
1

Chapter

Quality Control and Risk 
Management of Carbon 
Nanomaterials
Khalid Parwez and Suman V. Budihal

Abstract

Our atmosphere contains a substantial number of nanoparticles in which some 
are unintentionally produced, whereas others are intentionally produced engineered 
nanoparticle. Among all ENPs, the single-walled and multi-walled carbon nanotubes, 
spherical fullerenes, and dendrimers are attracting attention for biomedical applica-
tions, such as biosensor design, drug delivery, tumor therapy, and tissue engineering. 
Because of the inert nature of pristine carbon nanotubes (CNTs), it needs to be 
functionalized to make it reactive with other organic and inorganic materials. The 
functionalization leads to the addition of functional groups, e.g., C‖O, C▬O, ▬OH, 
and ▬COOH, to CNTs, which make them dispersible in solvents and suitable for 
numerous applications. Functionalized CNTs and their composite need to be tested 
for biocompatibility before real-time applications. Various toxicity mechanisms have 
been suggested for CNTs, including interference of transmembrane electron transfer, 
interruption/penetration of the cell envelope, oxidation of cell elements, and formu-
lation of secondary products such as dissolved heavy metal ions or reactive oxygen 
species (ROS). Numerous studies have insinuated that well-functionalized CNTs are 
innoxious to animal cells, while raw CNTs or CNTs without functionalization mani-
fest toxicity to cells at even modest dosage.
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1. Introduction

In the past several years, a significant number of studies have been made to 
study the toxic effects of carbon nanotubes (CNTs). There are variations in the elu-
cidations of these reports, and they mainly depend on the type of nanomaterials as 
well as functionalization methods. Properly functionalized carbon nanotubes were 
shown nontoxic to animals conducted by various groups [1–4], whereas raw carbon 
nanotubes were shown to be toxic to mice lungs in an in vivo study [5–8]. The latest 
research revealed that non-functionalized, long MWCNTs might be carcinogenic 
to mice [9]. Pristine nanotubes are indicated to cause oxidative stress and decrease 
cell viability [10, 11]; however, there is some sign that leftover catalyst particles also 
contribute to this effect [12]. The cytotoxicity can be decreased to zero via func-
tionalization with a covalently attached polar functional group [13]. Likewise, the 
toxicity of noncovalently functionalized carbon nanotubes depends on the variety 
of the functional group. Cells were viable upon internalization of individually 
encapsulated DNA-wrapped SWCNT complex [14].
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Therefore, the toxicity of carbon nanotube depends on the type of functional-
ization, aggregation behavior, and the presence of metal catalyst particle leftovers 
during synthesis.

2. An overview of carbon nanotube research

Manufacturing fundamental elements with great strength to weight ratio using 
carbon nanotube composite is the contemporary focus of the researchers. One of the 
likely utilizations of polymer nanocomposite is the CNT-augmented ultrafine fiber 
via electrospinning [15, 16], which has been known since the 1930s. Today, polymer 
fibers with nanometer diameter can be produced inexpensively using electrospin-
ning technology. With <100 nm diameter, these fibers are being studied for drug 
delivery methods, energy storage, and improved functional garments [17–19]. These 
applications require improved (i) fiber strength, (ii) thermal conductivity, and  
(iii) electrical conductivity. Incorporating carbon nanotubes (CNTs) within elec-
trospun fibers offers the probability of simultaneously improving all these three 
properties [20–22]. Xie et al. (2005) reviewed the dispersion and alignment of CNTs 
in the polymer matrix [23]. They found that the serious challenge is the development 
of means and ways to promote and increase the dispersion and alignment of CNTs 
in the matrix. Enhanced dispersion of CNTs in the polymer matrix will foster and 
extend the applications and developments of polymer/CNT nanocomposites.

Though the optical apprehension techniques are probably the most conventional 
in biology and life sciences, electrochemical or electronic detection techniques have 
also been adopted in biosensors/biochips due to their great sensitivity, high specific-
ity, and low cost. Those techniques comprise of voltammetric techniques (cyclic 
voltammetry and differential pulse voltammetry), chronocoulometry, electro-
chemical impedance spectroscopy, and electronic detection based on electric field 
[24]. The sensors developed from CNTs have shown the ability to detect a range of 
analytes such as particular DNA sequences [25] as cancer biomarkers [26] and larger 
entities such as viruses [27]. These sensor devices have also been used to monitor 
enzymatic activities and study the behavior of potential drug molecules [28].

The apprehension of the analytes befalls with great specificity and sensitivity 
in a rationally precise time. Both SWCNT and MWCNT can be altered and conju-
gated to a bioactive unit and biological varieties including carbohydrates, amino 
acids and peptides, nucleic acid, and proteins, for various biological applications. 
Those biological applications are plausible only because the carbon nanotubes own 
some anomalous properties like the one-dimensional arrangement, large aspect 
ratio, outstanding mechanical characteristics, and chemical inertness [29]. The 
carbohydrate-functionalized carbon nanotubes have previously been used for the 
identification of pathogenic microorganisms, namely, [30, 31]. In the advancement 
of energy production and storage, nanotubes exhibit exceptional potential in super-
capacitors [32], Li-ion batteries [33], solar cells [34], and fuel cells [35]. Energy 
applications could become the broadest application realm in the gross application 
of carbon nanotubes. For the advancement of Li-ion batteries’ performance, MnO2 
and LiFePO4 are being used as a cathode while MWCNTs and graphene as an anode. 
In the realm of the fuel cell, proton-exchange membrane fuel cells (PEMFCs), 
CNTs have been widely studied [36].

In a PEMFC, the conversion of chemical energy to electrical energy occurs via 
a direct electrochemical reaction, and its efficiency is directly dependent on the 
catalysts used [37]. The catalysts should have high endurance, low cost, and higher 
activities in oxygen reduction and/or fuel oxidation reaction [38]. Shortly, the most 
regularly used catalysts in the PEMFCs are metal NPs, mainly Pt and/or Pt-based 
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alloys, because of high oxygen reduction and/or fuel oxidation reaction due to 
high Surface area : volume ratio and better Fermi levels for redox reactions [39]. 
Nonetheless, metal NPs are generally unstable and lose their catalytic activity due to 
their irreversible aggregation during the electrochemical processes.

Consequently, appropriate methods are obliged to fix and restrict these metal 
NPs from aggregation, e.g., carbon nanotubes (CNTs) are the most extensively 
adopted provision in modern development. Though the evolution of PEMFCs is 
under commercialization process, obstructions including how the CNTs influence 
the catalytic action of the metal/CNTs and high material cost continue. The evolution 
of numerous profoundly dynamic catalysts with the economical price for fuel cell 
commercialization would be one of the notable researches in this domain. Because of 
the enhanced production and intended use of CNTs in consumer commodities, there 
is a necessity for evaluation of the implied toxicity of these nanoparticles.

3. Toxicity studies of carbon nanotubes in vivo

In vivo toxicity knowledge impersonated a vital role in risk evaluation. Those 
techniques can be applied to determine acute toxicity, chronic toxicity, developmen-
tal toxicity, genotoxicity, and reproductive toxicity. In vivo study is indispensable in 
the fields of medicine including cancer therapy. Several animal trials are performed 
to highlight the possible serious impressions of newly formed medicines and chemi-
cal substances on the human. In some trials, researchers attempt to simulate situa-
tions concerning humans (e.g., arthritis, cystic fibrosis, and cancer) in animals, to 
assess the capabilities of new medicines in treatment. To inscribe the potential side 
effects of CNTs on human health and environment, animal models have been used 
to investigate the toxicity of CNTs. Non-functionalized CNTs were instilled intratra-
cheally (IT) into animals, exhibited as pulmonary toxicity including inflammation 
and fibrotic responses due to the collection of raw CNTs in the lung airways [5].

These outcomes suggest that aerosol vulnerability of untreated CNTs in the 
workplace should be shunned to preserve human health. Notwithstanding, intratra-
cheal instillation of functionalized soluble CNTs has little inference to the toxicology 
profile. In the latest pilot study, asbestos-like pathogenicity was observed by Poland 
et al. [9] when the mesothelial lining of the body cavity of mice was exposed to large 
MWCNTs of 80–160 nm diameter and 10–50 nm length [9]. Yet the assumption of 
this finding for probable negative effects of CNTs on human health is inadequate. 
It should be heeded that the MWCNT materials utilized in this research were just 
sonicated in bovine serum albumin (BSA) without surface functionalization.

Furthermore, no noticeable toxic result was observed for smaller and tinier 
MWCNTs of 1–20 nm length and 10–14 nm diameter, appreciating that the toxicology 
characterizations of CNTs may vary between CNTs of varying sizes. It is deserv-
ing asserting that functionalized SWCNTs utilized in biomedical research have a 
length of 50–300 nm and diameter of 1–2 nm, which is completely distinct from the 
geometry of MWCNTs adopted by Poland et al. [9]. Gambhir and colleague applied 
covalently and noncovalently PEGylated SWCNTs to investigate the in vivo toxicity 
[3]. The PEGylated SWCNTs (−3 mg kg−1) were intravenously infused into mice 
and inspected over 4 months. Systolic blood pressure, total blood counts, and serum 
chemistry are registered every month. Necropsy and tissue histology analyses were 
executed at the completion of 4 months. The blood chemistry and histological investi-
gations were normal. Those experiments insinuate that functionalized biocompatible 
SWCNTs may be secured for in vivo biological reinforcements. An added investiga-
tion revealed related outcomes, confirming that PEGylated SWCNTs are gradually 
eliminated from the body after systemic administration in mouse models, without 
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manifesting apparent toxicity in the system [40]. Yang et al. acknowledged that 
SWCNTs dangled in Tween-80 manifested lesser toxicities to the experimented mice 
at a high dose of −40 mg kg−1, following intravenous inoculation for 3 months [41]. 
Toxicity may be due to the oxidative stress engendered by SWCNTs assembled in the 
liver and lungs of mice [42]. The toxicity published was dose-dependent and appeared 
to be less acceptable at lower doses. A current article by the same group unveiled that 
covalently PEGylated SWCNTs displayed an ultra-long blood dissemination half-life 
in rodents. Though the long-term toxicity of altered SWCNTs is still to be investigated, 
no critical toxicity has been recorded too at a higher dose of 24 mg kg−1.

4. Respiratory toxicity

A guinea pig was inoculated intratracheally with the soot of CNT. Breathing rate, 
tidal capacity, pulmonary obstruction, bronchoalveolar fluid, and protein content 
were estimated. The authors admitted that working with soot-carrying CNT was 
probably not a health jeopardy, but they did not present their pathological investiga-
tion [43]. Research in mice is conducted by Lam et al. [5], and they authenticated 
that SWCNT could be toxic if they entered the lungs; Warheit et al. [6] conveyed a 
related investigation in rats, reporting the granuloma development apparently due 
to the collection of CNT. Muller et al. analyzed carbon black, MWCNT, and asbestos 
influences, implanted in the trachea of rodents. Scholars demonstrated dose-
dependent inflammation, and granuloma production, increased considerably with 
MWCNT than with carbon black than asbestos. The early granulomatous reaction, 
abnormal acute inflammatory response, and progressive fibrosis were observed 
upon exposure of SWCNT in mice. Pharyngeal aspiration was used alternately of 
the intratracheal instillation used in the earlier investigations and rendered aerosol-
ization of fine SWNCT particles. Another contemporary study insinuates shifts in 
deposition prototype and pulmonary response when SWCNT is uniformly dispersed 
in the suspension antecedent to pharyngeal aspiration [44]. Current research insinu-
ates MWCNT immigration to the subpleural and associated pleural mononuclear 
cells and subpleural fibrosis in mice upon inhalation [45] and further admonition, 
and decent security models are prescribed when manipulating CNT. Research by 
[46] confirms the earlier reports; they characterized in vitro and in vivo stimula-
tion of collagen deposition, lung fibroblast propagation, and metalloproteinase 
intensified expression without inflammation when dispersed SWCNT was applied. 
Following inhalation, the different variety of nanoparticles may enter the central 
nervous system (CNS) [47] by a method called transcytosis [48]. The investiga-
tion unveiled that sniffed gold nanoparticles aggregate in the olfactory tubercle of 
rats and enter the cerebral cortex, lung, and the distinct organs such as the tongue, 
esophagus, kidney, spleen, aorta, septum, heart, and blood [49]. Those remarks 
vindicate that nanoparticles can infiltrate into the CNS via the olfactory venation if 
they are being in high doses in the air. Those nanoparticles may impact not only on 
the respiratory tract and neighboring organs but disseminated to remote organs.

5. Bio-distribution of carbon nanotubes

Knowledge of bio-distribution of CNTs following systemic inoculation inside 
animals is a pretty serious concern. Numerous investigators investigated in vivo 
bio-distribution and pharmacokinetic investigations in the preceding several years. 
Scientist adopted various CNT materials, different surface functionalization methods, 
and various tracking methodologies. Consequently, they got unsteady and seldom 
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ambiguous results. Singh et al. and Lacerda et al. utilized radiolabeled (1n-DTPA) 
SWCNTs and MWCNTs to describe bio-distribution [50, 51]. Exceptionally, follow-
ing intravenous inoculation of CNTs into mice, no uptake in the reticuloendothelial 
system (RES) such as the liver and spleen was witnessed. But, quick urinal removal 
of CNTs was witnessed. More than ninety five percent of CNTs were removed within 
3 hours. Those results are comparable to the in vivo response of minute particles yet 
distinct from that prognosticated of maximum nanoparticles with sizes exceeding the 
glomerular filtration threshold. To defend their conclusions, the researchers stated 
that the short diameters of CNTs were eliminated in urine notwithstanding they 
were large in length. However, this theory is unsettled. For example, for the protein 
bio-distribution and elimination function of quantum dots (QDs), published by Choi 
et al., it is observed that the 6 nm maximum size of spherical QDs including coatings 
was obliged to fast urinal elimination. Nevertheless, the QDs are much shorter than the 
diameter of SWCNT bundles (10–40 nm) or MWCNTs (20–80 nm) [51] practiced in 
those bio-distribution investigations. Therefore, the inscribed fast urinal excretion of 
CNTs requires validation. Various other labs have also assessed the bio-distribution of 
radiolabeled CNTs in rodents. Wang et al. noticed delayed urinal elimination and weak 
RES uptake in their primary research. But, consecutive articles by the same associa-
tion utilizing 14C-taurine-functionalized CNTs recorded steadfast liver accumulation 
of CNTs following intravenous inoculation [52]. Research carried out by McDevitt 
et al., utilizing antibody-conjugated radiolabeled CNTs functionalized by 1,3-dipolar 
cycloaddition, also confirmed delayed urinal excretion and high CNT uptake in the 
liver and spleen [53]. The bio-distribution investigations of radiolabeled, PEGylated 
SWCNTs unveiled uptake of SWCNT in RES organs without active clearance [54]. A 
substantial quantity of CNTs is persisting, even after 15 days. The radiolabel system is 
a proper technique to identify the bio-distribution of material but may commence to 
inaccurate outcomes, if excess-free radioisotopes in the radiolabeled CNT specimens 
are not separated effectively. The free radioisotopes are tiny particles that could be 
quickly excreted in urine following intravenous inoculation. Moreover, radiolabels 
could be undeviatingly released from CNTs in vivo and be regularly eliminated in the 
free form. Consequently, radiolabeling is not an excellent approach to investigate the 
elimination and long-term predestination of CNTs. The expert has discovered that 
photoluminescence is the inherent characteristics of CNTs. Cherukuri et al. used single 
semiconducting SWCNTs which show NIR photoluminescence, to trace nanotubes in 
rabbits [55]. Without obtaining complete bio-distribution data, the expert could not 
testify SWCNT photoluminescence signals in every organ besides the liver. Yang et al. 
carried out the research to comprehend the bio-distribution of 13C-fortified unfunc-
tionalized SWCNTs over a month utilizing isotope ratio mass spectroscopy [56]. 
The event conferred unusual nanotube uptake in the liver, lung, and spleen without 
notable elimination within 28 days. Raman spectroscopy has been applied to analyze 
the long-term predestination of PEGylated nanotubes in rodents. It was reported that 
most of the PEGylated SWCNTs were assembled in the liver and spleen following 
intravenous inoculation but gradually eliminated through the biliary pathway toward 
the feces within months. A low SWCNT Raman signal was also identified in the mouse 
kidney and bladder. It is unveiled that little portion of SWCNTs with short lengths was 
eliminated into the urine.

6. Toxicity of carbon nanotubes in vitro

In vitro, toxicological investigations are a highly significant means for nanotoxicol-
ogy, corresponding to in vivo investigations because of moderate expense, lessening 
ethical anxieties, and diminishing the number of laboratory animals needed for trial.



Perspective of Carbon Nanotubes

6

7. CNT toxicity investigations in animal cell lines

The subject of carbon nanotube toxicity is still unresolved even in cell culture 
experiments. Inhibition of HEK 293 cell proliferation following exposure to 
SWCNTs [10], MWCNTs, inducing cell cycle arrest and increasing apoptosis/
necrosis of human skin fibroblasts were examined by different research groups [57]. 
Nevertheless, it is worth stating that functionalized CNTs were not used in those 
investigations. Bottini et al. observed T-lymphocyte apoptosis evoked by oxidized 
MWCNTs [58]. Because simple oxidation, used in these studies, is not enough to 
disperse carbon nanotubes in saline and cell culture media since it is not a kind of 
biocompatible functionalization. Sayes et al. indicated that toxicity of CNTs was 
also dependent on the density of functionalization. Inconsiderable toxicity was 
observed for those functionalized with the high density of phenyl-SO3X groups 
[13]. These results are understandable because CNTs without proper functionaliza-
tion carry a highly hydrophobic surface. Consequently, they may aggregate in the 
cell culture medium. The aggregation of CNT channels to binding of several biolog-
ical species, including proteins, via hydrophobic interactions, provokes cell toxicity. 
Khalid et al. reported no toxicity of functionalized MWCNT to Saos cell lines up 
to the tested concentration of 1000 μg/mL [59]. Other factors like surfactants may 
also play a role in the noted toxicity of CNT in vitro. Extra surfactants, present in 
the CNT suspensions, are known to be highly toxic to cells [60]. The metal catalyst, 
used during the synthesis of CNTs, should also be examined as an important factor 
when the toxicity of carbon nanotubes is analyzed [61]. Furthermore, proper 
analytical methods must be hired in toxicity analysis to prevent interference of 
carbon nanotubes with the test reagents [62]. Davoren et al. reported concentra-
tion-dependent cytotoxicity of SWCNT on a lung carcinoma cell line (A549) [63]. 
Another study, led by Sharma, unveiled that SWCNT induced oxidative stress in rat 
lung cells [64]. Herzog et al. reported the same oxidative stress linked to alterations 
in primary bronchial epithelial cells and A549 cells, but the study also revealed that 
the reaction is strongly dependent on the dispersion medium used [65]. Pulskamp 
used two cells lines (human A549 and rat macrophages NR8383) and tested with 
CNTs and revealed, as oxidative stress was provoked to these cell lines. However, 
when purified SWCNT corresponded with commercial CNT, it is unveiled that 
all the biological consequences are associated with the metal traces. There is a 
complicated result between WST (2-(4-iodopheny1)-3-(4-nitropheny1)-5-(2,4-
disulfopheny1)-2H-tetrazolium, monosodium salt) and MTT (344, 5-dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide) viability assays. These dyes depend 
on the mitochondrial dehydrogenase activity [66]. The modifications can only be 
described based on associations of CNT with non-soluble formazan crystals in 
MTT. That is why suitable assay methods and well-characterized materials are the 
most important requirements for in vitro toxicity assays of carbon nanotubes.

8. CNT toxicity investigations in bacteria and yeast cells

As an option to animal cell lines, bacteria and yeast can be a relevant model 
for studying how single-celled microorganisms react to the environmental 
stressors such as CNTs [67]. Copious toxicity mechanisms have been suggested 
for CNT including interruption/penetration of the cell envelope, oxidation of 
cell ingredients, the arrest of transmembrane electron transfer, and generation 
of secondary products such as reactive oxygen species (ROS) or dissolved heavy 
metal ions [68]. Toxicity of a CNT is depending on its structure along with its 
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geometry and surface functionalization. Various researches have shown that 
adequately functionalized, serum-stable CNTs are innoxious to animal cells, 
whereas CNTs without functionalization seemed critically toxic to human or 
animal cell lines at the moderate dosage [2]. The SWCNT displays a potent 
antimicrobial response for both suspended and deposited bacteria and inter-
rupts the accumulation of bacterial films. The immediate interaction among the 
SWCNT and bacteria is apparently the central cause to induce cell death [68]. 
Well-dispersed individual SWCNT is more toxic than agglomerates due to greater 
physical puncturing of bacterial membranes and impairs the cell integrity [69]. 
The CNT bacteria interplay is determined by surface functionalization and 
length of CNT. It may govern the toxic effect also. A negatively charged or neutral 
SWCNT functionalized with -OH or -COOH aggregates more efficiently with 
bacteria and diminishes bacteria viability as contrasted to the positively charged 
SWCNTs functionalized with -NH2 [70]. Likewise, longer SWCNTs exhibited 
concentration and  time-dependent toxicity to bacteria, whereas short SWCNTs 
were limited toxically as they aggregate themselves [71]. The purity of SWCNTs 
may also influence bacterial toxicity. Pure SWCNTs were observed to be less toxic 
than SWCNTs with higher metal content due to glutathione oxidation following 
contact [72]. Additionally, greater ionic strength suspensions, such as phosphate 
buffered saline (PBS) or brain heart infusion broth, also lessen SWCNT toxicity 
due to decreased intensity of interactions between SWCNT and cells, compared 
to low ionic strength suspensions (deionized water or saline). Likewise, a film 
with natural organic matter (NOM) limits SWCNT toxicity, notwithstand-
ing diminished aggregation [73]. Other studies unveiled that SWCNT reduces 
enzyme activity and microbial biomass at concentration 300 mg kg−1 and above 
[74]. As it is clear that SWCNT provokes bacterial death, a surface coating with 
SWCNT would decrease biofilm expansion in both real and industrial settings 
[75]. The MWCNT appears to be runty toxic to bacteria as contrasted to SWCNT 
[76]. The decreased toxicity may be due to minor interactions among bacteria 
and MWCNT. The limited interaction might be due to the greater rigidity and 
presumably inferior van der Waal’s forces at the MWCNT surface. Thin MWCNT 
with less diameter exhibits greater toxicity to bacteria corresponding to larger 
ones [77]. When the consequence of the length of MWCNT was estimated, 
shorter MWCNTs were extra toxic to Pseudomonas fluorescens compared to long 
MWCNT [78]. When MWCNTs are uncapped, debundled, and dispersed in 
solution, the toxicity to bacteria raised [79]. The purity of CNT has also been 
vindicated to influence the toxicity in microorganisms. Furthermore, when 
the toxicity within pristine and purified MWCNT was studied in two bacterial 
strains (Escherichia coli and Cupriavidus metallidurans), no variation in toxicity of 
MWCNT was perceived between the two forms [80]. Heating refinement of CNTs 
presumably has the inadequate capability to modify the surface corresponding 
to acid processing, consequently sustaining toxicity of the raw form. However, 
in both the investigations, gum arabic (GA, 0.25 wt%) was used to suspend 
CNTs, which might have altered the surface, influencing toxicity. Meanwhile in 
soil toxicity assay, MWCNT, reduced microbial biomass and enzyme activity at 
concentration 5000 mg kg−1 [81]. In a separate research, the conidia of the fungi 
Paecilomyces fumosoroseus were incubated for 865 hours with 0.2 mg L−1 raw and/
or carboxylated MWCNT. Mycelium growth on solid medium was witnessed fol-
lowing incubation. Association among the fungi and CNTs had no notable effect 
on germination and biomass production, but the loss of biomass was witnessed 
following exposure to raw MWCNT for 865 hours [82]. Mechanical impacts of 
CNT, as observed in bacteria, might have caused the effects.
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9. Ecotoxicity of carbon nanotubes

As the production and widespread application of CNTs in industrial and 
customer products are progressing, the release of this nanomaterial into the envi-
ronment too will scale up. Many scientific reviews have evaluated the sources, 
behavior, fate, and the mechanisms of toxicity of carbon nanomaterial. Maximum 
of these assessments apprehended that additional research is obligatory in the field 
of nano-ecotoxicology (Table 1).

Abbreviations: LOEC: Least observable effect concentration, EC 50: Effective concentration 50, NOEC: No observed 
effect concentration, NOM: Natural organic matter.

Table 1. 

Summary of the studies related to eco-toxicity of the CNTs on different organisms [82–98].
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10. Conclusions

Toxicity of carbon nanomaterials is an essential concern in the modern world 
for the scientific community, environmentalists, and governments. The chances of 
exposure to the environment are more like the application of carbon nanomaterial 
which is increasing every day. Some research shows the different toxicity patterns 
for the materials when it is exposed to living cells in vitro or in vivo, whereas other 
studies say that the adequately functionalized bearing carboxylic or hydroxyl group 
and serum-stable CNTs are safe for living cells. I want to conclude my discussion 
by highlighting the factors involved in toxicity and the toxicity mechanism. The 
toxicity of the nanomaterials depends on many factors including functionaliza-
tion, catalyst, size, shape, dimensions, dispersion, and methods used for detecting 
toxicity. The pristine carbon nanotubes are more damaging to the cells than the 
functionalized one. The covalently functionalized CNTs are more compatible for 
the cells than non-covalent functionalization. The catalyst used during the produc-
tion of the nanotubes like platinum or iron also contributes to the toxicity of the 
cells. Hence it is imperative to differentiate the toxicity of carbon nanotubes and 
catalyst. Dispersion in the high ionic strength solvent like PBS makes the CNTs 
more compatible with living cells compared to the less ionic strength solvent like 
deionized water. Hence it is always recommended to prepare the solution in PBS 
or other high ionic strength solvents for better compatibility and less toxicity. 
The short and broken CNTs with a small diameter are observed to be damaging 
to bacterial cells because of physical puncturing. In vivo studies help us to under-
stand the acute toxicity, chronic toxicity, developmental toxicity, genotoxicity, 
and reproductive toxicity of CNTs in laboratory animals. No critical acute toxicity, 
chronic toxicity, developmental toxicity, genotoxicity, and reproductive toxicity are 
observed following intravenous or intratracheal instillation of CNTs. Adequately 
functionalized CNTs are biocompatible and promptly eliminated through urine 
or biliary pathway following intravenous inoculation. Pharmacokinetic studies 
of CNTs show very less or no uptake of CNTs to the reticuloendothelial systems 
including the liver, lung, and spleen. Various mechanisms are also listed to study the 
toxicity of the CNTs to the living cells which includes oxidation of cell components, 
arrest of electron transport chain, reactive oxygen species, and physical puncturing 
of the cell. Further studies need to be conducted in the field of eco-toxicity of CNTs 
and validation of the toxicological data for the safety of aquatic and aerial animals. 
These studies shall help the public regulatory organization to frame a rule for ensur-
ing the safety of this modern engineered nanoparticle.
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