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Abstract

We provide a systematic analysis of the boundary condition for the edge state, which is a
ubiquitous feature in topological phases of matter. We show how to characterize the
boundary condition, and how the edge state spectrum depends on it, with several exam-
ples, including 2d topological insulator and 3d Weyl semimetal. We also demonstrate the
edge-of-edge state localized at the intersection of boundaries.
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1. Introduction

Study of topological phases of matter has been a hot topic in condensed-matter physics for

recent years [1]. An importance of topological aspects of materials themselves was already

noticed around the discovery of quantum Hall effect (QHE) in early 1980s. QHE is universally

observed in a two-dimensional system, but it requires a strong magnetic field, which breaks

time-reversal symmetry. A breakthrough after 20 years was the discovery of quantum spin

Hall effect (QSHE), which actually demonstrates that a topological phase is possible even

without breaking time-reversal symmetry. This opens a new window of the research on

topological insulators (TIs) and topological superconductors (TSCs).

A universal feature of topological phases is the bulk/edge correspondence [2]: once the bulk

wave function has a topologically nontrivial configuration; there exists a gapless edge state
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localized at the boundary. Such an edge state is topologically protected, and thus is robust

against any perturbations as long as respecting symmetry of the system. In practice, the edge

state plays a significant role in detection of topological phases since it can be directly observed

in experiments using angle-resolved photo-emission spectroscopy (ARPES). Therefore the

boundary condition dependence of the edge state is expected to provide experimentally useful

predictions.

In this article, we provide a systematic analysis of the boundary condition of topological

material surfaces, including TIs and also Weyl semimetals (WSMs) [3, 4].1 In Section 2, we

discuss some preliminaries on the band topology of TI and WSM. We explain how one can

obtain topological invariants from the band spectrum. In Section 3, we provide a systematic

study of the boundary condition. We show how to obtain and characterize the boundary

condition for a given Lagrangian or Hamiltonian. Then we apply this analysis to the edge state

of 2d TI and 3d WSM both in the continuum effective model and the discretized lattice model.

In Section 4, we extend the analysis to the situation with two boundaries in different directions.

We demonstrate the existence of the edge state localized at the intersection of surfaces, that we

call the edge-of-edge state.

2. Preliminaries: bulk, edge, and topology

In this section, we provide several preliminary aspects of topological materials. In particular,

we show simple models, effectively describing the bulk of topological system, and discuss the

role of topology thereof.

2.1. Bulk system

We start with a simple two-band Hamiltonian in two dimensions,

H2d ¼ �iσ1
∂

∂x1
� iσ2

∂

∂x2
þmσ3 (1)

where Pauli matrices are defined σ1 ¼
0 1

1 0

� �

, σ2 ¼
0 �i

i 0

� �

, σ3 ¼
1 0

0 �1

� �

. This is a

simple effective model for 2d Integer QHE, classified into the 2d class A system according to

the 10-fold way classification of TIs and TSCs [8, 9]. In order to investigate the band structure

of this system, we consider the Bloch wave function Ψp
! x

!
� �

¼ eip
!
�x
!

ψp
! x

!
� �

, and the

corresponding Hamiltonian acting on ψ
p
! x

!
� �

, simply denoted by ψ below, is given by

1

See also related works [5–7] for the boundary condition analysis of topological materials.
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H2d p
!

� �

¼ p1σ1 þ p2σ2 þmσ3 ¼
m Δ

∗ p
!

� �

Δ p
!

� �

�m

0

B

@

1

C

A
: (2)

We obtain two eigenvalues e� p
!

� �

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
!
�

�

�

�

�

�

2

þm2

r

. The eigenstate, parametrized by a complex

number ξ∈C, is accordingly obtained as

ψ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξj j2
q

1

ξ

� �

with ξ ¼
Δ p

!
� �

eþm
¼

e�m

Δ p
!

� �

∗
: (3)

We remark that the parameter ξ becomes singular ξ ! ∞ at p
!
¼ 0. At this point, we have to

reparametrize the eigenstate with ξ�1 instead of ξ. This means that ξ is not a global, but just a

local coordinate, and the eigenstate is given by an element of CP1 in this model.

Since this system is gapped, we can neglect the transition between lower and upper bands as

long as we consider the adiabatic process. Under such a process, we can consider the Berry

connection and curvature defined from the gapped eigenstate2

A ¼ ψ† idð Þψ ¼ �Im
ξ∗dξ

1þ ξj j2
, F ¼ dA ¼ i

dξ∗dξ

1þ ξj j2
� �2

(4)

where we use the differential form notation in the momentum space, d ¼ ∂=∂pi
� 	

dpi, namely

the Berry connection is one-form A ¼ A1dp
1 þ A2dp

2, and the curvature is two-form

F ¼ F12dp
1dp2. Under the momentum-dependent transformation, ξ ! eiϕ p

!ð Þξ (not an overall

phase rotation of the eigenstate ψ), the connection behaves asA ! A� dϕ= 1þ ξj j2
� �

. This is a

U(1) gauge transformation, which is local in momentum space, and the curvature is invariant

under this transformation by itself. This U(1) structure is directly related to the S1 fibration of

CP
1 ¼ S3=S1, and interpreted as a consequence of the particle number conservation of each

eigenstate which holds under the adiabatic process.

An important point is that we can construct the topological invariant from the Berry connec-

tion and curvature (4). For the 2d system, it is given as an integral of the curvature over the

momentum space,

ν2d ¼
1

2π

ð

dp1dp2F12 ¼
1

2
sgn mð Þ (5)

which is called the TKNN number, which computes the Hall conductivity of the system [11].

We remark that it is invariant under the continuous deformation of the mass parameter, so that

2

See a textbook on this topic, e.g., [10] for more details.
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it would be a topological invariant, but with a discontinuous point at m ¼ 0, which is the

gapless (sign changing) point m ¼ 0. Typically the topological number takes an integer value,

but ν2d does not. The reason why we obtain a half integer value is that we take a specific slice

of the mass parameter in the total parameter space of the three-parameter Hamiltonian (2).

To explain this let us consider the 3d system as follows,

H3d p
!

� �

¼ p1σ1 þ p2σ2 þ p3σ3 ¼
p3 Δ

∗ pð Þ

Δ pð Þ �p3

� �

(6)

which is known as an effective Hamiltonian of the WSM. This Hamiltonian is simply obtained

from the 2d system (2) by replacing the mass parameter with another momentum p3. We apply

essentially the same analysis to this 3d system as 2d, and we obtain the genuine topological

invariant:

ν3d ¼
1

4π

ð

S2
d S

!
� B
!
¼

1

2π

ð

dp1dp2F12 p3>0
�

1

2π

ð

dp1dp2F12

�

�

�

�

�

�

�

�

p3<0

¼ 1 (7)

where the “magnetic field” is defined as Bi ¼ 1
2 e

ijkFjk, namely B
!
¼∇

!
� A

!
. This means that the

gapless point (also called the Weyl point) plays a role as the magnetic monopole in the

momentum space. As shown in Figure 1, the 2d invariant ν2d is related to the 3d invariant

through taking a constant p3, identified with the mass m, which covers either upper or lower

half of the monopole fluxes. This explains why the 2d invariant can be a half-integer, although

the 3d invariant takes an integer value. We remark that, in this case, one cannot consider well-

defined Berry phase, since the current 3d system is gapless in which the adiabatic process does

not make sense. However, the topological invariant still plays a role to discuss stability of the

Weyl point: Since a system having a nontrivial topological number, say ν3d 6¼ 0, cannot be

Figure 1. Monopole at Weyl point in the momentum space. The monopole charge is an integer-valued topological

invariant ν3d. The 2d invariant ν2d is obtained at a constant p3 ! mð Þ plane, which covers either upper or lower half of

the fluxes, so that ν2d is given by a half of ν3d.
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continuously deformed to a trivial system ν3d ¼ 0 by definition. This explains the topological

stability of the WSM. If we want to obtain a topologically trivial situation, we need pair-

annihilation of the Weyl points having opposite topological invariants: ν3d ¼ þ1ð Þ þ �1ð Þ ¼ 0.

See Figure 2.

2.2. Edge state

So far, we have discussed the bulk system, and the material boundary is not yet considered.

Let us show a simple argument to incorporate the boundary of the system. If we have a

material which has nontrivial topology, the vacuum, outside of the material, should be topo-

logically trivial. Otherwise they cannot be topologically distinguished. As explained above, in

order to obtain the topology change in the 2d system, we need the mass parameter whose sign

is flipped at the boundary. For this purpose we impose a simple spatial dependence on the

mass parameter asm x1ð Þ ¼ ϑx1 with a positive slope ϑ > 0, giving rise to the sign flip at x1 ¼ 0,

so that the boundary is the plane x1 ¼ 0 [12]. Then the Hamiltonian takes a form of

ℋ2d x1; p2
� 	

¼ m x1ð Þσ1 � iσ2
∂

∂x1
þ p2σ3 ¼

p2
ffiffiffiffiffiffi
2ϑ

p
ba†

ffiffiffiffiffiffi
2ϑ

p
ba �p2

 !

(8)

where we exchange Pauli matrices compared with the previous one to simplify the expres-

sion. Since x1-dependence remains in this system, we do not consider the momentum basis in

x1-direction, while the momentum in x2-direction is now denoted by p2. The off-diagonal

element is given by an operator ba ¼ ϑx1 þ ∂=∂x1ð Þð Þ=
ffiffiffiffiffiffi
2ϑ

p
, ba† ¼ ϑx1 � ∂=∂x1ð Þð Þ=

ffiffiffiffiffiffi
2ϑ

p
, obeying

the commutation relation ba;ba†
h i

¼ 1, so that it is interpreted as a creation/annihilation

operator. Then the energy spectrum is given by en p2
� 	

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þ 2ϑn

p
for n ≥ 1 (gapped),

while the zero mode dispersion is given by e0 p2
� 	

¼ p2 (gapless), which is the chiral edge

state of the 2d class A system. See Figure 3 for numerical plot of the spectrum. In general, we

obtain the zero mode localized on the topological material boundary from the mass term

Figure 2. The topological invariant distinguishes topologically different situations. The green and red spheres show the

monopole with topological charge ν3d ¼ þ1 and ν3d ¼ �1, respectively. We need pair annihilation to eliminate the mono-

poles.
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with a spatial profile, which is known as the domain-wall fermion. See, for example, [13] for

more details.

2.3. Lattice system

Since the electron lives on a lattice in the material, studying the lattice model is important to

understand the actual behavior of the electron. Let us introduce the Hamiltonian describing

the electron on a lattice

Hlat
2d ¼ �

i

2
σ1 ∇1 � ∇

†

1

� 	

�
i

2
σ2 ∇2 � ∇

†

2

� 	

þ σ3 mþ 2�
1

2
∇1 þ ∇

†

1

� 	

�
1

2
∇2 þ ∇

†

2

� 	

� �

(9)

where we define the difference operator ∇1,2ψn
! ¼ ψ

n
!
þ e

!
1,2

� ψn
! with the unit vector e

!
1,2 in n1

and n2-direction. Then the corresponding Bloch Hamiltonian is given by

H
lat
2d p

!
� �

¼ σ1 sin p1 þ σ2 sin p2 þ σ3 mþ 2� cos p1 � cos p2
� 	

: (10)

Periodicity p1,2 � p1,2 þ 2π reflects the lattice structure: The momentum is restricted

to the Brillouin zone p1,2 ∈ 0; 2π½ �. The spectrum is given by e p
!

� �

¼

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin p1
� 	2

þ sin p2
� 	2

þ mþ 2� cos p1 � cos p2
� 	2

q

, which has four gapless points p
!
¼ 0; 0ð Þ

at m ¼ 0, p
!
¼ π; 0ð Þ and 0;πð Þ at m ¼ �2, p

!
¼ π;πð Þ at m ¼ �4. Expanding the momentum

around p
!
¼ 0; 0ð Þ, one can see the effective Hamiltonian (2) is obtained. If expanding the

momentum around p
!
¼ π; 0ð Þ instead, we similarly obtain the Hamiltonian (2), but we have

to replace p1 ! �p1.

Figure 3. The dispersion relation of the edge state with ϑ ¼ 1. We find a gapless chiral mode specific to the 2d class A TI.

The gapped spectra are interpreted as bulk contributions.

Heterojunctions and Nanostructures8



Let us see the topological structure of the lattice model. Applying the same procedure to the

Hamiltonian (10), we obtain the topological invariant as follows [14]:

ν2d ¼
1

2π

ð

BZ

dp1dp2F12 ¼

0 m > 0 or m < �4ð Þ

�1 �2 < m < 0ð Þ

þ1 �4 < m < �2ð Þ

8

>

<

>

:

(11)

where the momentum integral is taken over the Brillouin zone. In contrast to the continuum

effective model, we have integer valued topological invariants in this case. This is essentially

related to the anomaly of (2 + 1)-dimensional Dirac system, known as the parity anomaly.

However, it is also known that the lattice regularization naively gives rise to an anomaly-free

system: The gapless points have to appear as a pair, so that each anomalous contribution is

canceled with each other [15, 16]. Actually the present model (10) has four gapless points in the

parameter space: p1; p2;m
� 	

¼ 0; 0; 0ð Þ, π; 0;�2ð Þ, 0;π;�2ð Þ, π;π;�4ð Þ. Each gapless point

plays basically the same role as that discussed in the continuum model with the monopole

charge þ1 or �1. Thus we immediately obtain ν2d ¼ 1
2 þ1� 2þð 1Þ ¼ 0 for m > 0,

1
2 �1� 2þ 1ð Þ ¼ 1 for �2 < m < 0, 12 �1þ 2þ 1ð Þ ¼ 1 for �4 < m < �2, and 1

2 �1þ 2� 1ð Þ ¼ 0

for m < �4. See Figure 4.

We can similarly consider a lattice model for 3d WSM system. We consider the Hamiltonian

defined on a 3d lattice

Hlat
3d ¼

1

2
σ1 ∇1 þ ∇

†

1 � ∇2 � ∇
†

2 þ 2c
� 	

�
i

2
σ2 ∇2 � ∇

†

2

� 	

�
i

2
σ3 ∇3 � ∇

†

3

� 	

: (12)

The corresponding Bloch Hamiltonian is given by

H
lat
3d p

!
� �

¼ σ1 cos p1 � cos p2 þ c
� 	

þ σ2 sin p2 þ σ3 sin p3, (13)

Figure 4. The mass dependence of the 2d topological invariant ν2d for the lattice model (10). Topology change occurs at

the gapless points m ¼ �4, � 2, 0. Change of the invariant corresponds to the monopole charge þ1, � 2, þ 1 associated

with each gapless point.
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and the spectrum yields e p
!
� �

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos p1 � cos p2 þ c
� 	2

þ sin p2
� 	2

þ sin p3
� 	2

q

. The param-

eter c tunes the gapless Weyl points as follows

p1; p2; p3
� 	

¼

cos �1 1� cð Þ; 0; 0
� 	

& cos �1 1þ cð Þ; 0;π
� 	

0 < c < 2ð Þ

cos �1 �1� cð Þ;π; 0
� 	

& cos �1 1þ cð Þ;π;π
� 	

�2 < c < 0ð Þ

n=a jcj > 2ð Þ

8

>

<

>

:

(14)

The band spectrum is shown in Figure 5 at p3 ¼ 0 and c ¼ 1. We can see two Weyl points at

p1; p2
� 	

¼ �π=2; 0ð Þ. We will study the boundary condition of this model in Section 3.3.

2.4. Higher-dimensional system

So far we have considered a simple system in two and three dimensions. We can even discuss

such a topological structure in the momentum space of more involved systems. In this section

we discuss a higher-dimensional generalization of the system discussed above. Dimensional

reduction of this system gives rise to several interesting situations in 2d and 3d.

We consider a four-band model defined in four spatial dimensions, which is a natural higher-

dimensional generalization of (2),

H4d pð Þ ¼ p � γþmγ5 ¼
m Δ pð Þ†

Δ pð Þ �m

 !

with Δ pð Þ ¼ p � σ ¼
p4 þ ip3 p2 þ ip1
�p2 þ ip1 p4 � ip3

� �

(15)

where we use the gamma matrices defined as γk ¼
0 �iσk

σk 0

� �

for k ¼ 1; 2; 3, γ4 ¼
0 1

1 0

� �

,

Figure 5. The energy spectrum of the lattice WSM model (13) with p3 ¼ 0 and c ¼ 1. There exist two gapless Weyl points

at p1; p2
� 	

¼ �π=2; 0ð Þ. The parameter c characterizes the distance between the Weyl points.
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γ5 ¼
1 0

0 �1

� �

, and the off-diagonal element is given by Δ pð Þ ¼ p � σ∈H with σ ¼ i σ
!
;1

� �

.

We remark that this Hamiltonian is a 4� 4 matrix, such that each element shows a 2� 2

matrix. The spectrum is simply obtained as e pð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pj j2 þm2

q

, and each state is doubly

degenerated. We have a similar eigenvector to (3) as follows,

ψ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξj j2
q

1

ξ

� �

with ξ ¼
Δ

εþm
¼

ε�m

Δ
†

∈H: (16)

Currently each component shows a 2� 2 matrix, which takes a value in quaternion H, so that

the eigenvector is a 2� 4 matrix due to the degeneracy, namely ψ ¼ ψ1 ψ2

� 	

, where each ψ1,2

is a four vector. For a degenerated system, we can define non-Abelian analog of the Berry

connection Aab ¼ ψ†

a idð Þψb for a, b ¼ 1, 2. In this case, we obtain an SU(2) valued Berry connec-

tion, which is a consequence of S3 fibration of HP1 ¼ S7=S3. The topological invariant for the

4d system is given by the four-dimensional momentum integral of the second Chern class,

which is known as the instanton number,

ν4d ¼ �
1

8π2

ð

TrF ∧F ¼
1

2
sign mð Þ: (17)

Actually the instanton configuration obtained here, by solving a matrix equation, is closely

related to the ADHM construction. See [12] for more details. We again obtain a half-integer

topological invariant. The reason is totally parallel with the previous case. To obtain an integer

valued topological invariant, we consider the 5d uplift, the 5d WSM, obtained by replacing the

mass with another momentum m ! p5,

H5d pð Þ ¼ p � γþ p5γ5, (18)

and thus the integral over the 5d momentum space, instead of 4d, gives rise to

ν5d ¼ �
1

8π2

ð

S4
TrF ∧F ¼ 1, (19)

which implies the SU(2) monopole, called the Wu-Yang monopole, at the origin in the momen-

tum space. Then the 4d momentum integral performed to obtain the 4d invariant ν4d is

equivalent to the hemisphere integral of S4, which provides a half of the 5d invariant.

3. Boundary condition analysis

3.1. Operator formalism

In order to discuss the boundary condition, we start with a first order Hermitian differential

operator [3, 4, 17, 18]
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bD ¼ �iσ
∂

∂x
: (20)

Now we put a Pauli matrix σ, but we can consider a generic Hermitian matrix. Considering the

inner product in a finite size system defined on the interval x∈ xL; xR½ �, we obtain

ϕ
���bDψ

D E
¼

ðxR

xL

dxϕ xð Þ† �iσ
∂

∂x
ψ xð Þ

� �

¼ ϕ xð Þ† �iσð Þψ xð Þ
���
xR

xL
þ

ðxR

xL

dx �iσ
∂

∂x
ϕ xð Þ

� �†

ψ xð Þ

¼ ϕ xð Þ† �iσð Þψ xð Þ
���
xR

xL
þ bDϕ

���ψ
D E

:

(21)

The Hermitian condition ϕ
���bDψ

D E
¼ bD

���ϕψ
D E

implies that the surface term should vanish

ϕ xð Þ†σψ xð Þ
���
xR

xL
¼ ϕ xRð Þ†σψ xRð Þ � ϕ xLð Þ†σψ xLð Þ ¼ 0, (22)

which gives rise to two possibilities:

1. Periodic boundary condition: ϕ xRð Þ ¼ ϕ xLð Þ and ψ xRð Þ ¼ ψ xLð Þ

2. Open boundary condition: ϕ xRð Þ†σψ xRð Þ ¼ 0 and ϕ xLð Þ†σψ xLð Þ ¼ 0

In particular, the open boundary condition 2 has the following solution

Pψ xL,R ¼ Pϕ
�� ��

xL,R
¼ 0 where P ¼

1�M

2
(23)

with the matrix M satisfying M†σþ σM ¼ 0, since ψ ¼ Mψ, ϕ ¼ Mϕ at the boundary, then

ϕ†σψ ¼ ϕ†σMψ ¼ �ϕ†M†σψ ¼ �ϕ†σψ ) ϕ†σψ ¼ 0: (24)

In general we can apply different matrices ML,R for xL and xR, but here we assume ML,R ¼ M

for simplicity, namely the same boundary condition for xL,R. We remark that the condition (23)

is specific to the operator choice (20). We have to derive the corresponding boundary condition

case by case. We will show a generic formulation of the boundary condition using the Lagrang-

ian formalism in Section 3.2.

3.1.1. Lattice system

Let us apply the similar argument to the lattice system defined on a one-dimensional interval

n∈ 1;…;Nf g. We introduce an analogous difference operator to (20) as

bDlat ¼ �iσ∇ (25)

where ∇ψn ¼ ψnþ1 � ψn and ∇
†ψn ¼ ψn�1 � ψn. In this case, the inner product ϕ

���bDlatψ
D E

is

given by

Heterojunctions and Nanostructures12



XN

n¼1

ϕ†

n �iσ∇ψn

� 	
¼
XN

n¼1

iσ∇†ϕn

� 	†
ψn þ ϕ†

0 iσð Þψ1 � ϕ†

N iσð ÞψNþ1 (26)

where ϕ0 and ψNþ1 are considered as auxiliary fields. The self-conjugacy condition ϕ
���bDlatψ

D E
¼

bDlatϕ
���ψ

D E
requires that the surface term should vanish:

ϕ†

0σψ1 � ϕ†

NσψNþ1 ¼ 0: (27)

The periodic boundary condition ϕnþN ¼ ϕn, ψnþN ¼ ψn is a simple solution to this. The other

possibility is that each term independently vanishes, corresponding to the open boundary

condition. This means that the lattice system is similarly considered as the continuum system,

and the open boundary condition is imposed by (23). We remark that for the lattice system the

surface term (27) is not given by the on-site term, but involving a hopping to the next site. This

suggests that we have to take care of the locality and continuum limit of the system.

3.1.2. Example

Let us consider an example with σ ¼ σ3. Then the matrixM should be a linear combination of σ1,2.

Since the operator P has a zero eigenvalue, the determinant should vanish detP ¼ 0, which leads to

M ¼ σ1 cosθþ σ2 sinθ ¼
0 e�iθ

eiθ 0

 !

, (28)

obeying M† ¼ M and M2 ¼ 1 with two eigenvalues �1. It is also expressed as M ¼ σ1e
iθσ3

¼ σ2e
i θ�π

2ð Þσ3 . Thus the operator P ¼ P†
� 	

turns out to be a projection operator P2 ¼ P having

eigenvalues 1, 0 with the corresponding eigenvectors

P
1

�eiθ

� �
¼

1

�eiθ

� �
and P

1

eiθ

� �
¼ 0: (29)

We remark σ3P ¼ �Pσ3, σ3�P ¼ Pσ3 where �P ¼ 1� P obeying �PP ¼ P�P ¼ 0. Thus we obtain a

one-parameter family of the solution to the boundary condition (23),

ψ
���
xL,R

∝
1

eiθ

� �
: (30)

Since �Pψ ¼ ψ, the current in x3-direction vanishes at the boundary, J3 ¼ ψ†σ3ψ ¼ ψ†�Pσ3
�Pψ ¼ ψ†σ3P�Pψ ¼ 0. In other words, the open boundary condition is interpreted as a vanishing

condition for the normal component of the current as expected.

3.2. Lagrangian formalism

We explain how to derive a proper boundary condition for a given system with the Lagrangian

formalism. The integral over the spacetimeM of the Lagrangian defines the action
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S ¼

ð

M

L ϕ; ∂ϕ
� 	

: (31)

If the system has a continuous local symmetry, the action may be invariant under the infinites-

imal deviation of the field ϕ ! ϕþ e xð Þφ3:

0 ¼ δS

¼

ð

M

∂ℒ

∂ϕ
� ∂μ

∂ℒ

∂ ∂μϕ
� 	

 ! !

e xð Þφ�

ð

M

e xð Þ∂μ
∂ℒ

∂ ∂μϕ
� 	φ

 !

þ

ð

M

∂μ
∂ℒ

∂ ∂μϕ
� 	 e xð Þφ

 !

:

(32)

The first term vanishes due to the Euler-Lagrange equation of motion for the bulk, ∂ℒ

∂ϕ � ∂μ

∂ℒ

∂ ∂μϕð Þ

� �

¼ 0. The vanishing condition for the second term implies the current Jμ ¼ ∂ℒ

∂ ∂μϕð Þ
φ,

satisfying the conservation law ∂μJ
μ ¼ 0, a.k.a. the Nöther current. The third term is a surface

contribution which plays a role in the system with the boundary. The invariance of the action is

thus rephrased as

0 ¼

ð

∂M

e xð Þn � J (33)

where n is the normal vector defined as
Ð

M
∂μV

μ ¼
Ð

∂M
n � V with an arbitrary vector field Vμ

and the boundary of the manifold denoted by ∂M. This ends up with the condition such that

the normal component of the current should vanish at the boundary

n � J
�

�

�

∂M

¼ 0: (34)

This seems physically reasonable and consistent with the previous argument in Section 3.1.2

because at the boundary there is no ingoing and outgoing current.

Furthermore, this zero current condition can be modified by taking into account the additional

surface contribution to the action

SB ¼

ð

∂M

LB ϕ
� 	

(35)

where we assume the boundary d.o.f. is not dynamical (not including the derivative ∂ϕ). Then

the condition (34) becomes

n � J þ
∂LB

∂ϕ
φ


 �

∂M

¼ 0: (36)

This characterizes the boundary condition. In the following, we consider several examples to

see how the boundary condition plays a role in the topological materials.

3

This is an assumption. In general, the action itself is not invariant under the deviation.
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3.3. 3d Weyl semimetal

3.3.1. Continuum system

Let us apply the argument discussed above to the WSM system. We consider the effective

Hamiltonian (6) with a slight modification

ℋ3d p
!
; x3

� �

¼ p1σ1 þ p2σ2 � iσ3
∂

∂x3
: (37)

We put a boundary only at x3 ¼ 0 for simplicity, so that the system is defined on a positive

domain x3 > 0. In this case, since the current operator is defined as J
!
¼ ψ† σ

!
ψ, the boundary

condition, corresponding to the zero current condition (36), that we impose is4

ψ†σ3ψ
�

�

�

x3¼0
¼ 0: (38)

The eigenstate satisfying the condition (38) is parameterized by a single phase factor

ψ p
!
; x3

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffi

α p
!

� �

r

e�α p
!ð Þx3 1

eiθ

� �

(39)

which is normalized as
Ð

∞

0 dx3ψ
†ψ ¼ 1, and the normalizability requires α p

!
� �

> 0. This

eigenstate is localized on the boundary x3 ¼ 0 and exponentially decay into the bulk x3 > 0

due to the factor e�α p
!ð Þx3 , where the parameter α p

!
� �

plays a role as the inverse penetration

length. In this case, the exponential factor e�α p
!ð Þx3 is responsible for the x3-direction depen-

dence, instead of the plane wave factor eip3x3 used for the bulk analysis. In other words, the

current analysis of the edge state uses Laplace basis instead of Fourier basis. Therefore, under

the replacement p3 ! iα, we can apply almost the same analysis.

Then the spectrum and the inverse penetration length of the edge state are obtained from the

eigenvalue equation, given as follows

e p
!

� �

¼ p1 cosθþ p2 sinθ, α p
!

� �

¼ �p1 sinθþ p2 cosθ: (40)

Actually it is written using an SO(2) transformation with the relation e
2 þ α2 ¼ p

!
�

�

�

�

�

�

2

,

e

α

� �

¼
cosθ sinθ

� sinθ cosθ

� �

p1
p2

� �

: (41)

We show the spectrum of the edge state depending on the boundary condition with the bulk

spectrum in Figure 6. We remark that the edge state cannot be defined in the whole

4

This is of course equivalent to the boundary condition discussed in Section 3.1.2.
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momentum space due to the normalizability condition α p
!

� �

> 0. Such a bounded spectrum

associated with the WSM edge state is called the Fermi arc, and the boundary condition

parameter, a relative phase factor, parameterizes the direction of the arc. Accordingly the

current similarly behaves as J1; J2; J3ð Þ∝ cosθ; sinθ; 0ð Þ.

3.3.2. Lattice system

Let us apply a similar analysis to the lattice model for 3d WSM. We consider the lattice model

(13) with a boundary at n3 ¼ 1, defined on the positive n3 region, n3 ≥ 1,

ℋ
lat
3d p

!
; n3

� �

¼
0 Δ p

!
� �∗

Δ p
!

� �

0

0

B

@

1

C

A
�

i

2
σ3 ∇3 � ∇†

3

� 	

(42)

with a complex parameter

Δ p
!

� �

¼ cos p1 � cos p2 þ cþ i sin p2, (43)

which is analogous to the model in the continuum Δ p
!

� �

� p1 � ip2. We keep an explicit n3-

dependence of the system to deal with the boundary condition. According to the discussion in

Sections 3.1.1 and 3.1.2, we consider the edge state consistent with the boundary condition as

ψ p
!
; n3

� �

¼ β p
!

� �n3�1 1

eiθ

� �

(44)

where β p
!

� �

is a real parameter, corresponding to the penetration depth, and the normalizability

requires ∣β p
!

� �

∣ < 1. In particular, we consider the situation 0 < β p
!

� �

< 1 for the moment: The

negative β p
!

� �

solution is interpreted as a doubling counterpart of the positive one. The eigen-

value equation ℋ
lat
3d p

!
; n3

� �

ψ p
!
; n3

� �

¼ e p
!

� �

ψ p
!
; n3

� �

leads to

Figure 6. The boundary condition dependence of the edge state spectrum for θ ¼ 0,π=4,π=2, 3π=4,π with the bulk

spectrum. The parameter θ plays a role as a rotation angle in the momentum space.
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Dψ p
!
; n3

� �

¼ 0 with D ¼
i~α p

!
� �

� e p
!

� �

Δ p
!

� �

∗

Δ p
!

� �

�i~α p
!

� �

� e p
!

� �

0

B

@

1

C

A
(45)

where we define ~α p
!

� �

¼
β p

!ð Þ
�1
�β p

!ð Þ
2 . Since we consider the situation 0 < β p

!
� �

< 1, it turns

out ~α p
!

� �

> 0. The solution is then obtained as

e p
!

� �

¼ cosθReΔ p
!

� �

þ sinθImΔ p
!

� �

(46)

~α p
!

� �

¼ � sinθReΔ p
!

� �

þ cosθImΔ p
!

� �

(47)

which has an analogous expression as (41) using SO(2) rotation

e

~α

� �

¼
cosθ sinθ

� sinθ cosθ

� �

ReΔ

ImΔ

� �

: (48)

At this moment, it is obvious that the spectrum of the current lattice model is parallel with the

continuum model under the correspondence p1; p2;α
� 	

$ ReΔ; ImΔ; ~αð Þ.

We show the spectrum of the edge state in Figure 7, in particular, its boundary condition

dependence. Figure 8 shows constant energy slices of the spectrum. We can see the so-called

Fermi arc, which connects two bulk Weyl points. As discussed for the continuum model, the

boundary condition parameter plays a role as a rotation angle in the momentum space.

3.4. 2d topological insulator

3.4.1. Continuum system

The 2d class A TI is given by the dimensional reduction of the 3d WSM. Replacing p2 ! m in

the Hamiltonian (37), we obtain

Figure 7. The boundary condition dependence of the edge state spectrum e p
!

� �

for θ ¼ π4,π=3, 5π=3, 2π (green), in

addition to the bulk spectrum (orange and blue), the parameter c is taken to be c ¼ 1.
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ℋ2d p1; x3
� 	

¼ p1σ1 þmσ2 � iσ3
∂

∂x3
: (49)

After this dimensional reduction, we can apply totally the same analysis to this model

discussed in Section 3.3: we consider the localized edge state satisfying the boundary condition

Figure 8. The Fermi arc at (a) zero energy ε p
!

� �

¼ 0 and (b) finite energy E p
!

� �

= 0.3 with θ ¼ π=5, 3π=5,π, 7π=5, 9π=5.

The red dot and shaded region show the bulk contribution. The last panels show Fermi arcs with various values of the

parameter θ.
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ψ p1; x3
� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

α p1
� 	

q

e�α p1ð Þx3 1

eiθ

� �

(50)

where the inverse penetration depth α p1
� 	

has to be positive due to the normalizability. Then

we obtain the solution

e p1
� 	

¼ p1 cosθþm sinθ, α p1
� 	

¼ �p1 sinθþm cosθ: (51)

Figure 9 shows the boundary condition dependence of the edge state spectrum. Replacement

p2 ! m corresponds to take a section at p2 ¼ m, and the 3d Fermi arc is reduced to the 2d chiral

edge mode.

3.4.2. Lattice system

Similarly, we consider the dimensional reduction of the lattice Hamiltonian of 3d WSM (13). In

this case, we have two options,

p1 ! m1 : H
1ð Þ
2d ¼ σ1 cosm1 � cos p2 þ c

� 	

þ σ2 sin p2 þ σ3 sin p3 (52)

p2 ! m2 : H
2ð Þ
2d ¼ σ1 cos p1 � cosm2 þ c

� 	

þ σ2 sinm2 þ σ3 sin p3 (53)

and the corresponding spectra are given as follows:

e1 p2; p3
� 	

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosm1 � cos p2 þ c
� 	2

þ sin p2
� 	2

þ sin p3
� 	2

q

(54)

e2 p1; p3
� 	

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos p1 � cosm2 þ c
� 	2

þ sinm2ð Þ2 þ sin p3
� 	2

q

(55)

Figure 9. The boundary condition dependence of the edge state for the 2d system. The dimensional reduction corre-

sponds to taking a section at p2 ¼ m. The horizontal axis in the bottom panel shows the momentum p1.
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We can follow the analysis discussed in Section 3.3.2 for the current system. Figure 10 shows

the boundary condition dependence of the edge state spectrum. These behaviors are consistent

with the continuum model in the vicinity of the would-be gapless points. Such a dependence

of the boundary condition has been recently predicted to be observed in monolayer silicene/

germanene/stanene nanoribbons [19]. We remark that we obtain the edge state with positive

and negative chiralities from the reduction p1 ! m1, which is equivalent to topologically trivial

state. Actually the edge state is almost embedded, and indistinguishable with the bulk spec-

trum, in particular, for θ ¼ 5π=7, 9π=7. On the other hand, we obtain a single chiral edge state

from the reduction p2 ! m2, indicating topologically nontrivial state. We can see an edge state

spectrum survives for the whole region of the parameter θ.

Figure 10. The boundary condition dependence of the 2d lattice system (52) and (53) with c ¼ 1. (a)–(f) and (a0)–(f0 ) show

the spectra obtained from the reduction p1 ! m1 ¼ π=2þ 0:5 and p2 ! m2 ¼ 0:2. The horizontal axes are the momenta p2

and p1, respectively. The blue region is the bulk, and the orange line is the edge state spectrum.
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4. Edge-of-edge state

So far we have examined situations with a single boundary with the boundary condition. In

general we can impose another boundary in the different direction, and a different boundary

condition. In this section we consider a generic situation involving two boundaries with two

different conditions. Then an intersection of two boundary plays a role of “edge-of-edge” and

we study the corresponding edge-of-edge state localized on such an intersecting boundaries

[4]. See also related works [20–24].

4.1. 5d Weyl semimetal

As discussed in Section 3.1, the boundary condition is characterized by the projection (23), so that

the degrees of freedom of the boundary state should be a half of the original one. This implies

that, if we impose two boundary conditions, we will have a quarter of the original d.o.f.

Therefore, to obtain physical degrees of freedom at the edge-of-edge, we have to start with a

four-component system or more. For this purpose, we start with the 5d WSM system discussed

in Section 2.4 by introducing boundaries at x4 ¼ 0 and x5 ¼ 0. The boundary condition, namely

the zero current condition (34), is now given by

ψ†γ4ψ
�

�

�

x4¼0
¼ 0 ψ†γ5ψ

�

�

�

x5¼0
¼ 0, (56)

since the current operator is given by Jμ ¼ ψ†γμψ. These conditions are rephrased as

P4ψ
�

�

�

x4¼0
¼ 0 P5ψ

�

�

�

x5¼0
¼ 0 with P4,5 ¼

1�M4,5

2
(57)

where the matrix M4,5 obeys M
†

aγa þ γaMa ¼ 0 for a ¼ 4, 5. Explicitly we have

M5 ¼
0 U†

5

U5 0

 !

, M4 ¼ �
1

2

U4 þU†

4 U4 �U†

4

�U4 þU†

4 �U4 �U†

4

 !

, (58)

where U4,5 are elements of U(2). A solution to these conditions localized at the boundary is

given by

ψ p1;2;3;5; x4

� �

¼ e�α4 pð Þx4
1�U4

1þU4

� �

χ p1;2;3;4

� �

, ψ p1;2;3;4; x5

� �

¼ e�α5 pð Þx5
1

U5

� �

ξ p1;2;3;4

� �

:

(59)

In particular, the edge state localized at x5 ¼ 0 is apparently similar to the 3d case (39), just

replacing the phase factor eiθ ∈ U(1) withU5 ∈ U(2). The eigenvalue equationH5dψ ¼ Eψ leads

to e
2
5 þ α2

5 ¼ p
!
�

�

�

�

�

�

2

þ p24 and also
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iα5 � e5ð Þ þ p4 � i σ
!
� p
!

� �

U5

h i

ξ ¼ 0: (60)

Decomposing U5 ¼ eiθ5V5 with eiθ5 ∈ U(1) and V5 ∈ SU 2ð Þ, we consider the SU(2) transforma-

tion p4 � i σ
!
� p
!

� �

V5 ¼ p04 � i σ
!
�p
!0. Then we have

α5 sinθ5 � e5 cosθ5 þ p04
� 	

ξ ¼ 0, (61)

α5 cosθ5 þ e5 sinθ5� σ
!
�p
!0

� �

ξ ¼ 0: (62)

Diagonalizing σ
!
�p
!0, which is equivalent to the 3d Hamiltonian (6), as σ

!
�p
!0

� �

ξ� ¼

�

ffiffiffiffiffiffiffiffiffiffi

p
!0
�

�

�

�

�

�

2
r

ξ�, we obtain the spectrum and the inverse penetration depth as follows:

e5 pð Þ ¼ p04 cosθ5 �

ffiffiffiffiffiffiffiffiffiffi

p
!0
�

�

�

�

�

�

2
r

sinθ5, α5 pð Þ ¼ �p04 sinθ5 �

ffiffiffiffiffiffiffiffiffiffi

p
!0
�

�

�

�

�

�

2
r

cosθ5, (63)

which is written using an SO(2) transformation as before,

e5

α5

� �

¼
cosθ5 sinθ5

� sinθ5 cosθ5

� � p04

�

ffiffiffiffiffiffiffiffiffiffi

p
!0
�

�

�

�

�

�

2
r

0

B

@

1

C

A
: (64)

We can solve the boundary condition and obtain the spectrum for the boundary at x4 ¼ 0 in a

similar way.

Let us then consider a compatible boundary condition for the localized edge-of-edge state

P4ψ
�

�

�

x4,5¼0
¼ P5ψ

�

�

�

x4,5¼0
¼ 0: (65)

A solution to this condition is given by

ψ p1;2;3; x4; x5

� �

¼ e�α4 pð Þx4�α5 pð Þx5
1�U4

1þU4

� �

χ pð Þ (66)

with U5 1�U4ð Þ � 1þU4ð Þ½ �χ pð Þ ¼ 0, which is covariant under U(2) transformation

U4;U5;χð Þ ! WU4W
†
;WU5W

†
;Wχ

� 	

with W ∈U 2ð Þ. To have a nontrivial solution, they

should obey U5 1�U4ð Þ � 1þU4ð Þ½ � ¼ 0. For example, a simple choice is U4;U5ð Þ ¼ σ3; σ2ð Þ,

and the corresponding solution is χT ¼ 1 ið Þ. Then we obtain the spectrum of the edge-of-edge

state e pð Þ ¼ �p1, α4 pð Þ ¼ p3, α5 pð Þ ¼ p2.

4.2. 3d chiral topological insulator

We discuss dimensional reduction of the edge-of-edge state in the 5d WSM to a more realistic

3d system. Replacing p4; p5
� 	

! m; 0ð Þ as shown in Figure 11, then we obtain the 3d chiral

(class AIII) TI
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H
AIII
3d p

!
� �

¼p
!
� γ
!
þmγ4, (67)

where the gamma matrices are chosen as γ
!
¼ τ2 ⊗ σ

!
, γ4 ¼ τ1 ⊗1, γ5 ¼ τ3 ⊗1, and Pauli

matrices σ0s and τ0s act on the spin space ↑; ↓ð Þ and the sublattice space A;Bð Þ, respectively. This

Hamiltonian has a chiral symmetry with respect to the sublattice structure H
AIII
3d ;γ5

� 


¼ 0. We

can apply a similar analysis as before. The edge-of-edge state is in this case given by

ψ p1; x2; x3
� 	

¼ e�α2 p1ð Þx2�α3 p1ð Þx3 1þ iσ3U3

iσ3 1� iσ3U3ð Þ

� �

ξ p1
� 	

(68)

with the compatibility condition

det 1þU†

2 iσ2ð Þ þ iσ3U3 �U† iσ1ð ÞU3 þ iσ1 � iσ2U3 �U†

2 iσ3ð Þ �U†

2U3

� �

¼ 0 (69)

where U2,3 ∈ U(2) parameterize the boundary condition. We consider the following choice

satisfying the compatibility condition U2 ¼ σ2 cosϕþ i sinϕ, U3 ¼ i cosϕ� σ3 sinϕ. Then we

obtain the spectra of the edge state localized at x2 ¼ 0 and x3, and the edge-of-edge state

localized at their intersection

e2 p1; p3
� 	

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p21 þ p23 þ m cosϕ
� 	2

q

, (70)

e3 p1; p2
� 	

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p21 þ p22 þ m sinϕ
� 	2

q

, (71)

eeoe p1
� 	

¼ �p1: (72)

Here both edge states are gapped, while only the edge-of-edge state is gapless. This is a

suitable situation for experimental detection of the edge-of-edge state because we have to

distinguish it from the spectra of the edge states at x2 ¼ 0 and x3 ¼ 0. The reason why we

obtain the gapped edge states seems that the symmetry protecting the edge state is weakly

broken due to the boundary condition, which is analogous to the TI/ferromagnet junction, etc.
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