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Abstract

The interface optical phonons arise near the hetero-interface of a quantum nanostruc-
ture. Moreover, its spectrum and dispersion laws may differ from ones for excitations 
arising in the bulk materials. The study of such excitations can give fundamentally new 
information about the optical and transport properties of nanostructures. The interac-
tion of charged particles with polar optical phonons can lead to the large radius polaron 
creation in the materials with high ionicity. This chapter deals with the results of our 
theoretical investigations of the polaron states in quantum wells, quantum wires, and 
quantum dots. The charged particle and exciton interaction with both bulk and interface 
optical phonons are taken into account. The original method has been developed taking 
into consideration an interface phonon influence. The enhancement conditions are found 
for both strong and weak interactions. It is established that the barrier material dielectric 
properties give a decisive contribution to the polaron binding energy value for strong 
electron-phonon interaction. The manifestation of strong polaron effects is a pronounced 
demonstration of the interface optical phonon influence on optical and transport proper-
ties of nanostructures.

Keywords: interface optical phonons, quantum well, quantum wire, quantum dot, 
electron-phonon interaction, polaron

1. Introduction

The electron-phonon interaction proves to be rather weak for most of the phonon branches. 

Such interaction can be taken into account in the framework of perturbation theory. The 

interaction of charged particles with polar optical phonons turns out to be fundamentally 

different [1]. The effective constant of the electron-phonon interaction may exceed unity in 
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materials with high ionicity. Moreover, the formation of a new type of elementary excitations, 
which is a bound state of charged particles and polar optical phonons, is possible even in 

bulk materials. This is the so-called large-radius polaron. The conditions for the appearance 

of such polaron are most favorable in quantum-dimensional structures. First, the additional 

branches of polar optical phonons, which are the interface phonons, appear in such structures. 

Second, the effective interaction of charged particles with polar optical phonons increases 
with the decreasing structure dimensionality. This significantly expands the range of materi-
als for the nanostructure design where the large-radius polaron formation is possible. The 

large-radius polaron appearance significantly changes the optical and transport properties 
of nanostructures. Even the manifestation of polaron superconductivity may take place [2]. 

Available theoretical studies of large radius polaron in quantum nanostructures consider the 

charged particle interaction with only one polar phonon mode [2–10]. This approach seems 

to be inconsistent for us. The phonon spectrum modification turns out to be very significant 
in quantum nanostructures. Therefore, it is necessary to take into account the interaction with 

all phonon branches in the large-radius polaron investigations.

In this chapter, conditions of strong electron-phonon interaction observation are investigated 

theoretically in the quantum well, quantum wire, and quantum dot. Particular attention is paid 
to the theory of charged particle interaction with interface optical phonons playing a decisive 

role in quantum wells and quantum wires. The contribution of interface phonons to the inter-

action energy value turns out to be comparable with that of bulk phonons in the quantum dot 

case. The conditions necessary for the strong electron-phonon interaction are obtained for all 

types of nanostructures. Analytic expressions for the polaron binding energy are found for 
nanostructures considered. In some cases, the results for the weak electron-phonon interac-

tion are discussed. This helps to understand better the interaction in a region of intermediate 
values of the coupling constant where obtaining the analytical result is impossible.

The total Hamiltonian of the system is given by:

   H ̂   =   H ̂    
e
   +   H ̂    

ph
   +   H ̂    

e−ph,    (1)

where the electron Hamiltonian    H ̂    
e
    describes charged particle interaction with nanostructure 

potential;    H ̂    
ph

    contains the energies of all optical phonon branches; and    H ̂    
e−ph

    is the electron-

phonon interaction Hamiltonian. The expressions for these operators will be given below. 
The wave functions and energies corresponding to the Hamiltonian from Eq. (1) can be found 

both for the strong and for the weak electron-phonon interaction. Strong interaction is imple-

mented under the condition:

   E  
pol

   ≫ ℏ  ω  
0
  .  (2)

Here  ℏ  ω  
0
    is the optical phonon energy and   E  

pol
    is the polaron binding energy. Weak interaction 

corresponds to the inverse inequality:

  ℏ  ω  
0
   ≫  E  

pol
  .  (3)

In this case, the contribution of the electron-phonon interaction can be taken into account by 

perturbation theory.
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The adiabatic approximation turned out to be an effective method for solving the problem in the 
case of a strong electron-phonon interaction. Within the framework of this approach, the motion 

of the charged particles (electrons and holes) is considered to be fast, and vibrations of the atoms 

of the crystal lattice are supposed to be slow. The Hamiltonian from Eq. (1) can be averaged over 
the wave function of fast motion   Ψ  

m
   . The averaged Hamiltonian    H  ̂   

av
    can be written in the form:

    H ̂    
av

   =  E  
m
   { Ψ  

m
  }  +   H ̂    

ph
   +   H ̂    

e−ph,av  .  (4)

Eq. (4) contains the energy of charged particles   E  
m
   { Ψ  

m
  }  

,
 which is the functional of the wave 

function in a general case. Here    H ̂    
e−ph,av

    is the Hamiltonian of electron-phonon interaction aver-

aged over the wave function   Ψ  
m
   . In what follows, we will use the standard expression for    H ̂    

ph
   :

    H ̂    
ph

   =  ∑ 
r,n

     ℏ  ω  
r,n

    a  
r,n

  +    a  
r,n

  ,  (5)

where the index r denotes different phonon branches; n is the quantum number that takes 

various values for the different nanostructures;   a  
r,n

  +    and   a  
r,n

    are the phonon creation and anni-

hilation operators, respectively. Averaged Hamiltonian of electron-phonon interaction    H ̂    
e−ph,av

    

can be written as:

    H ̂    
e−ph,av   =  ∑ 

r,n
     α (r, n)  [ a  

r,n
  +   +  a  

r,n
  ] .  (6)

Here the interaction parameters  α (r, n)   must be defined for all phonon branches in each nano-

structure type. Eq. (4) is reduced to a diagonal form with respect to the phonon variables by 

using the unitary transformation   e   −U    H ̂    
av

    e   U  , where

  U =  ∑ 
r,n

     α (r, n)  [ a  
rn

   −  a  
rn

  +  ] .  (7)

As a result, we get

   e   −U    H ̂    
av

    e   U  =  E  
pol

   { Ψ  
m
  }  +   H ̂    

ph
  .  (8)

As follows from Eq. (8), the spectrum of all phonon branches remains unchanged in the adia-

batic approximation. The value   E  
pol

   { Ψ  
m
  }   has the meaning of the binding energy of a large-radius 

polaron. This energy depends on the charge particle interaction parameters for all branches of 

the polar optical phonon spectrum. It is also a functional of the electron wave function   Ψ  
m
    that 

is used in the averaging procedure. The explicit form of this wave function   Ψ  
m
    is determined 

from the condition for the minimum of the polaron energy   E  
pol

   . This solution scheme is used 

below to find the polaron binding energy in various nanostructures.

2. Symmetric quantum well

In general, for the case of a quantum well, the interaction of charged particles with the pho-

nons of the well, barriers, and interface phonons must be taken into account. Let us consider 
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the case of complete localization of charged particles within a quantum well. In this case, the 

interaction of such particles with barrier material phonons can be neglected. Nevertheless, 

the effect of barriers is very important. This is determined by the structure and properties 
of interface phonon spectrum. To describe the properties of interface phonons, we will use 

the continuum model proposed in [11]. The spectrum of the symmetric mode of interface 

phonons is determined from the solution of the following equation:

   ε    (w)   (ω) th (  
qL

 ___ 
2
  )  +  ε    (b)   (ω)  = 0,  (9)

where L is the quantum well characteristic size; q is two-dimensional wave vector;   ε    (w)   (ω)   and   

ε    
(b)   (ω)   are the dielectric functions of the quantum well and barriers, respectively. The frequency 

dispersion of the dielectric function in the phonon frequency region is determined as follows:

  ε (ω)  =  ε  ∞     
 ω   2  −  ω  

LO
  2  
 ______ 

 ω   2  −  ω  
TO

  2  
  .  (10)

Here   ω  
LO

    and   ω  
TO

    are the frequencies of longitudinal and transverse optical phonons, respec-

tively, and   ε  
∞
    is the high-frequency dielectric constant. The expression Eq. (10) means that 

we use the approximation of dispersionless modes for bulk optical phonons. It is in this 
approximation interface, and bulk phonon modes can be considered independently [12]. The 

contribution of the antisymmetric mode of interface phonons vanishes when the Hamiltonian 

is averaged over the wave function of the charged particle localized in a symmetric quantum 

well. Let us start with the electron polaron. The amplification of the electron-phonon interac-

tion occurs in fairly narrow quantum wells having a width L that is less than the polaron 

radius   a  
0
   :

  L <  a  
0
  .  (11)

The exact definition of the polaron radius   a  
0
    will be given below.

When the inequality from Eq. (11) is satisfied, the electron wave function   Ψ  
m
   (e)   (r)   can be repre-

sented as a product:

   Ψ  
m
   (e)   (r)  =  φ  

m
   (z)   χ  

m
   ( r  ∥  ) ,  (12)

where   φ  
m
   (z)   is the transverse motion wave function that is determined by the quantum well 

potential;   r  
∥
    is the two-dimensional plane well coordinate; and   χ  

m
   ( r  ∥  )   is yet unknown two-

dimensional wave function that is determined by electronic localization in a self-consistent 

well created by polar optical phonons.

The electron-phonon interaction parameters  α (r, n)   from Eq. (6) are given in [11, 13]. For fur-

ther discussion, we will use an explicit form of these coefficients for the symmetric interface 
mode and an even part of the interaction with the localized phonons of the quantum well. 

Performing the aforementioned procedure allows us to get the polaron binding energy   E  
pol,well
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from Eq. (8) as a functional of the wave function   χ  
n
   ( r  ∥  )   for the quantum well case. It can be 

defined from the condition of minimum for this functional [13]:

  −    ℏ   2  ____ 2  m  
e
      ∇   2   χ  

m
   ( r  ∥  )  −    e   

2  ___ 
 ε  
opt

   (b)  
  ∫  d   2   r  ∥     

   |  χ  
m
   ( r  ∥  )  |     2 
 ________ 

  |  r  ∥   −   r  ∥     
'  |  
    χ  
m
   ( r  ∥  )  =  ( E  

m
   −  E  

pol,well
   (e)   )   χ  

m
   ( r  ∥  ) .  (13)

Here   E  
pol,well

   (e)     is the electron polaron binding energy;   ε  
opt

   (b)    from    1
 

___
 

 ε  
opt

   (b)  
   =   

1
 

___
 

 ε  
∞
   (b)  
   −   

1
 

___
 

 ε  
0
   

(b)  
    is the optical dielectric 

function of the barriers; and   E  
m
    is the size quantization level energy. Eq. (13) formally coincides 

with the equation for two-dimensional polaron [3–6, 14]. However, it should be noted that 

Eq. (13) involves the electron mass within the quantum well and the optical barrier dielec-

tric constant. This combination of parameters appears because the major contribution to the 

polaron binding energy is given by interaction with interface optical phonons. In accordance 

with Eq. (13), the polaron binding energy in the quantum well is:

   E  
pol,well

   (e)    = −  C  
1
     

 m  
e
    e   4 
 _______ 

  ( ε  
opt

   (b)  )    2   ℏ   2 
  ,  (14)

where   C  
1
   ≅ 0.4  is the numerical coefficient. Its value is determined by the integral of two-

dimensional polaron dimensionless wave function   χ  
m
   ( r  ∥  )   given in [14]. In this case, the radius 

of the electron polaron state   a  
0
   (e)    is:

   a  
0
   (e)   =   

 ℏ   2   ε  
opt

   (b)  
 _____ 

 m  
e
    e   2   .  (15)

It is this quantity from Eq. (11) on which the adiabatic approximation used in our work is 
based. In the next order in the parameter from Eq. (11), some corrections to polaron binding 
energy Eq. (14) appear. These corrections can be expressed in terms of the dimensionless 
wave function of two-dimensional polaron   χ  

0
   ( r  ∥  )   known from [14]. The calculations give the 

following:

  Δ  E  
pol,well

   =  E  
pol,well

   (e)      L ___  a  
0
   (e)     ( D  

V
   +  D  

S
  )   C  

2
  ,  (16)

where   C  
2
   = 0.07  is the numerical factor that was calculated in [3]. The dimensionless coefficients   

D  
V
    and   D  

S
    are determined by fairly complex combinations of the phonon frequencies in the 

quantum well and barrier materials and are found in [13]. It turns out that the corrections 

to the binding energy of a polaron are related to the interaction with both bulk and interface 

phonons. According to the expressions for   D  
V
    and   D  

S
    received in [13], these corrections may 

have different signs. The total value of the binding energy depends essentially on the dielec-

tric properties of both the quantum well and the barrier materials. We note that the main 

contribution to polaron binding energy from Eq. (14) coincides with our result obtained ear-

lier in [15] by means of an approximate method for calculating the phonon fields. However, 
the accurate inclusion of corrections to   E  

pol,well
   (e)     in this approximate approach is impossible. 

Obtaining a quantity  Δ  E  
pol,well

    from Eq. (16) requires taking into account the phonon spectrum 

of the system.
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A similar consideration can be repeated for a hole polaron. The main contribution to the bind-

ing energy of a hole polaron is determined by an expression analogous to Eq. (14). It looks 
like this:

   E  
pol,well

   (h)    = −  C  
1
     

 m  
h
    e   4 
 _______ 

 ℏ   2    ( ε  
opt

   (b)  )    2 
  .  (17)

Usually, for semiconductor materials, the hole mass   m  
h
    is much larger than the electron mass   

m  
e
   , then the binding energy of the hole polaron from Eq. (17) is much larger than the energy 

of the electron polaron from Eq. (14). In this case, the localization region for a hole polaron   a  
0
   

(h)    

turns out to be smaller than that for an electron polaron   a  
0
   (e)   :

   a  
0
   (h)   =   

 m  
e
  
 ___  m  
h
      a  0   

(e)   < <  a  
0
   (e)  .  (18)

The condition from Eq. (18) plays an important role in the study of a polaron exciton. The inter-

action of an exciton with optical phonons has a number of additional features. Polarization 
of the medium, created by an electron and a hole, partially compensates each other. The 

degree of this compensation essentially depends on the ratio of the radii of the electron and 

hole polarons,   a  
0
   (e)    and   a  

0
   

(h)   , respectively, and the exciton radius   a  
0
   (ex)   . In this case, the influence 

of the barrier dielectric properties on the exciton state must be taken into account in narrow 
quantum wells. Without allowance for the electron-phonon interaction, such influence was 
considered in [16]. In these articles, it was shown that the exciton binding energy in narrow 
symmetric quantum wells has the form:

   E  
ex,well

   =   
2μ  e   4 

 _______ 
  ( ε  

0
   (b)  )    2   ℏ   2 

  .  (19)

Here  μ  is the reduced mass of the electron and hole in the quantum well. The radius of such 

quasi-two-dimensional exciton   a  
0
   (ex)    also depends on the barrier dielectric constant   ε  

0
   

(b)   . It is 

equal to:

   a  
0
   (ex)   =   

 ℏ   2   ε  
0
   (b)  
 ____ 

μ  e   2   .  (20)

Eqs. (19) and (20) are valid for narrow quantum wells, the width of which satisfies the inequality

  L <  a  
0
   (ex)  .  (21)

The possibility of strong coupling of an exciton with polar optical phonons depends on the 
relationship between   a  

0
   (ex)    and   a  

0
   (h)   . It is seen from Eqs. (15) and (20) that the electron polaron 

radius is always greater than the exciton one, that is   a  
0
   (e)   >  a  

0
   (ex)   . If also   a  

0
   (h)   >  a  

0
   (ex)   , then the 

medium polarization created by the electron and hole largely compensates each other. In 

this case, for the exciton, the condition of strong coupling with phonons, as a rule, is not 
realized.
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When the opposite relationship is satisfied, that is

   a  
0
   (h)   <  a  

0
   (ex)  ,  (22)

the strong exciton-phonon interaction is possible. The main contribution to the polaron exci-
ton binding energy is due to the localization of the hole in the polaron well. Its size is deter-

mined by the radius of the hole polaron   a  
0
   

(h)   . The motion of an electron occurs in a larger region 

of space. The medium polarization created by the electron compensates partially the polariza-

tion created by the hole. If we take into account the largest contributions with respect to the 

parameters of Eqs. (11) and (22) only, then the polaron exciton binding energy is equal to:

   E  ex,well   =  C  
1
     

 m  h    e   4  _______ 
 ℏ   2    ( ε  opt  

 (b)  )    2 
   − 2   

 m  e    e   4  _______ 
 ℏ   2    ( ε  ∞   (b)  )    2 

  .  (23)

The second contribution in Eq. (23) is small, compared to the first one in the parameter  
  m  

e
   /  m  

h
   ≪ 1 . It can be seen from Eq. (23) that the possibility of strong coupling of an exciton with 

optical phonons depends on parameters of both the quantum well and barrier materials. The 

appearance of a polaron exciton requires a significant difference between the effective masses 
of an electron and a hole in a quantum well. In addition, the presence of barriers made of high 

ionicity materials is necessary. In this case, the polarization properties of the quantum well 

material do not play an essential role.

For most II–VI compounds, the exciton radius   a  
0
   (ex)    from Eq. (20) is in the range  20–40  Å. The 

electron polaron radius   a  
0
   (e)    (Eq. (15)) falls within the range  50–100  Å, and hole polaron one   a  

0
   

(h)    

(Eq. (18)) is approximately  10–20   Å. Therefore, the strong exciton-phonon interaction  condition 
from Eq. (22) can be satisfied. This means that the quasi-two-dimensional polaron formation 
is possible in sufficiently narrow quantum wells of width  L < 20  Å.

The heterovalent quantum wells based on II–VI/III–V materials are more promising target 

for the experimental study of polaron effects in the case of strong electron-phonon interac-

tion. For such structures, growth technologies have been developing successfully in recent 

times [17]. In the III–V compounds, effective masses of quantum well carriers are small. The 
optical dielectric function of the barriers based on II–VI materials is also rather small. Thus, 

given above values of exciton and polaron radii increase by 2 − 3 times. Hence, a quasi-two-

dimensional polaron in heterovalent quantum wells can be observed for the well widths  L ≤ 50  

Å. Quantum wells of more complex configuration (e.g., I–VII/III–V) can also become a promis-

ing object for the polaron study when strong electron-phonon interaction takes place.

3. Cylindrical quantum wire

In the quantum wires under consideration, the spectrum of interface phonons depends on the 

one-dimensional wave vector  q  directed along the wire axis. Using the same Eq. (10) for the 
dielectric functions of wire and barrier materials, we obtain the interface phonon spectrum 

equation in the context of the continuum approximation:
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Figure 1 . Wave vector dependencies of interface optical phonon energies for ZnSe/CdSe/ZnSe quantum wire;  m = 0 .

    
 I  
m
  '   (q  ρ  

0
  ) 
 ______ 

 I  
m
   (q  ρ  

0
  ) 
    ε    (b)   (ω)  =   

 K  
m
  '   (q  ρ  

0
  ) 
 ______ 

 K  
m
   (q  ρ  

0
  ) 
    ε    (w)   (ω) .  (24)

Here   I  
m
    is the m-th order modified Bessel function of the first kind;   K  

m
    is the m-th order modi-

fied Bessel function of the second kind; and   ρ  
0
    is the quantum wire radius. The interface pho-

non spectrum is determined by solution of Eq. (24). The wave vector dependences of interface 

phonon frequencies are shown in Figure 1. These dependences are calculated for the quan-

tum wire based on CdSe, surrounded by ZnSe barriers for  m = 0  in Eq. (24). The compound 

parameters are taken from [18].

The adiabatic parameter of this problem is the ratio between the quantum wire radius   ρ  
0
    and 

the polaron radius   a  
0
   :

   ρ  
0
   ≪  a  

0
  .  (25)

Below, an exact analytic expression is obtained for determining the polaron radius. The inequal-
ity Eq. (25) means that the main contribution to the binding energy of a polaron is determined 

by the wave vector values which are small as:

  q  ρ  
0
   < 1.  (26)

According to Eq. (25), the electron wave function for n-th size quantization level can be writ-

ten as:

   Ψ    (e)   (r)  = φ ( n    (e)  ;  m    (e)  ; 𝛒) χ ( n    (e)  ;  m    (e)  ; z)   e    im    (e)  φ .  (27)
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Here   n    (e)    is size quantization level number and  φ ( n    (e)  ,  m    (e)  , 𝛒)   is the wave function of two-dimen-

sional electron motion. The electron-phonon interaction does not affect this motion, which 
occurs within a quantum wire. The wave function  χ ( n    (e)  ,  m    (e)  , z)   describes the electron localiza-

tion in phonon self-consistent potential well. Not disturbed electron states in the quantum 

wire are defined by the quantum numbers   n    (e)    and   m    (e)   . In the case of total electron localization 

inside the cylindrical quantum wire, the wave function  φ ( n    (e)  ,  m    (e)  , 𝛒)   has the form:

  φ ( n    (e)  ,  m    (e)  , 𝛒)  =  J  
 m    (e)  

   [ μ  
 n    (e)  

   ( m    (e)  )    
ρ
 __  ρ  

0
    ] ,  (28)

where   μ  
 n    (e)  

   ( m    (e)  )   is   n    (e)   -th root of   m    (e)   -th order Bessel function,  χ ( n    (e)  ,  m    (e)  , z)   is the wave function which 

may be obtained after solving the self-consistent problem. Thus, the total wave function from 

Eq. (27) must be normalized.

Generally, the value of polaron binding energy  Δ  E  
pol,wire

    is determined by the optical phonon 

spectrum properties and depends on electron size-quantization level number. It is necessary 

to take into account the optical phonons localized both inside the quantum wire and at the 

hetero-interface. We obtain this energy after the angle averaging procedure expressible in 
explicit form:

  Δ  E  
pol,wire

   = −  ∑ 
n,q

       
 α   2  (0, n, q) 

 ________ ℏ  ω  
0
     −  ∑ 

q
       

 α   2  (0, q) 
 ______ ℏ  ω  

S
    .  (29)

Here  α (0, n, q)   and  α (0, q)   are the coefficients defined in Eq. (6). The value of  Δ  E  
pol,wire

    from Eq. (29) 

is defined by the interaction of an electron with phonon modes for which  m = 0  and contains 

the contribution caused by interaction with both confined and interface phonons for all size-
quantization levels. Eq. (29) can be used for numerical analysis of electron-phonon interaction 

characteristic properties for the quantum wires of various symmetry. At the same time, the 

electron energy and wave function are obtained analytically when the inequality from Eq. 

(26) is satisfied.

The interaction of an electron with interface phonon mode of the frequency close to barrier 

frequency   ω  
LO

   (b)     gives the most significant contribution to the polaron binding energy in the 
parameter Eq. (26). It has the form:

  Δ  E  
pol,wire

   =    e   2  ____ 
2  ε  

opt
   (b)  
    ∑ 
q
        | ∫    | χ (z)  |     

2
  exp  [iqz] dz |     

2

  ln  (q  ρ  
0
  ) .  (30)

Eq. (30) contains the optical dielectric function of the barriers   ε  
opt

   (b)   . In other words, the polaron 

states arise independently of the quantum wire material dielectric properties. Contribution 

due to these properties can be obtained in higher orders in the parameter from Eq. (26). It 

can be seen from Eq. (30) that phonon wave vector  q  characteristic values that determine the 

electron-phonon interaction are inversely proportional to the polaron radius magnitude, that 

is  q ≃ 1 /  a  
0
   . In this region, the logarithmic function changes slightly, and we can obtain the 

energy  Δ  E  
pol,wire

    with the same accuracy in parameter from Eq. (26):

Interface Phonons and Polaron States in Quantum Nanostructures
http://dx.doi.org/10.5772/intechopen.80403

11



  Δ  E  pol,wire   =    e   2  ____ 
2  ε  opt  

 (b)  
   ln  (  

 ρ  
0
  
 __  a  

0
    )   ∑ 

q
        | ∫    | χ (z)  |     

2
  exp  [iqz] dz |     

2

 .  (31)

The electron polaron binding energy as the functional of unknown yet wave function  χ (z)   

can be obtained by substituting Eq. (31) into the average Hamiltonian from Eq. (4) and by 

variational method:

  −    ℏ   2  ____ 2  m  e  
      d   

2  χ (z) 
 _____ dz   −  (   e   

2  ___ 
 ε  opt  

 (b)  
   ln  (  

 a  
0
  
 __  ρ  

0
    ) )   χ   3  (z)  =  E  pol  

 (e)    χ (z) .  (32)

The solution of nonlinear Eq. (32) has the form:

  χ (z)  =   1 ___ 
 √ 
___

 2  a  
0
    
     1 _______ ch (z /  a  0  ) 

  .  (33)

By substituting the wave function from Eq. (33) into Eq. (32), we obtain the polaron binding 
energy as:

   E  pol,wire  
 (e)    = −    Me   4  _______ 

 ℏ   2    ( ε  opt  
 (b)  )    2 

    ln   2  (  
 a  

0
  
 __  ρ  

0
    ) .  (34)

Thus, the polaron radius   a  
0
    contains the adiabatic parameter from Eq. (25) and is equal to:

   a  
0
   =   

 ℏ   2   ε  opt  
 (b)  
 __________ 

 m  e    e   2  ln  (  
 a  

0
  
 __  ρ  

0
    ) 

  .  (35)

The substitution of the material parameters [18] for ZnSe/CdSe/ZnSe quantum wire into Eq. (35) 

leads one to expect that the strong polaron effects should be observed at a wire radius   ρ  
0
   < 40  Å.

The condition for polaron exciton appearance in a quantum wire is analogous to that con-

sidered above for a quantum well, Eq. (18). The basic requirement is a significant difference 
between the hole and the electron masses. If the radius of a quantum wire corresponds to the 

conditions from Eqs. (21) and (22), a complete compensation of the contributions from the 

electron and hole does not occur, and a strong electron-phonon interaction is possible.

4. Spherical quantum dot

In this chapter, we study the structures in which the quantum dot and matrix materials have 
different phonon modes and its dielectric functions are described by Eq. (10). We have used 
the approximation presented in [19], where the interface phonon spectrum is described by the 

following equation:

  l  ε    (d)   (ω)  +  (l + 1)   ε    (m)   (ω)  = 0,  (36)
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where   ε    
(d)   (ω)   and   ε    (m)   (ω)   are the dielectric functions of the quantum dot and matrix materials, 

respectively;  l  is the number of the spherical harmonic for corresponding interface vibration. 

If  l = 0 , there is only one solution, which coincides with   ω  
LO

    in the matrix material. For  l ≠ 0 , 

there are two solutions for the interface phonon frequencies.

For our problem, the coefficients  α (r, n)   from Eq. (6) have the form [19]:

  α (v, nlm)  = ℏ  ω  
LO

   (m)   ρ (nlm)    (  4π  e   2  ___________  
 r  

0
    μ  
nl
  2    j  
l+1

  2   ( μ  
nl
  )   ε  

opt
   (m)  
  )    

1/2

   (37)

for the bulk phonons and

  α (s, l)  = −   (  2π  e   2  ____ 
 ω   2   r  

0
  
  )    

1/2

    [ ε  ∞   (d)     
 ω  
LO,d

  2   −  ω  
TO,d

  2  
 _________ 

  ( ω   2  −  ω  
TO,d

  2  )    2 
   l +  ε  ∞   (d)     

 ω  
LO,m

  2   −  ω  
TO,m

  2  
 __________ 

  ( ω   2  −  ω  
TO,m

  2  )    2 
   (l + 1) ]    

−1/2

  ⋅ ℏ  ω  
s
    ρ  
s
   (lm)   (38)

for the interface phonons. Here   r  
0
    is the quantum dot radius;   j  

l
    are the spherical Bessel func-

tions; and   j  
l
   ( μ  
nl
  )  = 0 . The quantities  ρ (nlm)   and   ρ  

s
   (lm)   are the bulk and interface phonons densities, 

respectively, which have the form:

  ρ (nlm)  =  j  
l
   ( μ  

nl
     r __  r  

0
    )   Y  

lm
   (θ, φ) ,  (39)

   ρ  
s
   (lm)  =   (  r __  r  

0
    )    
l

   Y  
lm

   (θ, φ) ,  (40)

where   Y  
lm

   (θ, φ)   are the spherical wave functions. After the averaging procedure over the elec-

tron wave function  Ψ (r)  , the values of the densities from the equations should be replaced by 

its average values:

   ρ  
av

   = ∫  d   3  r    | Ψ (r)  |     
2

  ρ (nlm) ,  (41)

   ρ  
s,av

   = ∫  d   3  r    | Ψ (r)  |     
2

   ρ  
s
   (lm) .  (42)

In this case, the energy of electron size quantization level polaron shift has the form:

  Δ  E  
pol,dot

   = −   ∑ 
n,l,m

    ℏ  ω  
LO

      | α (v, nl)  |     
2

     |  ρ  
av

   |     2  −  ∑ 
l,m

     ℏω (l)     | α (s, l)  |     
2

     |  ρ  
s,av

   |     2 .  (43)

As follows from Eq. (43), the bulk and interface phonon contributions to the polaron binding 

energy are summed. It will be seen from the further consideration that the interface phonon 

contribution can exceed the surface phonon one under certain conditions. The results obtained 
make it possible to calculate the polaron shifts for any size quantization level. Consider a 

polaron shift for a particle with a spherical wave function. For example, it could be an electron 
in the ground state. The polaron shift can be obtained analytically [20] and is equal to:
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   E  pol,dot  
 (e)    = −    e   

2  __  r  
0
     (  0.39 ____ 

 ε  opt  
 (d)  

   +   0.5 ___ 
 ε  opt  

 (m)  
  ) .  (44)

It follows from Eq. (44) that taking into account matrix polarization leads to an increase in the 
polaron effect. It should be noted that there is a noticeable polaron shift even for quantum 
dots based on a nonpolar material. This is due to the presence of interface phonons that create 

the polarization in surrounding matrix. Note also that for the quantum dot case, the contribu-

tions of charged particle interaction with bulk and interface phonons are of the same order of 

magnitude in the adiabatic parameter.

   r  
0
   ≪  a  

0
  .  (45)

This is the main difference between this problem and the quantum well and quantum wire 
considered earlier. For these structures, the largest contribution in the adiabatic parameters 

from Eq. (11) and Eq. (25) is caused by the interface phonons. The inequality (45) is satisfied, 
for example, for CdSe quantum dots in a ZnSe matrix when the dot radius   r  

0
   < 30  Å.

Another significant feature of the polaron in quantum dots is a significant suppression of the 
polaron exciton state. The exciton polaron shift turns out to be zero for the localization of the 
electron and hole with wave functions of the same symmetry inside the quantum dot. The non-

zero interaction of an exciton with polar optical phonons arises for different symmetries of the 
electron and hole wave functions only. This is possible if the quantum dot is made of a material 

where interband transitions are forbidden (e.g., CuO
2
) or if the valence band complex spectrum is 

taken into account. The latter is typical for most III–V and II–VI semiconductor compounds. It is 
shown in [20] that taking into account the valence band degeneracy in the Luttinger Hamiltonian 
model leads to a noticeable difference between the polaron shift for the electron and hole. In this 
case, the exciton-phonon interaction can turn out to be strong at the quantum dot.

5. Weak electron: phonon interaction

The interaction of charge particles with polar optical phonons can be weak in nanostructures 

based on materials with low ionicity. When the condition Eq. (3) is satisfied, the electron-
phonon interaction described by the Hamiltonian    H ̂    

e−ph
    can be taken into account by the per-

turbation theory [21]. In the bulk crystals with weak electron-phonon interaction, the position 

of the ground electronic state level is shifted, and the electron effective mass increases [22]. 

Our calculations have shown that similar effects arise in a quantum well, and they are mainly 
due to the interaction of charge carriers with interface optical phonons. The level position 

displacement corresponds to the renormalization of the forbidden band width. When the 

electron-phonon interaction is weak, this effect is rather small. Therefore, the main attention 
will focus to polaron effect on the charged carrier effective mass change. This change for an 
electron depends on the material dielectric properties of both the quantum well and barri-

ers. A quasi-two-dimensional analog of known results for bulk materials [22] is obtained in 

the sufficiently narrow quantum well for which the size quantization energy  Δ  E  
m
    exceeds the 

quantum well localized optical phonon energy  ℏ  ω    (w)   (q)   and interface optical phonon energy  
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ℏ  ω    (s)   (q)  . The main contribution to the electron ground state energy correction with respect to 

parameter  Δ  E  
m
   / ℏ  ω    (w)   (q)   has the form:

  Δ  E  
m
   =   π __ 

2
    α  eff   ℏ  ω    (b)   +   

 p   2 
 ____ 

2  m   ∗ 
  .  (46)

The frequency from Eq. (46) is   ω    
(b)   =  ω    (s)   (0)  . The polaron mass is equal to:

   m  
pol

   =    m    (w)   _______ 
1 −  𝜋𝛼  eff   / 8

  .  (47)

Eqs. (46) and (47) are similar to the known results from two-dimensional polaron theory [14]. 

However, the effective coupling constant is equal to:

   α  eff   =    e   2  _____ 
2ℏ  ω    (b)  

     (  2  m    (w)    ω    (b)   _______ 
ℏ
  )    

1/2

  (  1 ___ 
 ε  ∞   (b)  

   −   1 ___ 
 ε  

0
   (b)  
  ) .  (48)

It is seen from Eq. (48) that, just as in the case of a strong-coupling polaron, the effective 
electron-phonon interaction constant is determined by the effective electron mass inside the 
quantum well and the barrier material dielectric properties. This value is analogous to the 

Frohlich constant, but it is not a characteristic of any particular material and is determined 

by the quantum well properties. In a specific approximation, when the condition  q ≪ 1 / L  is 

satisfied, the charge particle interaction with polar optical phonons is defined by the interface 
phonon spectrum. The interface phonon frequencies in the same approximation are close to 
ones for the barrier optical phonons and can differ markedly from the quantum well optical 
phonon frequencies. This may explain the discrepancy between the experimental and theo-

retical values of the effective polaron mass for the ZnO-ZnMgO quantum well, obtained in 

[23]. In estimating the effective mass, the authors of [23] have used the Frohlich constant for 

ZnO instead of the effective constant from Eq. (48). Using the effective constants of Eq. (48) 
greatly improves the agreement between theory and experimental data.

6. Conclusions

It is shown that the interface phonons play an important role in the polaron state formation in 

quantum nanostructures. In quantum wells and quantum wires, the polaron binding energy is 

determined mainly by the interaction of charged particles with interface optical phonons. In the 

quantum dots, the contribution due to the interaction with interface phonons is additive with 

the energy of interaction with bulk phonons. Moreover, for nanostructures based on the same 

materials, the polaron binding energy increases with the structure dimensionality reduction.

Thus, the results obtained show that the barrier material ionicity degree plays a fundamental 

role for forming the large radius polarons in quantum wells and quantum wires. Meanwhile, 

the quantum well itself can be based on low ionicity material. The interaction of charged 

particles with interface optical phonons is the reason that the polaron effects are enhanced 
significantly.
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The condition for observing a polaron exciton is the essential difference between the electron 
and hole effective masses. In this case, only partial compensation of the phonon interaction with 
charged particles occurs, and the achievement of a strong electron-phonon interaction is possible.

Thus, the appearance of strong polaron effects is a clear demonstration of the interface pho-

non influence on optical and transport properties of nanostructures.
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