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Abstract

While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less atten-

tion has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP)

and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and

free riboflavin are the main contributors to total riboflavin. We analyzed milk collected at 2

(n = 258) or 6 (n = 104), and 24 weeks (n = 362) from HIV-infected Malawian mothers within

the Breastfeeding, Antiretrovirals and Nutrition (BAN) study, randomly assigned at delivery

to lipid-based nutrient supplements (LNS) or a control group, to investigate each vitamer’s

contribution to total milk vitamin content and the effects of supplementation on the different

thiamin and riboflavin vitamers at early and later stages of lactation, and obtain insight into

the transport and distribution of these vitamers in human milk. Thiamin vitamers were deriv-

atized into thiochrome-esters and analyzed by high-performance liquid-chromatography-

fluorescence-detection (HPLC-FLD). Riboflavin and FAD were analyzed by ultra-perfor-

mance liquid-chromatography-tandem-mass-spectrometry (ULPC-MS/MS). Thiamin-pyro-

phosphate (TPP), identified here for the first time in breast milk, contributed 1.9–4.5% to

total thiamin. Free thiamin increased significantly from 2/6 to 24 weeks regardless of treat-

ment indicating an active transport of this vitamer in milk. LNS significantly increased TMP

and free thiamin only at 2 weeks compared to the control: median 170 versus 151μg/L

(TMP), 13.3 versus 10.5μg/L (free thiamin, p<0.05 for both, suggesting an up-regulated

active mechanism for TMP and free thiamin accumulation at early stages of lactation. Free

riboflavin was consistently and significantly increased with LNS (range: 14.8–19.6μg/L

(LNS) versus 5.0–7.4μg/L (control), p<0.001), shifting FAD:riboflavin relative amounts from
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92–94:6–8% to 85:15%, indicating a preferred secretion of the free form into breast milk.

The continuous presence of FAD in breast milk suggests an active transport and secretion

system for this vitamer or possibly formation of this co-enymatic form in the mammary

gland.

Introduction

Thiamin (vitamin B1) and riboflavin (vitamin B2) are members of the B-vitamin complex

involved in numerous biological processes, including carbohydrate, nucleic acid and amino

acid metabolism [1–3]. During lactation, maternal nutrient requirements increase due to secre-

tion of nutrients in breast milk to support growth and development of the infant [4], which can

potentially lead to maternal depletion and/or infant deficiencies [5]. Severe thiamin deficiency

causes infantile beri-beri [6–8]. More moderate depletion affects cardiovascular, muscular, ner-

vous and gastrointestinal systems [9] and may be linked to sudden infant death syndrome [10].

Ariboflavinosis usually occurs along with other vitamin deficiencies causing growth retarda-

tion, anemia, degenerative changes in the nervous system, and impaired iron status [3, 9, 11,

12]. Even though vitamin deficiencies are mainly encountered in low income countries, an

inadequate supply of thiamin and riboflavin to the infant through breast milk has also been

described in well-nourished mothers. Böhm et al. reported that thiamin and riboflavin concen-

trations in breast milk of German mothers attained only 5–10% of the recommendations by

the German Society of Nutrition (DGE) for newborns in the first two weeks (wk) postpartum

[13], and breast milk from American mothers nursing their infants� 2 wk had a median con-

centration of only 81% (range: 18 to 100%) of that assumed for setting the recommended Ade-

quate Intake (AI) for infants [14].

The World Health Organization (WHO) recommends exclusive breastfeeding for the first 6

months of life [15–17] so adequate vitamin content of breast milk is crucial to infant health

and development. All vitamers of a vitamin contribute to the total vitamin content. Thiamin in

milk has been reported to be mainly present as thiamin-monophosphate (TMP) with some

free thiamin [18, 19], while flavin adenine dinucleotide (FAD) represents the main riboflavin

source complemented by free riboflavin and minute amounts of other flavin derivatives [20,

21]. However, little is known about the mechanisms surrounding the transport of these vita-

mins into breast milk or possible changes in vitamer uptake and their relative proportions due

to supplementation.

Thiamin analysis is usually carried out using chromatographic separation and fluorescence

detection after thiochrome derivatization, either after enzymatic digestion of the phosphory-

lated forms [22, 23] or direct conversion of free thiamin and its phosphate esters [14, 18, 19].

Riboflavin analyses have been conducted in a similar fashion based on its native fluorescent

properties [11, 21]. While enzymatic pre-digestion will provide information about the total

concentration of a vitamin, it does not provide information about its vitamers. Recently, we

have reported a mass spectrometric method for analysis of free thiamin, free riboflavin, and

FAD, enabling the simultaneous evaluation of the riboflavin vitamers [24]. Analyzing each

vitamer separately allows the examination of the specific contribution of each form and moni-

toring of any possible changes in each vitamer throughout lactation and/or due to intervention

such as supplementation or medication.

In this study we analyzed free and phosphorylated thiamin, and riboflavin and FAD in

breast milk obtained from HIV-infected Malawian mothers within the Breastfeeding, Antire-

trovirals and Nutrition (BAN) study, to investigate the contribution of each thiamin and
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riboflavin vitamer and the effect of lipid-based nutrient supplements (LNS) on the vitamer dis-

tribution at early and later stages of lactation.

Materials and Methods

Chemicals and Materials

Thiamin hydrochloride, thiamin-monophosphate, thiamin-pyrophosphate, riboflavin, flavin

adenine dinucleotide, riboflavin-dioxopyrimidine-13C4,
15N2, perchloric acid, phosphoric acid

and sodium hydroxide were purchased from Sigma-Aldrich (St. Louis, MO). Methanol, acetoni-

trile, water (all LC-MS grade), phosphoric acid and potassium phosphate dibasic were obtained

from Fisher Scientific (Fair Lawn, NJ). Potassium ferricyanide (III) was purchased from Acros

Organics (Geel, Belgium); caffeine-trimethyl-13C3 from Cambridge Isotope Laboratories (Ando-

ver, MA) and ammonium formate from Hampton Research (Aliso Viejo, CA). HPLC screw-cap

amber vials and inserts were obtained from Supelco (Bellefonte, PA). LC-vial caps (PTFE/sili-

cone) were purchased fromWaters (Milford, MA) and Agilent Technologies (Santa Clara, CA),

and ultrafree centrifugal filters Durapore1 PVDF 0.1μm fromMillipore (Billerica, MA).

Human Milk Samples

Existing human milk samples from the BAN study in Lilongwe, Malawi, were used for analysis.

Details of the BAN study are described elsewhere [25–27]. For the purpose of this analysis,

Table 1. LNS composition formulated for lactating women and relative amount of micronutrients in
LNS (x-fold) compared to the RDA.

Nutrient Amount per 2 packets of LNS1

(140g)
x-fold of RDA for lactating women

19-30y

Energy 746 kcal (3120 kJ)

Protein, g 20.8

Iron, mg 15 1.7

Zinc, mg 19 1.5

Phosphorus, mg 1200 1.7

Selenium, μg 75 1.1

Thiamin (B1), mg 1.6 1.1

Riboflavin (B2), mg 1.8 1.1

Niacin, mg equiv 20 1.2

Pyridoxine (B6), mg 2.2 1.1

Cyanocobalamin (B12),
μg

2.6 0.9

Ascorbic acid (C), mg 100 0.8

Alpha-Tocopherol (E) mg 12 0.6

Folic acid, μg 300 0.6

Iodine, μg 200 0.7

Potassium, g 1.1 0.2

Magnesium, mg 124 0.4

Copper, mg 0.3 0.2

Calcium, mg 294 0.3

1Ingredients: ground peanuts, dried skimmed milk, vegetable fat, sugar, multivitamin-mineral premix;

Nutriset, France (www.nutriset.fr).

LNS, lipid-based nutrient supplement; RDA, Recommended Dietary Allowance (from Institute of Medicine

[29]).

doi:10.1371/journal.pone.0149479.t001
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only milk samples from women receiving LNS (n = 185) and the control group (n = 177) were

used. The effects of HIV treatment and LNS on milk B-vitamins have been discussed elsewhere

[28]. The intervention started within 36 hours of delivery and continued to 28 wk postpartum.

At delivery, all participants, regardless of the assigned treatment group, and their newborn

infant underwent a 7-day perinatal ARV regimen [25]. No further ARV treatment was pro-

vided to these two study groups. Two sachets of LNS (70 g each, Nutriset, France; www.

nutriset.fr) were given to the participants in the LNS group for daily consumption, providing

746 kcal/d and the Recommended Dietary Allowance (RDA) during lactation (Table 1). Breast

milk samples were collected at weeks 2 or 6 and 24 during regular study visits and frozen

instantly; the 6 wk samples (LNS: n = 45; control: n = 59) were collected only when 2 wk sam-

ples (LNS: n = 140; control: n = 118) were not available. Patients records were anonymized and

de-identified prior to analysis. Samples were shipped on dry ice to the Centers for Disease Con-

trol and Prevention in Atlanta and stored at -70°C until analyzed at the USDA, ARS Western

Human Nutrition Research Center (WHNRC) in Davis, CA.

Informed consent was obtained from all mothers. This research was approved by the

Malawi National Health Science Research Commission, the Institutional Review Board at the

University of North Carolina Chapel Hill, the U.S. Centers for Disease Control and Prevention,

and the Institutional Review Board of the University of California, Davis (Clinical Trials.gov

#NCT00164762).

Pooled breast milk, provided by an apparently healthy donor from the Sacramento, CA

area, was used for method development and validation and for quality control purposes.

Biochemical Analyses

Sample preparation was carried out on ice under subdued light. Free riboflavin and FAD were

analyzed by UPLC-MS/MS as previously described in detail [24]. Briefly, samples were sub-

jected to protein precipitation and non-polar constituents were removed by liquid-liquid

extraction prior to analysis. Quantitation was carried out by ratio response to an internal

standard.

Free thiamin, thiamin-monophosphate (TMP) and thiamin-pyrophosphate (TPP) were

analyzed using HPLC-fluorescence detection of their thiochrome derivatives after pre-column

derivatization modified from Stuetz et al. [18, 19]. Pre-chilled perchloric acid (20 μL, ~70%)

was added to 250 μL milk and mixed vigorously for 1 min before centrifugation for 10 min at

5°C (14000 rpm, SORVALL1 LEGEND RT refrigerated benchtop centrifuge, Asheville, NC).

The supernatant (200 μL) was transferred into a fresh 1.5mL amber microcentrifuge tube and

70 μL of freshly prepared potassium ferricyanide (12 mM) solution in sodium hydroxide

(NaOH, 3.3 M) was added to start the thiochrome reaction. The samples were mixed briefly

before quenching the reaction by adding 25 μL of 1M phosphoric acid (H3PO4). The neutral-

ized samples were filtered and analyzed. Pooled breast milk from one apparently healthy donor

was used as a control sample and prepared with every set of analyses (inter-assay variation of

the pooled milk sample for all thiamin vitamers: 8.0–8.2% over 8 weeks, n = 80). Quantification

was carried out using a 7-point external standard curve. Recovery was determined by standard

addition experiments over 8 weeks: TPP 101.9% ± 6.3, TMP 118.7% ± 14.5, and free thiamin

121.7% ± 10.7. Recoveries>100% are most likely due to differences in standard curve and sam-

ple matrices. The analysis was carried out using an Agilent 1200 HPLC System equipped with a

fluorescence detector (lex: 367 nm, lem: 435 nm) and operated by ChemStation Rev. B.02.01.

SR1 (Agilent Technologies, Santa Clara, CA). The samples were kept at 8°C in the autosampler

and 30 μL was injected onto an Agilent Eclipse Plus C18 (4.6 x 150 mm, 5 mm) column pro-

tected by a SecurityGuard C18 (4 x 3.0 mm) guard column (Phenomenex, Torrance, CA) at
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40°C. 150 mM potassium phosphate dibasic (aqueous, pH 7.0, solvent A) and methanol (sol-

vent B) served as mobile phase at a flow rate of 1.5 mL/min and an 8 min gradient as follows: 0

min (85% A), 1 min (80% A), 3 min (80% A), 6 min (50% A), 7 min (85%), 8 min (85% A).

Statistical Methods

Results were analyzed as concentrations of free thiamin, TMP, TPP, total thiamin, free ribofla-

vin, FAD, and total riboflavin in milk. Participants were separated into two sub-groups based

on their initial value being at either 2 or 6 wk postpartum (2 wk sub-set = 2 and 24 wk, 6 wk

sub-set = 6 and 24 wk) and by treatment (LNS or control group). The distributions of concen-

trations were assessed for normality and transformations performed to normalize the variables:

logarithmic transformations were performed on TPP, free thiamin, total thiamin, free ribofla-

vin, and total riboflavin, while FAD was subjected to square root transformation. TMP had a

normal distribution and was not transformed. Means were compared by paired t-test to evalu-

ate changes over time within treatment group (2 to 24 wk; 6 to 24 wk); for evaluation of treat-

ment effects at the time points of sample collection (2 or 6 wk, 24 wk) means were compared

by t-test. P-values< 0.05 were considered to be statistically significant. SAS1 statistical soft-

ware 9.3 (SAS Institute, Cary, NC) was used for all statistical analyses.

Results

Maternal characteristics at initial time point

Maternal characteristics revealed no significant differences within and between the 2 wk- and

6 wk sub-groups (Table 2). The average BMI was within normal range and mothers self-

reported a 92% compliance of LNS consumption, based on adherence reports collected over

5 follow-up visits. The self reported frequency of EBF was 96% at 21 wk portpartum [25, 30].

Changes in control group during lactation

Thiamin. Throughout lactation in the control group, TMP was the main form of thiamin,

constituting 88% of total thiamin at 2 wk and 86% at 6 wk, falling to 71–72% at 24 weeks with a

concomitant increase in free thiamin from 7–11% to 26–27% of the total (Table 3). In addition

to the expected TMP and free thiamin, TPP, not detected in previous reports [14, 18, 19] was

present in minor amounts, falling from 4.5% at 2 weeks to 2.5% at 24 wk of total thiamin

(Table 3). Between 2 wk and 24 wk there was an increase in concentration of both free and

total thiamin (both p< 0.001), while TPP concentrations fell (p< 0.001; Fig 1A). In contrast

there was no change in TMP concentrations between 2 and 24 wk. Free thiamin amounts also

increased between 6 and 24 wk, while total thiamin and TPP did not change and concentra-

tions of TMP fell significantly (p<0.01; Fig 1B).

Riboflavin. The major form of riboflavin was FAD, which contributed about 94% of the

total in the control group at 2 and 6 wk and a similar proportion at 24 wk, with free riboflavin

making up the remainder (Table 3). From 2 to 24 wk the total riboflavin in milk fell by about

15% (p = 0.001) due to a reduction in FAD (p< 0.01) rather than free riboflavin (Fig 1). No

significant changes in concentration were observed for free and total riboflavin or FAD from 6

to 24 wk in control samples (Fig 1).

Effects of LNS

Thiamin. By 2 wk postpartum there were already positive effects of LNS supplementation

on TMP, free and total thiamin compared to the control group (p< 0.05); there were no effects

on TPP (Table 4). At 6 wk significant effects of LNS were not detected on TMP, free or total
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thiamin, although TPP was significantly lower in the LNS than the control group (p< 0.05).

At 24 wk, there were no significant differences between concentrations of any of the vitamers

or total thiamin concentrations as a result of thiamin supplementation. Free and total thiamin

concentrations were substantially higher at 24 wk than earlier in lactation (Fig 1).

Table 2. Characteristics of participants in the Breastfeeding, Antiretrovirals, and Nutrition (BAN) study at the initial time point (no significant differ-
ences within and between subgroups).

Characteristic Sub-group Control LNS1

n median IQR n median IQR

Age, y 2 wk 117 25 (22–29) 139 26 (22–30)

6 wk 59 25 (23–30) 44 25 (22–30)

Postprimary education, % 2 wk 118 33.9 140 37.1

6 wk 59 42.4 45 40.0

Literacy, % 2 wk 113 76.1 136 77.2

6 wk 59 83.1 43 69.8

Married, % 2 wk 118 91.5 140 90.7

6 wk 59 88.1 45 88.9

Vaginal delivery, % 2 wk 118 95.8 140 94.3

6 wk 59 96.6 45 100

BMI, kg/m2 2 wk 118 22.5 (20.8–24.1) 140 22.3 (20.8–24.3)

6 wk 59 22.0 (20.6–24.1) 45 22.4 (21.1–24.1)

Weight, kg 2 wk 118 54.9 (50.4–60.0) 140 54.0 (49.8–58.4)

6 wk 59 55.6 (49.1–61.2) 45 54.8 (50.8–59.5)

Height, cm 2 wk 118 157 (154–160) 140 155 (152–159)

6 wk 59 157 (154–160) 45 156 (153–158)

Hemoglobin, g/L 2 wk 118 119 (110–131) 140 121 (110–131)

6 wk 59 123 (117–132) 45 124 (116–132)

CD4 count, cells/μL 2 wk 108 452 (304–636) 129 485 (337–715)

6 wk 51 524 (354–686) 41 503 (350–793)

1LNS, lipid-based supplement; IQR’ interquartile range.

doi:10.1371/journal.pone.0149479.t002

Table 3. Median relative contribution [%] to total thiamin and total riboflavin from each vitamer analyzed in milk from HIV-infected Malawian
women, and change over time.

Treatment Thiamin Riboflavin

Free thiamin, % TMP, % TPP, % Free riboflavin, % FAD, %

2/6 wk1 24 wk 2/6 wk 24 wk 2/6 wk 24 wk 2/6 wk 24 wk 2/6 wk 24 wk

Control

2 weeks 7.0 26.1 87.7 71.7 4.5 2.5 5.7 7.8 94.3 92.2

6 weeks 11.5 27.0 85.7 71.3 2.4 2.4 5.8 7.0 94.2 93.0

LNS

2 weeks 8.4 29.9 87.5 66.7 3.7 2.5 11.6 16.7 88.4 83.3

6 weeks 11.5 21.3 85.9 76.8 1.9 2.3 14.8 14.7 85.2 85.3

1 Initial sample at 2 weeks or 6 weeks.

TMP, thiamin-monophosphate; TPP, thiamin-pyrophosphate; FAD, flavin adenine dinucleotide; LNS, lipid-based nutrient supplement. Supplementation

started within 36 hours of delivery.

doi:10.1371/journal.pone.0149479.t003
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Fig 1. Percent change of concentrations and 95% confidence interval (CI) for each thiamin and riboflavin vitamier at 24 wk compared to the initial
value (2 or 6 weeks, A and B respectively) by treatment group (control or LNS).Means were compared by paired t-test to evaluate changes over time
within treatment and sub-set). Asterisks indicate level of significance compared to initial value (*, p < 0.01, **; p < 0.01; ***, p < 0.001). Control 2: control
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Riboflavin. LNS significantly increased free and total riboflavin, but not FAD, in breast

milk by 2 wk (both p< 0.001). Similar effects were also seen at 6 and 24 wk (Table 5): by 24

wk, total riboflavin in the LNS group was 42% (2 wk sub-set) and 32% (6wk sub-set) higher

compared to the control group, as a result of increases in free riboflavin (p< 0.001) with

increased FAD only for the 2 wk sub-set (p< 0.01, Table 4). In terms of changes across the 24

wk period in the LNS treatment group, from 2 to 24 wk there was a fall only in FAD (Table 4,

p< 0.01) and none in free or total riboflavin. There were no significant changes in any vitamer

from 6 to 24 wk.

Discussion

Thiamin

Free thiamin and TMP are the only vitamers reported to contribute to the total thiamin con-

centration in human milk [18, 19]. However, our method revealed that TPP constituted 1.9–

group initial value at 2 wk (n = 118). LNS 2: LNS group initial value at 2 wk (n = 140). Control 6: control group initial value at 6 wk (n = 59). LNS 6: LNS group
initial value at 6 wk (n = 45). LNS, lipid-based nutrient supplement. TMP, thiamin-monophosphate. TPP, thiamin-pyrophosphate. FAD, flavin adenine
dinucleotide.

doi:10.1371/journal.pone.0149479.g001

Table 4. Median concentration and interquartile range (IQR) of free thiamin, TMP, TPP, and total thiamin in breast milk of BAN study women
assigned to one of two treatment arms within the two subgroups (initial sample at 2 or 6 weeks).

Vitamin1 Treatment Group P value

Control LNS

n median (IQR), μg/L n median (IQR), μg/L

Free Thiamin

2 wk 118 10.5 (6.5–17.5) 140 13.3 (8.2–20.7) < 0.025

24 wk 118 40.4 (25.3–71) 140 51.2 (28.6–73) n.s.

6 wk 59 24.5 (14.6–35.9) 45 23.4 (13.6–35.4) n.s.

24 wk 59 40.9 (25.8–63) 45 40.4 (24.9–61) n.s.

TMP

2 wk 118 151 (119–188) 140 170 (141–202) < 0.025

24 wk 118 177 (106–211) 140 169 (118–211) n.s.

6 wk 59 204 (172–256) 45 208 (180–255) n.s.

24 wk 59 153 (119–206) 45 187 (126–223) n.s.

TPP

2 wk 118 9.5 (6.6–15.3) 140 9.1 (6.6–13.1) n.s.

24 wk 118 6.2 (3.6–9.9) 140 6.7 (4.2–9.8) n.s.

6 wk 59 7.6 (5.0–12.6) 45 6.7 (4.9–8.4) 0.404

24 wk 59 6.8 (4.0–11.5) 45 6.3 (3.9–10.5) n.s.

Total Thiamin

2 wk 118 154 (118–191) 140 171 (137–201) < 0.025

24 wk 118 196 (162–238) 140 207 (173–245) n.s.

6 wk 59 220 (185–257) 45 213 (192–259) n.s.

24 wk 59 205 (159–236) 45 214 (175–235) n.s.

1Means were compared by t-test.

TMP, thiamin-monophosphate; TPP, thiamin-pyrophosphate; LNS, lipid-based nutrient supplement; n.s., not significant. Supplementation started within 36

hours of delivery.

doi:10.1371/journal.pone.0149479.t004
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4.5% of total thiamin in breast milk. While the method we developed follows the same sample

preparation principle, HPLC-analyses done previously were carried out using isocratic mobile

phase conditions, which could cause TPP to co-elute with nonspecific matrix components and

therefore remain undetected. Using a mobile phase gradient and the flow rate as described

above allowed separation of TPP from matrix interferences and subsequent identification by

co-injecting a commercial standard. TPP usually represents only a minor contribution to total

thiamin content, but we found that in some of the analyzed samples this vitamer contributed

up to 40% of total thiamin.

Even though the milk used in this analysis was obtained from HIV-infected women, the

breast milk concentrations of total thiamin showed comparable median concentrations to

those of adequately nourished and apparently healthy mothers in other studies [14, 31, 32].

The value of 205 μg/L in the control group at 24 wk compares to the estimate of 210 μg/L from

literature reports in the Dietary Reference Intakes [29]. Maternal thiamin supplementation

resulted in increases in breast milk from about 54 μg/L to 150 μg/L (179.5–502.7 nmol/L) in

severely depleted Cambodian women [14], but it is thought to be only transferred into milk to

a limited degree [33]. Studies in the US showed no effect of thiamin supplementation on breast

milk of adequately nourished mothers [31, 32]. Indeed, the only effect of LNS supplementation

in this study of Malawian women was detected at 2 wk when there were significant increases in

TMP and free thiamin concentrations compared to the control group. This effect was not

observed at 24 wk or in the 6 wk sub-set indicating thiamin supplementation may be more

effective in the early stages of lactation. Importantly, our data shows that milk collected at 2 wk

will have substantially lower concentrations of total thiamin compared to milk collected at 6

wk (Table 4).

Table 5. Median concentration and interquartile range of free riboflavin, FAD, and total riboflavin in breast milk of BAN study women assigned to
one of two treatment arms within the two subgroups (initial sample at 2 or 6 weeks).

Vitamin1 Treatment Group P value

Control LNS

n median (IQR), μg/L n median (IQR), μg/L

Free Riboflavin

2 wk 118 6.3 (3.9–11.6) 140 17.5 (8.0–32.6) < 0.0001

24 wk 118 7.0 (3.9–11.4) 140 19.6 (9.9–35.4) < 0.0001

6 wk 59 5.0 (2.3–9.9) 45 14.8 (8.3–29.9) <0.004

24 wk 59 7.4 (3.9–12.7) 45 17.2 (11.4–36.6) <0.004

FAD

2 wk 118 210 (152–282) 140 229 (164–295) n.s.

24 wk 118 173 (128–221) 140 203 (147–275) 0.0021

6 wk 59 176 (119–272) 45 179 (148–247) n.s.

24 wk 59 197 (131–244) 45 198 (141–283) n.s.

Total Riboflavin

2 wk 118 105 (78–148) 140 137 (97–188) < 0.0001

24 wk 118 91 (69–122) 140 129 (88–166) < 0.0001

6 wk 59 91 (62–146) 45 109 (84–158) <0.004

24 wk 59 98 (68–131) 45 129 (90–181) <0.004

1Means were compared by t-test.

FAD, flavin adenine dinucleotide; LNS, lipid-based nutrient supplement. Supplementation started within 36 hours of delivery.

doi:10.1371/journal.pone.0149479.t005
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Details of thiamin uptake in the mammary gland are sparse. While free thiamin constitutes

the transported form, the phosphorylated derivatives are the active co-enzymatic structure of

the vitamin [34]. In the human body, phosphorylated thiamin derived from food undergoes

de-phosphorylation prior to absorption in the intestinal lumen involving a specialized, pH-

dependent, Na+-independent, carrier mediated system. Thiamin transporters THTR1 and

THTR2 are both involved in the normal thiamin uptake process in human intestinal epithelial

cells [35]. Both enzymes are members of the solute carrier family 19A, which also includes the

reduced folate carrier RFC-1 [36, 37]. Inside the cell, thiamin is converted into TPP by thiamin

pyrophosphokinase-1 (TPK-1). TPP transport across the mitochondrial membrane is facili-

tated by thiamin pyrophosphate carrier (TPC), which is encoded by the SLC25A19 gene [38].

The lack of TPP in the cytosol indicates possible hydrolysis to TMP and subsequent recycling

to free thiamin. While there are no enzymes reported for latter conversion, there is also no

known intracellular role for TMP [39].

Whether these types of reactions are also located in the mammary gland is unknown.

Water-soluble vitamin transport from the interstitial fluid into breast milk occurs mainly via

the transcellular pathway, mediated by specific transporters that are located at the basolateral

membrane, Golgi apparatus, secretory vesicles and apical membrane [40]. THTR1 and THTR2

have been identified and are active in breast tissue [41] but the expression of transporters from

the SLC19 family in the actual mammary gland has yet not been described. No information is

available about the transport mechanisms that mediate thiamin secretion into breast milk. The

fact that milk concentrations are higher than plasma levels indicates active thiamin secretion

into the milk [40]. The results obtained here reveal that free thiamin is the only vitamer show-

ing a consistent significant increase in concentration in breast milk for both sub-sets over time

and independently of supplementation, supporting the presence of an active secretion system,

possibly of free thiamin. Nevertheless, TMP represents the main thiamin source in the milk;

thus, free thiamin may be undergoing the above-described phosphorylation to TPP in the

mammary gland, followed by secretion into breast milk and hydrolysis to TMP. Alternatively,

phosphorylation of the free form to TMP might be possible; a direct secretion of TMP is also

feasible [39]. Given that the amounts of phosphorylated vitamers either decreased or did not

change over time, possible phosphorylation of thiamin, hydrolysis of TPP, or the secretion of

TMP may be upregulated during the early stages of lactation. The only significant increase in

TMP due to LNS occurred at 2 wk and initial TMP levels at 6 wk were significantly higher than

the initial levels at 2 wk, supporting that possible targeted TMP production or transport may

be peaking within the first weeks of lactation. However, even though there were no differences

in the characteristics of study participants among the groups at their initial time point, the two

sub-groups are independent from each other and differences in concentration could be due to

the variation within each sub-set.

Riboflavin

FAD and free riboflavin have been identified as the main contributors to total riboflavin in

human milk with negligible amounts of other flavin derivatives [20, 21]. Riboflavin supplemen-

tation has been shown to be reflected in increased milk concentration [33, 42], which was also

the case in the present study. Supplementation with about 1 x RDA resulted in a 2–3 fold

increase of free riboflavin, but FAD levels were increased only at 24 wk in the 2 wk sub-set

when compared to the control group. However, total riboflavin concentrations in the LNS

compared to the control group were greatly increased at all time points. Given that free ribofla-

vin is generally used in supplements the greater increase in this vitamer can be expected, sug-

gesting its efficient absorption and transport into milk rather than conversion into its co-
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enzymatic form prior to secretion. However, less than 10% of all samples analyzed revealed

adequate levels of total riboflavin compared to the AI value of 350 μg/L [29] or reached levels

comparable to those from well-nourished mothers [21, 43]. The median values of 91 and

98 μg/L in the control group at 24 wk (both sub-sets) compare unfavorably to the 350 μg/L of

total riboflavin assumed for establishing the AI for infants [29]. Even after 24 wk of supplemen-

tation the median total riboflavin concentration was only 129 μg/L, and more than 98% of sam-

ples were below AI values. The FAD:riboflavin-proportion of 92–94%:6–8% observed in the

controls was also seen in well-nourished Japanese mothers [21], indicating similar secretion

patterns independently of maternal riboflavin and health status.

Transport of riboflavin into breast milk has been linked to breast cancer resistance protein

(BCRP), a highly conserved member of the ATP-binding cassette (ABC) transporter superfam-

ily [11, 44]. This multidrug transporter has a broad substrate specificity and in addition to ribo-

flavin, it actively extrudes drugs, carcinogens, and dietary toxins from cells [45]. During

pregnancy and lactation, BCRP is strongly induced and actively transports free riboflavin but

also toxins into breast milk via an ATP-dependent mechanism. FAD was present in milk at

similar levels in BCRP1
-/- knockout compared to wild-type mice indicating the presence of a

BCRP-independent, possibly active transport of this vitamer into the milk [11].

We found consistent concentrations of free riboflavin in breast milk throughout lactation

for both the 2 and 6 wk sub-set independently of treatment, suggesting a steady secretion and

supply of the vitamer. In contrast, FAD amounts decreased significantly from 2 to 24 weeks,

but there was no significant change observed in the 6 wk sub-set. This was true for both the

control and the supplemented group. That the contributions of FAD remained between 92 to

94% and 83 to 88% in the control and LNS group respectively also suggests a steady FAD sup-

ply in the milk over time with a shift in contribution when supplements were taken, making

free riboflavin the driving force for the change in total riboflavin content, which may induce

upregulation of BCRP expression.

Conclusion

Of all the thiamin vitamers present in human milk, only free thiamin concentrations increased

during lactation suggesting an active transport of this vitamer into the mammary gland. The

main vitamer TMP may be also actively transported into the milk, but could also derive from

phosphorylation of free thiamin or hydrolysis of TPP. These transport, phosphorylation, or

hydrolysis mechanisms may be upregulated during the early stages of lactation. LNS supple-

mentation only positively affected thiamin and TMP concentrations, and only in the first 2 wk

postpartum. TPP has been identified as a contributor to total thiamin in breast milk for the

first time, with contributions in some cases up to 40%. Free riboflavin concentrations remain

comparable throughout lactation, while FAD amounts decline from 2 to 24 wk. Supplementa-

tion is reflected in an increased milk concentration of free riboflavin, but not necessarily in

FAD suggesting a preferred secretion of the free form into breast milk by BCRP. Active FAD

secretion most likely occurs by a BCRP-independent and FAD specific but unknown mecha-

nism. Further studies are needed to gain better insight into the mechanisms involved in vita-

min secretion into human milk, the triggers initiating vitamer conversion in the mammary

gland, and the roles of the different forms of the vitamins.
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