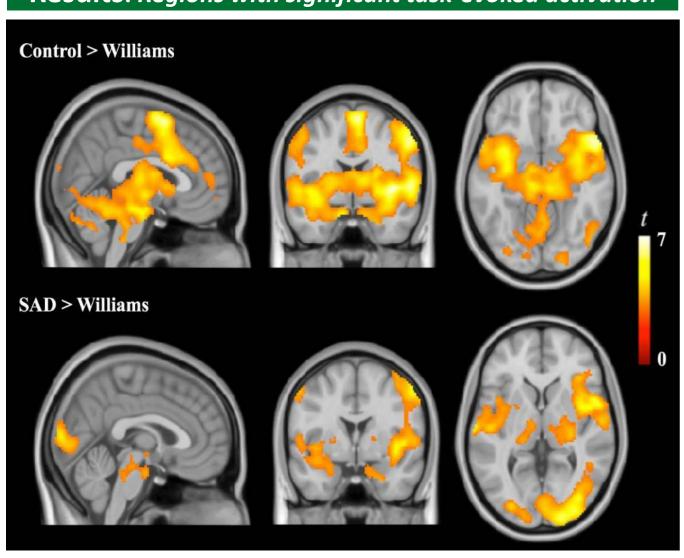


Observable-self task in social anxiety disorder and Williams-Beuren syndrome: a fMRI study

19TH WPA WORLD CONGRESS OF PSYCHIATRY LISBON, 21-24 AUGUST, 2019

Armando Muñiz^{1,2}, Cynthia Binelli³, Ricard Navines^{1,2}, Estel Gelabert³, Laura Blanco-Hinojo⁴, Luis Perez-Jurado⁵, Susana Subira³, Flavia de Lima Osorio⁶, Jesus Pujol⁴, Rocio Martín-Santos^{1,2,6}

1) Department of Psychiatry and Psychology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación en Red en Salud Mental (CIBERSAM), Barcelona, Spain; 2) Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Barcelona, Spain; 3) Department of Health and Clinical Psychology, Universitat Autònoma de Barcelona, Spain; 4) Institut Municipal d'Investigació Mèdica (IMIM), CIBERSAM 5) Universidad Pompeu Fabra, CIBER Enf. Raras; and 6) Department of Neurosciences and Behaviour, Ribeirao Preto, University of Sao Paulo, Brazil, and National Institute For Science and Technology (INCT-TM, CNPq), Brazilia, Brazil.


Introduction

- Social anxiety disorder (SAD) is characterized by an excessive fear of social situations that disrupts normal functioning.
- SAD is associated with changes in regions that underlie inhibition of emotion (prefrontal cortex), contextual processing (hippocampus), integration of multimodal information and self-awareness (medial parietal cortex/precuneus), and perceptual and semantic processing (fusiform gyrus).
- Williams-Beuren syndrome (WBS) is a genetic syndrome that exhibits hypersocial responses towards social situations.
- The comparison of these two phenotypes could identify potential areas of neurobiological research in SAD.

Methods

- Case-control study of 20 subjects with SAD, 20 subjects with WBS and 20 healthy controls (both sexes, 18–60 years).
- SAD was diagnosed with the Liebowitz Social Anxiety Scale, and WBS by showing an heterozygous deletion at 7q11.23.
- Participants were examined using functional MRI during an observable self-task, which involved presenting participants with pre-recorded video sequences of themselves performing a verbal task, in a session during which the examiners acted as the audience and rated their performance.
- Images were obtained using a 1.5 T Signa Excite system.
- First level (single-subject) SPM contrast images were estimated comparing the "self" condition with the "other" condition.
- Resulting first-level contrast images were then carried forward to subsequent second-level random-effects (group) analyses.
- One-sample t-statistic maps were calculated to obtain task-related activations and deactivations, and two-sample t-test were performed to map between-group differences.

Results: Regions with significant task-evoked activation

Results: Regions with significant task-evoked activation

	Activation in WBS		Activation in C	Activation in SAD		
	MNI coordinates		MNI coordii	MNI coordinates		
	хуг	Т	хуг	T	хуг	Т
Extrastriate Visual Cortex	52 -70 0	5.1	36 -82 0	7.8	34 -84 18	10.4
Primary Visual Cortex	-	-	-	-	4 -92 6	6.3
Inferior Frontal gyrus	-	-	44 34 4	10.4	42 30 4	7.1
Medial Frontal Cortex	-	-	6 2 62	13.4	12 4 60	4.8
Anterior Cingulate Cortex	-	-	0 10 28	10.0	0 8 36	6.2
Insula	-	-	34 16 014:6 11:9 12:8	9.7	38 10 -6	5.8
Basal ganglia	-	-	22 2 4	7.1	2480	5.2
Brainstem	-	-	8 -20 -6	7.6	6 -14 -10	5.2
Cerebellum	-	-	36 -58 -30	5.5	38 -58 -24	6.0
Thalamus	-	-	6 -18 0	6.9	10 -18 0	6.4
Amygdala	-	-	22 -2 -18	4.4	-24 0 -14	5.3

WBS: Williams-Beuren syndrome; SAD: Social Anxiety disorder; MNI: Montreal Neurological Institute. Statistics correspond to a threshold of P_{FWE}< 0.05 Family Wise Error-corrected.

Results: Between-group task-related activation differences

WBS < Control				WBS < SAD			
	Cluster	coordinates	Т	Cluster	coordinates	т	
	size (ml)	хуг	ı	size (ml)	хуг	'	
Insula	415.6*	40 2 0	7.1	170.1¥	42 2 0	5.1	
	*	-42 -14 8	6.5	¥	-38 6 -4	3.8	
Medial Frontal Cortex/SMA	*	6 6 62	6.9	-	-	=	
Anterior Cingulate Cortex	*	-6 12 30	5.8	-	-	-	
Superior Temporal Cortex	*	-48 -14 4	6.3	¥	52 8 0	5.2	
	*	56 2 2	6.1	¥	-64 -14 4	5.1	
Composition at an Company	*	52 -14 38	5.5	¥	56 4 48	5.1	
Sensorimotor Cortex	*	-46 -16 38	4.6	3.0	-54 -4 52	4.8	
Putamen	*	30 -18 4	5.7	-	-	-	
Thalamus	*	-10 -12 0	4.5	¥	12 -18 -2	3.0	
Cerebellum	*	-26 -66 -26	4.1	¥	26 -58 -24	4.3	
Brainstem	*	8 -26 -12	4.6	¥	8 -22 -18	3.6	
Primary Visual Cortex	-	-	-	¥	20 -96 4	5.6	
Extrastriate Visual Cortex	2.6	-44 -62 2	4.1	¥	36 -80 6	5.6	
Ventromedial Prefrontal Cortex	2.9	-4 52 4	4.0	-	-	-	
Posterior Cingulate Cortex	-	-	-	2.2	20 -28 40	4.2	

	WBS > SAD				
	Cluster	coordinates	т		
	size (ml)	хуг	1		
Inferior Parietal Cortex	5.8	52 -62 40	6.1		
	3.8	-50 -62 40	4.3		
Prefrontal Cortex	3.4	-28 20 52	5.0		
Prefrontal Cortex	4.9	34 16 58	4.5		

WBS: Williams-Beuren syndrome; SAD: social anxiety disorder; MNI: Montreal Neurological Institute. * and \pm indicate same cluster. Statistics correspond to a threshold of $P_{FWF} < 0.05$ Family Wise Error-corrected.

Conclusions

- SAD subjects showed heightened activation in all areas with the exception of the inferior-parietal and prefrontal cortex areas.
- Lower responses in the dorsal prefrontal and parietal cortices could be related to dysfunction in controlling anxiety in SAD (Pujol et al., 2013).
- Diminished fronto-parietal responses could be linked to distortions in the processing of self recognition (Kim et al, 2016).
- WBS appeared to be "emotionally insensible" towards self-exposition, while SAD subjects appeared as "emotionally hypersensitive".

Acknowledgements: This study was performed in part with grants: Instituto de Carlos III (ISCIII) – FIS: PI14/01411 (R. Martín-Santos), ISCIII-G03/184 (R. Martín-Santos), and the support of Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement: SGR2009/1435, SGR2014/1411;SGR2017/1798 (R. Martín-Santos).

Email: rmsantos@clinic.ub.es