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Abstract

The main objective of this chapter is to introduce a novel memory-dependent
derivative (MDD) model based on the boundary element method (BEM) for solving
transient three-temperature (3T) nonlinear thermal stress problems in functionally
graded anisotropic (FGA) smart structures. The governing equations of the consid-
ered study are nonlinear and very difficult if not impossible to solve analytically.
Therefore, we develop a new boundary element scheme for solving such equations.
The numerical results are presented highlighting the effects of the MDD on the
temperatures and nonlinear thermal stress distributions and also the effect of
anisotropy on the nonlinear thermal stress distributions in FGA smart structures.
The numerical results also verify the validity and accuracy of the proposed meth-
odology. The computing performance of the proposed model has been performed
using communication-avoiding Arnoldi procedure. We can conclude that the results
of this chapter contribute to increase our understanding on the FGA smart struc-
tures. Consequently, the results also contribute to the further development of
technological and industrial applications of FGA smart structures of various
characteristics.

Keywords: boundary element method, memory-dependent derivative,
three-temperature, nonlinear thermal stresses, FGA smart structures

1. Introduction

Smart materials, which are also called intelligent materials, are engineered
materials that have the ability to respond to the changes that occur around them in a
controlled fashion by external stimuli, such as stress, heat, light, ultraviolet, mois-
ture, chemical compounds, mechanical strength, and electric and magnetic fields.
We can simply define smart materials as materials which adapt themselves as per
required condition. The history of the discovery of these materials dates back to the
1880s when Jacques and Pierre Curie noticed a phenomenon that pressure generates
electrification around a number of minerals such as quartz and tourmaline, and this
phenomenon is called piezoelectric effect, so the piezoelectric materials are the
oldest type of smart materials, which are utilized extensively in the fabrication of
various devices such as transducers, sensors, actuators, surface acoustic wave
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devices, frequency control, etc. There are a lot of smart material types like
piezoelectric materials, thermochromic pigments, shape memory alloys,
magnetostrictive, shape memory polymers, hydrogels, electroactive polymers and
bi-component fibers, etc.

Anisotropic smart structures (ASSs) are getting great attention of researchers
due to their applications in textile, aerospace, mass transit, marine, automotive,
computers and other electronic industries, consumer goods applications, mechani-
cal and civil engineering, infertility treatment, micropumps, medical equipment
applications, ultrasonic micromotors, microvalves and photovoltaics, rotating
machinery applications, and much more [1–12].

The classical thermoelasticity (CTE) theory of Duhamel [13] and Neumann [14]
has two shortcomings based on parabolic heat conduction equation of this theory:
the first does not involve any elastic terms, while the second has infinite propaga-
tion speeds of thermoelastic waves. In order to overcome the first shortcoming, Biot
[15] proposed the classical coupled thermoelasticity (CCTE). But CTE and CCTE
have the second shortcoming. So, several generalized thermoelasticity theories have
been developed to overcome the second shortcoming of CTE. Among of these
theories are Lord and Shulman (LS) [16], Green and Lindsay (GL) [17], and Green
and Naghdi [18, 19] theories of thermoelasticity with and without energy dissipa-
tion, dual-phase-lag thermoelasticity (DPLTE) [20, 21] and three-phase-lag
thermoelasticity (TPLTE) [22]. Although thermoelastic phenomena in the majority
of practical applications are adequately modeled with the classical Fourier heat
conduction equation, there are an important number of problems that require
consideration of nonlinear heat conduction equation. It is appropriate in these cases
to apply the nonlinear generalized theory of thermoelasticity; great attention has
been paid to investigate the nonlinear generalized thermoelastic problems by using
numerical methods [23–34]. Fahmy [35–39] introduced the mathematical founda-
tions of three-temperature (3T) field to thermoelasticity.

The fractional calculus is the mathematical branch that used to study the
theory and applications of derivatives and integrals of arbitrary non-integer order.
This branch has emerged in recent years as an effective tool for modeling and
simulation of various engineering and industrial applications [40, 41]. Due to the
nonlocal nature of fractional order operators, they are useful for describing the
memory and hereditary properties of various materials and processes. Also, the
fractional calculus has drawn wide attention from the researchers of various
countries in recent years due to its applications in solid mechanics, fluid dynam-
ics, viscoelasticity, heat conduction modeling and identification, biology, food
engineering, econophysics, biophysics, biochemistry, electrochemistry, electrical
engineering, finance and control theory, robotics and control theory, signal and
image processing, electronics, electric circuits, wave propagation, nanotechnol-
ogy, etc. [42–44].

Several mathematics researchers have contributed to the history of fractional
calculus, where Euler mentioned interpolating between integral orders of a
derivative in 1730. Then, Laplace defined a fractional derivative by means of an
integral in 1812.

Lacroix presented the first formula for the fractional order derivative appeared
in 1819, where he introduced the nth derivative of the function y ¼ xm as follows:

dn

dxn
¼

Γ mþ 1ð Þ

Γ m‐nþ 1ð Þ
xm‐n (1)

Liouville supposed that dv

dxv eaxð Þ ¼ aveax for v>0 to get the following fractional
order derivative:
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dvx‐a

dxv
¼ �1ð Þv

Γ aþ vð Þ

Γ að Þ
x‐a‐v (2)

By using Cauchy’s integral formula for complex valued analytical functions,
Laurent defined the integration of arbitrary order v>0 as

cD
v
xf xð Þ ¼ cD

m‐ρ
x f xð Þ ¼

dm

dxm
1

Γ ρð Þ

ðx

c
x‐tð Þρ‐1f tð Þdt

� �

, 0< ρ≤ 1 (3)

where cD
v
x denotes differentiation of order v of the function f along the x-axis.

Cauchy presented the following fractional order derivative:

f αð Þ
þ ¼

ð

f τð Þ
t� τð Þ�α�1

Γ �að Þ
dτ (4)

In 1967, the Italian mathematician Caputo presented his fractional derivative of
order α>0 as

Dα
∗
f tð Þ ¼

1
Γ m� αð Þ

ðt

0

f mð Þ
τð Þ

t� τð Þαþ1�m
dτ,m� 1< α<m, α<0 (5)

Diethelm [45] has suggested the Caputo derivative to be in the following form:

Dζ
af τð Þ ¼

ðτ

a
Kζ τ‐ξð Þ f mð Þ

ξð Þ dξ (6)

where f(m) is the mth order derivative and m is an integer such that m‐1< ζ≤m

Kζ τ‐ξð Þ ¼
τ‐ξð Þm‐ζ‐1

Γ m‐ζð Þ
(7)

Wang and Li [46] have introduced a memory-dependent derivative (MDD)

Dζ
ωf τð Þ ¼

1
ω

ðτ

τ‐ω

Kζ τ‐ξð Þ f mð Þ
ξð Þ dξ (8)

where the first-order ζ ¼ 1ð Þ of MDD for a differentiable function f τð Þ can be
expressed as

Dωf τð Þ ¼
1
ω

ðτ

τ‐ω

K τ‐ξð Þ f 0 ξð Þ dξ (9)

Based on several practical applications, the memory effect needs weight
0≤K τ‐ξð Þ< 1 for ξ∈ τ‐ω, τ½ �, so the MDD magnitude Dωf τð Þ is usually smaller than
f 0 τð Þ, where the time delay ω>0ð Þ and the kernel function (0≤K τ‐ξð Þ≤ 1 for
ξ∈ τ‐ξ, τ½ �) can be chosen arbitrarily on the delayed interval τ‐ω, τ½ �, the practical
kernel functions are 1, 1� τ‐ξð Þ½ � and 1� τ‐ξ

ω

� �p
, p ¼ 1

4 , 1, 2, etc. These functions are
monotonically increasing with K ¼ 0 for the past time τ‐ξ and K ¼ 1 for the present
time τ. The main feature of MDD is that the real-time functional value depends also
on the past time τ‐ξ‐τ½½ . So, Dω depends on the past time (nonlocal operator), while
the integration does not depend on the past time (local operator).
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As a special case K τ‐ξð Þ � 1, we have

Dωf τð Þ ¼
1
ω

ðτ

τ�ω

f 0 ξð Þdξ ¼
f τð Þ � f τ� ωð Þ

ω
! f 0 τð Þ (10)

The above equation shows that the common derivative d
dτ is the limit of Dω as

ω ! 0. That is,

Dωf τð Þ≤
∂f

∂τ

�

�

�

�

�

�

�

�

¼ lim
ω!0

f τ þ ωð Þ � f τð Þ

ω
(11)

Now, the boundary element method (BEM) [47–80] is widely adopted for solving
several engineering problems due to its easy implementation. In the BEM, only the
boundary of the domain needs to be discretized, so it has a major advantage over
other methods requiring full domain discretization [81–87] such as finite difference
method (FDM), finite element method (FEM), and finite volume method (FVM) in
engineering applications. This advantage of BEM over domain methods has signifi-
cant importance for modeling of nonlinear generalized thermoelastic problems which
can be implemented using BEM with little cost and less input data. Previously scien-
tists have proven that FEM covers more engineering applications than BEM which is
more efficient for infinite domain problems. But currently BEM scientists have
changed their thinking and vision on BEM, where the BEM researchers developed the
BEM technique for solving inhomogeneous and nonlinear problems involving infinite
and semi-infinite domains by using a lot of software like FastBEM and ExaFMM.

The main objective of this chapter is to introduce a novel memory-dependent
derivative model for solving transient three-temperature nonlinear thermal stress
problems in functionally graded anisotropic (FGA) smart structures. The governing
equations of the considered model are nonlinear and very difficult if not impossible
to solve analytically. Therefore, we develop a new efficient boundary element
technique for solving such equations. Numerical results show the effects of MDD on
the three-temperature distributions and the influence of MDD and anisotropy on
the nonlinear thermal stresses of FGA smart structures. Also, numerical results
demonstrate the validity and accuracy of the proposed model.

A brief summary of the chapter is as follows: Section 1 introduces the back-
ground and provides the readers with the necessary information to books and
articles for a better understanding of smart material problems, memory-dependent
derivative history, and their applications. Section 2 describes the physical modeling
of memory-dependent derivative problems of three-temperature nonlinear thermal
stresses in FGA structures. Section 3 outlines the BEM implementation for obtaining
the temperature field of the considered problem. Section 4 outlines the BEM imple-
mentation for obtaining the dispacement field of the considered problem. Section 5
introduces computing performance of the proposed model. Section 6 presents the
new numerical results that describe the effects of memory-dependent derivative
and anisotropy on the problem’s field variations. Lastly, Section 7 outlines the
significant findings of this chapter.

2. Formulation of the problem

With reference to a Cartesian system x1, x2, x3ð Þ with a configuration R bounded
by a closed surface S as shown in Figure 1.

4

Advanced Functional Materials



The governing equations for the transient three-temperature nonlinear thermal
stresses problems of FGA smart structures with memory-dependent derivatives can
be written as [35].

σij,j þ ρFi ¼ π ̈ui (12)

Di,i ¼ 0 (13)

where

σij ¼ xþ 1ð Þm Cijkleδij‐βab Tα‐Tα0 þ τ1 _Tα

� �� �

(14)

Di ¼ xþ 1ð Þm eijkεjk þ f ikEk

� �

εij ¼
1
2

ui,j þ u j,i
� �

, (15)

where σij, Fi, εij, εijk, ui, and ρ are the force stress tensor, mass force vector, strain
tensor, alternate tensor, displacement vector, and density, respectively,

Cijkl Cijkl ¼ Cklij ¼ Cjikl

� �

is the constant elastic moduli, e is the dilatation, βij βij ¼ βji

	 


are the stress-temperature coefficients, Di is the electric displacement, eijk is the
piezoelectric tensor, f ik is the permittivity tensor, and Ek is the electric field vector.

The two-dimensional three-temperature (2D-3T) radiative heat conduction
equations can be expressed as

ce
∂Te r; τð Þ

∂τ
�

1
ρ
∇ Ke∇Te r; τð Þ½ � ¼ �Wei Te � Tið Þ �Wep Te � Tp

� �

(16)

ci
∂Ti r; τð Þ

∂τ
�

1
ρ
∇ Ki∇Ti r; τð Þ½ � ¼ Wei Te � Tið Þ (17)

cpT
3
p

∂Tp r; τð Þ

∂τ
�

1
ρ
∇ Kp∇Tp r; τð Þ
� �

¼ Wep Te � Tp

� �

(18)

where e, i,∧ p denote electron, ion, and phonon, respectively; ce, ci, cp
� �

,
Ke,Ki,Kp

� �

, and Te,Ti,Tp

� �

are specific heat capacities, conductive coefficients,

Figure 1.
Computational domain of the considered smart structure.
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and temperature functions, respectively; Wei is the electron-ion coefficient; and
Wep is the electron-phonon coefficient.

3. BEM solution of temperature field

This section concerns using a boundary element method to solve the tempera-
ture model.

The above 2D-3T radiative heat conduction Eqs. (16)-(18) can be expressed in
the context of nonlinear thermal stresses of FGA smart structures as in [36].

∇ δ1jKα þ δ2jK
∗

α

� �

∇Tα r, τð Þ
� �

� Ẃ r, τð Þ ¼ cαρδ1δ1jDωα
Tα r, τð Þ (19)

which can be written in the following form:

LabTα r, τð Þ ¼ f ab (20)

where

Lab ¼ ∇ δ1jKα þ δ2jK
∗

α

� �

∇
� �

(21)

f ab ¼ Ẃ r, τð Þ þ Ẃ r, τð Þ (22)

where

Ẃ r, τð Þ ¼

ρWei Te � Tið Þ þ ρWer Te � Tp

� �

þ Ẃ, α ¼ e, δ1 ¼ 1

�ρWei Te � Tið Þ þ Ẃ, α ¼ i, δ1 ¼ 1

�ρWer Te � Tp

� �

þ Ẃ, α ¼ p, δ1 ¼ T3
p

8

>

>

<

>

>

:

(23)

Ẃ r, τð Þ ¼ F r, τð Þ �
δ2jKα

ωα

ðτ

τ�ωα

K τ � ξð Þ
∂

∂ξ
∇

2Tα r, τð Þ
� �

dξ

þ
ρCαδ1δ1j

ωα

ðτ

τ�ωα

K τ � ξð Þ
∂

∂ξ
Tα r, τð Þð Þdξ

þ
ρCα τ0 þ δ1jτ2 þ δ2j

� �

ωα

ðτ

τ�ωα

K τ � ξð Þ
∂
2

∂ξ2
Tα r, τð Þð Þdξ (24)

F r, τð Þ ¼ βabTα0 Å δ1júa,b þ τ0 þ δ2j
� �

úa,b
h i

(25)

and

Wei ¼ ρAeiT
�2=3
e ,Wer ¼ ρAerT

�1=2
e ,Kα ¼ AαT

5=2
α , α ¼ e, i,Kp ¼ ApT

3þB
p (26)

where δij, i, j ¼ 1, 2ð Þ, ωα 0ð Þ α ¼ e, i ∧ pð Þ, and K τ � ξð Þ are the Kronecker delta,
delay times, and kernel function, respectively.

The total energy can be expressed as

P ¼ Pe þ Pi þ Pp0Pe ¼ ceTe,Pi ¼ ciTi,Pp ¼
1
4
cpT

4
p (27)

Initial and boundary conditions can be expressed as

Tα x, y, 0ð Þ ¼ T0
α x, yð Þ ¼ g1 x, τð Þ (28)
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α

∂Tα

∂n

�

�

�

�

Γ1

¼ 0, α ¼ e, i,Tp

�

�

Γ1
¼ g2 x, τð Þ (29)

α

∂Tα

∂n

�

�

�

�

Γ2

¼ 0, α ¼ e, i, p (30)

By using the fundamental solutions T ∗

α that satisfies the following differential
equation:

LabT
∗

α ¼ f ab (31)

Now, by implementing the technique of Fahmy [35], we can write (19) as

CTα ¼
D

α

ðτ

O

ð

S
Tαq

∗
‐T ∗

α q
� �

dSdτ þ
D

α

ðτ

O

ð

R
bT ∗

α dRdτ þ

ð

R
Ti
αT

∗

α

�

�

τ¼0dR (32)

which can be written in the absence of heat sources as follows:

CTα ¼

ð

S
Tαq

∗ � T ∗

α q
� �

dS‐

ð

R

α

D

∂T ∗

α

∂τ
Tα dR (33)

In order to transform the domain integral in (33) to the boundary, we approxi-
mate the temperature time derivative as

∂Tα

∂τ
ffi

X

N

i¼1

f j rð Þ ja j τð Þ (34)

where f j rð Þ are known functions and a j τð Þ are unknown coefficients.

We assume that T
_ j

α is a solution of

∇
2T
_ j

α ¼ f j (35)

Then, Eq. (33) leads to the following boundary integral equation

CTα ¼

ð

S
Tαq

∗
‐T ∗

α q
� �

dSþ
X

N

i¼1

a j τð ÞD�1 CT
_ j

α‐

ð

S
T j
αq

∗
‐q̂ jT ∗

α

� �

dS

� �

(36)

where

q̂ j ¼ ‐α

∂T
_ j

α

∂n
(37)

and

a j τð Þ ¼
X

N

i¼1

f ‐1ji
∂Tα ri, τð Þ

∂τ
(38)

where f�1
ji are the coefficients of F�1 which are defined as [58].

Ff gji ¼ f j rið Þ (39)
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By discretizing Eq. (36) and using Eq. (38), we get [35].

C _Tα þHTα ¼ GQ (40)

where Q is the heat flux vector and H and G are matrices.
The diffusion matrix can be defined as

C ¼ � HT
_

α �GQ
_

h i

F�1D�1 (41)

where

T
_

n o

ij
¼ T

_ j
xið Þ (42)

Q
_

n o

ij
¼ q̂ j xið Þ (43)

To solve numerically Eq. (41), the functions Tα and q were interpolated as

Tα ¼ 1� θð ÞTm
α þ θTmþ1

α (44)

q ¼ 1� θð Þqm þ θqmþ1 (45)

where 0≤0 ¼ τ�τm

τmþ1
‐τm

≤ 1 determines the practical time τ of the current time step.
By time differentiation of Eq. (44), we obtain

_Tα ¼
dTα

dθ

dθ

dτ
¼

Tmþ1
α ‐Tm

α

τmþ1
‐τm

¼
Tmþ1
α ‐Tm

α

Δτm
(46)

By substitution from (44)–(46) into (40), we get

C

Δτm
þ θH

� �

Tmþ1
α � θGQmþ1 ¼

C

Δτm
‐ 1� θð ÞH

� �

Tm
α þ 1� θð ÞGQm (47)

By considering the initial and boundary conditions, we can write the following
system of equations

aX ¼ b (48)

We apply an explicit staggered algorithm to solve the system (48) and obtain the
temperature in terms of the displacement field.

4. BEM solution of displacement field

By using the weighted residual method, we can write (12) and (13) in the
following form:

ð

R
σij,j þUi

� �

u ∗

i dR ¼ 0 (49)

ð

R
D,ið ÞΦ ∗

i dR ¼ 0 (50)

where
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Ui ¼ ρFi‐ρ€ui, (51)

where u ∗
i and Φ ∗

i are weighting functions and ui and Φi are approximate
solutions.

Now, we assume the following boundary conditions:

ui ¼ ui on S1 (52)

λi ¼ σijn j ¼ λi on S2 (53)

Φ ¼ Φ on S5 (54)

Q ¼
∂Φ

∂n
¼ Q on S6 (55)

By integration by parts for the first term of Eqs. (49) and (50), we have

�

ð

R
σij u

∗

i,j dRþ

ð

R
Ui u

∗

i dR ¼ �

ð

S2

λi u
∗

i dS (56)

�

ð

R
DΦ ∗

i,i dR ¼ �

ð

S6

Q iΦ
∗

i dS (57)

Based on Huang and Liang [88], the boundary integral equation can be
expressed as

�

ð

R
σij,j u

∗

i dRþ

ð

R
Ui u

∗

i dR�

ð

R
DΦ ∗

i,i dR ¼

ð

S2

λi � λi
� �

u ∗

i dSþ

ð

S1

ui � uið Þλ ∗

i dS

þ

ð

S6

Q i � Q i

� �

Φ ∗

i dS

þ

ð

S5

Φi �Φi

� �

Q ∗

i dS

(58)

By integrating by parts for the left-hand side of (58), we get

�

ð

R
σij ε

∗

ij dRþ

ð

R
Ui u

∗

i dR�

ð

R
DΦ ∗

i,i dR ¼ �

ð

S2

λiu
∗

i dS�

ð

S1

λiu
∗

i dS�

þ

ð

S1

ui � uið Þλ ∗

i dS�

ð

S6

Q iΦ
∗

i dS

�

ð

S5

Q iΦ
∗

i dSþ

ð

S5

Φi �Φi

� �

Q ∗

i dS

(59)

Based on Eringen [89], the elastic stress can be expressed as

σij ¼ ijkl εkl, (60)

where

ijkl ¼ klij (61)

Hence, Eq. (59) can be rewritten as
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�

ð

R
σij ∗ εij dRþ

ð

R
Ui u

∗

i dR�

ð

R
DΦ ∗

i,i dR ¼ �

ð

S2

λi u
∗

i dS�

ð

S1

λi u
∗

i dS

þ

ð

S1

ui � uið Þλ ∗

i dS�

ð

S6

Q iΦ
∗

i dS

�

ð

S5

Q iΦ
∗

i dSþ

ð

S5

Φi �Φi

� �

Q ∗

i dS

(62)

By integration by parts again, we obtain

ð

R
σ ∗

ij,iuidR ¼ �

ð

S
u ∗

i λi dS�

ð

S
Φ ∗

i Q i dSþ

ð

S
λ ∗

i ui dSþ

ð

S
Q ∗

i Φi dS (63)

The weighting functions of Ui ¼ Δn and Vi ¼ 0 along e1 can be obtained as
follows:

σ ∗

1j,j þ Δne1 ¼ 0 (64)

According to Dragos [90], the fundamental solution can be written as

u ∗

i ¼ u ∗

1i e1,Φ
∗

i ¼ Φ ∗

1i e1, λ
∗

i ¼ λ ∗

1i e1, Q
∗

i ¼ Q ∗

1i e1 (65)

The weighting functions of Ui ¼ 0 and V i ¼ Δn along e1 can be written as
follows:

σ ∗

ij,j ¼ 0 (66)

Based on Dragos [90], the fundamental solution can be obtained analytically as

u ∗

i ¼ u ∗ ∗

1i e1,Φ ∗

i ¼ Φ ∗ ∗

1i e1, λ ∗

i ¼ λ ∗ ∗

1i e1, Q ∗

i ¼ Q ∗ ∗

1i e1 (67)

By using the weighting functions of (65) and (67) into (63), we have

Cn
1iu

n
i ¼ �

ð

S
λ ∗

1i ui dS�

ð

S
Q ∗

1i Φi dSþ

ð

S
u ∗

1i λi dSþ

ð

S
Φ ∗

1i Q i dS (68)

Cn
1iω

n
i ¼ ‐

ð

S
λ ∗ ∗

1i ui dS�

ð

S
Q ∗ ∗

1i Φi dSþ

ð

S
u ∗ ∗

1i λi dSþ

ð

S
Φ ∗ ∗

1i Q i dS (69)

Thus, we can write

Cnqn ¼ �

ð

S
p ∗ qdSþ

ð

S
q ∗ pdSþ

ð

S
d ∗

Φdsþ

ð

S
f ∗ ∂Φ

∂n
dS (70)

where

Cn ¼
C11 C12

C21 C22

� �

, q ∗ ¼

u ∗
11 u ∗

12 0

u ∗
21 u ∗

22 0

u ∗ ∗
31 u ∗ ∗

32 0

2

6

4

3

7

5
, p ∗ ¼

λ ∗

11 λ ∗

12 0

λ ∗

21 λ ∗

22 0

λ ∗ ∗

31 λ ∗ ∗

32 0

2

6

4

3

7

5
, q ¼

u1

u2

ω3

2

6

4

3

7

5
,

p ¼

λ1

λ

μ3

2

6

4

3

7

5
, d ∗ ¼

d ∗

1

d ∗

2

0

2

6

4

3

7

5
, f ∗ ¼

f ∗

1

f ∗

2

0

2

6

4

3

7

5
(71)
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In order to solve (70) numerically, we suppose the following definitions:

q ¼ ψ q j, p ¼ ψ p j,Φ ¼ ψ0Φ
j,
∂Φ

∂n
¼ ψ0

∂Φ

∂n

� � j

(72)

Substituting from (72) into (70) and discretizing the boundary, we obtain

Cn qn ¼
X

Ne

j¼1

�

ð

Γ j

p ∗ ψ dΓ

" #

q j þ
X

Ne

j¼1

ð

Γ j

q ∗ ψ dΓ

" #

p j þ
X

Ne

j¼1

ð

Γ j

d ∗
ψ0 dΓ

" #

Φ j

þ
X

Ne

j¼1

ð

Γ j

f ∗
ψ0 dΓ

" #

∂Φ

∂n

� � j

(73)

Equation after integration can be written as

Ciqi ¼ �
X

Ne

j¼1

̂
ij
q j þ

X

Ne

j¼1

̂
ij
p j þ

X

Ne

j¼1

̂
ij
Φi þ

X

Ne

j¼1

̂
ij ∂Φ

∂n

� � j

(74)

By using the following representation:

ij ¼
̂

ij
if i 6¼ j

̂
ij
þ Ci if i ¼ j

(

(75)

Thus, we can write (74) as follows:

X

Ne

j¼1

ij q j ¼
X

Ne

j¼1

̂
ij
p j þ

X

Ne

j¼1

̂
ij
Φ j þ

X

Ne

j¼1

̂
ij ∂Φ

∂n

� � j

(76)

The global matrix equation for all i nodes can be expressed as

 ¼ þ Θþ  (77)

where  is the displacement vector,  is the traction vector, Θ is the electric
potential vector, and  is the electric potential gradient vector.

Substituting the boundary conditions into (77), we obtain the following system
of equations:

 ¼  (78)

We apply an explicit staggered algorithm to solve the system (78) and obtain the
temperature and displacement fields as follows:

1.From Eq. (48) we obtain the temperature field in terms of the displacement
field.

2.We predict the displacement field and solve the resulted equation for the
temperature field.

3.We correct the displacement field using the computed temperature field for
Eq. (78).
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An explicit staggered algorithm based on communication-avoiding Arnoldi as
described in Hoemmen [91] is very suitable for efficient implementation in Matlab
(R2019a) with the aim of specifically improving its performance for the solution of
the resulting linear algebraic systems.

5. Computational performance of the problem

According to Fahmy [35], the computer performance with simulation can be
computed based on account and communication process, elements underlying the
hardware and functional computation. The main objective of our proposed technique
during simulation process is to use the preconditioners which are efficient to improve
the overall CPU utilization of the cluster, accelerate the iterative method, and reduce
the input/output and the interprocessor communication costs. Also, Fahmy [35]
compared the communication-avoiding Krylov methods that are based on the s-step
Krylov methods such as communication-avoiding generalized minimal residual
(CA-GMRES) of Saad and Schultz [92], communication-avoiding Arnoldi (CA-
Arnoldi) of the Arnoldi [93] and communication-avoiding Lanczos (CA-Lanczos) of
Lanczos [94], with their corresponding standard Krylov methods. CA-Arnoldi which
is also called Arnoldi (s, t) algorithm is different from standard Arnoldi (s) s, t ¼ 1ð Þ,
where s is the number of inner iteration steps and t is the number of outer iteration
steps. According to [35], the CA-Arnoldi has numerical stability, convergence, and
performance due to the implementation of algorithm shown in Figure 2, which is
based on the QR factorization update and block classical Gram-Schmidt (block CGS)
approach or block modified Gram-Schmidt (block MGS) approach where

Vk ¼ vskþ1, vskþ2, … , vskþs½ � (79)

Figure 2.
CA-Arnoldi iteration algorithm.
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and

Qk ¼ Q0, Q 1, … , Q k�1½ � (80)

The generalized minimal residual (GMRES) method of Saad and Schultz [92] is a
Krylov subspace method for solving nonsymmetric linear systems. The CA-GMRES
algorithm is based on Arnoldi (s, t) and equivalent to standard GMRES in exact
arithmetic. Also, the GMRES or CA-GMRES are convergent at the same rate for
problems, but Hoemmen [91] proved that CA-GMRES algorithm shown in Figure 3
converges for the s-step basis lengths and restart lengths used for obtaining maxi-
mum performance. Lanczos method can be considered as a special case of Arnoldi
method for symmetric and real case of A or Hermitian and complex case of A.
Symmetric Lanczos which is also called Lanczos is different from nonsymmetric
Lanczos. We implemented a communication-avoiding version of symmetric
Lanczos (CA-Lanczos) for solving symmetric positive definite (SPD) eigenvalue
problems. Also, we implement CA-Lanczos iteration algorithm shown in Figure 4,
which is also called Lanczos (s, t), where s is the s-step basis length and t is the outer
iterations number before restart. This algorithm is based on using rank revealing-
tall skinny QR-block Gram-Schmidt (RR-TSQR-BGS) orthogonalization method

Figure 3.
CA-GMRES iteration algorithm.

13

A Novel MDD-Based BEM Model for Transient 3T Nonlinear Thermal Stresses in FGA Smart…
DOI: http://dx.doi.org/10.5772/intechopen.92829



which connects between TSQR and block Gram-Schmidt, where we have been
using the right-shifted basis matrix at outer iteration k as follows:

V 0
k ¼ V skþ2, … , vskþs½ � (81)

and

V 0
k ¼ V 0

k, vskþsþ1
� �

(82)

For more details about the considered preconditioners and algorithms, we refer
the interested readers to [91].

The main objective of this section is to implement an accurate and robust
preconditioning technique for solving the dense nonsymmetric algebraic system of
linear equations arising from the BEM. So, a communication-avoiding Arnoldi of
the Arnoldi [93] has been implemented for solving the resulting linear systems in
order to reduce the iteration number and CPU time. The BEM discretization is
employed in 1280 quadrilateral elements, with 3964 degrees of freedom (DOF). A
comparative performance of preconditioned Krylov subspace solvers (CA-Arnoldi,
CA-GMRES, and CA-Lanczos) has been shown in Table 1, where the number of
DOF is 3964 and “–” was defined as the divergence process. From the results of
Table 1. The CA-Arnoldi, CA-GMRES, and CA-Lanczos are more cost-effective
than the other Krylov subspace methods Arnoldi, GMRES, and Lanczos, respec-
tively. Also, CA-Arnoldi, CA-GMRES, and CA-Lanczos have been compared with
each other in Table 2. It can be seen from this table that the performance of CA-
Arnoldi is superior than the other iterative methods.

Figure 4.
CA-Lanczos iteration algorithm.
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Methods Preconditioning

techniques

Iterations Residual Time of each iterative

step (s)

Time of

solution

Direct
methods

NO — — — 9 min 50 s

Arnoldi NO 174 7.21E–07 3.85 11 min 25 s

JOBI 26 5.22E–07 3.86 2 min 38 s

BJOB 22 1.34E–06 3.86 2 min 23 s

ILU3 47 1.66E–06 3.84 4 min 2 s

ILU5 48 1.38E–06 3.89 4 min 6 s

DILU 48 1.53E–06 5.45 4 min 18 s

CA–Arnoldi NO 360 6.96E–07 1.95 11 min 53 s

JOBI 20 4.42E–07 1.96 1 min 30 s

BJOB 20 2.30E–08 1.96 1 min 30 s

ILU3 40 7.87E–07 1.96 2 min 11 s

ILU5 60 1.28E–08 1.96 2 min 48 s

DILU 60 1.59E–07 3.07 4 min 1 s

GMRES NO 280 2.36E–08 1.90 6 min 20 s

JOBI 40 5.01E–13 1.91 2 min 10 s

BJOB 40 2.05E–11 1.91 2 min 10 s

ILU3 40 4.70E–08 1.91 2 min 10 s

ILU5 40 3.13E–08 2.60 2 min 10 s

DILU 40 6.19E–08 3.07 2 min 48 s

CA–GMRES NO 120 6.89E–07 3.78 7 min 57 s

JOBI 12 1.00E–05 3.76 1 min 41 s

BJOB 12 2.22E–06 3.76 1 min 42 s

ILU3 26 3.63E–06 3.75 2 min 34 s

ILU5 22 4.05E–06 3.75 2 min 20 s

DILU 25 5.19E–06 5.93 3 min 18 s

Lanczos NO 135 7.24E–07 3.80 8 min 41 s

JOBI 22 4.87E–07 3.75 2 min 33 s

BJOB 18 9.27E–07 5.18 3 min 2 s

ILU3 42 2.41E–07 3.81 3 min 48 s

ILU5 36 6.41E–07 3.78 3 min 18 s

DILU 38 2.04E–07 5.00 3 min 32 s

CA–Lanczos NO 129 1.30E–04 3.75 9 min 22 s

JOBI 16 8.64E–07 3.76 2 min 3s

BJOB 14 1.69E–07 3.77 2 min 0 s

ILU3 24 9.29E–07 3.87 2 min 31 s

ILU5 31 1.91E–07 3.90 3 min 1 s

DILU 27 8.11E–07 5.95 3 min 31 s

Table 1.
Performances of preconditioned Krylov subspace iterative methods for DOF 3964.
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6. Numerical results and discussion

In order to illustrate the numerical results of this study, we consider a mono-
clinic graphite-epoxy as an anisotropic smart material which has the following
constants [35].

The elasticity tensor is expressed as

Cp jkl ¼

430:1 130:4 18:2 0 0 201:3

130:4 116:7 21:0 0 0 70:1
18:2 21:0 73:6 0 0 2:4

0 0 0 19:8 �8:0 0

0 0 0 �8:0 29:1 0
201:3 70:1 2:4 0 0 147:3

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

GPa (83)

The mechanical temperature coefficient is

βp j ¼

1:01 2:00 0
2:00 1:48 0

0 0 7:52

2

6

4

3

7

5
� 106 N=km2 (84)

The thermal conductivity tensor is

kp j ¼

5:2 0 0

0 7:6 0

0 0 38:3

2

6

4

3

7

5
W=km (85)

Mass density ρ ¼ 7820 kg=m2 and heat capacity c ¼ 461 J=kg k.
The technique that has been proposed in the current chapter can be applicable to

a wide range of three-temperature nonlinear thermal stress problems of FGA struc-
tures. The main aim of this chapter is to assess the impact of MDD and anisotropy
on the three-temperature nonlinear thermal stress distributions.

Solvers DOF

965 1505 3380 3964 6005

CA–Arnoldi Residual 6.81E–12 5.38E–12 4.13E–11 4.17E–11 7.57E–11

CPU time (s) 4.96 10.78 99.24 134.26 293.29

Iterations 25 25 25 25 25

CA–GMRES Residual 2.98E–12 1.90E–12 1.28E–11 1.36E–11 1.22E–11

CPU time (s) 5.06 11.49 126.38 164.09 445.51

Iterations 50 50 50 50 50

CA– Lanczos Residual 7.20E–11 3.35E–11 2.72E–11 3.97E–11 8.33E–11

CPU time (s) 5.05 11.47 139.07 180.49 514.72

Iterations 22 26 28 30 32

Table 2.
The CPU time and the number of iterations for some communication–avoiding Krylov subspace solvers.
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The proposed technique that has been implemented in the current study can be
applicable to a wide variety of FGA smart structure problems involving three
temperatures. All the physical parameters satisfy the initial and boundary condi-
tions. The efficiency of our BEM modeling technique has been improved using an
explicit staggered algorithm based on communication-avoiding Arnoldi procedure
to decrease the computation time.

Figure 5 shows the variations of the three temperatures Te, Ti and Tp with the
time τ in the presence of MDD. Figure 6 shows the variations of the three temper-
atures Te, Ti and Tp with the time τ in the presence of MDD. It can be seen from
Figures 5 and 6 that the MDD has a significant effect on the temperature
distributions.

Figure 5.
Variation of the three-temperature (with memory) with time τ.

Figure 6.
Variation of the three-temperature (without memory) with time τ.
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In order to study the anisotropy and MDD effects on the nonlinear thermal
stresses, we assume the following four cases: A, B, C, and D, where case A denotes
the nonlinear thermal stress distribution in the isotropic material without MDD
effect, case B denotes the nonlinear thermal stress distribution in isotropic material
with MDD effect, case C denotes the nonlinear thermal stress distribution in aniso-
tropic material without MDD effect, and case D denotes nonlinear thermal stress
distribution in anisotropic material with MDD effect.

Figures 7–9 show the variation of the nonlinear thermal stresses σ11, σ12 and σ22
with the time τ. It is clear from these figures that both anisotropy and MDD have a
significant influence on the nonlinear thermal stress distributions.

Since there are no available results for the considered problem in the literature.
Therefore, we only considered the one-dimensional special case for the variations of
the nonlinear thermal stress σ11 with the time τ as shown in Figure 10. The validity
and accuracy of our proposed technique was confirmed by comparing graphically

Figure 8.
Variation of the nonlinear thermal stress σ12 with time τ.

Figure 7.
Variation of the nonlinear thermal stress σ11 with time τ.
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our BEM results with those obtained using the FDM of Pazera and Jędrysiak [95]
and FEM of Xiong and Tian [96] results based on replacing one-temperature heat
conduction with the total three-temperature T T ¼ Te þ Ti þ Trð Þ heat conduction.
It can be noticed that the BEM results are found to agree very well with the FDM
and FEM results.

7. Conclusion

The main aim of this chapter is to introduce a new MDD model based on BEM
for obtaining the transient three-temperature nonlinear thermal stresses in FGA
smart structures. The governing equations of this model are very hard to solve
analytically because of nonlinearity and anisotropy. To overcome this, we propose a

Figure 10.
Variation of the nonlinear thermal stress σ11 with time τ.

Figure 9.
Variation of the nonlinear thermal stress σ22 with time τ.
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new boundary element formulation for solving such equations. Since the CA kernels
of the s-step Krylov methods are faster than the kernels of standard Krylov
methods. Therefore, we used an explicit staggered algorithm based on CA-Arnoldi
procedure to solve the resulted linear equations. The computational performance of
the proposed technique has been performed using communication-avoiding Arnoldi
procedure. The numerical results are presented highlighting the effects of MDD on
the three-temperature distributions and the influence of MDD and anisotropy on
the nonlinear thermal stresses of FGA smart structures. The numerical results also
demonstrate the validity and accuracy of the proposed technique. It can be con-
cluded from numerical results of our current general problem that all generalized
and nonlinear generalized thermoelasticity theories can be combined with the
three-temperature radiative heat conduction to describe the deformation of FGA
smart structures in the context of memory-dependent derivatives. From the
research that has been performed, it is possible to conclude that the proposed BEM
technique is effective and stable for transient three-temperature thermal stress
problems in FGA smart structures.

The numerical results for our complex and general problem can provide data
references for computer scientists and engineers, geotechnical and geothermal
engineers, designers of new materials, and researchers in material science as well as
for those working on the development of anisotropic smart structures. In the appli-
cation of three-temperature theories in advanced manufacturing technologies, with
the development of soft machines and robotics in biomedical engineering and
advanced manufacturing, transient thermal stresses will be encountered more often
where three-temperature radiative heat conduction will turn out to be the best
choice for thermomechanical analysis in the design and analysis of advanced smart
materials and structures.
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