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Abstract

This chapter reviews the use of seawater in the mining industry in Chile, especially from 
the perspective of the current situation and the innovative proposals for its sustainable 
use. This chapter describes the current use of seawater, with and without desalting, in the 
mining sector in Chile, as well as its future projection. Descriptions are given for the cur‐
rent desalination systems, mining operations currently using seawater and new projects, 
current water distribution systems, seawater applications in hydrometallurgy and min‐
erals concentration, their environmental impacts, and difficulties in adapting processes 
in case of use of seawater without desalination. This is complemented by a description 
of mining in Chile, its importance for Chile and its relationship to the global mining. 
Finally, problems and opportunities are identified. A second aspect considered in this 
chapter is the innovative solutions that are being investigated to solve some of the prob‐
lems indicated above, including integrated seawater distribution systems, seawater bio‐
desalination, partial desalination using carbon dioxide, adaptation of process to the use 
of seawater without desalination, and uses of discard brines from reverse osmosis plants.
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1. Introduction

The major resource of water on the planet is the water in the oceans that represent 97% of 

available water. The other 3% includes a 2% of available water in ice caps and glaciers and 

therefore is difficult to use as a water resource. Traditional freshwater resources (ground‐

water, lakes, wetlands, rivers, among others) represent only 1% of all water on the planet. 

Overexploitation of these traditional resources in arid and semiarid areas, such as northern 

Chile, southern Peru, and parts of North and South Africa, Asia, and Australia, has created a 
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situation of scarcity of the resource that forces them to seek new water sources and improve 

the efficiency of its use.

Water has become an important research topic since a significant part of the world is not 
managing to have this resource of adequate quality and because the different sources of water 
on the planet are affected by human activities. Thus, the publications registered in web of 
science that include in the title the word “water” have increased from 10,601 to 24,925 from 

the year 2000 to 2016. As the main source of water is the water in the oceans, research related 
to seawater has proportionally increased more than the research related to water in the same 

period. Figure 1 shows that the publications registered in Web of Science that included in the 

title the word “seawater” increased from 226 to 753 from 2000 to 2016. Figure 1 also shows the 

evolution of publications that include in their title seawater and are related to mining.

The areas in which it is published on seawater have changed in recent years. During the 

period 1996–2005, the areas with the most publications were chemistry analytical (339), water 
resources (302), and oceanography (300). On the other hand, during the period 2006–2015, 
the areas were water resources (731), environmental science (692), and chemical engineering 
(692). This change reflects a greater interest in seawater as a water resource (see Figure 2).

The shortage of fresh water in arid areas is an economic, environmental, and social problem. 

Specifically, demand for seawater for mining requires energy for desalination and transport 
from the coast to high‐altitude areas. Then, the use of seawater generates energy demand, 

another scarce resource. This increased consumption of energy can generate more pollution, 

as is the emission of greenhouse gases. Thus, besides the possible direct environmental effects 
of using seawater, indirect effects are also generated. Moreover, it is clear that the use of sea‐

water is usually more expensive than other sources. Seawater can be used without desalting, 

but this requires that the process must be adapted to new conditions. Among these, new con‐

ditions are possible interactions of elements dissolved in seawater with minerals, chemicals, 

Figure 1. Publications in Web of Science that include in the title seawater (SW) and seawater related to mining (SW & M).
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and materials used in the equipment. Then, new technologies are needed to adapt traditional 

processes to seawater without desalination.

Chile main economic activity, based on production and income, is mining. The main ore 

deposits are located in the regions that are part of the Atacama Desert. These regions are rich 
in copper, gold, molybdenum, silver, iron, nitrate, boron, iodine, lithium, potassium, and 

other resources. Chile’s abundance of mineral resources is remarkable: Its reserves constitute 

6.7% of the world’s gold, 12.1% of the molybdenum, 13.3% of the silver, 27.7% of the copper, 

53% of the rhenium, 57.9% of the lithium carbonate, 60.8% of the iodine, and 100% of the 

natural nitrates [1]. In addition to its abundant resources, Chile’s mining industry is boosted 

by several other natural, technological, and administrative advantages as such mineral depos‐

its in the vicinity of many seaports, the desert setting surrounding the large deposits facili‐
tates land claiming, exploration, and exploitation, large deposits enable the use of massive 

and low‐cost technologies, among others. However, Chilean mining also faces major chal‐

lenges, such as the lowering of the grades in its deposits, high energy costs, and scarce‐water 

resources. In 1992, 21% of the world copper production was made from minerals with better 
grades than Chilean minerals. That percentage has been increasing, and in 2010, 35% of the 

world production was with better grades than the Chilean ones. It is projected that by 2020 
this percentage will be 43% [2]. This means, among other things, that more energy and water 

resources will be required per ton of copper produced. Chile has one of the highest electricity 

rates among the mining countries [2], only surpassed by the Congo. Also, and as we will see 
later, water resources are very scarce, and the use of seawater has a high cost due to the differ‐

ence in altitude between the coast and the location of mining operations.

Figure 3 shows a scheme of the region of Antofagasta, the main mining region of Chile. After 
a narrow plain on the coast, the mountain of the coast is situated, where copper mines are 

found, most of them of medium or small size. These mountains usually have an altitude 

of about 800 m.a.s.l. Then there is the Atacama Desert where the main mines are nitrates 

Figure 2. Areas of publications in Web of Science that include in the title seawater.
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and iodine, but where copper and molybdenum mines are also observed. In the Domeyko 

and Andes mountains are the largest copper mines, along with deposits of gold, silver, and 
molybdenum. These mountains have altitudes between the 2000 and 6000 m.a.s.l. To supply 

water from the ocean, it is necessary to have an intake system, seawater pretreatment/desali‐

nation, and a pumping system to reach the mining plant located near the mines.

This chapter describes the current use of seawater, with and without desalting, in the min‐

ing sector in Chile, as well as its future projection. Section 2 gives a description of the current 

seawater consumption, the desalination systems, mining operations currently using seawater 

and new projects, current water distribution systems, seawater applications in hydrometal‐

lurgy and minerals concentration, their environmental impacts, difficulties in adapting pro‐

cesses in case of use of seawater without desalination. Section 3 gives innovative solutions 

for sustainable use of seawater, including integrated seawater distribution systems, seawater 

biodesalination, partial desalination using carbon dioxide, adaptation of process to the use 

of seawater without desalination, and uses of discard brines from reverse osmosis plants. 

Finally, a section of conclusions and comments is included.

2. Current use of seawater in mining

The use of seawater is not new and deposits of copper, zinc, uranium, and iodine have been 

processed using this water resource without desalination. For example, the El Boleo project 

processes copper, cobalt, zinc, and manganese minerals (by leaching) in Mexico, and Sierra 
Gorda SCM processes copper and molybdenum (by flotation) in Chile. Some operations 
using seawater have closed down, for example, Black Angel (Greenland) floated a lead‐zinc 
ore, and Minera Michilla (Chile) was leaching a sulfurous copper ore. Currently, in Chile, 
several mining companies use seawater, with and without desalination, let’s see the current 

situation.

Figure 3. Geographical scheme of the Antofagasta region, mining activities, and seawater catchment system. (I: Intake, 
D: desalination plant, P: pumping system, M: mine).
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Copper mining, Chile&s main water‐consuming in mining, consumes 15.4 m3/s of fresh water. 

Of this fresh water, 85% is of continental origin, which includes surface water, groundwater, 

and water purchased from third parties (see Figure 4). The remaining 15% corresponds to 

seawater, which includes raw seawater and desalinated seawater. This fresh water is used in 

the mine (0.6 m3/s), hydrometallurgical processes (2.2 m3/s), in the concentrator (11.1 m3/s), 

smelter and refinery (0.5 m3/s), and other uses (0.8 m3/s). The fresh water only corresponds 

to 28.6% of the water used in the processes because 72.4% (40.4 m3/s) corresponds to recircu‐

lated water. These values were calculated based on information provided by Chilean Copper 

Commission (COCHILCO) [3] for the use of continental waters and assuming that desali‐

nated seawater is used in the same proportion in the mining areas as continental water and 

that raw seawater is used 100% in the concentrator.

Not all of the water is recycled because there are losses by evaporation in the leaching process 

and in the storage ponds, losses in the tailings ponds, filtrations, infiltrations, among oth‐

ers. However, efforts are made to reduce water losses, for example, by covering the ponds 

Figure 4. Sources and uses of fresh water in the copper industry in Chile based on COCHILCO studies [3].
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and improving the thickening systems. In fact, water consumption per ton of ore has been 

reduced by 25.9%, from 0.81 m3/t in 2010 to 0.60 m3/t in 2015. Figure 5 shows the consump‐

tion of the concentrator and in hydrometallurgy. It can be observed that the consumption of 

the concentrator plant is 6.5 times the consumption in hydrometallurgy per ton of mineral. 

Unfortunately, the main mineral of copper and of which there are greater reserves in the 

world, chalcopyrite, is preferably processed by the concentration of minerals.

2.1. Consumption of seawater and its projections

Given the depletion of continental water sources, new operations or expansion of new opera‐

tions in water‐scarce areas should use seawater. In fact, the use of surface water decreased from 

5.9 to 5.6 m3/s from 2013 to 2015, while groundwater increased slightly from 6.2 to 6.4 m3/s. 

However, the use of seawater in the same period increased from 1.3 to 2.3 m3/s. Figure 6 shows 

the evolution of the consumption of seawater, with or without desalination, from 2010 to 2015 

observing a significant and sustained increase. There are currently 10 desalination plants of 
mining companies that produce between 5 (Minera Pampa Camarones) and 500 L/s (BHP 
Billiton and Lundin Mining have plants of similar capacity). On the other hand, seven mining 
operations use raw seawater with capacities of between 5 (Compañia Minera Tocopilla) and 
1500 L/s (Antofagasta Minerals). Currently, 15 projects for the installation of new desalination 
plants are in different stages. Stand out the projects of Coloso BHP Billiton plant (at start‐
up stage) for 3200 L/s and Radomiro Tomic CODELCO for 1900 L/s, which will significantly 
increase the use of seawater. Additionally, four projects will use raw seawater with an approxi‐
mate consumption of 1100 L/s.

Currently, each mining plant establishes its water supply system. This means that there are 

currently 17 water pumping systems (10 of desalinated seawater and 7 of raw seawater) from 
the coast to the mountains and that these pumping systems will increase to 36 if each project 

materializes.

Figure 5. Water consumption in cubic meters per ton of treated ore [3].
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2.2. Reverse osmosis desalination versus raw seawater

The use of raw seawater has advantages and disadvantages. In the treatment of some miner‐

als, its effect is positive favoring the extraction of valuable species, while in other cases, its 
effect is contrary. This is generated because seawater presents numerous species that interact 
with the process. As the desalination is not included, there are no high energy costs and their 
environmental effects are lower. The presence of chloride ions causes corrosion problems in 
equipment that is in contact with seawater.

The use of desalinated seawater also has advantages and disadvantages. How this water does 

not contain dissolved species does not observe positive or negative effects in comparison to 
other process water. Although the process of desalination by reverse osmosis, the technology 
used in all projects in Chile is the most energy‐efficient technology, it requires a high energy 
consumption. This current energy consumption is not too far from the theoretical minimum 

energy required for desalination [4]. Electricity generation in northern Chile is based on fos‐

sil fuels, which is why desalination generates negative environmental effects. Recently, some 
solar‐based electricity production capacities have been urged, but they are still insufficient. 
In addition, desalination by reverse osmosis generates a discharge brine, with a salinity of 

approximately twice the seawater. This discharge brine and the chemicals used in pretreat‐

ment and membrane‐cleaning can generate negative effects to the environment [4]. Pure 

desalinated seawater is highly acidic and is thus corrosive, so it has to be posttreated to adjust 
for pH, hardness, and alkalinity before being piped [5].

It has been demonstrated in practice that both types of water, raw and desalinated seawater, 

can be applied to mining processes. The decision depends on the characteristics of the ore, the 

associated costs, and the capabilities or possibilities of adapting the mining operation to the 

use of raw seawater. Figure 7 shows that the consumption of both types of waters has been 

increasing since 2010.

Figure 6. Seawater consumption in mining in Chile [3].
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2.3. Seawater distribution networks

The main mining activities in Chile are located over 1000 m.a.s.l., which creates a great chal‐

lenge for the industry. Figure 8 shows the costs of using desalinated water in different coun‐

tries. It can be observed that the costs of desalination are similar between countries, and this is 

around 1.5 USD/m3. However, the operating and capital costs of transporting water in Chile 

are higher than in other countries. In fact, the costs of transporting can be more than three 

times the costs of desalination. This is explained by the fact that the altitude of the mining 

deposits in Chile is higher than in other countries, as shown in Figure 9. The operational costs 

of transportation are mostly the costs of energy consumption associated with water pumping.

As indicated above, currently each mining plant establishes its water supply system. Currently, 
there are 17 water pumping systems from the coast to the mountains, and these figures can 
increase over 100% if the new projects materialize. The current strategy is not sustainable in 

the future, especially for medium and small‐scale mining.

2.4. Effect of raw seawater in mining operations

The effects of using raw seawater in mining operations are diverse. Seawater contains dis‐

solved ions that interact with minerals producing positive and negative effects on operations. 
The major ions dissolved in seawater are sodium and chloride, where the sodium effect is 
not significant, but the chloride ion helps to improve the leaching of some copper sulfide 
minerals [6, 7] and helps the stability of the bubbles in the flotation of copper sulfide minerals 
[8, 9]. Thus, in principle, the chloride and sodium ion may not be withdrawn from seawater. 

It has been observed that the presence of magnesium and calcium ions produce problems in 

the molybdenite flotation of copper‐molybdenum ores [10]. These problems are due to the 

precipitation of these ions under the operating conditions of the flotation. Also, it has been 
observed that by removing or reducing the concentration of magnesium and calcium, the 

Figure 7. Consumption of raw and desalinated seawater in mining activities in Chile [3].
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negative effects of seawater in flotation are overcome. In simple terms, it can be said that the 
partial desalination of the magnesium and calcium ions is enough to use seawater in opera‐

tions of concentration (flotation) of minerals. It is necessary to remember that the operation 
that consumes the most water is the concentrator.

Seawater also has gases dissolved by its contact with the atmosphere. The main gases are 

oxygen, nitrogen, and carbon dioxide, and the latter reacting in aqueous media generat‐
ing bicarbonate and carbonate ions. The presence of oxygen in all waters produces corro‐

sion, and in the case of seawater, its effect should be lower because the solubility of oxygen 
decreases as salinity increases. However, the presence of chloride ions generates a more 

corrosive environment, reason why measures must be adapted to avoid the corrosion of the 

equipment.

Figure 8. Desalination and transportation costs in USD/m3 [4].

Figure 9. Transportation cost and altitude of mineral deposits [4].
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Seawater has also been used in the leaching of caliche minerals [11]. Caliche is a mineral rich 

in soluble species such as salts of chlorides, nitrates, and sulfates of sodium, magnesium, and 

potassium, as well as iodine salts. The main products are salts of nitrate and iodine. The use 

of seawater in the leaching of these minerals does not present great differences compared to 
non brackish waters because the mineral is rich in salts and the solutions recirculated to the 

process contain dissolved ions in a much greater concentration than the seawater.

3. Innovative solutions for sustainable use of seawater

This section presents examples of innovative solutions to the problems of the use of seawater 

in mining processes. These solutions have been developed through the project “Atacama 
seawater: process integration for water and energy saving.” All these research seek to use 
seawater in a more sustainable way, especially reducing the environmental impact of the use 

of seawater in mining.

3.1. Integrated seawater distribution networks

As noted above, mining companies have begun to use desalinated seawater as an alternative  
to supplying part or all of their demands. However, these efforts have been carried out inde‐

pendently, that is, each user or mining company has installed its desalinated water produc‐

tion and distribution system, without considering the possibility of designing an integrated 

production and distribution system. Currently, the region of Antofagasta has more than 40 
mining industries in operation, which are located, regarding distance, from a few kilometers 

of the coast to about 200 km. However, the most important thing to consider is that these 

industrial plants can be found between 600 and 4000 m above sea level, due to the com‐

plex topographical profiles existing in the region. This location becomes a problem if one 
considers using desalinated seawater to supply its production systems, significantly increas‐

ing the engineering challenges in the design of the water production and distribution system 

for each mining plant.

Due to the complex topography of the region, the desalinated water supply systems that have 

been designed and are currently operating have faced several economic, technical, and envi‐

ronmental challenges, such as the high energy requirement of the desalination plant and the 

water supply system. The desalinated water delivery system consists of a pipeline, a series 

of reservoirs, pumps, among other hydraulic compounds. The fundamental purpose of the 

system is to provide a safe supply of freshwater with a certain established quality. The design 

of the system is basically determined by the distances between the coast and the point of use 

of the water, the difference in elevation between these same points and the characteristics of 
the soils where the project will be carried out.

In northern Chile, the capital and operational costs of the desalinated water delivery system 

are the highest in the entire desalination project. The data provided by Guerra et al. [12] 

indicate that when mining plants are under 1000 m above sea level, the capital costs of the 

desalination plant are similar to the capital costs of the desalinated water delivery system. 
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In contrast, when the mining operation is above 3500 m.a.s.l., the capital costs of the delivery 

system can be two to five times more than the capital costs of the desalination plant. These 
costs are increased mainly by the greater number of pumping stations needed to boost the 

desalinated water to the required point, that is, the costs are a function of the location height 

of the mining plant. Table 1 shows the capital and operating costs of six mining projects in 

northern Chile.

Recently [13, 14], a procedure has been developed to design an integrated desalinated water 

production and distribution system for the Antofagasta region. The purpose of an integrated 
water distribution system is to supply different users with different requirements in a more 
efficient way, both economically and environmentally. This system can be represented by 
an interconnected network of pipes, pumps, valves, among other hydraulic elements. The 

procedure developed is based on a mathematical model that represents a set of alterna‐

tives, whose solution is obtained looking for the optimal solution from the point of view of 

cost. This procedure is not described here, but a case study is used to describe the results 

obtained.

The case study carried out for the Antofagasta region consisted of the integration of six min‐

ing sites in the northern region of the Antofagasta region (between latitudes 21° 30’S and 

23° 1’S), which were located using geographic information software, Google Earth Pro 7.1 

(Figure 10). The three indicators shown in Figure 10 represent the following: the indicator 

PO represents the reverse osmosis plants, the indicator EB to the pumping stations, and the 

indicator PM to the mining plants. For each mining plant, different requirements of desal‐
inated water, elevation above sea level and distance from the coast were considered. The 

desalinated water requirements considered vary between 100 and 400 L/s. The distances of 
each of these operations toward the coast were defined between 60 and 195 km, while eleva‐

tions were between 1700 and 3800 m.a.s.l. A maximum of six reverse osmosis plants was 
considered since the integrated system was born from the integration of six independent 

systems. Each desalination plant may have sufficient capacity to meet the desalinated water 
requirements of all the mining plants considered in the study. The drive system consisted 

of 25 pumping stations. Also, it was considered that the maximum elevation difference to 

Capacity  

RO plant  

(L/s)

Elevation  

(m.a.s.l.)

Capital cost (MUS$/year) Operational cost (MUS$/year)

RO plant Water delivery 

system

RO plant Water delivery 

systems

1000 4150 264.4 428.3 22.4 65

550 4400 190.8 412.4 16.8 47.5

180 830 147.2 328.7 13.2 35.9

700 3650 27.9 29.1 3.24 1.68

500 500 63.4 163.4 11.6 16.9

271 4100 42.8 48.9 6.68 5.16

Table 1. Capital and operational costs of reverse osmosis (RO) desalination projects developed in northern Chile [11].
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connect two nodes with one pipe was 700 m. Finally, to evaluate the design, five types of 
pipe diameters were considered that fluctuated between 0.7 and 1.1 m. The investment years  
considered for the project were 25 years.

The problem was modeled and solved in a commercial optimization software. The results 

obtained indicated that the optimum model should be constituted by a reverse osmosis plant 

and seven pumping stations as shown in Figure 11.

Alternative 1 represents the current strategy of the mining companies, that is, the use of inde‐

pendent supply systems. Alternative 2 represents the proposed solution. In alternative 1, six 
reverse osmosis plants must be installed to satisfy the water requirements of each mining 

plant independently. Alternative 2 indicates the need for only one reverse osmosis plant and 
fewer pumping stations than alternative 1. Also, the productive capacity of the reverse osmo‐

sis plant of alternative 2 is greater than any other reverse osmosis plant considered in alterna‐

tive 1. On the other hand, the unit cost of production of the reverse osmosis plant is lower due 

to economies of scale.

The results indicate that the costs of reverse osmosis plants occupy between 29 and 32% of 

total project costs, pumping stations between 40 and 52%, and pipes between 20 and 27%. 

The results show that alternative 2 involves a lower cost in the installation of the reverse 

osmosis plant and pipes. On the other hand, the costs of pumping stations increase slightly 

relative to alternative 1. In Figure 11, alternative 2, it can be seen that the production flow of 
desalinated water is separated into two streams after supplying the first mining plant. This is 

Figure 10. A case study of an integrated desalinated water supply system for six mining plants in the Antofagasta region. 
PO indicator: reverse osmosis plants; EB indicator: pumping stations; and PM indicator: mining plants [14].
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mainly because the proposed strategy has a main objective to reduce the costs of the pumping 

stations, which are directly proportional to the capacity (size) of each station, which is related 
to the flow driven.

Based on the results obtained, it was observed that there is a relationship between the three 

considered costs, such as costs of reverse osmosis plants, costs of pumping stations, and pipe 

costs. These results allow us to propose that an integrated desalinated water distribution sys‐

tem design, which satisfies the requirements of more than one user, is a valid alternative that 
will also allow decreasing the costs of production of desalinated water to each interested user.

3.2. Biodesalination of seawater

As indicated above, the main problems in using seawater in flotation processes of copper‐
molybdenum minerals are the presence of magnesium and calcium ions. For that reason, it 

seems reasonable to look for processes that are capable of eliminating or reducing the concen‐

tration of these species selectively. These new processes must be economically and environ‐

mentally superior to reverse osmosis plants. The selective removal of these ions, also, allows 

maintaining the species that are harmless or help to the flotation process as is the case of 
the sodium and chloride ions, respectively. A biotechnological alternative for the selective 
removal of these secondary ions from seawater is the application of bacteria that are capable 

of inducing the formation of insoluble crystals with these ions through a phenomenon known 

Figure 11. Optimum proposed model of an integrated desalinated water supply system for six mining plants in the 

Antofagasta region. PO indicator: reverse osmosis plants; EB indicator: pumping stations; and PM indicator: mining 
plants [14].
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as biomineralization or microbiological precipitation of carbonates. In this way, the calcium 

and magnesium ions are removed at a lower cost and in an environmentally friendly way.

The concept of biomineralization or microbiological precipitation of carbonates is defined 
as the process involving the formation of minerals by living organisms as a result of cellular 

activity that promotes the physicochemical conditions required for the formation and growth 

of the biominerals is carried. This process is mainly generated from bacterial activity, which is 

able to induce the precipitation of minerals by processes classified as biologically controlled 
mineralization and biologically induced mineralization [15].

In biologically induced mineralization, minerals are precipitated by the interaction between 

the environment and its chemical changes and the biological activity resulting from bacte‐

rial metabolic activity [15, 16]. In this type of biomineralization, the biominerals are secreted 

due to the metabolism of the microorganisms, and the system has very little control over the 
deposited minerals. There are a large number of bacteria capable of inducing extracellular 

precipitation from a wide range of biologically induced minerals, involving the geochemical 

activity responsible for mineral deposits in terrestrial evolution.

The best‐studied mechanism for the precipitation of calcium carbonate is through the ureo‐

lytic pathway, in which the bacteria degrade urea by the intracellular enzyme urease, produc‐

ing HCO
3
− and NH

3
. The latter is converted to NH

4
+, alkalinizing the medium, and HCO

3
− is 

converted to CO
3
2− [17]. When the calcium ion is present, and the supersaturation of calcite 

occurs, the precipitation of calcium carbonate is induced.

Silva‐Castro et al. [18] demonstrated the precipitation of calcium carbonate in seawater 

and brines from desalination plants, using Bacillus and Virgibacillus bacteria isolated from 

saline environments, confirming that these species can precipitate calcium carbonate when 
grown in culture media supplemented with organic matter. The precipitation of magne‐

sium from seawater by the use of ureolytic halotolerant bacteria has not been described. 

However, the precipitation of struvite by chemical crystallization using the NH
4

 +/PO
4

2− 

ratios in solution was studied [19], concluding that the use of seawater as a source of Mg 
for phosphate precipitation is feasible, mainly due to the high concentration of magnesium 

available (about 1.29 g/kg).

These studies were the basis for studying the feasibility of using ureolytic bacteria and their 

metabolic products as a possible technology for the removal of Mg and Ca from seawater. 
Considering the characteristics of the Salar de Atacama (it is the oldest, dry, and hot of the 
whole planet [20]), bioprospections were realized for the search, isolation, and selection 

of bacteria with ureolytic activity able to tolerate the salinities present in seawater for the 

biomineralization of calcium and magnesium. A total of 213 bacteria were isolated from these 
samples, of which 40 were found to have urease activity and are halotolerant and/or halo‐

philic, capable of growing in seawater [21–23]. The phylogenetic identification of the bacteria 
with urease activity allowed to determine that they belong to different genera, being the most 
abundant the bacteria of the genus Bacillus with a representation percentage of 42%. The 

advantage of using isolated bacteria in the study site means the use of bacteria native to the 

environment that pose no health risks.
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Recent laboratory‐scale studies have shown that two of the selected bacteria can remove cal‐
cium ions by 100% and magnesium ions present in seawater by 40% in a period of 7 days, 

inducing the formation of Crystals composed of ~31% monohydrocalcite, ~28% struvite 

(MgNH
4
PO

4
 ∙ 6H

2
O), ~33% halite (NaCl) and ~8% anhydrite (CaSO

4
) (Figure 12). Further 

studies are underway to establish a process that is capable of partially desalinating seawater.

3.3. Partial desalination using CO
2

A second alternative for the selective removal of Mg and Ca from seawater is precipitation 
using some alkalinizing agent and carbon dioxide (CO

2
 (g)) [25]. This emerging technology 

could be a potential process to supply the water quality demanded by the process of flotation 
of Cu and Mo sulfide minerals and at the same time reduce the greenhouse effect generated 
by the emission of CO

2
 (g) and avoid the discharge of brines of reverse osmosis plants to the 

sea. It is necessary to remember that thermoelectric plants mainly provide the energy used in 

the north of Chile. They use nonrenewable fossil fuel such as coal. Carbonization has led to an 

increase in CO
2
 (g) emissions into the atmosphere.

When CO
2
 (g) is solubilized in seawater, several reactions are generated that eventually gen‐

erate bicarbonate ion (HCO
3

−) and ion carbonate (CO
3

2−). Based on the interactions that occur 

in the carbonate system and the ions present in seawater, an additional source of CO
2
 (g) on 

seawater promotes a greater formation of CO
3

2−, further inducing the precipitation of calcium 

carbonate (CaCO
3
), and magnesium carbonate (MgCO

3
), among other species.

In this work, the removal of calcium and magnesium from seawater of the San Jorge Bay in 

Antofagasta using NaOH and CO
2
 was studied. The experimental tests were performed with 

NaOH as alkaline reagents (to maintain constant pH) and different doses of CO
2
. The tests 

were carried out at pH 10 and 10.5, with NaOH, without CO
2
 and then with injections of  

70 and 210 mL of CO
2
. The amounts of Ca and Mg, which precipitated under these conditions, 

were calculated from the difference between the concentrations before and after the addition 

Figure 12. Precipitation of calcium carbonate by strain LN8B. (A) Crystals and colonies in the presence of urea and 
calcium chloride; (B) microphotography of crystals on day 4 of culture [24].
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of NaOH and CO
2
. Then, the Ca and Mg concentrations were determined by atomic absorp‐

tion spectrophotometry.

It was observed that the removal of Ca and Mg increased as CO
2
 was added, reaching 31.4 and 

70.0%, respectively at pH 10.5 and 210 mL of CO
2
. These values are greater than the removal 

when using only NaOH (without CO
2
) corresponding to 11.8 and 13.8% for Ca and Mg, 

respectively. Subsequent studies using NaOH, Na
2
CO

3,
 and combinations of these alkaline 

agents and CO
2
 injection have shown that this emerging technology has significant economic 

and environmental advantages compared to the use of reverse osmosis.

3.4. Potential uses for discarding brines from reverse osmosis plants

One way to reduce the environmental impacts of desalination plants by reverse osmosis is to 

look for uses to the discard brines that they generate. These brines would have a lower cost 

than seawater since they have already been taken and pretreated. Currently, a very small 

fraction is used to irrigate roads to reduce dust in mining operations. One possible use is the 

leaching of caliche minerals.

As indicated above, caliche is a mineral conformation whose composition rich in highly water 
soluble species makes it a commercially exploitable source of nitrates and iodine. These prod‐

ucts have a wide range of applications, such as the use of nitrates for the production of high‐

performance fertilizers, as well as the use of iodine as an additive in industrial plants and an 

input in medical products [26]. The processing of caliche for the production of nitrate and 

iodine salts consists of four fundamental stages: (1) extraction of the mineral, (2) leaching, (3) 
extraction of iodine, and (4) evaporation and crystallization of the nitrate.

In current reverse osmosis plants, efficiencies of 40–50% are handled, which means that to 
produce a cubic meter of desalinated water, a similar amount of solution is produced with 

twice the concentration of salts than the incoming seawater. Table 2 shows the composition of 

the seawater and the discard brine of a plant in the north of Chile [27].

Recently, a caliche mineral was leached using seawater (note that seawater is currently used 
in some plants [26]) and discard brine from a local desalination plant [28]. The leaching was 

carried out for 22 days in columns of 1.0 m of effective height and 20 cm of internal diameter, 
and 3 different irrigation rates were used: 4, 6, and 8 L/h/m2. The liquid samples from the per‐

colates were taken every 12 h for the first 5 days, and after that the sampling was done every 
24 h. Samples of caliche and leftover material were also taken. The ions considered through‐

out this study, both liquids and solids were: nitrate, iodate, chloride, sulfate, perchlorate, 

boron, sodium, potassium, magnesium, and calcium.

To evaluate the performance of the leaching, the concentration profiles (concentration versus 
leachate volume) were compared. Some species dissolve rapidly during leaching, such as 

nitrate, sodium, perchlorate, and iodine, while others do it more slowly such as sulfate, potas‐

sium, magnesium, and boron. The differences between the columns watered with seawater 
and discard brine are small for the first part of the leaching. Afterward, some differences were 
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observed because once the ore is depleted, the percolates take the initial concentration of the 

seawater or the discarding brine.

Regarding the extraction profiles, no substantial differences were found in the recoveries 
between leaching using seawater and desalination plant brine, especially in the species of 

commercial interest: nitrate and iodine. Their recoveries were similar and reached high val‐

ues (greater than 97%). These results support the conclusion that it is technically feasible to 
employ reverse osmosis brines for caliche leaching.

An important point to note is that the use of reverse osmosis brine for caliche leaching does 
not imply replacing the infrastructure of pipes and other equipment at the mine site, since 

nitrate operations handle even more concentrated solutions. If the brines are transported 

instead of seawater from the coast to the mine, a change of piping would not be required 

either, since the corrosive activity of the brines could be less than that of seawater because the 

solubility of the oxygen decreases as the salinity increases.

4. Conclusions and comments

The use of seawater in mining generates a series of challenges ranging from the same take of the 

seawater until its use in the mining plant. Its use must consider economic, environmental, and 

social aspects. In the Atacama Seawater project, we have taken part of these challenges, some 
described in this chapter. The search for solutions to these challenges has led us to seek answers 

that are innovative. Without a doubt, there are still many steps to be taken to materialize these 

proposals, and therefore further research, developments, and innovations are necessary.

Iones Unidad Seawater Discard brine

Chloride kg/m3 18.4 36.0

Sodium kg/m3 11.1 25.2

Sulfate kg/m3 2.8 5.4

Magnesium kg/m3 1.4 2.9

Potassium kg/m3 0.6 2.5

Calcium kg/m3 0.5 0.9

Nitrate kg/m3 0.3 0.4

Borate g/m3 10 30

Yodate g/m3 <10 10

Perchlorate g/m3 <10 10

Density kg/m3 1020 1040

Table 2. Principal dissolved salts in seawater and reverse osmosis discard brine [27].
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