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Abstract

Different plasma diagnostic methods are briefly discussed, and the framework
of a test charge technique is effectively used as diagnostic tool for investigating
interaction potentials in Lorentzian plasma, whose constituents are the
superthermal electrons and ions with negatively charged dust grains. Applying the
space-time Fourier transformations to the linearized coupled Vlasov-Poisson
equations, a test charge potential is derived with a modified response function due
to energetic ions and electrons. For a test charge moving much slower than the dust-
thermal speed, there appears a short-range Debye-Hückel (DH) potential decaying
exponentially with distance and a long-range far-field (FF) potential as the inverse
cube of the distance from test charge. The FF potentials exhibit more localized
shielding curves for low-Kappas, and smaller effective shielding length is observed
in dusty plasma compared to electron-ion plasma. However, a wakefield (WF)
potential is formed behind the test charge when it resonates with dust-acoustic
oscillations, whereas a fast moving test charge leads to the Coulomb potential
having no shielding around. It is revealed that superthermality and plasma param-
eters significantly alter the DH, FF, and WF potentials in space plasmas of Saturn’s
E-ring, where power-law distributions can be used for energetic electrons and ions
in contrast to Maxwellian dust grains.

Keywords: kinetic model, test charge technique, DA waves, superthermal tails,
dynamical shielding

1. Plasma diagnostic methods

To understand a plasma state and its characteristics, numerous experimental
techniques, mechanisms, devices, theoretical models, and computational packages
have been developed as diagnostic tools for measuring the plasma parameters such
as the plasma electron density and temperature [1, 2] as well as their spatial profiles
and dynamics. These diagnostic techniques are used to adequately describe both
low-temperature and high energy density plasmas. In some situations, the mea-
surements by these techniques cause perturbations in plasmas and are termed as
active diagnostic techniques, while passive ones do not perturb plasmas. Based on
the degree of ionization, the plasmas can broadly be classified into cold and hot
plasma states, which accordingly demand for various types of diagnostics to
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precisely estimate the plasma parameters for optimal understanding of the physics
of plasmas. This includes both theoretical and experimental findings. The most
common techniques for cold and hot plasmas (Te ≥ few keV) are the Langmuir
probes in the form of planar, cylindrical, or spherical electrodes in plasmas with a
goal to monitor the plasma parameters. The probes can be of several types, namely,
single and/or double probes, which are used for density, temperature, and floating
potential measurements. Emissive and magnetic probes work more efficiently for
plasma potential measurement and wave field amplitude and phase diagnostics,
respectively, while the Rogowski for antenna current measurements. There are many
complications, for example, the plasma potential and density can fluctuate or drift
during the time of probe measurements. In some complications, since the probe
draws a large amount of currents from a plasma and perturbs the initial state of the
plasma, it may lead to the erroneous measurements; even then, the Langmuir probe
diagnostics are widely used and this is because of the fact that they are relatively
simple to use, cheap, and give reliable values of important plasma parameters.

On the other hand, in certain plasma sources like tokamak plasmas, strong
currents are generated, which give rise to various kinds of magnetohydrodynamic
(MHD) instabilities. For this, a magnetic probe is used, which is beneficial espe-
cially for measuring either local magnetic fields or its fluctuations not only in
tokamaks but also in laser-produced plasmas (LPP). Furthermore, the amplitude of
current flowing into the plasma can be estimated by integrating the induced mag-
netic field around the plasma column by utilizing the so-called Rogowski coil.
However, in some plasmas (especially high temperature), it is not feasible to utilize
material probes for determining the plasma parameter like plasma electron density.
Therefore, a nonperturbing approach is needed to diagnose the plasma. In such a
scenario, the electromagnetic spectrum is utilized. But the electromagnetic wave
intensity must be low enough to the level that it will not result in plasma perturba-
tion. For probing the high-density plasmas, a lower wavelength is required as a
probe. This justifies the utilization of infrared radiation in tokamak and ultraviolet
radiation for measuring the plasma electron density in LPP. The variation of the
polarizing angle involving the beam probe in the presence of magnetic field can also
be used for diagnostics of tokamak plasmas.

Interestingly, the evaluation of appropriate plasma parameters may be carried
out by spectroscopy of emitted radiations as used generally from the beginning of
plasma physics. This technique for emission measurements has been particularly
making significant contributions over the past five decades for the fact that plasmas
produced for nuclear fusion research exhibit intense emission in the X-ray region.
Astrophysical applications further justify the wide interest in X-ray emission from
plasmas. The phase soft X-ray (so defined due to their low penetrating power)
indicates electromagnetic radiations with a wavelength in range 1Å≤ λ≤ 300Å (or,
in terms of photon energy hv, 300 eV≤ hν≤ 10 keV). Hard X-rays below 1 Å are
occasionally produced in plasmas for highly accelerated electrons, like runaway
electrons in tokamak plasmas and suprathermal electrons in LPP [3]. The charac-
teristics of soft X-ray spectra like line intensities, line profiles, and continuum
intensities can be investigated to determine the electron densities by Stark broad-
ening, while the ion densities from the absolute radiation intensities and ion tem-
peratures using the Doppler broadening of spectral lines [2].

The particle measurement method is another scheme for investigating the char-
acteristics of plasmas by using the beam of fast particles. It has received much
attention in the studies of inertial confinement fusion and energy deposition
in a medium driven by cluster-ion and fast heavy-ion beams, as well as in plasma
accelerators and low-temperature laboratory plasmas.
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2. Dusty plasma and test charge technique

The most common ingredient of astrospace plasmas is the dust component in
addition to electrons and ions, found everywhere in earth atmospheres, in comets,
in planetary rings, in interstellar clouds, in interplanetary space, in interstellar
medium, etc. Dust grains may exist in the form of ice particles, metallic and dielec-
tric materials, and are highly charged species due to different charging processes.
For instance, the absorption of ambient electrons and ions on dust grain surface may
lead to the negatively charged dust grains, while thermionic and secondary electron
emissions as well as ultraviolet photoionization give rise to positively charged dust
grains. Thus, a multispecies dusty plasma can be assumed as more complex plasma
than conventional electron-ion plasma, for dust size, mass, and charge variations.
Being an abundant component of the space and industrial plasmas [4, 5], dusty
plasma has always attracted lots of interests for studying new distinct features of
plasma modes [6, 7] with a static and dynamic background of dust grains both
analytically and experimentally [8–10]. Numerous linear and nonlinear [viz., soli-
tons, shocks, vortices, etc.] dusty modes and associated instabilities are investigated
using the frameworks of perturbative and nonperturbative schemes.

The behavior of charged particles in plasmas can be described by the well-
known fluid and kinetic theories [4, 11], essentially helpful for studying the basic
properties of plasma waves and instabilities, depending strongly on the observed
phenomena. Laboratory plasmas have effectively been modeled by fluid descrip-
tion, where charged fluids of plasma species are assumed in temporal and spatial
configurations. But, it has been observed that fluid theory does not account for
velocity space coordinate and is insufficient to study the wave phenomena in non-
equilibrium plasmas, where particle distributions show significant deviations from
the equilibrium states. Hence, fluid theory is unable to explain the wave-particle
interactions that could lead to collisionless Landau damping phenomenon and many
other interesting features of collective modes and instabilities. Conversely, kinetic
theory adequately describes the physical phenomena in real time and phase space
configurations, providing all information about plasma waves, instabilities, plasma
equilibrium, Landau damping rate, etc.

Test charge techniques [12, 13] can be utilized to study the shielding of test
charges in collisional [14] and turbulent [15] plasmas, the electric field [16], and far-
field potential of a test charge in a nonuniform magnetoplasma [17], the wake-field
excitations in charge fluctuating dusty plasmas [18], the two-body correlations [19],
the energy loss of test charges [20], etc. If a test particle is projected into the plasma
with a constant speed, its charge density is coupled with the plasma charge density
by the space charge effects. Consequently, the test charge is screened by a cloud of
opposite sign charges leading to the short-range Debye-Hückel (DH) potential. Of
course, the speed of test charge significantly matters in plasmas when it is consid-
ered with respect to thermal speeds of plasma species. The interaction potentials and
energy loss of charged particles have been recognized in many research areas, for
example, in ion-cluster interaction with condensed matter [21, 22], in inertial con-
finement fusion [23–25], in particle acceleration [26], in low-temperature laboratory
plasmas [27, 28], and in dense plasmas for heavy-ion energy deposition [29].

Montgomery et al. [13] employed the test charge technique to obtain far-field
potential distribution around a test charge, which decays as the inverse cube of the
distance from test charge in electron-ion Maxwellian plasmas. Subsequent investi-
gations of shielded potentials have been phenomenally influenced by the ionic
motion [30], electron-electron collisions [14, 31], and plasma turbulence [15]. The
electrostatic potential [32] due to small and large test charge velocities has been
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investigated to display the excitation of long-range wakefields in Maxwellian
plasmas. Shivamoggi and Mulser [33] examined the effects of magnetic field, colli-
sions, and plasma inhomogeneity on the potential due to slowly and rapidly moving
test charges [17, 34], and Lakshmi et al. [35] discussed the Debye shielding phe-
nomenon in a dusty plasma by considering the Boltzmannian electrons and ions
with cold negative dust grains. It was revealed that plasma parameters significantly
alter the characteristics of small and large amplitude potentials. Later, Shukla [36]
reported the FF potential for a slowly moving test charge in a Maxwellian dusty
plasma and showed the impact of dust-charge variation on the dipole-like FF
potential. Moreover, oscillatory wake-field can be excited behind the test charge
[37] in a collisionless unmagnetized plasma with Maxwellian electrons and ions.
Nambu et al. [38] extended this work to dusty plasmas and explained the resonant
phenomenon of DA waves with a test charge, resulting in the long-range WF
potential. Later, Shukla and Rao [39] analyzed the WF, DH, and FF potentials of
test charge in a colloidal Maxwellian plasma accounting for the streaming ions and
dust grains. It was found that external magnetic field and ion-streaming effects
[40, 41] strongly affect the positive/negative potential regions in plasmas. To
explore the effects of two-body correlations, dust-charge perturbations and dust-
neutral collisions, various geometries have been designed for propagating test
charges [18–20] in an unmagnetized Maxwellian dusty plasma. In all above
investigations, the plasma particles are described by the Maxwellian distribution
function.

The shielding phenomenon is one of the main objectives of this chapter to unfold
many intrinsic properties of the Lorentzian space dusty plasma, which discerns it
from the standard Maxwellian plasmas. It plays a key role in setting up the basic
criteria for Lorentzian dusty plasmas. Any plasma medium can physically be polar-
ized by the test charge to give rise to perfect screening if thermal agitations are
absent in the plasma system. Conversely, an imperfect shielding occurs if the
plasma particles get enough thermal energy to escape from the edge of screening
cloud. The interaction potentials caused by the test charge are not only strongly
influenced by different test charge speeds in comparison with the thermal speeds
but also lead to the possibility of dust crystallization and dust coagulation in space
Lorentzian dusty plasmas.

3. Power-law Lorentzian distribution function (df)

In some circumstances, the behavior of plasma particles cannot be described by
the usual Maxwellian distribution function (df) but often modeled by the power-
law df. When all or some of the plasma particles move faster than their thermal
speeds, the plasma particles are known as superthermal/suprathermal species,
showing high energy and velocity tails in the distribution. They are mostly acceler-
ated by wave-particle interactions, modulational instabilities and Langmuir turbu-
lence [42], beam-plasma interactions [43], solar wind where type III solar radio
emissions occurs [44], intense microwave-plasma interactions [45], ionospheric
heating experiments [46], etc. Recognizing the role of superthermal energetic
particles in plasmas, the wave dynamics and instabilities need to be re-investigated
with a power-law df that gives a better fit to empirical data from space plasmas.
A 3D isotropic Kappa-df [47] for superthermal particles can be expressed as

fKs0 vsð Þ ¼ Aκs 1þ v2s
κsθ

2
Ts

 !�κs�1

: (1)
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The normalization constant and effective thermal speed are denoted by Aκs ¼
ns0π

�3=2κ
�3=2
s θ�3

Ts Γ κs þ 1ð Þ=Γ κs � 1=2ð Þ and θTs ¼ 2 κs � 3=2ð Þ=κsf g1=2 Ts=msð Þ1=2,
respectively. The symbol Γ indicates the Gamma function, and vs and ns0 are the
velocity and equilibrium number density, whereas Ts (ms) stands for the tempera-
ture (mass) of the sth species (s ¼ e for electrons and i for positive ions). The
effective thermal speed θTs is always realistic in the limit κs > 3=2, where κs is the
spectral index showing the deviation from the Maxwellian df. Figure 1 displays the
normalized Kappa-df [as given by Eq. (1)] for the electrons as function of normal-
ized electron speed with varying κe-index both in 2D and contour plots. See that
superthermal electrons exhibit high energy tails at κe ¼ 2, 4, and 10 in distribution
curves, which tend to the Maxwell-Boltzmann distribution curve for κe ! ∞:
Therefore superthermality effects are only significant for low values of Kappa, and
for its infinite values, the Kappa-df exactly converges to the Maxwell-df

viz:, fKs0 vsð Þ ! fMs0 vsð Þ
h i

: It may be noted from contours (see Figure 1(b)) that

light-colored regions correspond to more electrons at low speeds, and while moving
toward the dense-colored regions, the number of electrons decreases but compara-
tively has high speeds. In 1968, for the first time, Vasyliunas [47] pointed out the
implications of Kappa-df by fitting empirical data from solar wind and showed the
significance of low values of electron spectral index, that is, κs¼e � 2� 4: The effects
of high energy tails have significantly modified the dispersive properties of waves
and instabilities [48, 49] in Lorentzian plasmas. Recently, Ali and Eliasson [50]
investigated the impact of suprathermal hot electrons on the electrostatic potential
of slowly moving test charge in a two-temperature electron plasma and extended
the model for Lorentzian dusty plasmas [51].

4. Kinetic model for Lorentzian dusty plasmas

To compute the potential distributions around a test charge, we consider a
collisionless Lorentzian dusty plasma, containing the suprathermal electrons and
ions with negatively charged dust grains following the Maxwell-df. The plasma is
also assumed to be field-free in the sense that there is no external electric or magnetic
field (viz., E0 ¼ 0 ¼ B0Þ, so that the equilibrium electrostatic potential ϕ0 ¼ 0: The
quasi-neutrality condition at equilibrium demands ne0 ¼ ni0 � Zd0nd0, where Zd0

Figure 1.
Kappa-df against the electron speed for different values of kappa index both in 2D and in contour plots. In (a),
the solid-black, dotted-blue, dashed-green, and solid-red curves correspond to κe ¼ 2, 4, 10, and κe ! ∞,
respectively. However, in (b), the light colors indicate more number of electrons and vice versa for dense colors.
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being the equilibrium dust-charge state and n j0 denote the particle number densities
of the jth species [ j equals s ¼ e, ið Þ for Kappa-distributed electrons and ions while
j ¼ d for negatively charged dust grains]. In this model, all the dust grains are
assumed to be spherical in shape with constant size of radius rd and mass md.

The Lorentzian dusty plasma in the presence of a test charge can be described by
the following linearized coupled set of Vlasov-Poisson equations:

∂t þ vd � ∇ð Þ f d1 þ
qd0
md

E1 � ∇vd
fMd0 ¼ 0, (2)

∂t þ vs � ∇ð Þ f s1 þ
qs
ms

E1 � ∇vs
fKs0 ¼ 0, (3)

and

∇2ϕ1 þ 4π
X

s¼e, i

ρs þ ρd þ ρT

 !

¼ 0, (4)

where E1 ¼ �∇ϕ1ð Þ is the induced electric field with perturbed potential ϕ1,
qd0 ¼ �Zd0eð Þ is the charge of the negative dust grains, and qs ¼ �e, eð Þ being the
charge of electrons and positive ions. ρd ¼ qd0

Ð

f d1dvd, ρs ¼ qs
Ð

f s1dvs, and ρT ¼
qTδ r� vTtð Þ identify the dust-charge density, electron-ion charge densities, and test
charge density, respectively. The symbol δ stands for a 3D Dirac’s delta function,
and fMd0 vdð Þ and fKs0 vsð Þ are the Maxwell-df and Kappa-df with their perturbed parts
f d1 r,vd, tð Þ and f s1 r,vs, tð Þ, such that ∣ f d1∣ ≪ fMd0 and ∣ f s1∣ ≪ fKs0. Also note that
test particle has a charge qT which moves with a constant velocity vT along the
z-axis in a Lorentzian dusty plasma.

Taking space–time Fourier analysis of Eqs. (2), (3), and (4), we obtain the
Fourier transformed potential in this form

k2D k,ωð Þϕ1 k,ωð Þ ¼ 8π2qTδ ω� k � vTð Þ: (5)

The modified longitudinal dielectric constant can be defined by

D k,ωð Þ ¼ 1þ
X

s

ω2
ps

k2

ð

k � ∇vs f
K
s0 vsð Þ

ω� k � vsð Þ dvs þ
ω2
pd

k2

ð

k � ∇vd f
M
d0 vdð Þ

ω� k � vdð Þ dvd, (6)

where ω kð Þ being the angular frequency (wave number) and ωpj ¼

4πq2jn j0=m j

� �1=2
is the plasma oscillation frequency. It is important to mention that

if Lorentzian dusty plasma does not contain any test charge, viz., qT ¼ 0, then
Eq. (5) simply implies that D k,ωð Þ ¼ 0, showing a modified linear dispersion
relation of electrostatic waves to account for superthermal electrons and ions.
However, the inverse Fourier analysis of Eq. (5) leads to the standard form of
electrostatic potential due to a test charge in a dusty plasma [11, 32].

ϕ1 r, tð Þ ¼ qT
2π2

ð

dk

k2
exp ik � r� vTtð Þ½ �

D k,k � vTð Þ : (7)

The dielectric constant in terms of dielectric susceptibilities

viz:, D ¼ 1þ
P

s¼e,i χs þ χd

� �

can be expressed as
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D k,k � vTð Þ ¼ 1þ
X

s¼e, i

1
k2λ2Ds

1� 1
2κs

þ CsZκs Csð Þ
� �

þ 1
k2λ2Dd

1þ CdZM Cdð Þf g, (8)

where λDs ¼ θTs=
ffiffiffi

2
p

ωps

� �

and λDd ¼ vTd=ωpd

� �

are the Debye shielding lengths

associated with the electron-ion effective speed θTs and dust thermal speed vTd ¼
Td=mdð Þ1=2: The standard plasma dispersion functions for Kappa-distributed elec-
trons and ions [48] and for Maxwellian dust grains [52], respectively, can be given by

Zκs Csð Þ ¼ 1
ffiffiffi

π
p Γ κs þ 1ð Þ

κ
3=2
s Γ κs � 1=2ð Þ

ð

∞

�∞

dβs
1þ β2s =κs
� ��κs�1

βs � Csð Þ , Im Csð Þ>0,

and

ZM Cdð Þ ¼ 1
ffiffiffi

π
p
ð

∞

�∞

dβ
exp �β2

� �

β � Cdð Þ , Im Cdð Þ>0,

with their corresponding arguments Cs ¼ k � vT=
ffiffiffi

2
p

kj jθTs and Cd ¼ k �
vT=

ffiffiffi

2
p

kj jvTd:
To proceed further, we shall consider two limiting cases of Eq. (8) by imposing

certain limitations on the test charge speed in comparison with the thermal and
acoustic speeds and simplify the interaction potentials [as given by Eq. (7)] in
Lorentzian dusty plasmas.

4.1 Slow moving test charge response

For a slow test charge propagation in a Lorentzian dusty plasma, we assume that
test charge speed vTð Þ is much slower than the dust thermal speed vTdð Þ: As a result,
the test charge is shielded by all the plasma species, for example, electrons, ions,
and dust grains. Since mass of the dust grains is larger than the mass of electrons
and ions, therefore the dust thermal speed is much smaller than the electron and ion
thermal speeds. Thus, imposing the inequalities vT ≪ vTd⋘θTs, we consider only
small argument expansions, that is, ∣Cs∣ ≪ 1 and ∣Cd∣ ≪ 1, in the plasma dispersion
functions to obtain a simplified expression for dielectric constant. The inverse of the
latter eventually yields the following result

D�1 ≃
k2λ2Dκ

k2λ2Dκ þ 1
� i

μvT
vTd

π

2

� �1=2 k2λ4Dκ

λ2Dd k2λ2Dκ þ 1
� �2 : (9)

The modified effective Debye length λDκ can be simplified in this form

λDκ ¼ λ0 cκe
ne0
n0

þ cκi
Te

Ti
þ Z2

d0
nd0
n0

Te

Td

	 
�1=2

, (10)

with superthermality parameters attributed to electrons and ions as

cκe ¼
2κe � 1
2κe � 3

and cκi ¼
2κi � 1
2κi � 3

:

The usual Debye length in electron-ion plasma is denoted by λ0 ¼ Te=4πn0e2ð Þ1=2
with n0 ¼ ni0 � ne0 þ Zd0nd0 and μ ¼ cos θkð Þ representing the angle between the
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vectors k and vT. For Maxwellian plasmas, the superthermality parameters cκe,i ! 1
as long as κe,i ! ∞, implying that the effective shielding length exactly coincides
with the earlier result [35] for static cold dust grains. It may be noticed from Eq. (9)
that the inverse of dielectric constant is significantly influenced by the dust Landau
damping rate [13]. The importance of the latter was first pointed out [13] in 1968,
and it was suggested that if a test charge moves slowly in comparison to the dust
thermal speed, the dust Landau damping term appearing in Eq. (9) cannot be
ignored. For a static test charge, we set vT ¼ 0 and insert Eq. (9) into Eq. (7) to derive
the short-range DH potential [53, 54] in the form ϕDH ¼ qT= rj j

� �

exp � rj j=λDκð Þ,
where rj j ¼ ρ2 þ ξ2

� �1=2
is the distance from the test charge to an observer in terms of

radial and axial distances ρ and ξ ¼ zð Þ, respectively.
For numerical analyses, we can choose the data from the dusty plasma near

Saturn’s E ring, cited in Refs. [55–58] and many references therein. The data essen-
tially corresponds to the Radio and Plasma Wave Science (RPWS) instruments
onboard the Cassini spacecraft, containing the plasma parameters, such as
nd0 ¼ 0:1cm�3, ne0 ¼ 70cm�3, Zd0 ¼ 300, Td ¼ Te=10, Ti ¼ Te=2, and
Te ¼ 4:642� 105K: The computation further helps us in finding the magnitude of
the effective shielding length λDκ ¼ 15:649cmð Þ at the near-Maxwellian electrons
and ions with κi,e ¼ 100. The impact of superthermal tails in the electron and ion
distributions only appear at lower values of the Kappa that may result into the
reduction of the shielding length λDκ ≈ 15:4787cm for fixed κi ¼ 1:6 and κe ¼ 100,
as well as λDκ ≈ 15:5888cm with κe ¼ 1:6 and κi ¼ 100. Thus, we notice from
Table 1 that for infinite values of the spectral indices, that is, κe,i ! ∞, the
superthermality parameters cκe,ið Þ tend to unity, implying that the effective
shielding length exactly coincides with the previous results [35] for static cold
dust grains. However, the variation due to superthermal electrons and ions is
shown in three different combinations (see Table 1) to affect the normalized
values of the effective Debye length and DH potential almost 4 digits beyond the
decimal point. At lower Kappa-values, the impact is relatively enhanced and in
turn, suprathermal ions more efficiently modify the effective shielding length and
DH potential as compared to suprathermal electrons because the ions may take

Table 1.
The electron and ion Kappa-indices affect the values of the effective Debye length and DH potential at fixed
values of r = 0.2, η = 10�3, and Zd0 = 300.
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more time to attain the Maxwellian equilibrium due to their larger mass compared
to electrons.

The effect of dust concentration [denoted through the parameter η ¼ nd0=n0ð Þ] is
shown on the contours of normalized effective shielding length [as given by
Eq. (10)] in Figure 2 for (a) η ¼ 0 and (b) η ¼ 10�3 as function of electron-to-ion
temperature ratio in the range 1≤Te=Ti ≤ 6 and electron spectral index 1:6≤ κe ≤ 5
at near-Maxwellian ions κi ¼ 100. Since the speed of the test charge is much lower
than the dust thermal speed (viz., vT ≪ vTd), the test charge is therefore screened by
all the plasma species, viz., the electrons, ions, and dust grains, hence effectively
modifying the shielding length. The effective shielding length is shown to be
decreased in the dusty plasma in comparison with traditional electron-ion plasma
and is strongly influenced by the suprathermal tails of electrons. The impact of the
superthermal electrons at lower Kappa values is more effective in the case of
electron-ion plasma than dusty plasma. In the plots, one can easily observe that
light-colored regions correspond to higher values of the effective shielding length
while dense-colored regions determine the lower values of the shielding length.
However, in Figure 2(c) and (d), a reduction in the effective shielding length is
revealed by the influence of suprathermal ions at near-Maxwellian electrons

Figure 2.

Contours represent the effective shielding length ~λDκ ¼ λDκ=λ0
� �

against the temperature ratio (Te=Ti) and
electron spectral index κeð Þ for (a) η ¼ nd0=n0ð Þ � 0 (electron-ion plasma) and (b) η ¼ 10�3 (dusty plasma)

with κi ¼ 100 and Zd0 ¼ 300: contours in (c) and (d) vary for ~λDκ against the temperature ratio (Te=Ti) and
ion spectral index κið ) for (c) η ¼ 0 (electron-ion plasma) and (d) η ¼ 10�3 (dusty plasma) with κe ¼ 100
and Zd0 ¼ 300: Other parameters are mentioned in Section 1.4.1.
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κe ¼ 100: It may be noted that due to the variation of electron-to-ion temperature
ratio against the ion spectral index, the magnitudes of effective shielding length
become smaller at lower values of κi than the case of κe: However, the effective
shielding length approaches to the maximum value in the limit Te ≃Ti and
decreases by enhancing the electron-to-ion temperature ratios.

4.2 Short-range DH and long-range FF potentials

To study short and long-range shielded potentials of a slowly moving test charge
along the z-axis in a Lorentzian dusty plasma, we use Eq. (9) into Eq. (7) and spherical
polar coordinates, as vT ¼ 0, 0, vTð Þ, k ¼ k sin θk cosφk, k sin θk sinφk, k cos θkð Þ,
and r ¼ r sin θr cosφr, r sin θr sinφr, r cos θrð Þ to finally obtain the total potential
ϕ1 r, tð Þ ¼ ϕDH þ ϕFF½ � as

ϕ1 r, tð Þ ¼ qT
r

exp � r

λDκ

	 


þ 2
ffiffiffi

2
p

qT
ffiffiffi

π
p

r

vT
vTd

ξλDκ

λ2Dd

λ3Dκ

r3
(11)

The first part of Eq. (11) corresponds to the short-range Debye-Hückel (DH)
potential, which accounts for the short distances between the test charge and
observer, whereas the second part represents the long-range far-field potential in
the limit r≫ λDκ decaying as the inverse cube of the distance to the test charge. Here

r ¼ ρ2 þ ξ2
� �1=2

is the distance from the test charge to observer with radial and axial
positions ρ and ξ ¼ z� vTtð Þ, respectively. When κe,i ! ∞, the effective Debye
length λDκ approaches to λD with cκe,i ¼ 1, and consequently Eq. (11) exactly
coincides with the earlier result [36] in the limit cos γð Þ ¼ ξ=r, having null dust-
charge fluctuations. In Figure 3, the magnitude of the effective shielding length
varies against the specific ranges of the electron concentration μeð Þ and dust con-
centration ηð Þ for changing the (a) electron-to-ion temperature ratios Te

Ti
¼ 1, 2, 4, 8ð Þ

at near-Maxwellian electrons and ions κe,i ¼ 100 and (b) electron-to-dust tempera-
ture ratios Te

Td
¼ 10, 15, 20, 25ð Þ with fixed Te

Ti
¼ 2 for Kappa-distributed electrons and

ions (i.e., κe,i ¼ 1:6), respectively. Note that for an electron-ion plasma, the effec-
tive shielding length is approached to unity [35] as the maximum value for isother-
mal case Te

Ti
¼ 1 (black dotted curve) (see Figure 3(a)), which then decreases with

respect to the electron concentration. For non-isothermal values, that is, Te

Ti
¼ 2

Figure 3.

The shielding length ~λDκ ¼ λDκ=λ0ð Þ against the electron and dust concentrations μe, ηð Þ for varying the
temperature ratios Te

Ti
, Te

Td

� �

in (a) an electron-ion Maxwellian plasma and (b) superthermal dusty plasma,

respectively.
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(blue dashed curve), 4 (red solid curve), and 8 (black solid curve), the strength of
the effective shielding however reduces in terms of fraction showing no more
dominant impact of the electron concentration. In the presence of dust component,
the effective shielding length is reduced as compared to the electron-ion plasma and
clearly depends on the electron-to-dust temperature ratios Te

Td
¼ 10, 15, 20, 25ð Þ at

Zd0 ¼ 300, as can be seen in Figure 3(b).
The variation of the normalized DH potential ~ϕDH caused by a slowly moving

test charge is displayed against the normalized axial distance ~ξ for varying the dust
concentration η ¼ 10�3, 1:2� 10�3, and 1:4� 10�3 in Figure 4 for (a) non-
Maxwellian electrons and ions, as well as (b) near-Maxwellian electrons and ions.
The DH potentials fastly reduce with a variation of dust concentration and attain
large magnitudes in the near-Maxwellian case at κe,i ¼ 100 compared to non-
Maxwellian case at κe,i ¼ 1:6:

Figure 5 exhibits how suprathermal electrons and ions modify the profiles of
long-range FF potential (~ϕFFÞ caused by a slow test charge moving with speed vT ¼
0:02vTd. For small values of electron spectral index κe ¼ 1:6, 1:8ð Þ, the shielded FF
potentials are more localized than the case at near-Maxwellian electrons for κe ¼
100 (see the red solid curve in Figure 5(a)). However, the magnitudes of the FF
potential are comparatively decreased in Figure 5(b) because of the strong contri-
bution of suprathermal ions.

Figure 4.

The DH potential ~ϕDH ¼ ϕDH= qT=λ0
� �� �

vs. the axial distance ~ξ ¼ ξ=λ0ð Þ for different dust concentrations η ¼
10�3 (black dotted curve), 1:2� 10�3 (blue dashed curve), and 1:4� 10�3 (red solid curve) at Zd0 ¼ 200
and ~ρ ¼ 0 with (a) κe,i ¼ 1:6 and (b) κe,i ¼ 100:

Figure 5.

The FF potential ~ϕFF ¼ ϕFF= qT=λ0
� �� �

vs. ~ξ for varying (a) κe ¼ 1:6 (black dotted curve), 1.8 (blue dashed
curve), and 100 (red solid curve) with κi ¼ 100, and (b) κi ¼ 1:6 (black dotted curve), 1.8 (blue dashed
curve), and 100 (red solid curve) with κe ¼ 100: other values are η ¼ 10�4, ρ ¼ 0, and Zd0 ¼ 300.
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4.3 Resonating test charge response

To examine the resonant interaction of a test charge with DA waves, we first
simply derive the dielectric constant of the DA waves using the limit
vTd ≪ω=k≪ θTe, θTi in Eq. (8). We therefore consider the small and large argument
expansions Cs ≪ 1 and Cd ≫ 1 of the plasma dispersion functions. On DA scales,
the inertia is mainly provided by the negatively charged dust grains and restoring
force by the pressures of superthermal inertialess electrons and ions for maintaining
the propagation of DA waves. In typical laboratory plasmas, the frequency of DA
waves is often below the dust plasma oscillation frequency in the range of 1–100 Hz.
Thus, the modified dielectric constant for a Lorentzian dusty plasma takes the
following form

D k,k � vTð Þ ¼ 1þ 1

k2λ02D
�

ω2
pd

k � vTð Þ2
: (12)

The effective Debye length now gets a new form λ0D ¼ λ0=
ffiffiffiffiffi

Bκ

p
with Bκ ¼

cκe
ne0
n0

þ cκi
Te

Ti
. Note that dust-charge fluctuations are also ignored here because the

characteristic damping rate attributed to dust charge fluctuations is much smaller
than the collisional and Landau damping rates. The reciprocal of Eq. (12) can be
simplified as

D�1 ¼ k2λ20
Bκ þ k2λ20

1þ ω2
D

k � vTð Þ2 � ω2
D

( )

, (13)

with

ωD ¼ kCD

Bκ þ k2λ20
� �1=2 : (14)

This is the DA resonance frequency with DA speed CD ¼ ωpdλ0
� �

. For long
wavelength limit kλ0 ≪Bκ, the DA frequency reduces to ωD ¼ kCD=

ffiffiffiffiffi

Bκ

p
in the

Lorentzian dusty plasma, while in the short wavelength limit kλ0 ≫Bκ, the fre-
quency simply approaches to the dust plasma oscillation frequency ωD ≃ωpd. The

factor ω2
D= k � vTð Þ2 � ω2

D

n o

in Eq. (13) identifies the dynamical effects of dust

grains, which may lead to an oscillatory WF potential strongly depending upon
whether the product k � vT is smaller or larger than ωD.

4.4 Short-range DH and long-range WF potentials

For static or slowly moving test charge in a Lorentzian dusty plasma, its poten-
tial distributions are found spherically symmetric both in the axial and radial direc-
tions. Consequently, the DH and FF shielded potentials are appropriately solved
with spherical polar coordinates. However, if the test charge moves with finite
speed in a specific direction along the z-axis, the resonant interaction of test charge
with the DA wave leads to the asymmetric distribution of potential in the form of
WF behind the test charge. The plasma model is then preferably solved in cylindri-
cal coordinates. Thus, following the standard techniques [37, 38, 40] for DH and
WF potentials, we make use of Eq. (13) into Eq. (7) to finally arrive at
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ϕ1 r, tð Þ ¼ qT
r

exp � r
ffiffiffiffiffi

Bκ

p

λ0

	 


þ 2qT
ξ

1þ C2
D

Bκv2T

	 


Bκ �
C2
D

v2T

	 
�1

cos
ωpdξ
ffiffiffiffiffi

Bκ

p
vT

	 


,

(15)

where ξ ¼ r∥ � vTt
� �

is the axial distance between the test charge and observer.
The first part on the right hand side of Eq. (15) shows the contribution of modified
DH potential and the second part corresponds to oscillatory WF potential account-
ing for the suprathermal electrons and ions in a Lorentzian dusty plasma. For
vT >CD and cos ωpdξ=vT

ffiffiffiffiffi

Bκ

p� �

<0, the WF potential becomes attractive [40] and
dominates over the repulsive DH potential because the latter decreases rapidly
beyond the shielding cloud. An oscillatory WF potential ~ϕWF ¼ ϕWFλ0=qT

� �

of a test
charge moving with speed vT ¼ 0:2CD is shown along the axial direction ~ξ as a
function of spectral indices κe and κi in Figure 6(a) and (b), respectively. Observe
that the amplitude of the WF potential increases as the superthermal indices κe and
κi increase at fixed η ¼ 10�3 and Zd0 ¼ 300. Moreover, the wakefield damps behind
the test charge a bit earlier as shown in Figure 6(b) due to the strong dependence of
suprathermal ions on the effective shielding length in comparison with the
suprathermal electrons. The impact of electron-to-ion temperature ratio is also
examined on the profiles of WF and DH potentials as a function of axial distance ~ξ

Figure 6.

The normalized WF potential ~ϕWF as a function of ~ξ for varying the spectral indices as (a) 1:8≤ κe < 5 with
fixed vT ¼ 0:2CD and κi ¼ 100, and (b) 1:8≤ κi < 5 with vT ¼ 0:2CD and κe ¼ 100.

Figure 7.

The WF and DH potentials are shown against the axial distance ~ξ for changing temperature ratios (a) Te/Ti =2
(black dotted curve), 2.5 (blue dashed curve), and 3 (red solid curve), and (b) Te/Ti =2 (black dotted curve),
2.5 (blue dashed curve), and 3 (red solid curve), respectively. Other common parameters are κe,i ¼ 1:6,
vT ¼ 0:2CD, η ¼ 10�3, and Zd0 ¼ 100.
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with fixed radial distance ρ ¼ 0:54λ0 and vT ¼ 0:2CD as can be seen in
Figure 7(a) and (b), respectively. It is important to examine that electron-to-ion
temperature ratio suppresses the magnitudes of the WF and DH potentials at low
values of κe,i ¼ 1:6 in the Lorentzian dusty plasma (Figures 6 and 7).

4.5 Fast moving test charge response

In this case, the test charge is assumed to be moving much faster than all the
plasma species (viz., the electrons, ions and negatively charged dust grains). Con-
sequently, Eq. (6) can be expressed in 1D form to finally arrive at D k,k:vTð Þ≃ 1 in
the limits vT∣ ≫ ku j and ω ¼ k:vT. Thus, the test charge potential (7) simply leads
to the Coulomb potential

ϕ1 r, tð Þ ¼ ϕC � qT
r
: (16)

It is now clear that if the test charge is moving very fast, then there is no
shielding around it in the Lorentzian dusty plasma.

5. Conclusion

To conclude, we have briefly discussed different plasma diagnostic techniques
and specifically investigated the novel features of interaction potentials caused by
a test charge moving with constant velocity vT along the z-axis in a collisionless
unmagnetized Lorentzian dusty plasma. For this purpose, the linearized coupled
Vlasov-Poisson equations are employed to model suprathermal electrons and ions
with Kappa-df, as well as negatively charged dust grains with Maxwell-df, respec-
tively. After applying the space-time Fourier transformations, an electrostatic
potential is obtained with a modified dielectric constant. For taking the test charge
speed much smaller than the dust thermal speed in a Lorentzian dusty plasma, we
then express the total potential distribution in terms of short-range Debye-Hückel
(DH) and long-range far-field potentials. The DH potential exponentially decays
with distance, whereas FF potential decreases as the inverse cube of the distance.
Both the potentials are substantially influenced by the plasma and superthermality
parameters. However, a resonating test charge with DA oscillations introduces the
long-range WF potential excitations behind the test charge in Lorentzian dusty
plasmas. A Coulomb potential is obtained when the test charge is moving very fast
compared to plasma species, and there is no shielding around it in the Lorentzian
dusty plasma.

Vladimirov and Nambu [40] have already utilized the idea of WF potential for
making new materials by attracting the same polarity dust grains in dusty plasmas.
The physics of attractive forces between the negatively charged dust grains is
completely analogous to that of Cooper pairing of electrons in superconductors
[59]. The dust particle physically polarizes the plasma medium and creates attrac-
tive potential regions, where positive ions from collective interaction of DA waves
can be focused. This may in turn lead to the possibility for dust crystallization and
dust coagulation in both laboratory and space dusty plasmas.
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