only the friction but also the system

dynamic G. In this case, the friction force has the possibility
to counteract the applied force and keep the velocity as zero.

During one period of the sinusoid input, sticking may occur.

Therefore, the essential characteristics of the friction can be

captured in the describing function of the nonlinear part in

Fig. 7(b). This time, a mean value of the force T have to

be included as one of the input parameters for the nonlinear

block [6]. So, this method in Fig. 7(b) are chosen to uncouple

the linear and nonlinear parts of our experimental nonlinear

system. The describing function will hence depend on three

parameters, the amplitude A, the frequency ω and the mean

force T0. The output will be an oscillation with a mean value

different from zero. The describing function under this case

should be notated as below,

N(A,ω, T0) = [|N |eφ, va],

where the |N | and φ are the gain and phase shift of the

describing function, va is the average value of the output

velocity of the nonlinear part.



Fig. 6. Approximation closed-loop system with linear and nonlinear parts

Friction

C1

G

-+ v0

Te
+

-

VF

T

Linear Part

Nonlinear Part

(a) Nonlinear part only with friction

Friction

C1

G

-+ v0

Te+

-

V

Linear Part

Nonlinear Part  

(N)

F

T

(b) Nonlinear part with friction and
system dynamic

Fig. 7. Two methods of uncoupling linear and nonlinear parts

From Figs. 4 and 5, we can see the output signals of the

nonlinear part, using the uncoupling method in Fig. 7(b) with

IOPI or FOPD controller, for the low speed position tracking

in the example introduced in Sec. II. It can be seen that, both

the outputs with IOPI and FOPD have limit cycles.

IV. BODE PLOT COMPARISON WITH IOPI AND FOPD

CONTROLLERS USING DESCRIBING FUNCTION

In order to reveal the potential advantage of the designed

FOPD controller for the nonlinear low speed position tracking

system with friction effect over the optimized IOPI controller,

the Bode plot analysis with the describing function is used.

First, the Bode plots of open-loop transfer functions are

drawn in Fig. 8 using IOPI and FOPD without considering

friction, for the position tracking system. It can be seen

that, when the frequency around the gain crossover frequency,

and ω>0.2rad/sec, the amplitude with FOPD is bigger than

that with IOPI. Meanwhile, the phase delay with FOPD is

much smaller than that with IOPI, which means that the

relative stability of the system is significant improved by the

designed FOPD controller comparing with the optimized IOPI

controller.

Second, for the block diagram as shown in Fig. 7(b), the

mean forces T0IOPI and T0FOPD of the input signals T of the
nonlinear block with IOPI and FOPD are measured as 0.577

and 0.622, respectively. So, the describing function of the non-

linear part can be calculated following the method introduced

in Sec. III-B. Using IOPI with T0IOPI = 0.577 N ∗ m, the
3D/2D Bode plots of the amplitudes and phases w. r. t. ω

and A are drawn in Fig. 9 and Fig. 10, respectively; using

FOPD with T0FOPD = 0.622 N ∗m, the 3D/2D Bode plots

are drawn in Fig. 11 and Fig. 12, respectively. From Fig. 9

and Fig. 11, and their enlarged 2D Bode plots Fig. 13(a) and

Fig. 13(b), it is obvious that, the amplitude with the designed

FOPD is bigger than that with the optimized IOPI, in low speed

position tracking with the limit cycle as shown in Fig. 4(a)

and Fig. 4(b). So, the tracking performance with the designed

FOPD will be better than that with the optimized IOPI. At the

same time, comparing Fig. 10 and Fig. 12, the phase delay

with the designed FOPD is much smaller than that with the

optimized IOPI, thus, the tracking system with the designed

FOPD controller is more stable.

V. EXPERIMENT

In this section, extended experimental tests for the varying

low speed position tracking are presented to validate the

theoretical analysis. This experiment is performed on the same

experimental platform – dynamometer, as in [2].

The varying low speed (±0.05 rad/s) position reference
for tracking is shown in Fig. 14, and it can seen that, the

position tracking performance with the designed FOPD in

Fig. 15(b) is much better than that with the optimized IOPI

in Fig. 15(a). It is more clear to see the difference of the

position tracking performance in Fig 16(a) and Fig 16(b) for

the position tracking errors, which can also be supported by

the speed outputs in Fig 17(a) and Fig 17(b) for the IOPI and

FOPD, respectively.

VI. CONCLUSION

In [2], simulation and experimental results show that the

dynamic performance and robustness of the servo system

tracking the normal speed with a designed FOPD controller

outperforms that with the ITAE optimized IOPI controller. In

this paper, using the describing function method and the Bode

plots analysis, the observed advantage of the designed FOPD

controller in [2] is explained for the nonlinear ultra low-speed

position tracking system with friction effect over the optimized

IOPI controller, which is consistently demonstrated by our

extended experimental results.
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Fig. 15. Position tracking outputs with varying low speed reference using
IOPI / FOPD
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Fig. 16. Position tracking errors with varying low speed reference using IOPI
/ FOPD
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Fig. 17. Speed output with varying low speed position tracking reference
using IOPI / FOPD
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