
Chapter 4

Search-Based Planning and Replanning in Robotics and
Autonomous Systems

An T. Le and Than D. Le

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71663

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

An T. Le and Than D. Le

Additional information is available at the end of the chapter

Abstract

In this chapter, we present one of the most crucial branches in motion planning: search-
based planning and replanning algorithms. This research branch involves two key 
points: first, representing traverse environment information as discrete graph form, in 
particular, occupancy grid cost map at arbitrary resolution, and, second, path planning 
algorithms calculate paths on these graphs from start to goal by propagating cost associ-
ated with each vertex in graph. The chapter will guide researcher through the foundation 
of motion planning concept, the history of search-based path planning and then focus on 
the evolution of state-of-the-art incremental, heuristic, anytime algorithm families that 
are currently applied on practical robot rover. The comparison experiment between algo-
rithm families is demonstrated in terms of performance and optimality. The future of 
search-based path planning and motion planning in general is also discussed.

Keywords: A*, RRT, holonomic path planning, trajectory planning, occupancy map, 
D* Lite, incremental planning, heuristics planning, ARA*, anytime dynamic A*

1. Introduction

Nowadays, as the rapid advances of computational power together with development of 

state-of-the-art motion planning (MP) algorithms, autonomous robots can now robustly plan 

optimal path in narrow configuration space or wide dynamic complex environment with high 
accuracy and low latency. These recent MP developments have a large impact in medical sur-

gery, animation, expedition and many other disciplines. For instance, RRT [1] algorithm was 

applied for multi-arm surgical robot in [2]. Expedition robot GDRS XUV was implemented 

field D* any-angle path planner [3] that enables the robot to optimally move in harsh environ-

ment. D* [4] is implemented for Mars Rover prototypes and tactical mobile robots in [5]. Bug 

algorithms were implemented in multi-robot cooperation scenarios [6].
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In general, the problem statement of MP can be generalised as follows: Given the initial 

defined world space and the robot’s configuration space, the MP algorithm must generate a 
series of consecutive collision-free configurations of the robot that connects start configura-

tion and goal configuration. This series configuration must satisfy any inherent motion or 
non-motion constraints of the robot.

To cope with a wide range of environment characteristics, MP can be divided into two catego-

ries: gross MP and fine MP [7]. The gross MP concerns with the scenarios when world space is 

much wider than obstacles’ size and positional error of the robot, whereas the fine MP solves 
the planning problems in narrow space that requires high accuracy.

This manuscript presents the development of gross MP algorithm family, in particular search-

based planning and replanning paradigm. The foundation concepts of MP, configuration 
space representations, and the position of mentioned paradigm in MP big picture is presented 

in Section 2. Section 3 describes historical basis of search-based algorithm family. Section 4 

demonstrates the properties and pitfall of D* Lite, which is one of the most crucial algorithms 

to plan path in dynamic environment. After that, the variants of D* Lite, which improve D* 

Lite’s optimality and performance, are presented. To confirm the improvements, we provide 
experimental results of recent path planning algorithms and their comparisons in terms of 

performance and optimality in Section 5. Section 6 will discuss about the future development 

of MP and provide conclusion.

2. Motion planning concepts

This section will provide an overview of the basic elements that every MP problem must 

involve. These elements are configuration space of robot and obstacles, environment repre-

sentation, MP method and search method. The mentioned factors must be analysed consecu-

tively in order to apply suitable MP algorithm family for each scenario.

2.1. Classification of motion planning problems

There still does not exist unified MP algorithm that can robustly solve MP problems in any 
scenarios such as time optimality, path optimality, moving target, non-holonomic motion, etc. 

However, with the active recent development of MP, a variety of MP algorithm families are 

invented to deal with the mentioned scenarios. We will provide detail MP algorithm family 

classifications based on problem type and therefore demonstrate the location of search-based 
paradigm in MP.

Figure 1 describes the family tree of MP algorithms based on problem-type classification.

As can be seen, MP with non-holonomic (velocity and kinodynamic) constraints, which is han-

dled by sampling-based paradigm, is still an open research area due to the hardness of trans-

forming high DOF robot and surroundings into configuration space. This configuration space 
problem has been proved to be NP hard, and computing configuration space operation has 

Advanced Path Planning for Mobile Entities64



exponential lower bound [7]. Until recently, the mainstream of non-holonomic MP research 

is developed based on random rapidly exploring random tree planner (RRT). For example, 

heuristics property of A* [8] has been applied to RRT for faster trajectory convergence [9]. Fast 

Marching Square method was developed for non-holonomic car-like robot based on RRT that 

produces smoother trajectory than RRT [10].

Unlike sampling-based paradigm, search-based paradigm, which represents for path plan-

ning algorithms, has a long history of evolution, from basic graph searching to dynamic 

motion planner with constraints. In this paradigm, robot is treated as point or scalar robot that 

is able to move in any direction at any time interval. Hence, the configuration obstacle space 
has the same dimension with the environment, and the generated trajectory is just a path 

in operating environment. Search-based paradigm is divided into time-invariant and time- 

variant environment categories. A* is the representative for time-invariant algorithm fam-

ily; its cost function is incorporated with heuristic property for faster optimal path planning. 

When dealing with time-variant problem, although we can ensure the optimality and correct-

ness of path solution, we cannot just rerun A* from the point that the robot detects changes 

in environment due to high latency. To efficiently path replanning in dynamic environment, 
incremental property is combined with heuristic property to develop D* Lite algorithm; this 

algorithm is the basis for future development of search-based replanning. Many variants of 

D* Lite for different MP problems are presented in Table 1.

The development of search-based algorithm family is described detail in Section 3 and Section 4.

Figure 1. Classification of MP algorithm families based on problem type; the deepest leaves of algorithm tree are 
representatives for their families.
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2.2. Problem statement formulation

The general MP problem can be formulated as the following six terms:

1. State space: the configuration space of the robot transformed from physical space, W.

2. Boundary values:   x  
init

   ∈ W  and   X  
goal

   ⊂ W .

3. Collision detector:  D : W →  {true,  false}   the function to detect whether the global con-

straints are satisfied from robot state  x ; it can output binary or real values.

4. Input space: a set U of input, which specifies a complete set of robot operation that affects 
the state  x .

5. Incremental rules: a set of rules to transition state  x (t)   to state  x (t + Δt)   when an operation is 

input over time interval,    {u ( t  c  ) |  t <  t  
c
   < t + Δt }    .

6. Metric: a real-valued function  ρ : W × W →  [0, +∞)   that defines the distance between two 
points in state space W.

General MP is viewed as a search for path (a series of configuration) in state space W that con-

nects start configuration   x  
init

    to goal configuration region   X  
goal

   . The robot is incorporated with 

a set of global constraints (small discrete headings, velocity, balancing, etc.). We denote   W  
free

    

as a set of configuration that satisfies global constraints, and the generated path must be in   
W  
free

   . The incremental rules can be considered as discrete-time response system, and together 

with input space, it defines possible robot state transitions. Metric can affect heavily to the 
algorithm’s optimality and performance; it indicates the distance between pair of points in 
topological space. One can construct MP algorithm to deal with specific constraints in certain 
environment by following these basic terms.

2.3. Environment representation

This section will describe the transformation of world space to state space. This is the first step 
to formulate a MP algorithm; it creates an operation environment for MP algorithm and a way 

to represent physical world information as data structure in computer.

2.3.1. Configuration space (C-space) transformation

The world space (physical space) is where the robot and obstacles exist; it is a map of the 

practical world. However, we cannot apply directly MP algorithm to this space due to the 

Problem scenarios Algorithms

Moving target MTD* Lite [11]

Fast/suboptimal Anytime D* [12], truncated D* Lite [13], anytime Truncated D* [14]

Any-angle movement Field D* [3], incremental Phi* [15]

Performance improvement D* Lite with Reset [16]

Table 1. Different families of D* Lite variants.
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hardness of representing orientation dimension and other parameters such as motion con-

straints on computer. Therefore, a C-space is needed, which incorporates all independent 

parameters that completely define the position of all points on the robot and specifies global 
constraints of the robot as Cartesian space. Figure 2 [17] shows a mapping between an effec-

tor of 2DOF robot arm and a set of possible two angle parameters that constitutes C-space 

of the effector.

After computing the C-space, all MP problems are basically reduced to finding a series of 
configuration that connects start configuration and goal configuration. In other word, the 
problem is reduced to finding a path for a point robot from start to goal. The number of 
parameters that defines robot position is the dimension of C-space. The method to compute 
C-space is mentioned in [7].

For simplicity, to follow the scope of this chapter, we will treat C-space of point robot the 

same as world space; the reason is that search-based paradigm deals with holonomic MP 

problem in which the size of robot is neglected compared to operating environment.

2.3.2. Continuous to discrete approximation

After transforming world space to C-space, we still cannot apply search-based algorithms 

to C-space. The problem is that search-based algorithms like A* or D* Lite work on graph-

like structures; hence, applying search-based algorithms on continuous C-space is intractable. 

However, other MP algorithm families such as sampling based can apply directly to C-space. 

Unfortunately, the path optimality and performance of sampling-based algorithms are cur-

rently worse than state-of-the-art search-based algorithms.

Figure 2. Configuration space of 2DOF robot arm that represents a set of  collision-free angles in white and specific object 
collided in colours (a) Workspace, (b) C-space.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

67



There are two main approaches to discretize C-space into graph-like structure:

• Cell decomposition

• Roadmap

In cell decomposition approach, we divide C-space into eight-connected square grid environ-

ment with arbitrary resolution. Then we colour all cells that intersect with obstacle configura-

tion with black, and other free cells are white. Figure 3 illustrates this approach.

This approximation has limited assumptions on obstacle configuration. Therefore, the 
approach is used widely in practice. However, there is no concept of path optimality, because 

we can infinitely divide C-space into smaller squares. It is a trade-off between optimality and 
computation. Cell decomposition in high dimensions is also expensive; it has exponential 

growth in PSPACE.

In roadmaps approach, the idea is avoiding scanning the entire C-space by computing an 

undirected graph with “road” edges that are guaranteed to be collision-free. The main meth-

ods of this approach are visibility graph [17] and Voronoi diagrams. The examples of the two 

methods are demonstrated in Figure 4.

As can be seen, this approach generates fewer vertices than cell decomposition approach. 

Visibility graph method tends to generate with vertices that are the vertices of obstacles; this 

property leads to finding shortest path. However, the visibility graph’s roadmaps are close 
to obstacles; collision is inevitable due to some movement error. Voronoi diagram solves the 

problem by generating roadmaps that keep robot as far away as possible from obstacles.

Despite this approach constructs efficiently graph representation for search-based algorithm; 
it is difficult to compute in higher dimension or non-polygonal environment. The approach 

Figure 3. Cell decomposition approach (a) Original Objects, (b) Encoded Objects into cells.
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also can be unstable in dynamic scenarios; small changes in obstacles can lead to large changes 

in graph.

In the following sections, we use cell decomposition approach for search-based algorithms 

due to its clarity to describe the operation of search-based algorithms and its feasibility to 

apply in practice.

3. Search-based planning on time-invariant environment

This section demonstrates one of the most well-known algorithms in graph search family: A*. 

The A* algorithm’s properties are also examined and utilised to use in different cases.

3.1. A* algorithm

There are three main properties of A* [8] that are inherited from historical graph search 

algorithms:

• Search tree: a search tree  T , which root is the starting cell, stores expanded cells as branches. 

This tree is capable to extract path to starting cell from any expanded cell  s  in the map. A* 

inherits this tree from breadth-first search algorithm.

• Uniform cost search: This property includes a data structure  g (s)   that stores the cost to 

travel from starting cell to any cell  s  in the map, which is formulated as

  f (s)  = g (s) ,  (1)

Figure 4. Path topologies of visibility graph and Voronoi diagram methods in roadmap approach (a) Visibility Graph 

method, (b) Voronoi method.
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where  f (s)   is the priority of cell in open list  O ; the smaller the  f (s)  , the higher the priority. 

The open list  O  handles processing expanding cells, and therefore this property prioritises 

expanding cells with less cost to travel. A* inherits this property from Dijkstra’s algorithm.

• Heuristic: a rule to guide expanding search towards goal cell. This rule is formulated:

  f (s)  = h (s) ,  (2)

where  h (s)   is the heuristics function for each cell s that indicates the closeness from cell s to 

goal.  h (s)   can be Euclidean distance or Manhattan distance function in this case. In addition,  
 h (s)   must satisfy admissible property:

  h (s)  ≤ cost (s,  s   ′ )  + h ( s   ′ ) ,  (3)

for any successor   s   ′   of  s  to ensure path optimality. A* inherits this property from greedy best-

first search.

Figure 5 illustrates each property of A* when they are applied to search for goal:

The total expanded cells in each algorithm constitutes for their performance (e.g. how many 

cells are processed before path is found). As can be seen, Dijkstra’s algorithm has the worst 
performance due to lack of guidance to expand search; it just expands uniformly to all direc-

tions. Greedy best-first search has the best computation; however, it does not guarantee the 
shortest path like Dijkstra’s algorithm, because its search is trap in local minima shown in the 
picture. A* has both computation and optimality advantages over these old algorithms by 

combining uniform cost search rule to guarantee path optimality and heuristic rule of greedy 

best-first search to guide search process towards goal. Both rules can be combined and for-

mulated as priority function:

   f (s)  = g (s)  + h (s)  . (4)

Intuitively, one could think  f (s)   is an estimated cost to travel from start cell to goal through 

concerning cell s. Hence, A* expands towards cells that have least cost travel (Figure 6, line 11).

The pseudo code for A* is shown in Figure 6.

Figure 5. Operation demonstration of properties of A* and A* itself (a) Map, (b) Uniform cost search, (c) Greedy Best-

First Search and (d) A*.
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3.2. Anytime A*: path suboptimal bound (ARA*) algorithm

In practice, the performance issue is more critical; time for robot to “think” before making 

decision is limited. Therefore, a path planner, which has these properties, is essential:

• Quickly producing a suboptimal solution and then gradually improving its solution as 

time allowed by reusing its previous search effort as much as possible

• Having control over the suboptimal bound and hence indicating a bound of processing 

time of each search iteration

We introduce the algorithm that is well-suited for this scenario: ARA* [18].

Basically, ARA* is developed from A*; it inherits all intrinsic properties of A*. The idea to 

quickly plan suboptimal path is derived from inflated heuristics function [18] by a factor  ε .  

The search is greedier to provide solution faster, and the solution is proven to be bounded:

   g   ∗  (s)  ≤ g (s)  ≤ ε ∗  g   ∗  (s) ,  (5)

where   g   ∗  (s)   is the optimal path cost from start to  s .

The pseudo code for ARA* is shown in Figure 7.

To understand the behaviours of ARA*, we must keep in mind that ARA* violates admissible 

property— h (s)  ≤ cost (s,  s   ′ )  + h ( s   ′ )  —for any successor   s   ′   of  s . ARA* modifies A*  f (s)   function by 

inflating heuristics function  h (s)  :

Figure 6. Pseudo code of A* algorithm.
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  f (s)  = g (s)  + ε ∗ h (s)  . (6)

Hence, the computed path is no longer optimal. Moreover, each search iteration is no longer 

guaranteed to expand searching each cell at most once like A* due to decreasing  ε . However, 

to maintain efficiency and ensure suboptimal bound, ARA* introduces INCONS list to store 
local inconsistent cells as specified function:

  g ( s   ′ )  >  min  
 s   ′′ ∈pred ( s   ′ ) 

   (cost ( s   ′ ,  s   ′′ )  + g ( s   ′′ ) ) ,  (7)

Figure 7. Pseudo code of ARA* algorithm.

Advanced Path Planning for Mobile Entities72



(Figure 7, line 13) that already are expanded once and processes these cells in the next search 

iteration.

In general, ARA* executes consecutive search iterations with decreasing suboptimal bound; 

each search does not recalculate consistent cells from previous search. Therefore, the path 

improvement process is efficient. Theoretical properties of ARA* is described in [18].

4. Search-based replanning on time-varying environment

In real-world application, there is often a scenario that the robot initially does not know a pri-

ori information about its surroundings. We cannot encode the world space information each 

time the robot runs, because it is expensive, tedious, and infeasible due to rapid changes in 

practice. To maintain collision-free path, one can naively rerun A* to replan the shortest path 

from the point that the robot detects changes. However, this naïve approach will waste com-

putation by reprocessing cells that are irrelevant to compute a new path and hence increase 

idle time between each search. This section will demonstrate search-based algorithms to solve 

mentioned problem in time-variant environment.

4.1. Incremental heuristic algorithm: D* Lite algorithm

4.1.1. D* Lite algorithm

In goal-directed navigation task, with cell decomposition approximation, the robot always 

observes a limited range of eight connected grids. The robot is able to move in eight directions 

with cost one, and it assumes that unknown cells are traversable. The robot follows the initial 

calculated path to goal and encounters blockage cells; it must be able to process only cells that 

are relevant to compute the new path. The challenge is to find these relevant cells. Figure 8 

illustrates this idea.

Note that grey cells (in Figure 8) are expanded cells to compute initial path or new path when 

robot detects blockage cell in purple at position yellow cell. Darker grey cells are processed 

multiple times. As can be seen, total expanded cells in replanning process of D* Lite is 61, 

whereas expanded cells of rerunning A* are 75.

D* Lite [19] is developed directly from Lifelong Planning A* (LPA*) [20] for applying on 

mobile robot, which is a combination of Dynamic SWSF-FP [21] and A* [8]. Therefore, D* Lite 

possesses these properties:

• Reverse search: Unlike A*, D* Lite expands its search from goal;  h (s)   now indicates the 

closeness from cell s to start cell.  g (s)   now also stores estimated distance from goal. After 

searching is finished, the path from start to goal is generated by iteratively moving from 
cell  s  towards neighbour cells   s   ′   that have the lowest sum  g (s)  + cost (s,  s   ′ )   in greedy style.

• Heuristics: D* Lite inherits this property from A* with admissible rule. Thus, D* Lite main-

tains path optimality by expanding heuristically towards start cell.
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• Incremental: D* Lite inherits incremental search property from Dynamic SWSF-FP; it re-

uses information from previous search to repair path in a series of similar searches, which 

is much efficient than calculating path from scratch.

The pseudo code for D* Lite is shown in Figure 9.

In general, the pseudo code of D* Lite maintains three invariants:

• Invariant 1:  rhs (s)  =  { 
0           if s =  s  

start
  
    

 min  
 s   ′ ∈Pred (s) 

   (g ( s   ′ )  + cost (s,  s   ′ ) )  otherwise
    .

• Invariant 2: OPEN list contains exactly only local inconsistent cells  g (s)  ≠ rhs (s)  .

• Invariant 3: Priority value of cells in OPEN list is equal to its  Key (s)  .

At the first run, D* Lite is exactly like A*. It guarantees to expand cells at most twice in each 
search routine due to the concept of one-step look-ahead estimated goal distance r  hs (s)   that 

is inherited from LPA*. r  hs (s)   leads to the terms of over-consistent cell  g (s)  > rhs (s)   and 

under-consistent cell  g (s)  < rhs (s)  . Intuitively, these concepts help propagating the inconsis-

tency of cells to their neighbours. To maintain Invariants 1 and 2, ComputePath() function 

updates rhs-values of changed cells, checks their consistency and decides their membership 

of OPEN list accordingly. Invariant 3 is maintained by updating the OPEN list keys while 

expanding (Figure 9, lines 17–18). ComputePath() stops when the smallest key of OPEN list 

is less than  Key ( s  
start

  )   or   s  
start

    is consistent; this criteria indicates that cell expansion has reached 

target   s  
start

   . Theorems of D* Lite are described detail in [19].

4.1.2. Pitfall of D* Lite

Despite being an effective replanner for dynamic environment, D* Lite does have a big pitfall 
for certain circumstances. In fact, D* Lite is designed to be implemented in mobile robot with 

range sensors, in which the environment changes are perceived near the robot (the starting 

cell). In other word, the changes occurred at the perimeter of expansion. Therefore, D* Lite 

just propagates inconsistencies in a small area near the search front; the replanning process 

is efficient. However, the problem arises when we combine other sensors (e.g. UAV, satellite, 

Figure 8. MP simulation on grid environment (a) Initial path, (b) Reset A* and (c) D* Lite.
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etc.) to detect environment changes in further area near the goal. Intuitively, we can imagine 

a valley where  g (s)   of each cell substitutes for its height; the goal cell has the lowest height (the 

bottom of the valley), and robot position (start cell) is always at valley’s edge. Suddenly, there 
is a change in height near the goal; D* Lite has to give enormous effort to correct the conti-
nuity of the valley slope from the bottom to the surface. Because of the overhead of storing 

Figure 9. Pseudo code of D* Lite algorithm.
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g-value information, the correction effort now is more expensive than starting the search from 
scratch. This is a big limitation for multi-sensor-based robot system; the problem also makes 

D* Lite unreliable in high-dimensional state space.

This behaviour leads us to a problem statement: The location of environment changes with 

respect to goal position makes an enormous difference to efficiency of D* Lite. This problem is 
also addressed by the author of D* Lite in [12] as open question. In other papers, mathemati-

cal approach is used to study this pitfall in [16]. Unfortunately, the problem is still not solved 

thoroughly; however, there are approaches to partly overcome this pitfall in certain situation 

that will be presented in the following section.

4.2. Performance improvements

This section describes variants of D* Lite that partially solves the mentioned pitfall of D* Lite. 

Hence, these state-of-the-art algorithms improve the computation factor of D* Lite.

4.2.1. Anytime dynamic A* (AD*) algorithm

As one of the prominent properties of D* Lite, it maintains the optimality of solution paths. 

However, in real-world application, optimal paths are difficult to calculate due to the com-

plexity and uncertainty of environment within available time; the paths are also quickly 

to become out of date because of dynamic surroundings. Moreover, the state space, which 

encodes global motion constraints of the robot, tends to be high dimensions. With these dif-

ficulties, D* Lite becomes unreliable when implementing in real robot.

Anytime Dynamic A* (AD*) [12], which is a combination of D* Lite and ARA* algorithm, is a 

trade-off between computation and path optimality. It sacrifices the shortest path to quickly 
generate suboptimal solution to cope with imperfect information and dynamic environment. 

AD* inherits these properties from its parent algorithms:

• Anytime: AD* uses inflated heuristic function to increase the greedy factor that expands 
aggressively towards goal while still maintaining path suboptimal bounds  ε . In addition, 

AD* also is capable to reuse information from previous search to improve its path. This 

property is inherited from ARA* to cope with complex planning scenario.

• Incremental heuristic: AD* has the ability to efficiently identify relevant cells that contrib-

ute to replan a new path when environment changes are detected. However, the heuristic 

function in this property is not inflated to guarantee the suboptimal bound in replanning 
process. This property is inherited from D* Lite to cope with dynamic environment.

In general, AD* executes a series of similar searches with decreasing suboptimal bounds to 

generate a series of paths with improved bounds. As environment changes are detected, the 

locally inconsistent cells are placed in OPEN list with uninflated heuristic keys, and AD* 
processes these cells to correct the outdated path. The pseudo code for AD* is shown in 

Figure 10.
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Figure 10. Pseudo code of AD* algorithm.
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At first, we set the suboptimal bound  ε  to be large enough in order to generate solution quickly 

(Figure 10, line 42). Unless environment changes are detected, AD* iteratively decrease sub-

optimal bound  ε  to improve the solution as time allowed (Figure 10, lines 55–60); this phase 

is exactly the same with ARA*.

When changes are perceived, the suboptimal bound of solution is no longer guaranteed, 

especially the under-consistent cells, due to the fact that there could have shorter paths 

exist. Therefore, these under-consistent cells are placed in OPEN list with uninflated 
heuristic to ensure these cells propagate their inconsistences to neighbours first when 
ComputeOrImprovePath() function is called (Figure 10, lines 5 and 45–50). However, because 

of this effect, many under-consistent cells quickly rise to the top of OPEN list; they usually do 
not contribute to calculate new path in practice (e.g. objects cause under-consistent changes 

like human movement, etc.). Hence, AD* tends to slow down when the path is near optimal. 

Theorems of AD* are described in detail in [12].

When “significant cell changes are detected” (Figure 10, line 53), there is a high chance that 

the problem of D* Lite occurs and the search tree may be corrupted heavily; the replanning 

process now is expensive; we can increase suboptimal bound  ε  to speed up the correction 

effort or start a new search from scratch. The problem is how to estimate “significant cell 
changes”. This algorithm does not solve the mentioned problem of D* Lite completely; it is 

just a trade-off between performance and path optimality. However, AD* performs quickly 
in large-scaled map compared to other algorithms, in which the robot has significant time to 
iteratively repair its path, and thus overall path is near optimal.

4.2.2. D* Lite with reset algorithm

Unlike AD*, D* Lite with Reset (D*LR) [16] partially solves the problem D* Lite while still 

maintaining path optimality. The idea of D*LR is simple; it decides flushing previous search 
data and starts searching from scratch when the replanning process is expensive.

D*LR is a variant of D* Lite; it inherits all the properties of D* Lite. The main contribution of 

D*LR is that it proposes two criteria to decide whether to incrementally replan path or calculate 

a fresh path using A* at the position the robot detects changes. Let total traversed cell is   N  
T
   ; total 

cell of path that exists between consecutive detection incidents is   N  
P
   , and the remaining path 

count is   N  
R
   =  N  

P
   −  N  

T
   ; the criteria are:

• Ratio of traversed length: The criteria measure how many percentages of the path the 

robot has moved between two consecutive positions that the robot detects environment 

changes. The ratio    
 N  
T
  
 ___ 

 N  
P
  
    is then compared with a threshold:

     
 N  
T
  
 ___ 

 N  
P
  
   < ∝ .  (8)

If the ratio is greater than threshold  ∝  when the robot perceives changes, it triggers the reset 

routine and starts searching from scratch. Intuitively, the position that robot detects changes 

is nearer the goal, the more likely replanning process is expensive.
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• Linear heuristic distance: The criteria measure the complexity of the remaining path count   

N  
R
    between consecutive detection incidents. The method to measure the complexity is to 

use inflated heuristic function:

    N  
R
   > ε ∗ h (s,   s  

goal
  ) ,  (9)

where s is the current position of the robot. If   N  
R
   ≤ ε ∗ h (s,   s  

goal
  )  , then the remaining path is 

simple enough; there is a chance that the new path is much more complex. Hence, the algo-

rithm must plan over from scratch.

As can be seen, these criteria use only path information between consecutive detection inci-

dents in order to estimate the amount of computation of replanning process comparing with 

planning over from scratch. The reason is that it is hard to predict propagation behaviour of 

OPEN list, because the state space is only partially known. Moreover, these criteria only work 

in high cluttered and complex environment, where environment changes usually block initial 
path and the new path is likely to be much longer than initial path. The pseudo code of D*LR 

is presented in Figure 11.

The proposed criteria of D*LR are not robust due to extensively replying on environmental 

assumptions. However, the algorithm can be improved if criteria that can robustly estimate 

computation of replanning process in any kind of environment are applied. If criteria are 

robust, D*LR performance of each iteration is bounded by the complexity of A*:

  O ( |V| )  = O ( |E| )  = O ( b   d )   (10)

4.3. Optimality improvements: Field D* algorithm

Although cell decomposition approximation is widely used to discretize C-space for search-
based algorithms due to its robustness (no prior environmental assumptions), this approxima-

tion intrinsically prevents search-based algorithm to produce optimal path. The search-based 

algorithms just allow to transition between cell centres, thus restricting robot traverse direc-

tions to increment of    
π

 
__

 
4
   . Moreover, the produced path involves many sharp turns and jerky 

segments in large map that makes robot difficult to move.

There were many approaches to cope with this problem. For instance, post-processing method 

that finds the furthest point P along the solution path for which a straight line path from P 
to robot position is collision-free and replaces the original path to P with this straight line. 

However, this method sometimes does not work and increases the path cost. Another approach 

is fast marching method [22]; this method incorporates interpolation step in planning step 

to produce low-cost interpolated path. Nonetheless, this method assumes that transition cost 

between grid cells is constant and does not have heuristic property like A*; hence it is not appli-

cable to outdoor environment, which requires fast path generating and non-uniform cost grid.

To incorporate incremental heuristic property of D* Lite, the authors of Field D* [3] embed 

linear interpolation method to the replanning process to generate “any-angle” optimal path 
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that overcomes grid limitation in dynamic environment. The root cause of restriction of path 

optimality is the rule to transition between cell centres; the idea of Field D* to solve this prob-

lem is to remap state space graph vertices to the corner of each cell (see Figure 12). The nodes  s  

can be considered as sample points of continuous cost field, where the optimal path must pass 
one of the edges   {   ⟶  s  

1
    s  

2
   ,   ⟶  s  

2
    s  

3
   ,   ⟶  s  

3
    s  

4
   ,   ⟶  s  

4
    s  

5
   ,   ⟶  s  

5
    s  

6
   ,   ⟶  s  

6
    s  

7
   ,   ⟶  s  

7
    s  

8
   ,   ⟶  s  

8
    s  

1
   }   that connects consecutive neighbours 

of  s ; the edge is    ⟶  s  
1
    s  

2
     in the picture’s case.

Figure 11. Pseudo code of D*LR. Other functions such as Key(), UpdateVertex() and ComputePath() are the same with 

D* Lite and thus are not presented.
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In this case, the edge, which resides on the boundary of two cells, has the edge cost equal to 

the minimum of cost of the two cells. Field D* use linear interpolation to compute approxi-

mately the cost of any point   s  
y
    on the edge    ⟶  s  

1
    s  

2
     by using the path cost (cost from the node to 

goal)  g ( s  
1
  )   and  g ( s  

2
  )  :

  g ( s  
y
  )  = yg ( s  

2
  )  +  (1 − y) g ( s  

1
  ) ,  (11)

where  y  is the distance from   s  
1
    to   s  

y
    (Figure 13). Given the centre cell cost  c  and bottom cell cost  

b , we can compute the path cost of  s  using edge    ⟶  s  
1
    s  

2
     as

  g (s)  =  min  
x,y

    (bx + c  √ 
_________

  (1 − x)   2  +  y   2    + g ( s  
2
  ) y + g ( s  

1
  )  (1 − y) )   (12)

where  x  is the distance travel along the bottom edge from  s  before cutting through the centre 
cell to reach the right edge at the point   s  

y
    a distance  y  from   s  

1
   . (see Figure 13).

The interpretation from formulas (4) into ComputeCost() function is described in detail in [3]. 

This optimization approach can be plugged in any dynamic planner by replacing standard 
cost function between cell centres by function ComputeCost(). In addition, due to remapping 

Figure 12. Remapping state space graph vertices from cell centres to cell corners (a) Center Vertices, (b) Corner Vertices 

and (c) Optimal Path intersected ⟶ s
1
 s

2
.

Figure 13. Linear interpolation process to compute path cost of s using edge ⟶ s
1
 s

2
. The subfigures illustrate possible 

optimal path cost (a) Calculate g(s) based on s
1
, s

2
 (b) Case g(𝑠

1
) < g(𝑠

2
) (c) Case g(𝑠

1
) > g(𝑠

2
) and (d) Case path costs that 

pass arbitrary point.
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graph vertices into cell corners, we also need to change finding cell centre neighbours to a pair 
of corner nodes as illustrated in Figure 13. Once the path costs of necessary nodes are com-

puted, the path is generated by starting from the initial node and iteratively finds, using linear 

interpolation, the optimal node on the neighbor cell boundary to move next. The pseudo code 

of Field D* and modifications in red colour are shown in Figure 14. Note that the differences 

Figure 14. Pseudo code of Field D*.
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between D* Lite and Field D* are highlighted in red. The function Key(), ComputePath() are 

the same as D* Lite and thus is not presented. This pseudo code is a basic version of Field D*; 

optimised versions are presented in [3].

Field D* inherits all properties of D* Lite; it combines linear interpolation method to compute 

path from any point inside cell, not just corners or cell edges. This feature is crucial for robot 

to get back on track if the actuator execution is faulty. Moreover, Field D* is not subjected to 

direction restriction; hence, it produces much shorter and smoother path.

5. Experimentation

In this section, using our path planning framework, we demonstrate the evaluation com-

parison between algorithms in search-based family in terms of performance and path 

optimality.

5.1. Evaluation method

To visualise the evolution in computation of search-based algorithms, we compare the replan-

ning computation of D* Lite, Anytime Dynamic A* and D* Lite with Reset. The purpose of the 

comparison is to demonstrate the performance improvements of D* Lite variants in order to 

apply on robot that operates in complex and dynamic environment. However, since the plan-

ning time depends on the implementation and machine configuration, we therefore choose 
the amount of cell expansion in each replanning iteration of search-based algorithm to be 

standard performance measurement of the mentioned algorithms. This method is indepen-

dent on machine specifics and actual implementation and therefore firmly accurately shows 
the enhancement of this evaluation. The path solution ratio between AD* with different  ε  

suboptimal bound and optimal path of other algorithms is also measured to visualise the 

trade-off between optimality and computation.

The experiments are conducted on our 2D simulation engine. The state space is a 2D grid cell 

with uniform resolution [23]. The conceptual robot in this simulation has two-cell-unit range 

and its own known grid map to detect environment changes (unblocked cell to blocked cell 

and vice versa) as it moves along the initial path (see Figure 15).

5.2. Evaluation results

We evaluate the performance and path solution of search-based algorithms in two sce-

narios: partially known and unknown 2D grid environment with uniform resolution. The 

total expanded cells are averaged based on total replanning processes on each simulation 

instance, with 95% confident. The path solution of each algorithm is counted as the total 
cells that the robot has traversed from corner to corner of the map. We decrease the subop-

timal bound of AD* for 0.1 per step the robot travels until the suboptimal bound reaches 1.0 

(optimal path).

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

83



Figure 16. Comparison between search-based algorithms on partially known environment with increasing map scale in 

terms of computation and path solution.

Figure 15. Simulated environment on our framework.
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Figure 16 shows the speedup result throughout the evolution from Replanning A* to AD* 

with different  ε  suboptimal bounds as well as the trade-off of AD*. The environment is ini-
tially generated randomly obstacles that occupy 25% of the map. The initial map is then 

input to the robot. While the robot is moving, we randomly change the cell states that are 

15% of the map, thus forcing the robot to replan its path whenever it detects environmental 

changes.

As can be seen, AD* has the highest performance that has least total expanded cells in replan-

ning process; the higher the suboptimal bound, the better the performance. The reason is 
AD* is inflated its heuristic function to make it greedier in expanding cells towards goal. It 
is interesting that path solution of AD* is not much longer than optimal path. As the scale of 

map is increasing, the path between map corner is longer to travel, and thus, the robot is given 

enough time to improve its solution (path ratio with  ε = 6.0  is gradually converged to the one 

 ε = 3.0  at 1.016).

D*LR slightly improves the performance of D* Lite; it is because D*LR relies on computation 

differences between Replanning A* and D* Lite. In fact, the pitfall of D* Lite rarely happens 
in scenarios that the robot detects changes near its position. Replanning A* does not have 

incremental property and thus uses the highest computation.

The data confirms the fact that AD*, in average throughout the increasing map scale, improves 
125% and 194% performance compared to D* Lite with  ε = 3.0  and  ε = 6.0 , respectively. The 

path produces by AD* only 1% longer than optimal path in average.

Figure 17. Comparison between search-based algorithms on unknown environment with increasing map scale in terms 

of computation and path solution.
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Figure 17 describes the evaluation case on unknown environment. The environment is ini-

tially generated with random obstacles that occupy 15% of the map. The robot does not know 

the initial conditions; it will replan its path whenever it detects obstacles that do not exist in 

its map.

For unknown environment scenario, D*LR performs significantly better than D* Lite as 
increasing map scale. The reason is that if the replanned path is much longer than the initial 

path, which is the common case in unknown environment, the replanning process of D* Lite 

is also expensive. AD* still has the least computation compared to old search-based algorithm; 

it reduces drastically the computation of D* Lite with 845% better performance, in the case  
ε = 10.0 , while still maintains good path solution.

6. Conclusion

In practice, motion planning algorithms can be implemented on top of navigation layer such 

as simultaneous localization and mapping (SLAM) for autonomous robot. While navigation 
layer enables the robot to perceive surrounding information and its position relative to the 

surroundings, motion planning layer gives the robot abilities to plan a path in surround-

ing environment and make decision to avoid obstacles. Because of that fact, navigation and 

motion planning are always paired up to enable autonomous robot to operate in dynamic and 

complex environment.

This chapter is a guide to comprehend the foundation of motion planning, in particular, 

search-based path planning algorithms. In this chapter, we present the steps to develop and 

formulate a motion planning problem. We also describe the evolution branches of motion 

planning and then focus on the development of search-based algorithm family. Each algo-

rithm in search-based family is invented to cope with increasing demands in performance 

or solution quality, for the robot to operate in more complex scenarios. To reinforce the 

revolution statement of state-of-the-art search-based algorithms, we provide a computa-

tion and optimality comparison between search-based algorithms on partially known and 

unknown environment. Based on the data, we conclude that Anytime Dynamic A* is the 

most suitable algorithm that enables the robot to operate in cluttered and fast changing 
scenario.

Until recently, the mainstream of motion planning development is to enhance the perfor-

mance of search-based algorithm and their solution optimality by modifying cell decomposi-

tion method. There are signals that the trajectory planning paradigm is starting to be active 

research field after being frozen for a decade. We expect that the future development of trajec-

tory planning will robustly incorporate motion constraints with higher optimality and better 
computation. The ultimate goal of motion planning field is giving robot spatial decision plan-

ning converging to human ability.
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