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Abstract

Some space missions involve cooperative multi-vehicle teams, for such purposes as
interferometry and optimal sensor coverage, for example, NASA Terrestrial Planet
Finder Mission. Cooperative navigation introduces extra constraints of exclusion zones
between the spacecraft to protect them from damaging each other. This is in addition to
external exclusion constraints introduced by damaging or blinding celestial objects. This
work presents a quaternion-based attitude consensus protocol, using the communica-
tion topology of the team of spacecraft. The resulting distributed Laplacians of their
communication graph are applied by semidefinite programming (SDP), to synthesize a
series of time-varying optimal stochastic matrices. The matrices are used to generate
various cooperative attitude maneuvers from the initial attitudes of the spacecraft.
Exclusion constraints are satisfied by quaternion-based quadratically constrained atti-
tude control (Q-CAC), where both static and dynamic exclusion zones are identified
every time step, expressed as time-varying linear matrix inequalities (LMI) and solved
by semidefinite programming.
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1. Introduction

Some current space missions already demanded the deployment of teams of spacecraft

which cooperate synergistically for such purposes as interferometry and sensor coverage

[1, 2]; and many future missions will. Activities such as interferometry and sensor coverage

require cooperative attitude control (AC)—the process of making a team of spacecraft, for

example, satellites to point toward a specific direction of interest. This makes attitude control

an essential part of space missions [3]. Apart from spacecraft, AC is also important in the

navigation of aircraft and robots; therefore, it has been studied extensively in the literature,

for example [4–11].
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Basically, AC is a challenging problem, which becomes more challenging when multiple

spacecraft are involved, in highly dynamic environments, and subject to external constraints

such as blinding celestial objects such as the sun or some bright stars, which can damage

onboard sensitive instruments. In addition, because of the close packing of spacecraft in a

team, each of which has protruding appendages (e.g. thrusters and antennae), they must be

careful with each other when changing attitude, in order to avoid collision with each other.

When there is such a team of networked spacecraft which can communicate, then consensus

theory based on graph Laplacians can be applied to achieve cooperation among them [12, 13].

The most common method of representing spacecraft attitude dynamics is by unit quaternions,

mainly because quaternions do not encounter the singularities associated with other representa-

tions such as Euler angles and theModified Rodriques Parameters (MRP). However, the non-linearity

of quaternion dynamicsmakes it difficult to apply Laplacian-like dynamics directly to quaternions.

We shall now consider some previous work on constrained attitude control (CAC). A brief

survey of the main method attitude representation is in [4]. Ref. [5] considers quadratically

constrained attitude control (Q-CAC), where the exclusion problems are formulated as a

quadratic optimization problem and solved using linear matrix inequalities (LMIs) and

semidefinite programming (SDP). It was solved for a single-spacecraft single obstacle in [5]

and for two spacecraft in [6]. In [7] an attempt was made to extend [5, 6] to more than two

spacecraft and obstacles. In [7–10], was extended to multiple spacecraft multiple obstacles in

different coordinate frames (as the case of real spacecraft will be). An attempt was made in [11] to

reduce the control torques required for effective attitude stabilization from three to two. This is

applicable to underactuated spacecraft. [12] applies a consensus-based approach to distributed

attitude alignment of a team of communicating spacecraft flying in formation, while [14]

applies a Laplacian-based protocol to leader-follower attitude control of a team of spacecraft

using the modified Rodriquez parameters.

Among the plethora of AC algorithms, only our works [7–10] apply consensus theory directly to

quaternions, and only [5–10] tackle the problem of avoidance constraints. In addition, among

the works [5–10] only [8–10] were developed for spacecraft in different coordinate frames, which

has direct practical implementation. The contributions of this chapter are therefore aspects of

our previous works [7–10], which include the following: (i) the development of a quaternion

consensus protocol, (ii) incorporating dynamic avoidance constraints into the consensus frame-

work using Q-CAC, (iii) mathematical convergence analysis for the quaternion-based consensus

framework and (iv) solving the problem for the realistic scenario of multiple spacecraft in

different coordinate frames, thus making it more suitable for practical implementation.

Note: the words obstacle, avoidance, exclusion and exclusion vector may be used interchangeably

in this chapter. Table 1 lists frequently used notation in this chapter.

2. Problem statement

The problem of multi-spacecraft attitude control with avoidance constraints can be stated as

follows. Given the initial positions xi(t0)∈R
3 i = 1⋯n, initial attitudes represented by quaternions
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qi(t0), of a set of communicating spacecraft SCi, generate a sequence of attitude consensus

trajectories that drive the team to a consensus attitude q(tf) while satisfying avoidance and

norm constraints.

The problem stated above consists of two parts: consensus and avoidance. For the consensus

problem, it is desired to drive the attitudes of all SCi to a collective consensus attitude or to

various formation attitudes. Consensus attitude means that each SCi should eventually point to

the same direction, which is the average of the initial quaternions. Formation attitudes means

SCi should finally point to various patterns, for example, each spacecraft can point at 5o away

from each other about the z-axis. This we developed by introducing relative offset quaternions in

the consensus framework. The second problem, avoidance constraints, is also important,

because SCi usually have appendages, for example, some SCi have thrusters that emit hot

plumes (plume impingement), and some have instruments that can be damaged by blinding

celestial objects or by the appendage of another team member.

However, the ordinary consensus protocol violates the non-linearity of quaternion kinematics

and the quaternion norm preserving requirement and therefore cannot be applied directly with

quaternion dynamics. Also, the protocol ordinarily does not solve the problem of collision

avoidance in adversarial situations. Thus, this chapter consists of aspects of our previous works

[7–10], where we developed a consensus theory of quaternions, augmented with Q-CAC-based

collision avoidance mechanisms. We employed an optimization approach and cast the problems

as a semidefinite program (SDP), augmented with some convex quadratic constraints (avoidance),

written as linear matrix inequalities (LMI). The quaternion consensus protocol computes consen-

sus attitude trajectories each time step, and the Q-CAC avoidance procedure decides which of

the computed trajectories are safe to follow or not. Unsafe trajectories are discarded, and a

new set of quaternion vectors that avoid collision is generated. The cycle repeats until consensus

is achieved.

To understand the avoidance (exclusion) problem, let us illustrate with a simpler single-SCi

single-obstacle scenario as shown in Figure 1. In the figure, the SCi must avoid (exclude) the

Sun while rotating a photosensitive instrument from q0 to qf.

Figure 1. Constrained attitude control problem for a single-sc single-exclusion scenario. SCi must avoid (exclude) the Sun

while rotating a photosensitive instrument from q0 to qf.
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Let vIcami
tð Þ denote the unit camera vector in F

I
SCi

corresponding to the SCi‘s attitude qi (as

defined in Table 1), and let vIobsi tð Þ be the attitude quaternion of the obstacle to be avoided (in

this case the Sun). Exclusion requires the time evolution of camera vector vIcami
from vIcami

t0ð Þ to

vIcami
tf
� �

to avoid vIobsi tð Þ all times with a minimum angular separation of ∅. The requirement is.

θ tð Þ ≥∅ (1)

or

vIcami
tð ÞTvIobsi tð Þ ≤ cos∅,

∀t∈ t0; tf
� �

(2)

The constraint is a non-convex quadratic constraint; it was convexified in [4], which made it

possible to be represented as a LMI using the quaternion attitude constraint formulation

developed in [3] for a single-spacecraft single-obstacle scenario. In [4], vIobs was static, while

vIcami
tð Þ was evolving; both vectors were in the same coordinate frame. Although solving it in

the same coordinate frame somewhat simplified the solution, it was not suitable for practical

implementation because, in reality, the obstacle and spacecraft operate in different coordinate

frames. Next, we present the basic mathematical preliminaries.

Notation Meaning

SCi,SCi Spacecraft i

qi Attitude quaternion vector of SCi,SCi, q
i = [q1 q2 q3| q4]

T

q�ior qi
∗

Conjugate of qi

qi Vector part of qi, qi ¼ q1 q2 q3
� �T

qi
� Antisymmetric of qi

q Stacked vector of more than one quaternion vectors

qoff Stacked vector of more than one offset quaternion vectors

Ω,Π Quaternion dynamics plant matrix

P Quaternion dynamics Laplacian-like plant matrix

ω Angular velocity

τ Control torque

J Inertia matrix

L Laplacian matrix

P Laplacian-like stochastic matrix

In Then n� n identity matrix

S
m The set of m�m positive definite matrices
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3. Mathematical background

In this section, we shall briefly consider the two basic mathematical theories relevant to this

chapter. More comprehensive study and analysis are in [10].

3.1. Quaternion-based rotational dynamics

Because quaternions are free from the problems of singularities inherent in Euler angles and

most other ways of representing rotations, it is convenient to use unit quaternions to represent

the attitude of a rigid body rotating in three-dimensional space (such as spacecraft or satellite)

[15]. The quaternion is a four-element vector:

Notation Meaning

~A Cone avoidance constraint matrix

R
i Rotation matrix corresponding to qi

F
I
SCi

Fixed coordinate (Inertial) frame with origin at SCi’s center

F
B
SCi

Rotational coordinate (Body) frame with origin at SCi’s center

vBobsi Vector of obstacle in F
B
SCi

vIobsi Vector of obstacle in F
I
SCi

vIobsi :j Vector of the jth obstacle in F
I
SCi

vBcami
Vector of the SCi’s camera in F

B
SCi

vIcami
Vector of the SCi’s camera in F

I
SCi

⊗ Kronecker multiplication operator

⊙ Quaternion multiplication operator

⊖ Quaternion difference operator

t0 Initial time

tf Final time

xi Position vector of SCi,SCi

x Stacked vector of n position vectors

(xij)off Offset vector between i and j

x
off Stacked vector of n offset vectors

C The consensus space for q, C ¼ qjq1 ¼ q2 ¼;⋯;¼ qn
� �

Table 1. Frequently used notations in this chapter.
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q ¼ q1 q2 q3jq4
� �T

: (3)

Here, [q1 q2 q3]
T is the vector part, representing the axis of rotation in the Cartesian (x, y, z)

coordinates, and q4 is a scalar part, representing the angle of rotation of the quaternion in degrees.

The difference between two quaternions q1 and q2 can be represented in multiplication terms as.

qd ¼ q1⊙ q�2 ¼ q1⊙ �q21 � q22 � q23 � q24
� �T

¼ Q2q1,
(4)

where q�2 is the conjugate of q2. We used ⊙ here as a quaternion multiplication operator. And

Q2 is defined as

Qi ¼

qi4 qi3 �qi2 �qi1

�qi3 qi4 qi1 �qi2

qi2 �qi1 qi4 �qi3

qi1 qi2 qi3 qi4

2

6

6

6

6

4

3

7

7

7

7

5

(5)

Eq. (4) means that qd is the rotation quaternion that originally transformed q1 to q2 or, alterna-

tively, qd is a rotation quaternion that can transform q1 to q2.

The rotational dynamics for the ith quaternion is.

qi ¼
1

2
Ω

iqi ¼
1

2
Π

i
ω

i (6)

where

Ω
i ¼

0 ω
i
3 �ω

i
2 ω

i
1

�ω
i
3 0 ω

i
1 ω

i
2

ω
i
2 �ω

i
1 0 ω

i
3

�ω
i
1 �ω

i
2 �ω

i
3 0

2

6

6

6

4

3

7

7

7

5

(7)

Π
i ¼

�qi4 qi3 �qi2
�qi3 �qi4 qi1
qi2 �qi1 �qi4
qi1 qi2 qi3

2

6

6

6

4

3

7

7

7

5

(8)

are the plant matrices of quaternion dynamics.

Euler’s first-order discretization of Eq. (6) yields

qi kþ 1ð Þ ¼ I4q
i kð Þ þ

Δt

2
Ω

i kð Þqi kð Þ ¼ qi kð Þ þ
Δt

2
Π

i kð Þωi kð Þ: (9)
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The dynamics of the rotational (angular) velocity ω
i of qi is

_ω
i
1

_ω
i
2

_ω
i
3

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

Ji2 � Ji3
� �

ω

i

2
ω

i
3 þ τ

i
1

� 	

=Ji1

Ji3 � Ji1
� �

ω

i

3
ω

i
1 þ τ

i
2

� 	

=Ji2

Ji1 � Ji2
� �

ω

i

1
ω

i
2 þ τ

i
3

� 	

=Ji3

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼

0
Ji2
Ji1
ω

i
3 �

Ji3
Ji1
ω

i
2

Ji3
Ji2
ω

i
3 0 �

Ji1
Ji2
ω

i
1

Ji1
Ji3
ω

i
2 �

Ji2
Ji3
ω

i
1 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Yi

ω
i
1

ω
i
2

ω
i
3

2

6
6
6
4

3

7
7
7
5
þ

1=Ji1 0 0

0 1=Ji2 0

0 0 1=Ji3

2

6
6
6
6
4

3

7
7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Jið Þ
�1

τ
i
1

τ
i
2

τ
i
3

2

6
6
6
6
4

3

7
7
7
7
5

:

(10)

Euler’s first-order discretization of Eq. (10) is

ω
i kþ 1ð Þ ¼ I3 þ ΔtΥi kð Þ

� �
ω

i kð Þ þ Δt Ji
� ��1

τ
i kð Þ, (11)

where ωi
j is the rotational velocity, J

i
j is the moment of inertia, and τ

i
j is the control torque, of the

ith rigid body along the three principal axes j = 1, 2, 3. Combining Eqs. (9) and (11) in stacked

vector form yields.

�Δt Ji
� ��1

I3 03�4

04�3 �
Δt

2
Π

i kþ 1ð Þ I4

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fi kð Þ

τ
i kð Þ

ω
i kþ 1ð Þ

qi kþ 2ð Þ

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T
i kþ1ð Þ

¼
I3 þ ΔtΥi kð Þ
� �

ω
i kð Þ

qi kþ 1ð Þ

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

yi kð Þ

(12)

The typical task of controller synthesis is to determine the torque τi that stabilizes the system.

3.2. Basic consensus theory

The problem of consensus theory is to create distributed protocols based on communication

graphs which can drive the states of a team of communicating agents to a common state or an

agreed state. Where the agents i (i = 1,⋯, n) are represented by vertices of the communication

graph; the edges of the graph are the communication links between them. Let the state of agent

(vehicle) i be xi, and x is the stacked vector of all the states of the vehicles. For systems modeled
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by first-order dynamics, the following first-order consensus protocol (or similar protocols) has

been proposed, for example [16, 17]:

_x tð Þ ¼ �L x tð Þ � xoff
� �

: (13)

We know that consensus has been achieved when kxi� xjk! (xij)off as t!∞, ∀i 6¼ j. A more

comprehensive analysis of the mathematical basis of graph theoretic consensus theory can be

found in [10].

Now we state the limitations of consensus theory that motivates our work. First, the basic

consensus protocol Eq. (13) does not admit quaternions directly because quaternion dynamics

are highly nonlinear. It violates quaternion unit norm requirements, and therefore we cannot

practically apply Eq. (6) with consensus directly. To extend Eq. (13) to attitude quaternions, we

proposed the following consensus protocol for quaternions [7–10]:

_q tð Þ ¼ �P tð Þ q tð ÞΘq�off
� �

: (14)

Here, P(t) is a Laplacian-like stochastic matrix whose values are partially unknown, but a

Laplacian-like structure is imposed on it by optimization, and q(t) = [q1(t), q2(t)⋯qn(t)]T. We

present more analysis of P(t) in the “Solutions” section.

4. Solutions

We present a four-step solution to the problem statement in Section 2 [7–10], listed as

follows: (1) development of a consensus protocol for quaternions, (2) development

of collision avoidance behavior for quaternion consensus, (3) determining obstacle vectors

in different coordinate frames and (4) integration of quaternion consensus with Q-CAC

avoidance.

4.1. Development of a consensus protocol for quaternions

To handle the difficulty of non-linearity in quaternion kinematics, we develop a consensus

protocol especially for quaternions. We adopt an optimization approach and cast the problem

as a semidefinite program, which is subject to convex quadratic constraints, stated as linear

matrix inequalities (LMI). Based on the current communication graph of any SCi, a series of

Laplacian-like matrices Pi(t) are synthesized each time step to drive qi(t) to consensus while

satisfying quaternion kinematics:

_qi tð Þ � Pi tð Þ qT1 tð ÞqT2 tð Þ⋯qTy tð Þ
h i

, (15)

where qT1 tð ÞqT2 tð Þ⋯qTy tð Þ are the quaternions of the y other neighboring SC which SCi can

communicate with at time t. Euler’s first-order discretization of Eq. (15) is
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qikþ1 ¼ qik � Δt yΛi
1 tð Þ �Λ

i
2 tð Þ⋯�Λ

i
y tð Þ

h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P
i tð Þ

qT1 tð ÞqT2 tð Þ⋯qTy tð Þ
h i

, (16)

where Λi(t) > 0 is an unknown positive definite optimization matrix variable, whose compo-

nents are chosen by the optimization process. For analysis purposes, we shall now reconsider

the collective quaternion consensus dynamics Eq. (14). The components of P(t) are

P tð Þ ¼

Λ
1 tð Þ ⋯ 0

⋮ ⋱ ⋮

0 ⋯ Λ
n tð Þ

2

6
6
4

3

7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Λ tð Þ

l11I4 ⋯ l1nI4

⋮ ⋱ ⋮

ln1I4 ⋯ lnnI4

2

6
6
4

3

7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Γ¼L⊗ I4

(17)

where Γ is composed of components of the Laplacian L = [lij] (i, j = 1,⋯, n), which gives P(t) its

Laplacian-like behavior, and Λi(t) > 0 is as previously defined.

We now present the proof of stability of P(t), that is, that Eq. (14) does indeed achieve

consensus. Different versions of all the theorems, lemmas and proofs in this section had

been presented in [7–10]. Let us begin by recalling the following standard result on a matrix

pencil [18].

Theorem 1: For a symmetric-definite pencil A�λB, there exists a nonsingular Z = [z1,⋯, zn] such

that

ZT
AZ ¼ diag a1;⋯; anð Þ ¼ DA, (18)

ZT
BZ ¼ diag b1;⋯; bnð Þ ¼ DB: (19)

Moreover, Azi =λiBzi for i = 1,⋯, n, where λi = ai/bi.

Lemma 1: For any time t, the eigenvalues of P(t) are γiηi(t). Here, γi are the eigenvalues of Γ and

ηi(t) the eigenvalues of Λ(t). It can therefore be observed that P(t) has only four zero eigen-

values; the rest of its eigenvalues are strictly positive.

Proof: To find the eigenvalues of P(t), consider a scalar λ such that for some nonzero vector z:

Γz ¼ λΛ
�1 tð Þz: (20)

Eq. (20) defines a symmetric-definite generalized eigenvalue problem (SDGEP), where Γ�λΛ�1(t)

defines a matrix pencil. Theorem 1 therefore immediately implies that the eigenvalues of P(t)

are γiηi(t). It is also easy to observe (or show numerically) that due to the property of the

Laplacian matrix L, P(t) has positive eigenvalues except for four zero eigenvalues. This proves

the claim.

Theorem 2: The time-varying system Eq. (14) achieves consensus.
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Proof: For simplicity, we shall assume no offsets are defined, that is, qoff = 0 (or (qoff)i =

[0 0 0 1]T∀ i). By consensus theory, when q has entered the consensus space C = {q|q1 = q2=,⋯, =qn},

then _q = 0 (i.e. no vehicles are moving anymore). C is the nullspace of P(t), that is, the set of all

q such that P(t)q = 0. Therefore, q stays in C once it enters there.

Suppose that q has not entered C (i.e. _q 6¼ 0), then consider a Lyapunov candidate function

V =qT
Γq; V > 0 unless q∈ C. Then:

_V ¼ qT
Γ _q þ _qT

Γq,

¼ �qT
ΓP tð Þq� qTP tð ÞΓq,

¼ �qT
ΓΛ tð ÞΓq� qT

ΓΛΓq,

¼ �2qT
ΓΛ tð ÞΓq,

¼ �2sTΛ tð Þs,

(21)

where s =Γq 6¼ 0 for q∉ C, which implies that q approaches a point in C as t!∞. This proves

the claim. Eq. (21) is true as long as L is nonempty, that is, some vehicles can sense, see or

communicate with each other all the time.

4.2. Development of collision avoidance behavior for quaternion consensus

Eq. (15) or (16) will indeed generate a consensus qi(t) for any SCi, but the system still needs to

determine whether the trajectory is safe or not. This brings us to the issue of avoidance. Any

rigid appendage attached to the body of SCi, for example, a camera, whose direction vector is

vIcami
in inertial frame, can be transformed to the spacecraft fixed body frame by the rotation:

vBcami
tð Þ ¼ R

�1
i tð ÞvIcami

tð Þ: (22)

where

Ri tð Þ ¼ 2qi4 tð Þ
� �2

� 1
� 	

I3 þ 2qi tð Þqi tð ÞT � 2qi4 tð Þqi tð Þ� (23)

is the rotation matrix corresponding to the qi(t) at time t; qi(t)� is the antisymmetric matrix [19]. For

a simpler analysis, let us consider a single SCi with a single camera, vIcami
, and m (possibly, time-

varying) obstacles, vIobsi:j j ¼ 1;⋯;mð Þ, defined in F
I
SCi

. We want vIcami
to avoid all vIobsi:j when SCi is

re-orientating. Then following Eq. (3), the resulting attitude constraint of Eq. (2) can be written as

qi tð ÞT ~Ai
j tð Þq

i tð Þ ≤ 0: (24)

Its LMI equivalent [5] is
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μ qi tð ÞT

qi tð Þ μI4 þ ~A
i

j tð Þ
� 	�1

2

6

4

3

7

5
≥ 0: (25)

where

~Ai
j tð Þ ¼

Aj tð Þ bj tð Þ

bj tð Þ
T dj tð Þ

" #

∈R
4�4, (26)

and

Aj tð Þ ¼ vBcami
tð ÞvIobsi:j tð Þ

T þ vIobsi:j tð Þv
B
cami

tð ÞT � vBcami
tð ÞTvIobsi:j tð Þ þ cosθ

� 	

I3, (27)

bj tð Þ ¼ �vBcami
tð Þ � vIobsi:j tð Þ, (28)

dj tð Þ ¼ vBcami
tð ÞTvIobsi :j tð Þ, (29)

for j = 1,⋯,m.

Eq. (24) defines the set of attitude quaternions qi(t) to satisfy the constraint vIcami
tð ÞT

vIobsi:j tð Þ ≥∅∀t∈ t0; tf
� �

, so it is used to find a collision-free vIcami
tð Þ. In Eq. (25), μ is chosen to

ensure that μI4 þ ~Ai
j tð Þ is positive definite.

However, the solution presented above assumes that vBcami
tð ÞT and vIobsi :j tð Þ are in the same

coordinate frame and that vIobsi:j tð Þ is static, so t is constant. In reality, this is not so. To address

such a practical issue, we present a mechanism to calculate vIobsi:j (defined in F
I
SCi

) corres-

ponding to vIobsj (defined in F
I
SCj

) (vIobsi:j means the obstacle vector originated from the rotating

frame of SCj but defined in F
I
SCi

). This is essentially a mechanism to determine the intersection

point of vIobsj tð Þwith the sphere of radius r, centerd on SCi. If indeed such an intersection exists,

it defines vIobsi:j which can be used to define an attitude constraint represented as Eq. (24) to be

avoided by SCi.

The scenario is illustrated in Figure 2, whereSC1 and SC2 are shown in their different coordinate

frames relative to Earth. A thruster attached to SC1 body frame is at vIobs1 , while the circles

around SC1 and SC2 are spheres representing the coordinate frames from which their attitude

evolves. If both spacecraft are close enough, then vector vIobs1 may intersect a point on the sphere

of SC2, whereby the intersection defines vIobs2:1 in the frame of SC2. The requirement is that as SC2

changes its attitude from q0 to qf, v
I
cam2

must avoid the cone created around vIobs2:1∀t∈ t0; tf
� �

.
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4.3. Determination of obstacle vectors in different coordinate frames

Pursuing the issue of practicality further, given SCi in F
I
SCi

and SCj in F
I
SCj

with emanating

vectors, an intersection between vectors emanating from F
I
SCj

with the sphere centered on F
I
SCi

can be determined, either by using onboard sensors or by application of computational geom-

etry. Given a line segment [p1, p2], originating at p1 and terminating at p2, a point p = [px py pz]
T

on [p1, p2] can be tested for intersection with a sphere centered at an external point p3

with radius r [20]. Therefore, for any vIobsj tð Þ in F
I
SCj

, if an intersection point p(t) exists at time t

with the sphere centered on F
I
SCi

with radius r, then vIobsi:j tð Þ ¼ p tð Þ; otherwise, one can set

vIobsi:j tð Þ ¼ �vIcami
tð Þ to show that no constraint violation has occurred. The value of r will thus

depend on the current application but must be proportional to the urgency of avoiding

obstacle vectors originating from other spacecraft. The above formulation effectively completes

the decentralization of the avoidance problem which has already been partly decentralized by

Eq. (16). Eq. (16) will be written in a semidefinite optimization program, which gives us the

privilege to apply further constraints. Therefore, the norm constraints required by quaternion

kinematics can be enforced as follows:

qi
T

k qikþ1 � qik
� �

¼ 0 (30)

Essentially, Eq. (30) is the discrete time version of qi(t)T _qi(t) = 0 or q(t)T _q(t) = 0. This guarantees

that qi(t)Tqi(t) = 1 or q(t)Tq(t) =n for nSC, iff kqi(0)k = 1 ∀ i.

Figure 2. Q-CAC problem in different frames. SC2 must maneuver from q0 to qf, while vIcam2
must avoid vIobs2 :1 by at least

∅∀ t∈ [t0, tf].
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4.4. Integration of quaternion consensus with Q-CAC avoidance

The integration of the quaternion consensus protocol with the Q-CAC collision avoidance in

different coordinate frames is a two-stage process. First, the quaternion consensus protocol gener-

ates a set of consensus quaternion trajectories using Eq. (15) or (16). Then Eq. (25) tests whether the

generated sequence is safe or not. If the next safe quaternion trajectory qisafe has been determined,

the control torque τi and angular velocityωi to rotate the SCi optimally to qisafe can be determined by

using the normal quaternion dynamics Eq. (12). Otherwise, Eq. (25) adjusts the qiunsafe to generate a

qisafe, which will be close to but not be exactly qisafe. The cycle repeats until consensus is achieved.

Using semidefinite programming, the solutions presented previously are cast as an optimiza-

tion problem, augmented with a set of LMI constraints and solved for collision-free consensus

quaternion trajectories. We consider the algorithm in discrete time. Given the initial attitude

qi(0) of SCi, (i = 1,⋯, n), find a sequence of consensus quaternion trajectories that satisfies the

following constraints:

qikþ1 ¼ qik � ΔtPi tð Þqik,

qikT qikþ1 � qik
� �

¼ 0,

μ qi tð Þ
T

qi tð Þ μI4 þ ~A
i

j tð Þ
� 	�1

2

6
4

3

7
5 ≥ 0:

�Δt Ji
� ��1

I3 03�4

04�3 �
Δt

2
Π

i
kþ1 I4

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fi
k

τ
i
k

ω
i
kþ1

qikþ2

2

6
6
4

3

7
7
5

|fflfflfflfflffl{zfflfflfflfflffl}

T
i
kþ1

¼
I3 þ ΔtYi

k

� �
ω

i
k

qikþ1

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

yi
k

(31)

5. Simulation results

We shall present only three results for attitude multi-path planning in different coordinate

frames due to limitation of space. These results will partly be found in [7–10]. For the SDP

programming and simulation, we used the available optimization software tools SeDuMi [21]

and YALMIP [22] running inside Matlab®.

5.1. Q-CAC avoidance in different coordinate frames without consensus

In this experiment SC1and SC2 are changing their orientation to point an instrument to Earth.

They are close to each other, and their thrusters can cause plume impingements to damage

each other. Their initial quaternions are q10 ¼ q20 ¼ ½0 0 0 1�T . The desired final quaternions are.

q1f ¼ 0:2269 0:0421 0:9567 0:1776½ �T

q2f ¼ 0 0 0:9903 0:1387½ �T :

(32)
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Three thrusters of SC1 in F
B
SC1

are

vBobs1:1 ¼ �0:2132� 0:0181 0:9768½ �T

vBobs1:2 ¼ 0:314 0:283� 0:906½ �T

vBobs1:3 ¼ �0:112� 0:133� 0:985½ �T :

(33)

A single thruster of SC2 in F
B
SC2

is

vBobs2 ¼ 0:02981 0:0819 0:9962½ �T : (34)

It is desired that vIobs2 avoid vIobs1 :1 by 50o and avoid vIobs1:2 and vIobs1:3 by 30o, while both are

maneuvering to their desired final attitudes. The trajectories obtained are shown in Figure 3 (a)

and (b). This experiment demonstrates that when both constraints are in conflict, the avoid-

ance constraint is superior to the desired final quaternion constraint. As seen from (a), SC2

cannot reconfigure exactly to the desired q2f due to the satisfaction of the avoidance constraints.

This can be resolved by changing either the position of SC2 or SC1.

5.2. Consensus with Q-CAC avoidance in different coordinate frames

In this experiment SCi (i = 1, 2, 3) will maneuver to a consensus attitude. Each carries a sensitive

instrument vIcami
, pointing in the direction SCi‘s initial attitude quaternion. In addition, each SCi

has only one thruster pointing to the opposite (rear) of SCi‘s initial attitude. It is desired that

the time evolution of the attitude trajectory of the sensitive instrument avoids the thruster

plumes emanating from each of the two other SC by 30o. From the generated initial quater-

nions, there is possibility of intersection of the thrusters of SC1 and SC3, with SC2, and the

thruster of SC2 may impinge on SC1 or SC3 at any time k.

Figure 3. (a) shows the avoidance between thrusters of SC1and SC2 during reorientation to Earth: SC2 cannot reconfigure to

the desired q2f due to the avoidance constraints. Note that vIobs2 :1, v
I
obs2 :2 and vIobs2 :3 are the points of intersections of v

I
obs1 :1, v

I
obs1 :2

and vIobs1 :3 with SC2. (b) Satisfaction of avoidance constraints: the sudden jumps to and from �1 indicate times when any of

vIobs1 :1, v
I
obs1 :2 and vIobs1 :3 lost intersection with the sphere of SC2 and therefore was replaced with �vIobs1 :i, i ¼ 1,⋯, 3.
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The initial positions are

F
I
SC1

¼ �2 0 2½ �T

F
I
SC2

¼ 0:5 0 2½ �T

F
I
SC3

¼ 3 0 2½ �T :

(35)

A set of initial quaternions were randomly generated, with the following data:

qI0 ¼ �0:5101 0:6112� 0:3187� 0:5145½ �T

q20 ¼ �0:9369 0:2704� 0:1836� 0:124½ �T

q30 ¼ 0:1448� 0:1151 0:1203 0:9753½ �T :

(36)

Figure 4 (a) shows the solution trajectories while (b) shows the avoidance graph; no constraints

are not violated; (c) shows the consensus graph. The final consensus quaternion is qf = [�0.8167

0.4807� 0.2396 0.2112]T, which is the normalized average of the initial attitude quaternions.

This proves that consensus is indeed achieved by Eq. (16).

5.3. Consensus-based attitude formation acquisition with avoidance

This experiment is to test the capability of the quaternion consensus algorithm in attitude

formation acquisition. SCi (i = 1, 2, 3) will maneuver to a consensus formation attitude, with

relative offset quaternions defined to enable the sensitive instruments to point at 30ooffsets

from each other about the z-axis. The previous set of initial data for qi0 and F
I
SCi

were used.

Like the previous experiment, it is desired that the sensitive instruments avoid the thruster

plumes emanating from each of the two other SC by an angle of 30o.

The relative offsets are defined as

q
off
1 ¼ 0 0 0 1½ �T

q
off
2 ¼ 0 0 0:2588 0:9659½ �T

q
off
3 ¼ 0 0 0:5 0:866½ �T :

(37)

Figure 4. (a) Reorientation to consensus attitude with intervehicle thruster plume avoidance, (b) avoidance constraints

graph and (c) attitude consensus graph.
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Figure 5 (a) shows the trajectories, while (b) shows the avoidance graph; no constraints are

violated. Finally, (c) shows the consensus graph. The final consensus quaternions are.

q1f ¼ �0:6926 0:6468� 0:2798 0:1541½ �T

q2f ¼ �0:8364 0:4455� 0:2303 0:2212½ �T

q3f ¼ �0:9232 0:2138� 0:1652 0:2733½ �T :

(38)

The differences of these quaternions are 30o apart about the same axis. Clearly, the algorithm is

capable of attitude formation acquisition with avoidance.

6. Conclusion

In this chapter, a method of consensus with quaternion-based attitude maneuver with

avoidance, of multiple networked communicating spacecraft, was presented. The presenta-

tion is composed of aspects of solutions we previously developed, by combining consensus

theory and Q-CAC optimization theory. The solutions enable a team of spacecraft to point to

the same direction or to various formation patterns, while they avoid an arbitrary number of

attitude obstacles or exclusion zones in any coordinate frames. The proof of stability of the

Laplacian-like dynamics was also presented. Simulation results also demonstrated the effec-

tiveness of the algorithm. We hope to implement the algorithms using rotorcraft and special-

ized hardware.
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