
Chapter 18 

 

 

 
 

© 2012 Seidi et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Fuzzy Control Systems: LMI-Based Design 

Morteza Seidi, Marzieh Hajiaghamemar and Bruce Segee 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/48529 

1. Introduction 

This chapter describes widespread methods of model-based fuzzy control systems. The 

subject of this chapter is a systematic framework for the stability and design of nonlinear 

fuzzy control systems. We are trying to build a bridge between conventional fuzzy control 

and classic control theory. By building this bridge, the strong well developed tools of classic 

control could be used in model-based fuzzy control systems 

Model-based fuzzy control, with the possibility of guaranteeing the closed loop stability, is 

an attractive method for control of nonlinear systems. In recent years, many studies have 

been devoted to the stability analysis of continuous time or discrete time model based fuzzy 

control systems (Takagi & Sugeno, 1985; Rhee & Won, 2006; Chen et al., 1993; Wang et al., 

1996; Zhao et al., 1996; Tanaka & Wang, 2001; Tanaka et al., 2001). Among such methods, the 

method of Takagi-Sugeno (Takagi & Sugeno, 1985) has found many applications for 

modelling complex nonlinear systems (Tanaka & Sano, 1994;Tanaka & Kosaki, 1997;Li et al., 

1998). The concept of sector nonlinearity (Kawamoto et al., 1992) provided means for exact 

approximation of nonlinear systems by fuzzy blending of a few locally linearized 

subsystems. One important advantage of using such a method for control design is that the 

closed-loop stability analysis, using the Lyapunov method, becomes easier to apply. Various 

stability conditions have been proposed for such systems (Tanaka &Wang, 2001), (Ting, 

2006), where the existence of a common solution to a set of Lyapunov equations is shown to 

be sufficient for guaranteeing the closed-loop stability. Some relaxed conditions are also 

proposed in (Kim & Lee, 2000; Ding et al, 2006; Fang et al., 2006, Tanaka & Ikeda, 1998). 

Parallel Distributed Compensator (PDC) is a generalization of the state feedback controller to 

the case of nonlinear systems, using the Takagi-Sugeno fuzzy model (Wang et al., 1996). This 

method is based on partitioning nonlinear system dynamics into a number of linear 

subsystems, for which state feedback gains are designed and blended in a fuzzy sense. Takagi-

Sugeno model and parallel distributed compensation have been used in many applications 

successfully (Sugeno & Kang, 1986, Lee et al., 2006, Hong & Langari, 2000, Bonissone et al., 
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1995). The Linear Matrix Inequality (LMI) technique offers a numerically tractable way to 

design a PDC controller with objectives such as stability (Wang et al.,1996; Ding et al, 2006; 

Fang et al., 2006; Tanaka & Sugeno 1992), H∞ control (Lee et al., 2001), H2 control (Lin & Lo, 

2003), pole-placement (Jon et al, 1997; Kang & Lee, 1998), and others  ( Tanaka & Wang, 

2001).  

2. Takagi-Sugeno fuzzy model 

The main idea of the Takagi-Sugeno fuzzy modeling method is to partition the nonlinear 

system dynamics into several locally linearized subsystems, so that the overall nonlinear 

behavior of the system can be captured by fuzzy blending of such subsystems. The fuzzy 

rule associated with the i-th linear subsystem for the continuous fuzzy system and the 

discrete fuzzy system, can then be defined as 

Continuous fuzzy system 

 

   
     

   

1 i1 l ilRule i : IF Z t   is M . . . and Z t  is M

THEN  i=1,2,...,ri i

i

x t A x t B u t

y t C x t

  




  (1) 

Discrete Fuzzy System 

 

   
     

   

1 i1 l ilRule i : IF Z t   is M . . . and Z t  is M  

1
THEN  i=1,2,...,ri i

i

x t A x t B u t

y t C x t

   




 (2) 

where,  x t nR  is the state vector,  u t mR is the input vector, iA n nR   ,  iB n mR  , 

iC q nR  ;       1 2, ,..., pz t z t z t are nonlinear functions of the state variables obtained from 

the original nonlinear equation, and  ij iM z  are the degree of membership of  iz t  in a 

fuzzy set ijM . Whenever there is no ambiguity, the time argument in z(t) is dropped. The 

overall output, using the fuzzy blend of the linear subsystems, will then be as follows:  

Continuous fuzzy system 
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Discrete Fuzzy System 
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 (4) 

Where 
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It is also true, for all t, that 

 
 

11

1

0,

0, 1,2,......,

r

i
w z

w z i r


 


 

  

2.1. Building a fuzzy model 

There are generally three approaches to build the fuzzy model: "sector nonlinearity," "local 

approximation," or a combination of the two. 

2.1.1. Sector nonlinearity  

Figure 1 illustrates the concept of global and local sector nonlinearity. Suppose the original 

nonlinear system satisfies the sector non-linearity condition (Kawamoto et al., 1992, as cited 

in Tanaka & Wang, 2001), i.e., the values of nonlinear terms in the state-space equation 

remain within a sector of hyper-planes passing through the origin. This model guarantees 

the stability of the original nonlinear system under the control law. A function Φ: R→R is 

said to be sector [a,c]  if for all xϵR, y= Φ(x) lies between 1b x  and 2b x .  
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Figure 1. a) Global sector nonlinearity, b) Local sector nonlinearity 

Example 1 

The well-known nonlinear control benchmark, the ball-and-beam system is commonly used 

as an illustrative application of various control methods (Wang & Mendel, 1992) depicted in 

figure 2. Let x1(t) and x2(t) denote the position and the velocity of the ball and let x3(t) and 

x4(t) denote the angular position and the angular velocity of the beam Then, the system 

dynamics can be described by the following state-space equation 

 

Figure 2.  The ball and beam system 

 

2

2
1 4 3

4

( ) ( ( )) ( ( )) ( )

Where

( ) 0

0( ( ) ( ) sin( ( )))
( ) and ( )

0( )
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f x g x
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 

   
   

       
   
     


 (6) 

Where 1 2 3 4( ) ( ) ( ) ( ) ( )
T

x t x t x t x t x t    and u(t) is torque.  

 3sin x  and 2
1 4x x  are nonlinear terms in the state-space equation. We define  1 3sinz x  

and 2
2 1 4z x x . Assume 3 2 2x      and 1 4x x d d    as the region within which the 

system will operate. Figure 3 shows that  1 3( ) sin ( )z t x t and its local sector operating 
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region.The sector [b1, b2] consists of two lines blxl and b2xl, where the slopes are bl = 1 and b2= 
2
 . It follows that 

 
2

4 1 4 4

2
sin( ) ,

.

x x x

dx x x dx


 

  

 (7) 

2


2




 

Figure 3.  3sin ( )x t  and its local sector 

We present  3sin ( )x t is represented as follows: 

        
2

1 3 1 3
1

sin i i
i

z x t M z t b x t


 
    

 
  (8) 

From the property of membership functions      1 1 2 1 1M z t M z t    , we can obtain the 

membership functions 
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


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
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 

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 (9) 

Similarly we obtain membership functions associated with 2 1 4( ) ( ) ( )z t x t x t  . Assume 

2 1max( ( ))z t d    and 2 2min( ( ))z t d     we have: 
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   
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 
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


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
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 (11) 

The exact TS-fuzzy model-based dynamic system of the ball and beam system can be 

obtained as following: 
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 

       
                       
                     








 (12) 

The fuzzy model has the following 4 rules: 
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2.1.2. Local approximation  

The original system can be partitioned into subsystems by approximation of nonlinear terms 

about equilibrium points. This approach can have fewer rules and of course less complexity 

but it cannot guarantee the stability of the original system under the controller. Usually in 

this approach, construction of a fuzzy membership function requires knowledge of the 

behavior of the original system and of course different types of membership functions can 

be selected. 

3. Parallel distributed compensation 

Parallel distributed compensation (PDC) is a model-based design procedure introduced in 

(Wang et al,. 1995). Using the Takagi-Sugeno fuzzy model, a fuzzy combination of the 

stabilizing state feedback gains, , 1,2,..., ,iF i r associated with every linear subsystem is 

used as the overall state feedback controller. The general structure of the controller is then 

as 

        1 1 2 2If is ,and is ,........ ,and is then , 1,2,...,i i p ip iz t M z t M m z t M u F x t i r    (14) 

The output of the controller is represented by 

 

   
 1

1

1

( ) .

r

i i r
i

i ir
i

i
i

z F x t

u h z F x t











   





 (15) 

The Takagi-Sugeno model and the Parallel Distributed Compensation have the same 

number of fuzzy rules and use the same membership functions.  

4. Stability conditions and control design 

4.1. LMI 

A variety of problems arising in system and control theory can be reduced to a few standard 

convex or quasi-convex optimization problems involving linear matrix inequalities (LMIs). 

Lyapunov published his theory in 1890 and showed that    d
x t Ax t

dt
  is stable if and only 

if there exists a positive-definite matrix P such that 0TA P PA  . The Lypanov inequality, 

0P   and 0TA P PA  is a form of an LMI. 

An LMI has the form  

 0
1

( ) 0,
m

i i
i

F x F x F


   (16) 
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Where , 0,...,n n
iF R i m  are the given symmetric matrices and mx R is the variable and 

the inequality symbol shows that ( )F x  is positive definite (Boyd, 1994). 

4.2. Stability conditions 

There are a large number of works on stability conditions and control design of fuzzy 

systems in the literature. A sufficient stability condition for ensuring stability of PDC was 

derived by Tanaka and Sugeno (Tanaka & Sugeno, 1990; 1992 ). 

By substituting the controller output (15) into the TS model for the continuous fuzzy control 

(4), we have: 

           
1 1

r r

i j i i j
i j

x t h z t h z t A B F x t
 

   (17) 

or 
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
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





 (18) 

where ij i i jG A B F  , Similarly for the discrete fuzzy system we have  

           
1 1

1
r r

i j i i j
i j
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or 
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r
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
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 
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





 (20) 

Theorem 1: The equilibrium of the continuous fuzzy system (3) with u(t) = 0 is globally 

asymptotically stable if there exists a common positive definite matrix P such that 

 0, 1,2,...,T
i iA P PA i r    (21) 

that is, a common P has to exist for all subsystems. 

Theorem 2: The equilibrium of the discrete fuzzy system (4) with u(t) = 0 is globally 

asymptotically stable i f there exists a common positive definite matrix P such that 

 0, 1,2,...,T
i iA PA P i r    (22) 
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that is, a common P has to exist for all subsystems. 

The stability of the closed loop system can be derived by using theorem 1 and 2. 

Theorem 3: The equilibrium of the continuous fuzzy control system described by (18) is 

globally asymptotically stable if there exists a common positive definite matrix P such that 

 

0,

0,
2 2

T
ii ii

T

ij ji ij ji

G P PG

G G G G
P P

 

    
       
   

 (23) 

 i s.t. h ji j h     (24) 

Theorem 4: The equilibrium of the discrete fuzzy control system described by (20) is globally 

asymptotically stable if there exists a common positive definite matrix P such that 

 

0,

0,
2 2

T
ii ii

T

ij ji ij ji

G PG P

G G G G
P P

 

    
        
   

 (25) 

 i s.t. h ji j h     (26) 

4.3. Stable controller design 

By using the following conditions, the solution of the LMI problem for continuous and 

discrete fuzzy systems gives us the state feedback gains Fi and the matrix P (if the problem is 

solvable). 

Consider a new variable 1X P  then the stable fuzzy controller design problem is: 

Continuous fuzzy system 

Find 0X   and iM  , 1,2,...,i r  

 

0,

          0.

T T T
i i i i i i

T T
i i j j

T T T T
j i i j i j j i

XA A X M B B M

XA A X XA A X

M B B M M B B M

    

   

    

 (27) 

 1
i s.t. h jX P i j h      (28) 

The conditions (27) and (28) gives us a positive definite matrix X and iM (or that there is no 

solution). From the solution X and iM , a common P and the feedback gains can be found 

as: 
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 1 1, i iP X F M X    (29) 

Similarly for a discrete fuzzy system the design problem is 

Find 0X   and iM  , 1,2,...,i r  
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 (30) 

4.4. Decay rate 

Decay rate is associated with the speed of response. The decay rate fuzzy controller design 

helps to find feedback gains that provide better setteling time (Tanaka et al,. 1996; 1998a; 

1998b). 

Continuous fuzzy system: The condition that      2V x t V x t   (Ichikawa et al, 1993, as 

cited in Tanaka & Wang, 2001) for all  x t  can be written as 

  

2 0

2 0
2 2

T
ii ii

T

ij ji ij ji

G P PG P

G G G G
P P P





  

    
        
   

 (31) 

Where  

 i,  0 and  s.t. hij i i i jG A B F i j h        (32) 

Therefore, by solving the following generalized eigenvalue minimization problem in X, the 

largest lower bound on the decay rate that can be found by using a quadratic Lyapunov 

function: 

maximize   subject to 
 

 

0,

2 0,

          4 0,

T T T
i i i i i i

T T T T
i i j j j j i j

T T
i j j i

X

XA A X M B B M X

XA A X XA A X M B B M

M B B M X







     

     

   

 (33) 

 1. . , where ,     .i j i ii j s t h h X P M F X       (34) 

Similarly for a discrete fuzzy system: 
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The condition that        2 1V x t V x t    (Ichikawa et al, 1993, as cited in Tanaka & 

Wang, 2001) for all  x t  can be written as 

 

2

2

0,

0
2 2

T
ii ii

T

ij ji ij ji

G PG P

G G G G
P P





 

    
        
   

 (35) 

 is.t. h and <1ji j h      (36) 

The  generalized eigenvalue minimization can be found in  (Tanaka & Wang, 2001). 

4.5. Constraint on control  

Theorem 5: Assume that the initial condition x(0) is known. The constraint  
2

u t   is 

satisfied at all times 0t   if the LMIs 

 

 
 

2

1 0
0

0

0

T

T
i

i

x

x X

X M

M I

 
  
  
 

 
  

 (37) 

Hold, where 1X P  and  i iM F X . 

The above LMI design conditions depend on the initial states. Thus, if the initial states  0x  

change, this means that the feedback gains Fi must be again determined. To overcome this 

disadvantage, modified LMI constraints on the control input have been developed, where 

 0x  is unknown but the upper bound   of  x t is known, i.e.,  x t  .  

Theorem 6: Assume that  x t  , where x(0) is unknown but the upper bound   is 

known. Then, 

    1 20 0 1 if ,Tx X x I X    (38) 

Where 1X P  

Proofs of theorem 1 and 2 are given in (Tanaka & Wang, 2001) 

4.6. Performance-oriented parallel distributed compensation 

In the modified PDC proposed in (Seidi & Markazi, 2011), unlike the conventional PDC, 

state feedback gains associated with every linear subsystem, are not assumed fixed. Instead, 

based on some pre-specified performance criteria, several feedback gains are designed and 
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used for every subsystem. The overall gain associated with each of the subsystems, is then 

determined by a fuzzy blending of such gains, so that a better closed-loop performance can 

be achieved. The required membership functions are chosen based on some pre-specified 

performance indices, for example, a faster response or a smaller control input. In general, the 

rest of the method for calculating the overall state feedback gain remains similar to the 

conventional PDC method, as in (14) and (15). Figure 4, depicts the general framework for the 

proposed method, through which and depending on various performance criteria, different 

characteristics for the controller can be specified. For example, two different feedback gains 

could be designed for a typical subsystem; one providing a lower control input with a longer 

settling time response, and the other a faster response but with a larger control input. The idea 

is then to select the overall feedback gain for this subsystem as a weighted sum of such gains, 

where the weights are appropriately adjusted, in a fuzzy sense, during the time evolution of 

the system response, so that as a whole, a faster response with a lower control input can be 

achieved. For this purpose, when the magnitude of the control input becomes large, the 

relative weight of the first feedback gain is increased, so that the magnitude of the control 

input is kept within the permissible limits. On the other hand, when the control input is well 

below the permissible limit, the weight of the second feedback gain is increased, for a faster 

response. The dynamics of the resulting closed-loop control system can be analyzed as follows: 

Consider the following Takagi–Sugeno model of the plant 

       1
1

r

i i
i

x h z A x t B u t


   (39) 

The following structure is proposed for the fuzzy controller rules 

         

    

1 1 2 2 1

1

i th rule :  If is and is M ,......., is , is ,....and is

then ( )

i i p ip i iq

q

i in in
n

Z t M Z t Z t M J t H J t H

u t m J t K x t


    
  


 (40) 

Where 1,2,...,i r , iq  is the number of gain coefficients in the ith subsystem, inm  is the 

relevant membership degree for J(t), inK is the nth state feedback gain associated with the ith 

subsystem, iqH is the n th membership function for J(t), defined in the ith rule. Here  J t   is 

a term depicting a selected performance index, for instance, if one wants to limit the 

magnitude of the control signal ( )u t , then  ( )J t u t . Where the control input generated 

by the PDC controller is in the form of 

 

         

  
1 1

1

r r

i i i i
i n

q

i in in
n

u t h z u t h z K x t

K m J t K

 



     
  



 


 (41) 
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Figure 4. General methodology in the proposed PDC method 

Lemma: The fuzzy control system (39), with the control strategy (41) is globally, 

asymptotically stable, if there exists a common positive definite matrix P such that 

 

0

0
2 2

T
iin iin

T

ijn jin ijn jin

G P PG

G G G G
P P

 

    
    
   
   

 (42) 

where ,     ,i ji j h h     ijn i i jnG A B K  . 

Example 2 

Consider a single link robot with flexible joint as in Figure 5. This benchmark problem is 

introduced in (Spong et al., 1987). 

 

Figure 5. A single link robot with a flexible joint 
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The state space equations for the system of Figure 4 are 

 

 
 

       
      

1 3

2 4

3 2 1 1

4 2 1

1
( )

1
( )

x x t

x x t

x k x t x t mgLsin x t
I

x u t k x t x t
J

 




   


   










 (43) 

In order to apply the PDC methodology, the fuzzy Takagi-Sugeno Model is developed first 

(Seidi & Markazi, 2008). The nonlinear expression   1Z sin x t , for  1 [ , ]x t pi pi   , can be 

expressed as  

       
2

1 1
1

sin i i
i

z x t M z b x t


 
    

 
  (44) 

Where, 1 21, 0b b   and, hence, the membership functions for z  are obtained as 

 

   

   

1
1

1

1
2

,   0        

1,    Otherwise

,   0

1,    Otherwise

z
z t

M z Sin z

Sin z z
z t

M z Sin z








 


 

 



 (45) 

The resulting fuzzy model would then have the following fuzzy rules: 

 
         
         

1 1 1

2 2 2

 1 : If is ,then

 1 : If is ,then

Rule z t M z x t A x t B u t

Rule z t M z x t A x t B u t

 

 




 (45) 

Where,  

  1
1

0 0 1 0

0 0 0 1

,0 0

0 0

k mgLb kA
I I
k k

J J

 
 
 
    
 
 

 
 

2
2

0 0 1 0

0 0 0 1

,0 0

0 0

k mgLb kA
I I
k k

J J

 
 
 
    
 
 

 
 

  (46) 

and 

 1 2 0,0,0,1 .
T

B B B        (47) 
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Assume 100 /k Nm rad , 29.8 /g m s  and other parameters are assumed unity then we 

have  

1

0 0 1 0

0 0 0 1
,

109.8 100 0 0

100 100 0 0

A

 
 
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0 0 1 0

0 0 0 1
,

0 100 0 0

100 100 0 0
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 
   
 

  

0

0
,

0

1

B

 
 
   
 
  

 

 
   

   

1 1

2 2

Control Rule :

If z is ,then ( ) ( )

Control Rule 2 :

If z is ,then ( ) ( )

t M z u t F x t

t M z u t F x t

 

 

1

 (48) 

 

The final output of the controller is  

 
2

1 1 2 2
1

( ) ( ) ( ) ( )i i
i

u t h F x t h F x t h F x t


     (49) 

Case 1: Stable controller design 

Using conditions (27) and (28) the stable controller can be obtained by solving below 

conditions 

 

T T
1 1 1 1

T T
2 2 2 2

T T T T T T
1 1 2 2 2 2 1 1

X 0 

X A A X M B B M 0,

X A A X M B B M 0,

X A A X X A A X M B B M M B B M 0



      
      
          

 (50) 

Using the MATLAB LMI Control Toolbox we obtain 
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2
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-3.2007 4.3456 0.1719 0.3527

F

F
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


 
 
   
 
  

 )51(  

Figures 6 and 7 show the response of the system and control effort, respectively. 

Case 2: The decay rate  

Using conditions (31) and (32) the stable controller can be obtained by solving the 

conditions: 
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Figure 6. Response of flexible joint robots x1(t), case 1. 
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Figure 7. Control input for flexible joint robots, case 1. 
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T T T
1 1 1 1

T T T
2 2 2 2

T T T T
1 1 2 2 2
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[ X A A X M  B B M 2 X] 0
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    

    

 (52) 

Considering 10   and by using the MATLAB LMI Control Toolbox we obtain: 

 

1

2
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 )53(  

Figures 8 and 9 show the response of the system and control effort, respectively. 
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Figure 8. Response of flexible joint robots x1(t) , case 2. 
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Figure 9. Control input for flexible joint robots, case 2. 

Case 3: The decay rate with the constraint on the input 

We design a stable fuzzy controller by considering the decay rate and the constraint on the 

control input. The design problem of the FJR is defined as follows: 

Maximize   
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 
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   

 (54) 

Where 1
i i,  MX P F X  , 4600  , 1  . 

Using the MATLAB LMI toolbox to solve the LMI conditions (50), we can get the positive 

definite matrix and a set of gains (51), that make the system stable. 

0.072401   
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 1

2

0.7301 0.32486 0.096794 0.0034552

0.32486 0.55483 0.10616 0.010209

0.096794 0.10616 0.023049 0.0017139

0.0034552 0.010209 0.0017139 0.00023565
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 
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


 (55) 

Figures 10 and 11 show the response of the system and control effort, respectively. 
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Figure 10. System responses of the single-link flexible joint, case 3.  
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Figure 11. Control input for flexible joint robots, case 3. 
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Case 4: Performance-oriented parallel distributed compensation 

The following stabilizing feedback gains are chosen using the pole placement method, so 

that 11K  and 21K  produce large magnitude inputs for subsystems 1 and 2, respectively, and 

22K  and 21K  induce low magnitude inputs for those subsystems. In particular, 

 

11

12

21

22

6667.2 4411.9 1052.4 92.6

-33.321 1413.7 191.63 51.2

6658.7 4332.4 1025.4 91.1

72.3 1389.8 189.6 50.6
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   
   
   
   

 (56) 

The required simple membership functions are selected as in Figure 12, so that, with a 

decrease in the corresponding plant input, in subsystems 1 and 2 respectively, the overall 

feedback gains come closer to 11K  and 21K , and with an increase in the corresponding 

control input respectively, the overall feedback gains come closer to 21K  and 22K . Now, the 

fuzzy rules for the controller are constructed as follows: 

Rule 1: If  z t  is  1M z  and  u t  is "small" then    11u t K x t  

Rule 2: If  z t  is  1M z and  u t  is "large" then    12u t K x t  

Rule 3: If  z t  is  2M z  and  u t  is "small" then    21u t K x t  

Rule 4: If  z t  is  2M z  and  u t  is "large" then    22u t K x t  

 

Figure 12. Membership functions for the control effort in the flexible joint robots. 

A common positive definite matrix, P, satisfying the stability conditions (42) is obtained by 

solving the LMI problems: 

4
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63.525 105.36 42.529 5.0962
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 
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Applying a unit step reference signal for 1( )x t , the response history and the corresponding 

control input are shown in Figures (13) and (14), respectively. Simulation results are 

investigated for the following three controllers:  

 

Figure 13. Response of flexible joint robot x1(t), case 4. 

 
Figure 14. Control input for flexible joint robot, case 4. 
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1. A PDC controller with feedback gains 11K  and 21K  providing a high speed response, 

and with possible high control inputs (HPDC controller).  

2. A PDC controller with feedback gains 22K  and 21K  providing a low speed response, 

and with a lower control input, as compared with the HPDC case (LPDC controller).  

3. Proposed modified PDC controller, providing a fast response, yet with an acceptable 

level of control input (NPDC controller). 

It is observed that the new controller provides a settling time similar to the HPDC case, with 

a much lower magnitude for the control input. 

5. Conclusion 

This chapter deals with approximation of the nonlinear system using Takagi-Sugeno (T-S) 

models with linear models as rule consequences and a construction procedure of T-S models. 

Also, the stability conditions and stabilizing control design of parallel distributed 

compensation (PDC) are discussed. It is seen that PDC a linear control method can be used to 

control the nonlinear system. Moreover, the stability analysis and control design problems for 

both continuous and discrete fuzz control systems can be transformed to linear matrix 

inequality (LMI) problems and they can be solved efficiently by convex programming 

techniques for LMIs. Design examples demonstrate the effectiveness of the LMI-based designs. 
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