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Abstract

The use of optical technology can provide unprecedented performance to the genera-
tion, distribution, and processing of microwave. Recently, on-chip microwave photonics 
(MWP) has gained significant interests for its numerous advantages, such as robustness, 
reconfigurability as well as reduction of size, weight, cost, and power consumption. In this 
chapter, we review our recent progress in ultracompact microwave photonic signal pro-
cessing using silicon nanophotonic devices. Using the fabricated silicon waveguide, silicon 
microring resonators (MRRs) and silicon photonic crystal nanocavities, we demonstrate 
on-chip analog signal transmission, optically controlled tunable MWP filter, and ultra-
high peak rejection notch MWP filter. The performance of analog links and the responses 
of MWP filters are evaluated in the experiment. In addition, microwave signal multiplica-
tion and modulation are also demonstrated based on a silicon Mach-Zehnder modulator in 
the experiment with favorable operation performance. The demonstrated on-chip analog 
links, MWP filters, microwave signal multiplication/modulation may help understand on-
chip analog signaling and expand novel functionalities of MWP  signal processing.

Keywords: optical signal processing, microwave photonics, analog transmission, silicon 
photonics, microring resonator, photonic crystal nanocavity, microwave photonic filter

1. Introduction

Silicon photonics has become one of the most promising photonic integration platforms 

owing to its small footprint, low power consumption, and availability of complementary 

metal-oxide-semiconductor (CMOS) fabrication technology for low-cost mass production 
[1–4]. Typical silicon nanophotonic devices include silicon waveguides, silicon microring 

resonators (MRRs), and silicon photonic crystal [5–10], showing unprecedented small size for 
potential large-scale integration [11–16]. The great success of silicon photonics benefits from 
the rapid growth of digital optical communications systems such as high capacity optical 

communications and optical interconnects [4, 17–34].
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It has been proved that photonic systems can be also applied to deliver analog signals and 
process microwave radio frequency (RF) signals in the optical domain, deriving an emerging 

subject called microwave photonics (MWP) [35, 36]. The initial of MWP was for distribut-

ing microwave signal over long distances. However, the applications have evolved dramati-

cally and now include photonic generation of microwave signal [37–40], photonic processing 

of microwave signal [41–50], frequency measurement of microwave signal [51, 52], and so 

on. MWP signal processing is of great importance among these applications. As shown in 

Figure 1, MWP signal processing functionalities include microwave signaling [53, 54], filter-

ing [42, 43, 47], differential [48–50], integral [55, 56], pulse shaping [57, 58], Hilbert trans-

formation [59], arbitrary waveform generation [60–63], frequency multiplication [64, 65], 

beamforming [66, 67], and more.

Traditional MWP signal processing technologies are mainly based on fibered devices. Recently, 
there has been an increasing interest on developing integrated components to realize MWP 
signal processing functionalities. Adopting integrated photonics technologies in MWP signal 

processing will address the issues such as stability and compactness in traditional fiber-based 
devices. Very recently, owning to the advance on silicon photonics, some microwave pho-

tonic devices such as MWP filters [41, 43, 47, 68], on-chip pulse shapers [57, 58], differentiators 
[48–50], and Hilbert convertors [59], and ultra wide band (UWB) signal generators [69] have 

been implemented on silicon on insulator (SOI) platforms. Figure 2 shows the basic schematic 

 illustration of microwave photonic signal processing using a silicon chip. Usually, a laser source 

emits a continuous wave (CW) light. The RF signal is generated using a RF generator. After 
modulation, the RF signal carried by the light carrier is launched to a silicon chip for signal pro-

cessing. After that, a photodiode is used to convert optical signal to RF signal for detection. The 

basic silicon photonic devices for MWP signal processing include silicon waveguide, micro-

disk, microring resonator (MRR), photonic crystal (PhC) nanocavity, Mach-Zehnder modulator 
(MZM), Bragg grating, and more, as shown in Figure 3 [70]. Based on the combination of these 

elementary elements, many complicated MWP processing functionalities can be realized.

In this chapter, we review our recent works in chip-scale microwave photonic signal pro-

cessing. First, we present the progress of on-chip analog signal transmission. We analyze the 

Figure 1. Functionalities classification of MWP signal processing.
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performance of on-chip analog signal transmission using the fabricated silicon waveguide 

and resonators, that is, microring resonators and photonics crystal nanocavities. Second, we 

report the progress of MWP filters, various types of MWP filters are introduced, and the 
impact of optical nonlinearities on MWP filters is also discussed. Finally, we show the results 
of on-chip photonic-assisted microwave signal multiplication and modulation.

2. On-chip analog signal transmission

All the MWP systems are essentially analog links. For an analog optical link, linearity is one 

of the key performance metrics. Traditionally, there are mainly three methods to increase 

the linearity of analog signal transmission in various systems: (1) improving the driving/bias 
schemes or optical structures of the modulators to construct linear or quasi-linear modulators 

[71–74]; (2) using a tunable filter with proper center wavelength and bandwidth to remove 
the unwanted optical carrier and thus rise the linearity of analog links [75, 76]; (3) using 

Figure 3. Some photographs of basic silicon photonic devices for MWP signal processing. (The photograph of Bragg 

grating is reprinted from Ref. [70]).

Figure 2. Schematic illustration of chip-scale microwave photonic signal processing.
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 optical waveguides with extremely low nonlinearity, low-loss and high thermal stability 
for  signal transmission [77]. Integrated silicon photonic devices such as silicon waveguides, 
MRR, microdisk resonators, and PhC cavities have promoted the evolution of on-chip MWP 
signal processing functions due to the high nonlinear effects of waveguides and diverse fil-
tering properties of resonators. However, these characteristics may also degrade analog sig-

nal quality awfully, leading to extra nonlinear signal distortions, which may show different 
properties compared with traditional signal distortions. To investigate the impacts on analog 

optical links induced by the nonlinearity of integrated photonic devices, many interesting 

and meaningful works related to on-chip analog performance have been done recently [53, 

54, 78–81]. In this section, we analyze the performance of on-chip analog signal transmission 
using  silicon waveguide, MRR, and PhC nanocavity.

For an on-chip analog link, silicon waveguide is used for light routing. Compared to fiber-based 
links, the optical nonlinearities induced by the tight light confinement of the silicon waveguides 
may affect the performance of on-chip analog photonic links. So it is essential to experimen-

tally exploit analog signal transmission distortions induced by the integrated silicon waveguide 
for future chip-scale analog systems. The experimental setup for analog signal transmission 
through the fabricated silicon strip waveguide is shown in Figure 4. At the transmitter side, the 
output of an external cavity laser (ECL) is injected to a MZM. Two microwave at frequencies f

1
 

= 1.98 GHz and f
2
 = 2 GHz are combined at the input of MZM. The light source is modulated 

by the two RFs in the MZM. Figure 4(a) and (b)describes the typical RF signals at the input 

and output of MZM. A 1550-nm source emitted from the ECL is modulated by MZM, and then 
amplified by an erbium-doped fiber amplifier (EDFA). A variable optical attenuator (VOA) is 
employed to control the optical input power of the silicon strip waveguide. The analog signals 

are polarization controlled by using a polarization controller (PC), and then coupled into the 
silicon strip waveguide by vertical grating coupler from fiber. For the dimensions confinement 
of the SOI wafer, there is a bending region of the long waveguide and the scanning electron 
microscope (SEM) image of the waveguide bending region is shown in Figure 4(c). Figure 4(d) 

depicts the field distribution of the fundamental mode in silicon strip waveguide calculated 
by using a full-vector finite-element-method software (COMSOL). After transmission through 
the silicon strip waveguide, the analog signal is coupled out from the silicon strip waveguide 

to fiber with the same vertical grating  coupler. An electrical spectrum analyzer (ESA) is used 
to measure the fundamental, second-order  harmonic distortion (SHD), third-order harmonic 
distortion (THD), second-order intermodulation (IM2), and third-order intermodulation (IM3) 
products.

Figure 5 shows the measured signal-to-noise ratios (SNRs) of IM2, IM3, SHD, and THD as a 
function of the silicon strip waveguide length. The waveguide length we fabricated is 1, 3.23, 

5.25, and 7.38 mm, respectively. One can see that the SNRs of distortions have a negligible 
change with the increase of the waveguide length.

Figure 6 shows the measured SNRs of IM2, IM3, SHD, and THD as a function of optical 
input power fed into the silicon strip waveguide. One can see that the SNRs of IM2, IM3, and 
SHD have a negligible change when increasing the optical input power. The SNR of the THD 
gradually increases with the input optical power, which might be due to the relatively high 

sensitivity of THD to the nonlinearity-induced degradation of the silicon strip waveguide.
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We then evaluate the performance of on-chip analog signal transmission in a silicon MRR [53]. 

Figure 7 shows the experimental setup. At the transmitter, the output of an ECL is sent to a 
MZM driven by a 6-GHz RF signal. The analog signal is amplified by an EDFA, polarization 
controlled by a PC, and then adjusted by a VOA. With a vertical grating coupler, the analog 

Figure 5. Measured SNRs of (a) IM2, IM3 and (b) SHD, THD versus waveguide length.

Figure 6. Measured SNRs of (a) IM2, IM3 and (b) SHD, THD versus optical input power.

Figure 4. Experimental setup for analog signal transmission through the silicon strip waveguide. Insets: (a) and (b) 
describe the RF signal at the MZM input and output; (c) is the SEM image and (d) is the simulated mode distribution of 
silicon strip waveguide.
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signal is coupled from fiber to silicon microring resonator. After the transmission through a 
silicon microring resonator, at the receiver, the signal is coupled from the silicon microring 

resonator to fiber with a vertical grating coupler. After being amplified by EDFA and attenu-

ated by VOA, the signal is sent to a photodetector (PD) and then measured by an ESA. The 
insets (a) and (b) in Figure 7 depict the SEM images of the fabricated vertical grating coupler 
and silicon microring resonator. In the experiment, the silicon microring resonator has a reso-

nance wavelength of ~1581.26 nm and a 3-dB bandwidth of ~0.12 nm.

Figure 8(a) and (b) shows the acquired output power of the RF carrier and distortions as a func-

tion of the RF input power at input signal wavelength of ~1581.07 and ~1581.21 nm, respectively. 

Figure 7. Experimental setup for analog signal transmission in a silicon microring resonator. (a) and (b) SEM images of 
the grating coupler and silicon microring resonator, respectively.

Figure 8. Measured output power of RF carrier and distortions as a function of the RF input power at input signal 

wavelength of (a) 1581.07 nm and (b) 1581.21 nm, respectively. The optical power of input signal is −17 dBm.
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The spurious-free dynamic range (SFDR) of the SHD and THD are used to estimate the analog 
link performance. A higher SFDR system facilitates a more linear analog signal transmission. As 
shown in Figure 8(a), for input signal wavelength of 1581.07 nm which is away from the dip reso-

nance wavelength, the output power of RF carrier and distortions after microring change slightly 

compared with those without microring. The resultant SHD and THD SFDR after microring 
almost remain the same as those without microring. As shown in Figure 8(b), for input signal 

wavelength of 1581.21 nm which is close to the dip resonance wavelength, the output power of RF 

carrier decreases while the distortions vary slightly after microring compared with those without 

microring. Hence, the SHD and THD SFDR decrease after the transmission, which is due to the 
notch filtering effect of the silicon microring resonator around the dip resonance wavelength.

To further investigate the analog signal transmission in the 3-dB bandwidth region near 

the resonance wavelength of 1581.26 nm, we change input signal wavelength from ~1581.07 

to ~1581.26 nm with a 0.048-nm spacing. Figure 9(a) plots the relationship between SFDR and 
input signal wavelength at input signal power of 3.5 dBm. One can see two interesting phe-

nomena from Figure 9(a). First, although the minimum optical power transmission wavelength 

(i.e., notch resonance wavelength) is at ~1581.26nm, the worst SFDRs are obtained at ~1581.21 

nm due to the notch filtering effect on the RF carrier sideband. Second, SFDRs at ~1581.12 nm 

achieve maximum values, which can be explained with the fact that the high-order harmonic 
sidebands (output SHD and THD) fall into the 3-dB bandwidth region (close to the notch reso-

nance), while the fundamental frequency sideband (output RF carrier) is away from the notch 

resonance. For low-level input signal power, it is found that the analog signal transmission 

performance through microring resonator is mainly affected by the notch filtering effect. Input 
signal power is also taken into consideration to assess its role in the analog signal transmis-

sion, as shown in Figure 9(b). For relatively high input signal power, it is interesting to note 

that the analog signal transmission might be affected by the nonlinearity-induced resonance 
wavelength shift of the microring with the increase of input signal power.

We further assess the performance of on-chip analog signal transmission using the fabricated 

silicon photonic crystal nanocavities [54]. The designed and fabricated silicon photonic crystal 

nanocavity is shown in Figure 10. The lattice constant (a) is 420 nm, the radius of air holes (r) 

Figure 9. (a) Measured SHD and THD SFDR versus input signal wavelength at input signal power of 3.5 dBm. 
(b) Measured SHD and THD SFDR versus input signal power.
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is 126 nm, and the three air holes adjacent to the cavity are laterally shifted by 0.175a, 0.025a, 

and 0.175a, respectively. In the experiment, the silicon photonic crystal nanocavity has a reso-

nance wavelength of ~1552.99 nm, an extinction ratio of ~18.4 dB, and a 3-dB bandwidth of 
~0.19 nm.

Figure 11(a) and (b)shows the measured output power of the RF carrier and distortions (SHD, 
THD) as a function of the RF input power at input optical carrier wavelength of 1552.83 and 
1552.99 nm, respectively. As shown in Figure 11(a), for input optical carrier wavelength of 

1552.83 nm, the SHD SFDR (~29.8 dB) and THD SFDR (~50.0 dB) degrade slightly. As shown 
in Figure 11(b), for input optical wavelength of 1552.99 nm (i.e., resonance wavelength), slight 

degradations of SHD SFDR (~34.6 dB) and THD SFDR (~52.2 dB) are observed. Actually, 
when the optical carrier is tuned at the resonance wavelength, the modulated optical side-

bands after MZM (RF modulation), which are related to the RF carrier and distortions (SHD, 
THD), are offset from the dip resonance wavelength. As a result, it might not be the worst case 
for analog signal transmission with the optical carrier sitting at the resonance wavelength of 
the photonic crystal L3 resonator.

The influences of the optical carrier wavelength and input optical power on the SHD SFDR 
and THD SFDR are also studied in the experiment. Figure 12(a) shows the dependence of 

SHD SFDR and THD SFDR on the input optical carrier wavelength. Figure 12(b) shows the 

dependence of SHD SFDR and THD SFDR on the optical input power. The obtained results 
shown in Figures 11 and 12 indicate favorable analog link performance using the designed 

and fabricated silicon photonic crystal L3 resonator.

Figure 10. (a) Structure, (b) mode profile and (c) SEM image of silicon photonic crystal nanocavity. (d) SEM image of 
vertical grating coupler.
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3. Microwave photonics filters

A MWP filter is a photonic subsystem designed with the aim of carrying equivalent tasks to 
those of a traditional microwave filter within a RF system [35, 82–85]. Comparing to conven-

tional microwave filters, MWP filters have attracted increasing interest for their advantages, 
such as huge bandwidth, electromagnetic immunity as well as reconfiguration and tunability. 
Now, MWP filters are used broadly ranging from radar, satellite to wireless communications. 
Many approaches to realizing MWP filters have been proposed and demonstrated based 
on fiber devices in the last decade [86–91]. To enhance the stability and reduce the cost and 

footprint of the MWP filters, integrated MWP filters have been widely concerned by several 
groups recently [41, 44, 47, 92–99]. Many of the preliminary approaches have been based 

mainly on single integrated cavity resonators. For instance, Ref. [96] reports the results for a 

single passband MWP filters based on a silicon MRR. A few works have also focused on more 
elaborated designs involving more than one cavity, such as cascaded MRRs [94], MZI-assisted 
MRRs [41], and more. In this section, we introduce various types of MWP filters.

Figure 12. Measured output power of RF carrier and distortions (SHD, THD) as a function of RF input power at different 
optical carrier wavelengths of (a) 1552.83 and (b) 1552.99 nm.

Figure 11. Measured output power of RF carrier and distortions (SHD, THD) as a function of RF input power at different 
optical carrier wavelengths of (a) 1552.83 and (b) 1552.99 nm.
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Using a silicon MRR assisted by a phase modulator (PM) and a tunable optical filter (TBF) 
to prepare an optical single sideband (OSSB) modulation signal, we demonstrate a bandstop 
microwave photonic filter [42]. Moreover, using light (pump) to control light (signal optical 

carrier), we present an alternative approach to tuning the resonance of the bandpass micro-

wave photonic filter, that is, all-optical tuning microwave photonic filter. Figure 13(a) illus-

trates the typical scheme of the all-optical tuning process of the MWP filter based on an SOI 
MRR. The microwave signal is modulated on a signal optical carrier, and then processed by 

an SOI MRR and detected by a PD. Since the optical response of the MRR can be adjusted by 
a pump light, the electrical response of the link can be tuned. The inset of Figure 13(a) depicts 

typical transmission spectrum of an SOI MRR, in which the microwave-modulated signal is 
located close to one notch resonance frequency and pump light positioned at another notch 

Figure 13. (a) Schematic illustration of the proposed all-optical tuning process of the MWP filter. (b)–(e) Operation 
principle of the all-optical tuning process of the MWP filter. (b) and (d) Pump off. (c) and (e) Pump on. Case 1: the 
frequency of the signal optical carrier (fs) is located at the left side of the notch resonance frequency of the MRR. Case 
2: the frequency of the signal optical carrier (fs) is located at the right side of the notch resonance frequency of the MRR. 

The inset of (a) shows typical transmission spectrum of the MRR with relative positions of microwave modulated signal 

and pump light.
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resonance frequency. Figure 13(b)–(e) summarizes the operation principle of the proposed all-
optical tuning process of the MWP filter. An optical carrier is modulated by an RF signal with 
OSSB modulation. The output field after modulation is then applied to the MRR for microwave 
photonic signal processing. The frequency of the signal optical carrier is f

s
. There are two cases 

depending on the relative position between the signal optical carrier and the notch resonance 

of the MRR. For the Case 1 with the signal optical carrier f
s
 located at the left side of the notch 

resonance of the MRR, when the frequency component (f
s
 + f

2
) is just aligned to the notch fre-

quency of the MRR spectrum as shown in Figure 13(b), the output RF response in the absence 

of the pump vanishes at f
2
. Hence, a notch MWP filter with a central frequency of f

2
 is obtained. 

When the pump light is on, one would expect a red shift of the notch peak of the MRR owing 
to the combined nonlinear effects in the MRR, resulting in a notch MWP filter with a central 
frequency of f

1
, as shown in Figure 13(c). Hence, the central frequency of the notch MWP filter 

can be tuned from f
2
 to f

1
 by increasing the pump light power. For the Case 2 with the sig-

nal optical carrier f
s
 located at the right side of the notch resonance of the MRR, as shown in 

Figure 13(d) and (e) similar tunable notch MWP filter with its central frequency changed from 
f
1
 to f

2
 is also achievable by increasing the pump light power. Both Case 1 and Case 2 shown in 

Figure 13(b)–(e) indicate possible all-optical tunale MWP filter using nonlinear effects of MRR.

We first calculate the RF responses under different pump light power to show the all-optical 
tuning process of the MWP filter. The parameters used to calculate MRR field transmission are 
extracted from the measured MRR transmission spectrum. The MWP filter responses under 
different pump powers in Case 1 and Case 2 are shown in Figure 14(a) and (b), respectively. 

As shown in Figure 14(a), the central frequency of the MWP filter decreases from 15.5 to 9.5 
GHz as the pump power increases in Case 1. The central frequency of the MWP filter increases 
from 9.5 to 15.5 GHz as the pump power increases in Case 2, as shown in Figure 14(b).

The measured microwave responses of MWP filter under different pump power levels are 
shown in Figure 15. The pump light wavelength is fixed at 1591.786 nm for all the  configurations. 

Figure 14. Calculated microwave responses under different pump power levels in (a) Case 1 and (b) Case 2, respectively. 
Case 1: the central frequency of the MWP filter decreases as the pump power increases. Case 2: the central frequency of 
the MWP filter increases as the pump power increases.
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In Case 1, the optical carrier wavelength is 1581.730 nm in both forward and backward pump-

ing configurations. As shown in Figure 15(a) and (b), the central frequency of the notch MWP 

filter is tuned from 15.64 to 8.79 GHz in the forward pumping configuration while from 15.60 
to 10.04 GHz in the backward pumping configuration by adjusting the pump light power 
from −27.2 to 4.8 dBm. In Case 2, the optical carrier wavelength is 1581.564 nm in the forward 
pumping configuration and 1581.534 nm in the backward pumping configurations. As shown 
in Figure 15(c) and (d), the central frequency of the notch MWP filter is tuned from 5.27 to 
12.47 GHz in the forward pumping configuration and from 8.84 to 15.04 GHz in the backward 
pumping configuration as increasing the pump light power from −27.2 to 4.8 dBm.

We also propose a simple yet effective approach to realizing notch MWP filter with an ultra-
high peak rejection [43]. We use the combination of a PM, TBF, and an SOI MRR to manipulate 
the phase and amplitude of optical sidebands for inducing a signal cancellation at the RF 

notch filter frequency. Figure 16 shows the concept and operation principle of the proposed 

approach. A conventional PM driven by an RF signal generates out of phase lower sideband 

(LSB) and upper sideband (USB). A TBF is used to attenuate the USB signal followed by an 
SOI MRR. The resonant frequency of the SOI MRR is aligned to the frequency of LSB signal, 
thus the LSB signal will be filtered by the SOI MRR. Since the SOI MRR has a limited extinc-

Figure 15. Measured microwave responses of all-optical tunable MWP filter under different pump power levels with 
(a) Case 1/Forward pump, (b) Case 1/Backward pump, (c) Case 2/Forward pump, and (d) Case 2/Backward pump, 
respectively.
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tion ratio, the amplitude of the remaining LSB signal could be equal to the USB signal. Due 
to the equal amplitude and π phase difference of the attenuated USB and remained LSB, the 
signal power at the modulated RF frequency can be cancelled after detection by a photodetec-

tor, and a notch microwave photonic filter with infinite rejection in principle can be achieved.

The measured optical spectra after the TBF and the corresponding MWP filter responses are 
shown in Figure 17. The optical carrier wavelength is 1581.576 nm. The optical spectra are 

measured by modulating a microwave signal to the optical carrier. The frequency of the micro-

wave signal is 20 GHz, which is comparable with the central frequency of the MWP filter. 
Figure 17(a)–(d) depicts the optical spectra when the central wavelength of the TBF is 1581.746, 

1581.776, 1581.806, and 1581.836 nm, respectively. The transmission spectra of the TBF in these 

four cases are also plotted in Figure 17(a)–(d) for reference. Figure 17(e)–(h) shows the corre-

sponding MWP filter responses. As shown in Figure 17(a) and (d), when the USB component 

is slightly attenuated by the TBF, after passing through the MRR, the amplitude difference of 
the LSB and USB is relatively large, resulting in a shallow RF notch of about 14.5 dB. When 
we shift the TBF, more power of the USB component is attenuated, and the peak rejection of 
the MWP filter remarkably increases. The peak rejection of the MWP filter is 29.1 dB when the 
central wavelength of the TBF is 1581.776 nm as shown in Figure 17(b) and (f). A maximum 
peak rejection of about 61.5 dB is observed with balanced amplitude between LSB and USB 
components when the central wavelength of the TBF is 1581.806 nm as shown in Figure 17(c) 

and (g). When we further increase the central wavelength of the TBF, the USB signal will be 

further attenuated, thus the peak rejection decreases again. For example, when the central 
wavelength of the TBF is 1581.836 nm, the USB almost disappears, and the peak rejection of 

the MWP filter decreases to 40.9 dB as shown in Figure 17(d) and (h).

By changing the carrier light wavelength, the operating frequency of the ultra-high peak 

rejection MWP filter can be tuned. We measure the operating frequency tunability of the 

Figure 16. Schematic illustration of the proposed notch MWP filter with ultra-high peak rejection.
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MWP  filter, as shown in Figure 18. When the wavelength of the carrier light is changed from 

1581.476 to 1581.626 nm, the central frequency of the MWP filter is tuned from 12.4 to 30.6 
GHz, maintaining an ultra-high peak rejection. The obtained results shown in Figure 18 indi-

cate that the proposed ultra-high peak rejection MWP filter can operate over a large tunable 
frequency range.

Based on a similar principle, we also demonstrate a rejection ratio tunable notch MWP filter based 
on a silicon PhC nanocavity. The resonant wavelength of the cavity is around 1554.313 nm. The 
measured optical spectra after the TBF and the corresponding MWP filter responses are shown 

Figure 17. (a)-(d) Optical spectra after the TBF when the central wavelength of the TBF is 1581.746, 1581.776, 1581.806, 
and 1581.836 nm, respectively. The dashed lines are the corresponding transmission spectrum of TBF. (e)–(h) The 

corresponding MWP filter responses.
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in Figure 19. The carrier light wavelength is 1554.153 nm. Figure 19(a)–(d) depicts the optical 

spectra when the central wavelength of the TBF is 1554.262, 1554.292, 1554.322, and 1554.352 

nm, respectively. Figure 19(e)–(h) shows the corresponding MWP filter responses. The experi-
mental results agree well with the simulation. As shown in Figure 19(a) and (e), when the USB 

signal is slightly modified by the TBF, the peak rejection of the obtained MWP filter is very small 
(~11.8 dB). When we shift the TBF, the power of USB signal decreases, and the peak rejection 

of the MWP filter increases. A maximum peak rejection of about 62.1 dB is observed when the 
central wavelength of the TBF is 1551.315 nm (Figure 19(b) and (f)). When we further increase 

the central wavelength of the TBF, the USB signal will be further attenuated, thus the peak 
rejection will decrease again. For example, as shown in Figure 19(d) and (h), the peak rejection 

of the MWP filter decreases to 15 dB when the central wavelength of the TBF is 1551.375 nm. 
Figure 19(i) plots the rejection ratio as a function of the central wavelength of the TBF. The red 

curve shows the simulation data, while the experimental results are marked by blue circles.

To evaluate the effect of the filter shape of TBF, we study the performance of the rejection ratio 
tunable MWP filter with four types of super-gaussian filter shape. We calculate the MWP fil-
ter tunability response when the transmission of the TBF is   T  

TBF
  (ω) =  e   − (  

ω− ω  
center

  
 ____________ 

2π×34.89× 10   9 
  )   
N

  (N = 2, 4, 6, 8) .  

Figure 20(a) shows the rejection ratio of the MWP filter as a function of TBF central wave-

length with different filter shapes of TBF. To show the operation stability in high rejection 
ratio region with different TBF filter shapes, we define the TBF central wavelength tolerance 
as operation span of TBF central wavelength when the rejection ratio is greater than 40 dB. 

Figure 20(b) plots the TBF tolerance of central wavelength with different filter shapes of TBF. 
It can be seen that higher-order super-gaussian function leads to worse stability of the system.

Since the high nonlinearities induced by the tight light confinement of silicon photonic 
devices, the influence of optical nonlinear effects should also be taken into consideration 

Figure 18. Measured tunable ultra-high peak rejection MWP filter responses with different optical carrier wavelengths.
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when designing MWP devices. MWP devices such as MWP filters based on silicon waveguide 
devices might have strong nonlinear microwave responses, which are dependent on the opti-

cal carrier power level. Taking the PhC microcavity as an example, we study the nonlinear 
microwave responses of the MWP filters based on the SOI waveguide devices.

Figure 21(a) illustrates the typical scheme of an MWP filter based on a PhC microcavity. 
Figure 21(b) and (c) summarizes the operation principle of the device. After been phase 

Figure 19. (a)–(d) Optical spectra after the TBF when the central wavelength of the TBF is 1554.262, 1554.292, 1554.322, 
and 1554.352 nm, respectively. (e)–(h) The corresponding MWP filter response. (i) Rejection ratio as a function of TBF 
central wavelength.
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 modulated, the output field is then sent to a PhC microcavity. Assuming that the wavelength 
of optical carrier is λ

c
, locating on the left side of the linear notch resonant wavelength of the 

PhC microcavity (Case 1), as shown in Figure 21(b), when the optical carrier power is very low 

and one of the sideband (f
1
) is just aligned to the notch resonant wavelength of the PhC micro-

cavity, a bandpass MWP filter with a central frequency of f
1
 is obtained. When the optical car-

rier power is increased, considering the combined nonlinear effects in the PhC microcavity, 
the notch peak of the microcavity will red shift (e.g., shift by f

2
-f

1
), resulting in an bandpass 

MWP filter with a varied central frequency of f
2
. When the wavelength of optical carrier is 

located on the right side of the linear notch resonant wavelength of the PhC microcavity, the 
situation is a little more complicated. For Case 2, as shown in Figure 21(c), the initial notch 

peak of the PhC microcavity is aligned to the left sideband corresponding to f
2
. When the 

optical carrier power is increased, the notch peak wavelength will red shift, leading to the 

decrease of the central frequency of the MWP filter. Remarkably, when we further increase 
the optical carrier power, the notch peak will go across the optical carrier wavelength. Hence, 

the central frequency of the MWP filter will first decrease and then increase when gradually 
increasing the optical carrier power from a very low level to a relatively high level.

The resonant wavelength of the cavity is around 1554.152 nm. Figure 22 shows measured 

MWP filter responses under different optical carrier power levels for Case 1 and Case 2. The 
wavelengths of the carrier are 1554.056 and 1554.296 nm, respectively. For Case 1, since the 
notch resonant wavelength of the PhC microcavity red shifts as the optical carrier power 
increases, the central frequency of the MWP filter increases. When the optical carrier power 
increases from −13.5 to 5.5 dBm, the central frequency of the MWP filter is changed from 
13.9 to 24 GHz. For Case 2, when the optical carrier is increased from −13.5 to −3.5 dBm, the 
central frequency of the MWP filter decreases, which indicates that the resonant wavelength 
of the PhC microcavity is still on the left side of the optical carrier in the process. When 
we increase the power from −3.5 to −1.5 dBm, the central frequency of the MWP filter sud-

denly jumps to another frequency at about −2 dBm. When we further increase the power 
of the carrier light, the central frequency of the MWP filter increases, in contrast with the 
decrease in low-power region. The obtained results here indicate that the resonance of the 

Figure 20. (a) Rejection ratio as functions of TBF central wavelength with different filter shape of TBF. (b) TBF tolerance 
of central wavelength with different filter shape of TBF.
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PhC microcavity first jumps to the right side of the carrier, and then red shifts as the carrier 
further increases.

4. Photonic-assisted microwave signal multiplication and 

ASK modulation

Photonic-assisted generation of microwave signals can find interesting applications in 
many microwave photonic systems, such as broad-band wireless access networks, software-

defined radio, antenna remoting, phased-array antenna, and radar systems [65]. Usually, 

Figure 22. Measured MWP filter responses under different optical carrier power levels for (a) Case 1 and (b) Case 2.

Figure 21. (a) Schematic illustration of the typical scheme of a MWP filter based on PhC cavity. (b) and (c) Working 
principle of the optical carrier power dependent MWP filter. Case 1: the wavelength of the optical carrier is located on 
the left side of the linear notch resonant wavelength of the PhC microcavity. Case 2: the wavelength of the optical carrier 
is located on the right side of the linear notch resonant wavelength of the PhC microcavity.
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optical microwave generation is based on heterodyne techniques. Several approaches to 

 generating two phase-correlated optical waves have been proposed and demonstrated based 

on free space devices [100, 101] and fiber devices [64, 65, 102–111]. Among these approaches, 

microwave frequency multiplication based on external modulation using MZMs has been 
considered an effective solution for high frequency and tunable microwave signal genera-

tion. Photonic generation of RF binary digital modulation signals is another key technology 

in microwave photonics. Amplitude-shift keying (ASK), phase-shift keying (PSK), and fre-

quency-shift keying (FSK) are basic modulation formats in wireless communications, which 

convey information by modulating the amplitude, phase or frequency of a continuous carrier 

wave. Traditionally, these modulation microwave signals are generated in electrical domain 

using digital electronic circuits [40]. Due to the electronic bottleneck, the major difficulty of 
this traditional technique is that the frequency of the generated signals is limited to a few 

gigahertz. An effective method to generate high frequency RF signals is to generate RF signals 
in the optical domain [38, 39, 112]. Similar to microwave frequency mulitiplication, the use of 

MZM is also considered to be a competitive approach to generating binary digital modulation 

signals. Microwave PSK and FSK signals have been proposed and realized based on commer-

cial MZMs [38, 39, 112]. However, microwave ASK signal as a fundamental digital modula-

tion format in wireless communication has rarely been realized using MZM. In this section, 
we introduce our recent work on microwave signal multiplication and ASK modulation based 

on an integrated silicon modulator.

We first propose a simple scheme to obtain frequency-multiplicated microwave signals [113]. 

Figure 23 illustrates the schematic illustration of the proposed photonic frequency- multiplicated 

microwave signal generation system using an integrated silicon MZM. CW light from a tunable 
laser diode (TLD) is sent to the MZM. The driving signal and the DC-bias are  combined by a 
bias-tee and applied to the MZM. The output light intensity of the MZM can be written as:
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where m = πV
RF

/Vπ is the modulation indice of the MZM. I
0
 is the intensity of the input opti-

cal carrier. φ
0
 = πV

b
/Vπ is the constant phase difference between the two arms determined by 

the constant DC-bias voltage V
b
. Vπ is the half-wave voltage of the MZM. V

RF
 and ω

RF
 are the 

amplitude and angular frequency of the applied electrical drive voltage, respectively. It can 
be seen from Eq. (1) that if the modulator is biased at Vπ, the odd components will be sup-

pressed. Ignoring the high-order harmonic wave, a frequency-doubled microwave signal is 
obtained. In addition, by adjusting the driving microwave signal amplitude to let J

2
 (m) = 0, 

the quadruple response will dominate the output, and a frequency-quadrupled signal can be 

obtained. Similarly, a frequency-tripled signal is generated by suppressing the even compo-

nents and J
1
 (m) term of the signal.

We investigate the generation of frequency-doubled microwave signal. Figure 24(a) and (b) 

shows the wave-forms of the original 500-MHz driving signal and the generated 1-GHz sig-

nal. Figure 24(c) and (d) shows the obtained 2-GHz signal when the driving signal frequency 
is 1 GHz.
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Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave ASK 

modulation using an integrated photonic approach [113]. Figure 25 illustrates the schematic 

illustration of the proposed photonic microwave ASK signal modulation system using an 

integrated silicon MZM. The microwave carrier signal and the binary coding signal s(t) are 

applied to the two RF ports of the MZM, respectively. The AC term of the detected signal at 
the output of the PD can be written as:

   i  
AC

   ∝ 2  J  
1
  (m ) cos ( ω  

RF
   t ) sin (γs(t ) −  ϕ  

0
   ) + J  

0
  (m ) cos (γs(t ) −  ϕ  

0
   )  (2)

where ω
RF

, m, V
RF,

 Vπ, and φ
0
 are defined as previously mentioned. γ=πV

s
/Vπ is the modulation 

index in the arm where the binary coding signal is applied. Assuming φ
0
 = 0, Eq. (2) can be 

simplified as:

Figure 24. Waveforms of (a) the input 500-MHz driving signal, (b) the generated 1-GHz frequency-doubled signal, (c) the 
input 1-GHz driving signal, and (d) the generated 2-GHz frequency-doubled signal.

Figure 23. Schematic illustration of the proposed photonic-assisted microwave signal multiplication.
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The second term in Eq. (3) is located in the baseband, which can be easily eliminated by an 
electric filter. Assuming γ = π/2, the amplitude of the obtained signal is:

  i =   {   
2  J  

1
  (m ) cos ( ω  

RF
   t )           s(t ) = 1

    
            0                          s(t ) = 0

     (4)

As can be seen, the amplitude of the carrier is “1” with bit “1”, and “0” with bit “0”. Therefore, 

two-level microwave ASK signal is generated.

Figure 26(a) shows the waveforms of the original 50-Mb/s baseband signal with a pattern 
of “110100101101001011”. The original 1-GHz microwave carrier is shown in Figure 26(b). 

Figure 26(c) shows the modulated microwave ASK signal.

Figure 26. Waveforms of (a) the original 50-Mb/s baseband signal with a pattern of “110100101101001011”, (b) original 
1-GHz microwave carrier signal, and (c) the output microwave ASK signal.

Figure 25. Schematic illustration of the proposed photonic microwave ASK signal generator.
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5. Discussion

In summary, we review our recent works in chip-scale microwave photonic signal process-

ing, including on-chip analog links, MWP filters, and photonic generation of microwave. As 
a new research topic, integrated MWP has just started to bloom and is set to have a bright 

future. After evaluating linearity performance of the on-chip analog links, future works may 

focus on increasing the linearities or decreasing nonlinearities of the on-chip analog links. As 

to MWP filters, more high performance silicon MWP filters will be demonstrated, involving 
resonators, photonic crystals, or other silicon photonic devices. In addition, more nonlinear 
optics can be used for MWP filters. For example, four-wave mixing (FWM) for MWP filtering 
has been realized [114, 115]. The demonstrated microwave signal multiplication and ASK 

modulation are still operated in low-frequency region. By optimizing the device design, the 
operation frequency can be improved and the power consumption can be further reduced. In 
addition to on-chip analog links, MWP filters, and photonic generation of microwave, silicon 
photonics can be also adopted to accelerate the success of versatile MWP signal processing 

functionalities, including arbitrary waveform generation, on-chip pulse shaping, delay line, 

beamformer, and more.

6. Conclusion

In this chapter, we have reviewed recent research efforts toward on-chip microwave photonic 
signal processing.

1. Using the fabricated silicon photonic devices, we evaluate the performance of on-chip 

analog signal transmission. The degradations level of SHD and THD are evaluated.

2. Various types of MWP filters are introduced, and the impact of optical nonlinearities to 
MWP filters is also discussed.

3. Photonic-assisted microwave signal multiplication/modulation: we propose a simple 
scheme to obtain frequency-multiplicated microwave signals or amplitude-coded micro-

wave signals based on a single integrated silicon MZM. A 2-GHz frequency-doubled 
microwave signal is generated using a 1-GHz driving signal. A 50-Mb/s binary ampli-
tude-coded 1-GHz microwave signal is also successfully generated in the experiment.

With future improvement, one would also expect to see more photonic-assisted microwave 
signal processing applications exploiting compact-integrated silicon photonic devices.
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