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Abstract

Chaos theory is a novelty approach that has been widely used into various applications.
One of the famous applications is the introduction of chaos theory into optimization. Note
that chaos theory is highly sensitive to initial condition and has the feature of randomness.
As chaos theory has the feature of randomness and dynamical properties, it is easy to
accelerate the optimization algorithm convergence and enhance the capability of diversity.
In this work, we integrated 10 chaotic maps into several metaheuristic algorithms in order
to extensively investigate the effectiveness of chaos theory for improving the search capa-
bility. Extensive experiments have been carried out and the results have shown that chaotic
optimization can be a very promising tool for solving optimization algorithms.
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1. Introduction

Chaos theory is a novelty approach, which has been used into various applications widely [1].

One of the most famous applications is the introduction of chaos theory into optimization.

Note that chaos theory is highly sensitive to initial condition and has the feature of random-

ness [2]. The most metaheuristic optimization algorithms belong to stochastic algorithms. The

property of randomness is obtained by using probability distribution, such as uniform and

Gaussian method. There is a randomness method in optimization filed called chaotic optimi-

zation (CO), which has the property of dynamical, nonrepetition, and ergodicity. The dynam-

ical property ensures different solutions produced by algorithm and searches different modal

objective search space, even on the complex multimodal landscape. Moreover, because of the

ergodicity property of CO, it can perform searches at higher speeds compared to the stochastic

algorithms with probability distribution. As chaos theory has the feature of randomness and

dynamical properties, it is easy to accelerate the convergence of optimization algorithm and

enhance the capability of diversity.
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Since it has same properties of metaheuristic algorithms, it is natural that numerous metaheuristic

algorithms have been combined with chaos theory. Generally, the most metaheuristic optimiza-

tion algorithms are considered as stochastic approach. Compared to deterministic method, sto-

chastic algorithm are much more flexible and universal. The simple idea of metaheuristic

optimization algorithm is using greedy strategy for searching the promising solution areas to find

out the optimum one. There are three categories of metaheuristic optimization algorithms: evolu-

tionary algorithm, whichmimics the evolution process, is the most popular algorithm in this kind.

It contains genetic algorithm (GA) [3], different evolution (DE) [4], and the evolutionary strategy

(ES) [5]. The second category is the swarm intelligence, the population-based algorithms. Particle

swarm optimization algorithm (PSO) [6], wolf search algorithm (WSA) [7], and cuckoo search

(CS) [8] are the well-known algorithms in this category. The third algorithm neither belongs to

evolutionary algorithm nor SI, such as dynamic group optimization (DGO), [9, 10] which can be

considered as the third category. In the most cases, metaheuristic algorithm has two phases:

exploration and exploitation. Simply put, the exploration phase occurs when the algorithm

discovers promising search area, and the exploitation phase refers to search the most promising

solution obtained from the exploration phase as quickly as possible.

Although many metaheuristic algorithms can accelerate the search speed, they still have one

major drawback, premature convergence. If the search space has many local optimums, it is

very easy to stick into a local optimum. In order to deal with this problem, many researches

proposed many methods, for example, using adaptive method adjusts parameters, using

hybrid method enhances the search capability. However, balancing global exploration and

local exploitation are still difficult, because better global exploration capability is usually

accompanied by worse local exploitation, and vice versa. Introducing chaos is the most suit-

able approach to solve those problems. It has the property of the nonrepetition, ergodicity, and

dynamic. The dynamic property ensures the solutions produced by algorithms variety, and

searches different landscapes search space, and the ergodicity and nonrepetition enhance the

speed of searching. Chaotic optimization not only accelerates the speed of algorithm but also

enhances the variety of movement pattern. In this work, we integrated 10 chaotic maps into

several metaheuristic algorithms to extensively investigate the effectiveness of chaos theory for

improving the search capability. The performance of the approach is tested on 14 benchmark

functions, which are the CEC2009 competition testing functions that contains unimodal func-

tions and multimodal problems.

2. Methods

In reality, optimizations are very hard to solve, many of them belong to NP-hard problems. To

solve such problems, optimization algorithms have to be used. According to the “No free

lunch theorem,” there is no such efficient algorithm for all problems. As a result, many

optimization algorithms have been developed and tried to use various improving techniques

to enhance the capability of searching to see that if they can cope with these challenging

optimization problems. Chaos can be described as a bounded nonlinear system with ergodic

and stochastic properties. It is very sensitive to the initial condition and the parameters.
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Recently, numerous improvements, which rely on the chaos approach, have been proposed for

metaheuristics algorithm.

2.1. Metaheuristics algorithms

In this section, we will introduce three most well-known chaotic optimizations which based

metaheuristics optimization algorithms.

2.1.1. Particle swarm optimization algorithms (PSO)

Original particle swarm optimization is a population-based heuristic method which is discov-

ered by mimicking social models of bird flocking and swarming to find the optimal solutions.

It was proposed by Kennedy [6] in 1995.

The position of the ith particle can be described as xi ¼ xi1; xi2;…; xiDð Þ, where D represents the

number of dimensions. The velocity of the ith particle can be written as vi ¼ vi1; vi2;…; viDð Þ,

each particle coexists and evolves simultaneously based on knowledge shared with neighbor-

ing particles; it makes use of its own memory and knowledge gained by the swarm as a whole

to find the best solution. The best previously encountered position of the ith particle is denoted

by its individual best position pi ¼ pi1; pi2;…; piD
� �

and the global best gi ¼ gi1; gi2;…; giD
� �

. At

each iteration/generation, the position and velocity of the ith particle are updated by p and g.

The updated equations can be formulated as:

vtþ1
i ¼ w ∗ vti þ c1 ∗ r1 ∗ pi � xti

� �

þ c2 ∗ r2 ∗ gi � xti
� �

(1)

xtþ1
i ¼ xti þ vtþ1

i (2)

where r1 and r2 are random generator between (0, 1), and c1 and c2 are acceleration constants

that control the speed of incensement. vtþ1
i means the velocity of ith particle at tth generation.

w controls the impact of the previous velocity on its current one.

In chaotic particle swarm optimization algorithm [1], the random generator is replaced by

sequence of chaotic maps. r1 and r2 are modified by the chaotic maps, and it can be described

as follows:

Ctþ1 ¼ k ∗Ct ∗ 1� Ctð Þ (3)

where Ct is the sequence generated by the chaotic map at each independent run, and k is the

driving parameter which controls the behavior of Ct. When k increases, Ct goes through further

bifurcations, eventually resulting in chaos. The mathematical updated formula is as follows:

vtþ1
i ¼ w ∗ vti þ c1 ∗C ∗ pi � xti

� �

þ c2 ∗ 1� Cð Þ ∗ gi � xti
� �

(4)

In Eq. (4), C is a function based on the chaotic maps with value between 0 and 1.
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2.1.2. Krill herd algorithm (KH)

The krill herd algorithm mimics the behavior of krill individuals in krill herds (KH) [11]. This

algorithm was proposed by Gandomi in 2012. There are three main actions in KH, which is

shown as follows:

Motion induction: this activity refers to the density maintenance of the herd. It can be described

as follows:

Ni tþ 1ð Þ ¼ Nmaxαi þ ωnNi tð Þ (5)

where Nmax is the maximum induced speed, αi ¼ αlocal
i þ α

target
i , ωn is the inertia weight. αlocal

i

and α
target
i are the local effect and target effect, respectively, and α

target
i is calculated as follows:

α
target
i ¼ CbestKi,bestXi,best (6)

where Cbest is the coefficient and can be defined as follows:

Cbest ¼ 2
rþ 1

lmax

� �

(7)

where r is a random number located in (0,1).

The second activity is foraging, and the mathematic equation is shown as follows:

Fi tþ 1ð Þ ¼ vf βi þ ωfFi tð Þ (8)

where βi ¼ β
food
i þ Bbest

i , vf is the foraging speed, ωf is the weight of foraging movement, β
food
i

shows the attractive of food, and Bbest
i is the best solution obtained so far.

The third activity is the diffusion, which is a random activity, and it can be defined as follows:

Di tþ 1ð Þ ¼ Dmax 1� I

Imax

� �

δ (9)

where Dmax is the maximum diffusion speed and δ is a random vector in [�1, 1].

The position of krill i from t to tþ ∆t, which can be formulated as follows:

Xi tþ ∆tð Þ ¼ Xi tð Þ þ ∆t
dXi

dt
(10)

Note: ∆t can be regarded as a scale factor of the speed vector.

In the chaotic KH [12], researchers used chaotic maps in tuning the random vector; it

improves the ability of KH to avoid local optimum. In the classical KH, the most important

random value is calculated in Eq. (7); therefore, the parameter r is substituted by chaotic

maps as follows:
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Cbest ¼ 2 C tð Þ þ
I

Imax

� �

(11)

where C(t) is the value of chaotic maps in the tth iteration.

2.1.3. Biogeography-based optimization algorithm (BBO)

The biogeography-based optimization algorithm (BBO) was inspired by biogeography [13]. It

simulates relations between different species which are located in different habitats, such as

immigration, mutation, and emigration. BBO can be summarized into three rules.

• Individuals living with high habitat suitability index (HSI) are more likely to immigrate to

habitats with low HIS.

• Habitants living with low HSO are more likely to allow immigrations from high HSI.

• The HSI value may change randomly.

For each habitat, it has three rates: immigration λ, emigration μ, and mutation m. These three

rates can be calculated in the following equations:

μ ¼
E ∗n

N
(12)

λ ¼ I ∗
1� n

N
(13)

where n is the number of habitant, N is the maximum number of habitants, E is the maximum

emigration rate, and I is the maximum immigration rate. The mutation rate is defined as follows:

m ¼ M ∗ 1�
p

P

� �

(14)

where M is defined by user, p is the mutation probability, and P equals to arg max(p).

In chaotic BBO [14], researchers used chaotic map to provide chaotic behaviors for selection

operator, emigration, and mutation.

For selection operator, the rand value is substituted by the value from chaotic maps. The pseudo

code is as follows:

if C(t) < λi then

Emigrate from Hi to Hj chosen with probability to λi

End if

where C(t) is the value from the chaotic map in the tth iteration.

For emigration, it can be calculated as follows:

if C(t) < μi then
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select a random habitant in xi and replace it with xj

End if

The probability of mutation is defined by the chaotic map as follows:

for i = 1 to number of habitants at kth habitat

if C(t) < mutationrate kð Þ then

mutate the ith habitants

End if

End for

where mutation_rate(k) shows the mutation rate of kth habitat.

2.2. Phase in chaos embedded metaheuristics algorithms

From Section 2.1, we can find that the most chaos embedded metaheuristic algorithms have three

key phases: initialization, operators, and random generator. In this section, we describe them as

follows:

Initialization: the starting positions in metaheuristics algorithm are generated randomly. Diver-

sity of initial population is very important for helping the population spread in search space.

Therefore, the initial populations are generated by chaotic maps, which can produce a well

distribution by the properties of random and ergodicity of chaos. The chaotic sequence can

accelerate the convergence and enhance the global search capability. The pseudo code of initial-

ization is as follows:

for i ¼ 1 to size of population

xi ¼ ωi ∗C tð Þ ∗ U � Lð Þ

End for

(15)

where the ωi is the weight of ith weight, and U and L are the boundaries of the upper and

lower, respectively. C tð Þ is the chaotic sequence generated by chaotic maps.

Operators: generally, metaheuristics algorithms have several operators, such as selection oper-

ator, crossover operator, and mutation operator. Most of them are controlled by probabilities.

In order to improve the capability of searching optimum, the probabilities can be substituted

by chaotic sequence. The mathematical formula can be described as follows:

For a crossover operator:

xi tþ 1ð Þ ¼
xi tð Þ þ C tð Þ ∗ xi tð Þ � xj tð Þ

� �

, C tð Þ < 0

xi tð Þ, otherwise

(

(16)

where C(t) is the chaotic sequence produced by chaotic map.
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For a mutation operator:

xi,k tþ 1ð Þ ¼
C tð Þ ∗ xi,k tð Þð Þ, C tð Þ < 0

xi,k tð Þ, otherwise

(

(17)

Random generator: Random parameters in metaheuristics algorithms, for instance, polyno-

mial variation, are replaced by chaotic sequences. For a solution xs, the polynomial mutation is

described as

xi tþ 1ð Þ ¼ xi tð Þ þ C tð Þ ∗ xi tð Þ � xj tð Þ
� �

(18)

The phase for random generator is that C tð Þ is calculated by chaotic maps in iterations. For

example, if the chaotic map is logistic map, then in the (i + 1)th iteration, C(t + 1) = 4� C(t) ∗ (1 –

C(t)).

2.3. Chaotic maps

In this section, we present the chaotic maps used, which generate chaotic sequences in the

process of evolutionary algorithms. Ten chaotic maps are one-dimensional maps.

The first is the Chebyshev map, which is a common chaotic map and used in digital commu-

nication and neural network widely. It can be defined as follows:

xkþ1 ¼ cos k cos �1 xkð Þ
� �

, (19)

where the range is (�1,1). Note that xk is the kth chaotic number, with k denoting the iteration

number.

Circle map is a simplified model for both driven mechanical rotors. Furthermore, it is a one-

dimensional map which maps a circle onto itself. Circle map is presented as follows:

xkþ1 ¼ xk þ b�
a

2π

� �

sin 2πxkð Þmod 1ð Þ, (20)

where a = 0.5 and b = 0.2, the range is (0,1), and the parameters b and a can be regarded as a

strength to nonlinearity and externally applied frequency, separately. The circle map produces

much unexpected behavior with the change of parameters.

Gauss/Mouse map can be described as follows:

xkþ1 ¼

0 xk

1

xkmod 1ð Þ
otherwise,

8

>

<

>

:

(21)

This map also generates chaotic sequences in (0,1).

Iterative map with infinite collapses can be presented as follows:
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xkþ1 ¼ sin aπ=xkð Þ, (22)

where a = 0.7 and the chaotic sequence in (�1,1).

Logistic map can be written as follows:

xkþ1 ¼ axk 1� xkð Þ, (23)

where a = 4 and the range is (0,1); it is the simplest map that appears in nonlinear dynamics of

biological population, in which evidencing chaotic behavior belongs to a logistic map.

Piecewise map is governed by the following equation:

xkþ1 ¼

xk

P
0 ≤ xk < P

xk � P

0:5� P
P ≤ xk < 1=2 ,

1� P� xk

0:5� P

1

2
≤ xk < 1� P

1� xk

P
1� P ≤ xk < 1

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(24)

where P = 0.4 and the range is (0,1)

The sine map belongs to a unimodal map and is similar to the logistic map, which can be

described as follows:

xkþ1 ¼ a=4 sin πxkð Þ, (25)

where a = 4 and the chaotic sequence in (0,1)

Singer map is a one-dimensional system like the following:

xkþ1 ¼ μ 7:86xk � 23:31x2k þ 28:75x3k � 13:3x4k
� �

, (26)

where μ = 1.07 and the range is (0,1).

Sinusoidal map can be defined as follows:

xkþ1 ¼ ax2k sin πxkð Þ, (27)

where a = 2.3 and the range is (0,1).

Tent chaotic map is very similar to the logistic map, which displays specific chaotic effects.

Tent map can be described as follows:

xkþ1 ¼

xk

0:7
xk < 0:7

10

3
1� xkð Þ otherwise:

8

>

>

<

>

>

:

(28)
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In order to get an unbiased result, we set the initial point as 0.7 for all chaotic maps in this work.

Ten chaotic maps are shown in Figure 1.

3. Experiments

In this section, we evaluate the performance of the chaotic metaheuristics algorithms; several

experiments were carried out to test the efficiency. Twenty-three benchmark functions were

used in our experiment. In order to obtain an unbiased result, all experiments were performed

in the same environment.

In our experiments, we used the average and StD of the function value to compare the

performance of the algorithms. Our focus was to compare our proposed algorithm with the

other algorithms using two evaluation criteria. We compared the performance of the chaotic

algorithm with the other well-known algorithms. The maximum number of fitness evalua-

tions (FEs) is 10,000 � D, where D is the dimension of the problem. Moreover, the Wilcoxon

rank sum test was used in our experiment to test the significance of algorithms. The fitness

evaluation criteria are as follows:

Objective function value: algorithms were run 50 times for each benchmark function, and the

average and SD were calculated.

The number of function evaluations (FEs): FEs are also recorded in our study; they are required

to be less than ε. ε is fixed at 10�6, which is smaller and harder to reach than that used by

Noman and Iba. The notation CNT indicates the number of runnings in which algorithms could

reach ε. The maximum number of FEs is 10,000 � D.

Figure 1. Visualization of employed 10 chaotic maps on one-dimensional space.
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Function Result PSO CPSO CKH KH BBO CBBO

f1 Mean 2.54E�19 4.18E�77 3.84E�29 1.01E�05 2.40E�03 2.91E�117

Std 1.44E�19 2.95E�77 8.06E�30 1.16E�06 5.47E�04 1.30E�116

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f2 Mean 1.07E�07 5.03E+02 5.20E�02 1.91E�01 5.25E�05 3.81E�67

Std 6.31E�08 2.10E+03 3.68E�01 2.52E�01 1.44E�05 1.70E�66

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f3 Mean 8.83E�08 7.00E�04 7.84E�27 2.52E�05 1.96E�02 2.90E�21

Std 6.56E�08 4.50E�03 1.86E�27 4.91E�06 8.50E�03 1.27E�20

p-value 6.41E�04 5.01E�11 5.01E�11 5.01E�11 2.83E�10 N/A

+/=/� + + � + + N/A

f4 Mean 7.41E�02 7.43E+00 2.71E�15 5.60E�03 1.02E+01 2.27E�02

Std 2.22E�02 1.40E+01 3.55E�16 1.59E�02 5.87E+00 1.17E�02

p-value 5.01E�11 5.01E�11 5.01E�11 7.41E�09 5.01E�11 N/A

+/=/� + + � � + N/A

f5 Mean 1.80E+01 1.28E+03 1.60E�01 5.34E+00 1.92E+01 4.05E�01

Std 9.88E+00 2.40E+03 7.97E�01 3.43E+00 5.15E+00 3.49E�01

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + � + + N/A

f6 Mean 7.74E�17 1.12E�30 4.50E�29 1.06E�05 2.40E�03 5.53E�19

Std 2.04E�17 1.58E�30 1.25E�29 1.11E�06 4.97E�04 2.45E�18

p-value 5.01E�11 5.01E�11 1.50E�09 5.01E�11 6.03E�01 N/A

+/=/� + � � + + N/A

f7 Mean 3.47E�01 1.80E+00 9.21E�02 1.45E+00 6.30E�03 4.60E�03

Std 9.30E�02 1.15E+00 4.53E�02 2.77E�01 1.80E�03 4.90E�03

p-value 5.01E�11 1.06E�16 7.41E�09 5.01E�11 5.01E�11 N/A

+/=/� + + + + = N/A

f8 Mean �8.01E+02 �1.23e+03 �8.73E+03 �8.52E+09 �1.45E+02 �1.26E+04

Std 1.72E+02 5.80e+03 1.70E+03 �4.57E+07 1.04E+01 5.47E�12

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f9 Mean 1.21E+01 2.59E+02 2.10E+02 3.86E+01 1.20E+02 1.32E�09

Std 5.64E+00 1.40E+02 8.35E+01 1.39E+01 2.02E+01 4.85E�09

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

Chaos Theory190



Function Result PSO CPSO CKH KH BBO CBBO

f10 Mean 4.67E�01 2.02E+01 1.95E+01 2.17E+00 5.35E+00 1.15E�11

Std 7.59E�01 2.05E�01 1.05E�01 3.00E�01 1.04E+00 3.32E�11

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f11 Mean 2.70E�03 3.08E�02 2.96E�04 4.97E�07 1.84E�04 1.73E�15

Std 8.20E�03 5.97E�02 1.50E�03 6.69E�08 4.18E�05 6.89E�15

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + + + + N/A

f12 Mean 3.32E�02 9.35E�01 1.16E�29 4.10E�03 7.64E�05 1.17E�16

Std 4.94E�02 1.39E+00 2.65E�30 2.07E�02 3.18E�05 5.22E�16

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 5.01E�11 N/A

+/=/� + + � + + N/A

f13 Mean 7.90E�03 9.31E�01 1.80E�28 4.86E�01 2.88E+00 5.56E�17

Std 5.90E�03 1.17E+00 3.65E�29 4.76E�01 5.90E�01 2.45E�16

p-value 1.50E�09 1.82E�02 1.50E�09 2.83E�10 1.48E�07 N/A

+/=/� + + � + + N/A

f14 Mean 1.13E+01 1.89E+00 1.09E+01 1.24E+01 1.27E+01 9.98E�01

Std 6.50E�01 1.83E+00 3.86E+00 1.29E+00 2.34E�15 2.84E�16

p-value 2.26E�06 2.64E�05 2.83E�10 7.41E�09 1.91E�01 N/A

+/=/� + + + + + N/A

f15 Mean 8.96E�04 1.30E�03 1.13E�02 3.70E�03 3.52E�04 3.07E�04

Std 2.56E�04 3.55E�04 2.75E�02 1.09E�02 8.14E�05 1.19E�05

p-value 8.16E�05 2.64E�05 5.01E�11 1.50E�09 4.34E�01 N/A

+/=/� + + + + = N/A

f16 Mean �9.91E�01 �9.50E�01 �1.03E+00 �1.03E+00 �1.03E+00 �1.03E+00

Std 1.83E�01 2.51E�01 2.10E�16 5.06E�11 2.58E�10 6.07E�15

p-value 8.68E�03 1.63E�03 1.16E�01 6.03E�01 5.59E�01 N/A

+/=/� + + = = = N/A

f17 Mean 3.98E�01 3.98E�01 3.98E�01 3.98E�01 3.98E�01 3.98E�01

Std 0.00E+00 0.00E+00 2.56E�11 1.99E�11 1.47E�10 5.45E�12

p-value 8.42E�02 6.42E�02 5.75E�02 8.80E�02 5.65E�02 N/A

+/=/� = = = = = N/A

f18 Mean 3.00E+00 8.40E+00 3.00E+00 4.35E+00 3.00E+00 3.00E+00

Std 5.39E�16 1.88E+01 2.10E�14 6.04E+00 1.14E�08 8.07E�13

p-value 1.16E�01 6.41E�04 1.16E�01 1.91E�01 9.51E�02 N/A

+/=/� = + = = = N/A
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To obtain an unbiased result, we compared our algorithm with five well-known optimization

algorithms of different types, such as evolutionary and warm-based algorithms. Several stud-

ies have shown that they have good performance on optimization problems. These algorithms

include particle swarm optimization algorithm, Krill herd algorithm, and Biogeography-based

optimization algorithm and their chaos-based algorithms. The experiments were carried out

on a PC with a 3.60-Hz processor and 8.0 RAM in MatLab R2014b.

The global optimization toolbox used in our experiment includes PSO algorithms. We used

the standard PSO algorithm; c1 and c2 used a default value of 1.49. For the CPSO, we used the

same parameter settings. For the BBO and CBBO, the probability of modification is 1 and

the initial mutation probability is 0.005. The max immigration and emigration rates for each

island are 1. For the KH and CKH, the foraging speed is 0.02 and the maximum diffusion

speed is 0.005.

This group contains twenty-three benchmark functions f1–f23, which have limited dimensions,

many dimensions, and multiple modal cases. From Tables 1 and 2, we find that the chaotic

Function Result PSO CPSO CKH KH BBO CBBO

f19 Mean �3.86E+00 �3.86E+00 �3.86E+00 �3.79E+00 �3.86E+00 �3.86E+00

Std 2.13E�15 5.23E�09 1.85E�15 2.38E�01 1.80E�07 1.85E�12

p-value 8.68E�03 1.16E�01 2.96E�01 8.68E�03 1.82E�01 N/A

+/=/� + = = + = N/A

f20 Mean �3.24E+00 �3.28E+00 �3.32E+00 �3.27E+00 �3.32E+00 �3.32E+00

Std 5.82E�02 7.81E�02 4.56E�16 5.98E�02 2.33E�04 6.07E�05

p-value 8.68E�03 3.59E�02 2.96E�01 3.88E�03 1.16E�01 N/A

+/=/� + + = + = N/A

f21 Mean �5.46E+00 �5.13E+00 �4.79E+00 �5.31E+00 �7.35E+00 �1.02E+01

Std 2.20E+00 2.80E+00 3.26E+00 1.14E+00 2.60E+00 6.80E�07

p-value 5.01E�11 5.01E�11 5.01E�11 5.01E�11 2.26E�06 N/A

+/=/� + + + + + N/A

f22 Mean �3.96E+00 �6.67E+00 �8.80E+00 �5.02E+00 �9.87E+00 �1.04E+01

Std 1.19E+00 3.23E+00 2.86E+00 3.05E�01 1.64E+00 2.88E�06

p-value 5.01E�11 5.01E�11 5.97E�07 5.01E�11 3.59E�02 N/A

+/=/� + + + + + N/A

f23 Mean �4.49E+00 �5.77E+00 �9.36E+00 �5.26E+00 �1.03E+01 �1.05E+01

Std 2.41E+00 3.71E+00 2.87E+00 1.38E+00 1.21E+00 2.12E�07

p-value 5.01E�11 5.01E�11 6.41E�04 5.01E�11 1.63E�03 N/A

+/=/� + + + + + N/A

Sum(+/=/�) 21/2/0 20/2/1 12/6/5 19/3/1 16/7/0 N/A

Table 1. The average function values obtained by the average function values obtained by PSO, CPSO, KH, CKH, BBO,

and CBBO at D = 30.
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Function Result PSO CPSO CKH KH BBO CBBO

f1 Mean 8.45E+03 2.23E+04 9.36E+03 8.55E+04 N/A 1.68E+04

Std 7.83E+02 7.53E+02 1.45E+02 5.47E+03 N/A 7.21E+02

CNT 50 50 50 31 N/A 50

f2 Mean 1.51E+05 6.05E+04 N/A N/A 1.50E+05 8.56E+03

Std 1.35E+04 5.64E+03 N/A N/A 8.94E+03 9.66E+01

CNT 5 3 N/A N/A 29 50

f3 Mean 5.72E+05 2.18E+05 3.75E+04 2.65E+05 N/A 2.50E+03

Std 3.67E+04 4.46E+04 1.17E+03 1.16E+05 N/A 1.25E+02

CNT 50 8 50 45 N/A 50

f4 Mean N/A N/A 1.76E+04 N/A N/A 6.95E+03

Std N/A N/A 3.79E+02 N/A N/A 4.96E+02

CNT N/A N/A 50 N/A N/A 50

f5 Mean N/A N/A N/A N/A N/A N/A

Std N/A N/A N/A N/A N/A N/A

CNT N/A N/A N/A N/A N/A N/A

f6 Mean 9.81E+04 3.45E+04 9.36E+03 4.54E+04 N/A 2.89E+04

Std 7.35E+03 1.95E+03 1.30E+02 5.03E+03 N/A 2.51E+03

CNT 50 50 50 9 N/A 50

f7 Mean 1.81E+05 3.58E+04 N/A N/A N/A N/A

Std 1.02E+05 4.20E+03 N/A N/A N/A N/A

CNT 11 2 N/A N/A N/A N/A

f8 Mean 7.81E+00 N/A N/A N/A N/A 5.43E+03

Std 1.07E+04 N/A N/A N/A N/A 1.32E+03

CNT 1 N/A N/A N/A N/A 50

f9 Mean 1.34E+05 N/A N/A N/A N/A 3.77E+03

Std 4.12E+03 N/A N/A N/A N/A 7.38E+01

CNT 2 N/A N/A N/A N/A 50

f10 Mean 1.51E+05 4.27E+03 1.24E+04 N/A N/A 6.89E+03

Std 8.90E+03 1.56E+03 4.53E+03 N/A N/A 8.73E+01

CNT 50 13 44 N/A N/A 50

f11 Mean N/A N/A 1.19E+04 2.91E+04 1.84E+05 1.54E+03

Std N/A N/A 5.24E+03 4.92E+03 4.21E+03 7.03E+01

CNT N/A N/A 48 49 19 50

f12 Mean N/A N/A 1.08E+04 4.18E+04 N/A 1.21E+04

Std N/A N/A 4.08E+02 7.18E+03 N/A 4.78E+01

CNT N/A N/A 50 45 N/A 50

f13 Mean N/A N/A 1.12E+04 2.23E+05 N/A 2.90E+05

Std N/A N/A 2.80E+02 0.00E+00 N/A 4.08E+01

CNT N/A N/A 50 1 N/A 50
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Function Result PSO CPSO CKH KH BBO CBBO

f14 Mean N/A N/A N/A N/A N/A 1.55E+04

Std N/A N/A N/A N/A N/A 8.78E+03

CNT N/A N/A N/A N/A N/A 50

f15 Mean 1.02E+04 2.44E+03 3.72E+04 N/A 1.12E+05 2.55E+05

Std 6.25E+03 1.09E+03 8.14E+03 N/A 5.55E+04 3.21E+04

CNT 29 18 42 N/A 40 40

f16 Mean 3.60E+03 3.62E+04 5.70E+04 8.56E+04 9.31E+04 3.45E+04

Std 2.80E+02 1.98E+02 2.36E+03 4.69E+03 2.90E+03 1.10E+03

CNT 48 46 50 50 50 50

f17 Mean 3.65E+04 1.01E+04 8.63E+03 5.94E+04 1.09E+05 7.53E+02

Std 4.75E+02 1.83E+02 1.47E+02 4.73E+03 8.85E+03 5.04E+02

CNT 50 50 50 50 50 50

f18 Mean 4.00E+04 1.34E+04 3.52E+03 1.06E+04 2.04E+03 8.59E+02

Std 3.64E+02 2.75E+02 2.11E+03 8.55E+03 4.01E+03 1.05E+03

CNT 50 41 50 49 50 50

f19 Mean 4.58E+04 6.60E+03 1.12E+03 6.98E+03 1.08E+04 3.90E+03

Std 4.48E+02 1.12E+03 8.49E+02 4.88E+02 8.05E+03 3.45E+02

CNT 50 50 50 44 50 50

f20 Mean 2.48E+05 1.32E+04 3.75E+03 1.82E+05 5.13E+04 8.55E+04

Std 3.45E+03 5.41E+03 7.78E+03 1.03E+05 3.66E+04 5.66E+04

CNT 27 42 50 32 50 50

f21 Mean 4.89E+04 3.76E+04 1.85E+05 4.56E+04 8.50E+04 4.33E+03

Std 3.93E+02 4.48E+02 8.80E+03 4.57E+02 1.29E+03 9.19E+02

CNT 25 22 19 5 46 50

f22 Mean 4.91E+04 3.70E+04 5.79E+04 8.94E+04 1.84E+05 5.80E+04

Std 5.22E+02 7.49E+02 5.46E+03 8.95E+03 8.79E+03 1.32E+03

CNT 8 17 47 34 12 50

f23 Mean 4.91E+04 3.73E+04 1.52E+05 2.55E+05 2.13E+05 8.79E+04

Std 4.67E+02 4.35E+02 2.35E+04 1.79E+04 5.65E+04 2.13E+03

CNT 11 7 32 16 41 50

Table 2. The average FEs obtained by PSO, CPSO, KH, CKH, BBO and CBBO at D = 30.

Algorithm PSO CPSO CKH KH BBO CBBO

Average ranking 3.30 4.13 2.6 3.52 3.39 1.39

Final ranking 3 6 2 5 4 1

Table 3. The average rank of PSO, CPSO, KH, CKH, BBO and CBBO.
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algorithms easily reach the global best result on all benchmark functions. The other algorithms

cannot obtain the results as good as those of the chaotic algorithms. For example, the KH and

PSO algorithms both obtain very few global best results on this set of functions. Table 2 shows

that the convergence of the chaotic algorithms also outperforms those of the other algorithms

and requires very few FEs to reach the ε level. For example, on function f18, the FE of the

CBBO algorithm is 8.59E+02, which is significantly lower than the others. Table 3 shows the

rank of all functions.

From the results of the 23 benchmark functions, we can find that, in general, the chaotic

algorithms outperform the other algorithms in terms of the average function value and the

number of function evaluations. The results presented in this section confirm that the pro-

posed chaotic algorithm exhibits a higher convergence velocity and greater robustness than

the other algorithms.

4. Discussion and conclusion

The convergence properties of metaheuristics algorithms are strongly related to its stochastic

nature and they use a random sequence for its parameters during running. Generating random

sequences with a long period and a good uniformity are very important for easy simulating

complex phenomena, sampling, numerical analysis, decision-making, and especially in heu-

ristic optimization. Its quality determines the reduction of storage and computation time to

achieve a desired accuracy. Chaos has properties of randomness, nonrepetition, and ergodic-

ity; it matched the stochastic feature of metaheuristic optimization algorithms perfectly. Cha-

otic optimization not only accelerates the speed of algorithm, but can also enhance the variety

of movement pattern.

Chaos has been observed in various applications widely. In this chapter, we used chaos theory

combined with the latest algorithm to analyze the properties. The first advantage of chaotic

algorithms is using fewer chaotic maps to enhance the searching capability. Secondly, chaotic

optimization performs search at higher speed compared to the stochastic searches that rely on

probability. Moreover, chaotic optimization is a simple structure and easy to implement. For

future studies, it may be well worth employing chaotic algorithms for solving real-world

engineering problems.
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